Adaptively Mapping Code in an Intelligent
Memory Architecture*

Yan Solihin'+3, Jaejin Lee?, and Josep Torrellas!

! University of Illinois at Urbana-Champaign
2 Michigan State University
3 Los Alamos National Laboratory
{solihin,torrella}@cs.uiuc.edu, jlee@cse.msu.edu
http://iacoma.cs.uiuc.edu/flexram

Abstract. This paper presents an algorithm to automatically map code
to a generic Processor-In-Memory (PIM) system that consists of a host
processor and a much simpler memory processor. To achieve high perfor-
mance with this type of architecture, code needs to be partitioned and
scheduled such that each section is assigned to the processor on which it
runs most efficiently. In addition, processors should overlap their execu-
tion as much as possible.

Our algorithm is embedded in a compiler and run-time system and maps
applications fully automatically using both static and dynamic informa-
tion. Using a set of applications and a simulated architecture, we show av-
erage speedups of 1.7 over a single host with plain memory. The speedups
are very close and often higher than ideal speedups on a more expensive
multiprocessor system composed of two identical host processors. Our
work shows that heterogeneity can be cost-effectively exploited, and rep-
resents one step toward effectively mapping code to more advanced PIM
systems.

1 Introduction

Processor-in-Memory (PIM) chips, by integrating processor logic and memory in
the same chip, enable low-latency and high-bandwidth communication between
processor and memory, thereby promising high performance [2, 5, 7, 8, 11, 13, 14,
15, 16, 18, 20]. One interesting use of these chips is to replace the main memory
chips in a workstation or server. In this case, PIM chips can act as co-processors
in memory that execute code when signaled by the host (main) processor. This
approach is taken by Active Pages [13], DIVA [5], and FlexRAM [7] among
others.

This class of architectures provide a heterogeneous mix of processors: host
and memory processors. Host processors are more powerful, are backed up by

* An extended version of this paper appears in [10]. This work was supported in part
by the National Science Foundation under grants NSF Young Investigator Award
MIP-9457436, MIP-9619351, and CCR-9970488, DARPA Contract DABT63-95-C-
0097, Michigan State University, and gifts from IBM and Intel.

deep cache hierarchies, and see a higher latency to memory. Memory processors
are typically less powerful, see a lower latency to memory, and (at least in theory)
are much cheaper. The question we address in this paper is: how to automatically
program these architectures?

Previous work on programming these architectures [5, 4, 7, 13] manually
identifies the code sections to run on memory processors. This process is not
transparent to the programmer. In addition, previous work has largely focused
on parallel execution of applications on only the memory processors.

In this paper, we present a compiler and run-time algorithm to automati-
cally partition programs into sections and map each section on its most suitable
processor, while maximizing the execution overlap of the host and memory pro-
cessors. We apply our algorithm to both numerical and integer applications. We
find that our algorithm effectively exploits the heterogeneity of the architecture.

2 Intelligent Memory Architecture

Processor Chip

to/from P.|105t

L1 Cache L2 Cache X 1

i

Memory Chip

Memory Chip

b—

(A) (B)

Fig. 1. A simple intelligent memory architecture.

To simplify the problem, in this paper we only consider the simple archi-
tecture of Figure 1(A), which has a single host processor (P.host) and a single
memory processor (P.mem). We are in the process of extending our techniques
to map code to architectures with multiple processors of each type.

To reduce the cost of the system, the processor and memory chips are con-
nected with an off-the-shelf interconnection. As a result, P.mem cannot be the

master of the interconnection to initiate transactions. Furthermore, there is no
hardware support for cache coherence between the P.host and P.mem caches.
There is, however, some simple support to make programming easier (Figure 1(B)).
Specifically, when P.host writes back a line to memory, P.mem’s cache is also
updated if it contains a copy of the line. In addition, when P.host requests a line
from memory, if P.mem’s cache has a copy of it, the cache overwrites the data
returning to P.host.

With this support, cache coherence can be ensured by the compiler with
simple write-back and invalidate commands that control P.host’s caches. The
compiler inserts these commands in the program. Specifically, before transferring
execution from P.host to P.mem, the P.host cache writes back any dirty lines that
the P.mem may want to read. Furthermore, before returning execution to the
P.host, the P.host cache invalidates any lines that the P.mem may have written.

3 Modules and Partitioning

Our compiler and run-time algorithm automatically maps both numeric and
integer applications to the architecture of Section 2. The algorithm starts by
partitioning the code into units of execution called modules. Modules have a
homogeneous behavior in terms of computing and memory requirements, exhibit
good locality, and are easy to extract from the original code. A natural and
intuitive unit on which to build modules is a loop.

With basic partitioning, we find basic modules. A basic module is either a
loop nest where each nesting level has only one loop, or a call to a subroutine
that is composed of only one such loop nest. The loop nest may span several
subroutine levels.

With advanced partitioning, we take the basic modules and try to expand
their size or to combine several of them while keeping their behavior relatively
homogeneous and enhancing locality. The result is compound modules. Com-
pound modules do not have to be loops. They are generated by merging basic
modules with nearby statements that access overlapping data sets. In addition,
they are also generated by combining adjacent basic modules that we expect to
have the same affinity. We say that a module has affinity for P.host or P.mem if
it runs faster on P.host or P.mem, respectively.

To estimate the affinity of a basic module we use two approaches: for integer
applications, we use a profiling run with a different input set, while for numeric
applications, we use Delphi’s static performance predictor [3]. The latter esti-
mates the compute and cache miss times of the module in each processor.

4 Adaptive & Overlapped Execution

The basic or compound modules identified in Section 3 must now be scheduled
for execution on either P.host or P.mem. The schedule can be decided statically,
based on the affinity estimated by either the static predictor or the profile. This
approach we call Static.

A more advanced approach is to decide the schedule adaptively at run time. In
this case, the compiler inserts instrumentation code that measures, at run time,
the execution time of some invocations of the module (or, if applicable, some of
its iterations) on P.host and some on P.mem. Based on these measurements, the
run-time system schedules subsequent module invocations (or iterations). The
different dynamic scheduling strategies supported are shown in Table 1.

Table 1. Different dynamic scheduling strategies.

Name What We Do Note
Coarse First invocation of module runs on P.host.
Basic Second one runs on P.mem. The processor
(Coarse) ||that ran the fastest is assigned the module
for the rest of the invocations in the appli-
cation.
Coarse First invocation runs on P.host. Second one|lt can adapt to changes in
Most runs on P.mem. From now on, after every in-|the behavior of the mod-
Recent vocation, we compare the execution time to|ule across invocations.
(CoarseR) ||the most recent execution time on the other
processor. Based on the result, the subse-
quent invocation is scheduled on the proces-
sor that ran the fastest.
Fine For each invocation of the module, repeat|It only works for modules
Basic the following. First iteration runs on P.host.|that have an all-enclosing
(Fine) Second one runs on P.mem. The processor|loop. It may have high
that ran the fastest is assigned the rest of|overhead.
the iterations in the invocation.
Fine First iteration of first invocation runs on|lt only works for modules
First P.host. Second iteration of first invocation|that have an all-enclosing
Invocation||runs on P.mem. The processor that ran thelloop. It has the lowest
(FineF) fastest is assigned the rest of the iterations|overhead, but it may pro-
in this invocation and the rest of the invo-|duce a wrong prediction.
cations.

The different strategies in the table may be best under different situations.
Table 2 lists the best strategy based on how the behavior of the module execution
varies across invocations of the module and across iterations of a given invocation
of the module.

Finally, to further speed-up code execution, we overlap the computation of
P.host and P.mem. To this end, we divide the application into two classes of
regions: module-wise parallel regions, where there are multiple modules that can
be run in parallel with respect to one another, and module-wise serial regions,
where only one module can be run at a time because of dependences between
modules. Note that here we use basic partitioning because it creates simpler
modules and, therefore, exposes more parallelism.

Table 2. Comparing the different dynamic scheduling strategies.

Num. Invo-|Behavior Across|Behavior Across|Best Strategy
cations Invocations Iterations
Constant Constant Fine first invocation
> 2 Constant Variable Coarse basic
Variable Constant Coarse most recent, Fine basic
Variable Variable Coarse most recent
Constant Constant Fine first invocation
1or?2 Constant Variable —
Variable Constant Fine basic
Variable Variable —

In the module-wise parallel regions, we simply overlap the execution of the
modules on the different processors. In a module-wise serial region, we try to
split the module into two pieces, one for P.host and one for P.mem. Specifically,
if the module is a fully-parallel loop, we divide the iteration count into two un-
equal chunks that are expected to take equal time to execute. Otherwise, we try
to use loop distribution across the two processors with or without synchroniza-
tion. If none of these techniques is possible, we simply apply the best sequential
scheduling strategy as described above.

In all cases of overlapped execution, to decide how to partition the work
between P.host and P.mem, we can use either static-only information or dynamic
information. We call these cases OverSta and OverDyn, respectively.

5 Evaluation Setup

The code generated by the compiler is targeted to a MINT-based [19] simulation
environment [9]. The simulation environment can model dynamic superscalar
processors with register renaming, branch prediction, and non-blocking memory
operations [9]. The architecture modeled is that of Section 2, with a bus con-
necting the processor and memory chips. The architecture is modeled cycle by
cycle, including contention effects. Table 3 shows the parameters used for each
component of the architecture. The L2 cache size used is 1 Mbyte, except for
one of the applications (Bzip2), which is simulated with a 512-Kbyte L2.

Our choice of P.mem’s clock frequency is motivated by recent advances in
Merged Logic DRAM process. They seem to enable the integration of on-chip
logic that cycles as fast as in a logic-only chip, with DRAM memory that is only
10% less dense than in a DRAM-only chip [12, 6].

The table also includes the overheads involved in invalidating and writing
back lines from P.host’s L2 cache. We assume the following hardware support in
the L2 cache controller. Suppose that we want to write back num_cache_lines
lines. To program the controller, P.host suffers an overhead of 5+1 Xnum_cache_lines
cycles. Then, the controller writes back the desired lines in the background with-
out stalling P.host. Note, however, that the write backs must be completed before
passing execution to P.mem.

Table 3. Parameters of the simulated architecture. Cache and memory latencies cor-
respond to contention-free round-trips from the processor.

||M0dule HParameter |Value H
P.host ||Frequency 800 MHz
Issue Width Out-of-order 6-issue
Func. Units 4 Int + 4 FP + 2 Ld/St units
Pending Ld/St 8/16
Branch Penalty 4 cycles
P.mem ||Frequency 800 MHz
Issue Width In-order 2-issue
Func. Units 2 Int + 2 FP + 1 Ld/St units
Pending Ld/St 8/8
Branch Penalty 2 cycles
P.host ||L1-Data Write-through, 32-KB, 2-way, 32-B line, 2-cycle hit
Caches
L2-Data Write-back, 1-MB (512-KB for Bzip2), 4-way, 128-B
line, 10-cycle hit
Write-Back Overhead 5 4+ 1 x num_cache_lines cycles to program. Actual
write back of data occurs in background
Invalidation Overhead 5 + 1 X num_cache_lines cycles total. It is typically
overlapped with P.mem’s execution
P.mem ||L1-Data Write-back, 16-KB, 2-way, 32-B line, 2-cycle hit
Cache
Memory || Memory Latency If row buffer miss: 160 cycles from P.host & 21 cycles
& Bus from P.mem
If row buffer hit: 152 cycles from P.host & 13 cycles
from P.mem
Bus Type Split transaction, 16-B wide
DRAM Memory Size 64 MB per chip

Assume now that we want to invalidate num_cache_lines lines. In this case,

P.host suffers a total overhead of 541 X num_cache_lines cycles. Note that these
cycles can be overlapped with P.mem execution. This overhead only affects the
final execution time if the invalidations have not completed when P.mem finishes
execution and P.host is expected to resume.

P.host and P.mem synchronize at module boundaries. Specifically, P.host
writes to a register in P.mem to signal P.mem that it can begin execution. When
P.mem has completed execution, it writes to another one of its registers so that
P.host can see it. The overheads involved in these synchronizations are considered
in our simulation.

The applications evaluated are numerical and integer programs: Swim and
Mgrid from SPEC{p2000, Tomcatv from SPEC{p95, LU from [17], TFFT2 from
NAS [1], and Bzip2 from SPECint2000. All floating-point applications use double
precision. Table 4 shows the data set sizes used and what the applications are
computing. For Bzip2, we perform the runs with two different input data sets:
the Inputl runs use the Train input set, while the Input2 runs use this paper in

postscript format as input. All runs of Bzip2, however, use the profile generated

with the Train input set.

Table 4. Applications used.

||Application||Data Size and Number of Iterations|Description

Swim 513 x 513, 10 iterations Shallow water simulation
Tomcatv ||513 x 513, 5 iterations Vectorized mesh generation
LU 512 x 512 LU matrix decomposition
TFFT2 217 elements, 5 iterations Fast fourier transformation
Mgrid 64 x 64 x 64 grid, 3 iterations Multi-grid solver: 3D potential field
Bzip2 Inputl: Train Compression algorithm
Input2: This paper in postscript

6 Evaluation Results

Table 5 shows the characteristics of the basic modules obtained by our compiler.
They account for 97% of the execution time on average. The table also shows
that different applications have a different distribution of affinity for P.host and

P.mem.

Table 5. Characteristics of the basic modules.

[[Characteristic (% of P.host Time) [[Swim | Tomcatv LU I

Total Modules 16 (100.00%) |7 (96.46%) |5 (99.99%)
Parallel Modules 16 (100.00%) |5 (56.16%) 3 (7.36%)
Serial Modules - 2 (40.30%) 2 (92.63%)
Modules with P.host Affinity 1 (6.54%) 3(18.16%) |2 (92.63%)
Modules with P.mem Affinity |15 (93.46%) |4 (78.30%) |3 (7.36%)
Average Invocations per Module ||5.7 5.0 409.4

[[Characteristic (% of P.host Time) [TFFT2 [Mgrid |Bzip2 (Inputl) ||

Total Modules

17 (99.28%)

21 (99.79%) |95 (85.37%)

Parallel Modules

15 (93.93%)

18 (96.85%) 28 (0.68%)

Serial Modules 2 (5.35%) 3 (2.94%) 67 (84.69%)
Modules with P.host Affinity 8 (44.04%) 6 (23.91%) 71 (56.41%)
Modules with P.mem Affinity 9 (55.24%) |15 (75.88%) |24 (28.96%)
Average Invocations per Module |[[1688.5 105.7 48043.0

Figure 2 and Figure 3 show the execution time for each application. In each
chart, the two leftmost bars correspond to running the application on P.host
alone (P.host(alone)) and on P.mem alone (P.mem(alone)). Then, there are nine
pairs of two bars, where each pair corresponds to a different way of partitioning

and scheduling. A given pair shows the execution time of P.host and P.mem
(which are necessarily the same) broken down into several categories. The pairs
of bars correspond to static scheduling (Static), dynamic sequential scheduling
with basic modules (Coarse, CoarseR, Fine, FineF), dynamic sequential scheduling
with compound modules (AdvCoarse, AdvCoarseR), and overlapped scheduling
(OverSta, OverDyn). For Bzip2, since we have two input sets, we only show a
subset of the bars.

Non-Overlapped Execution

P.host(alone) and P.mem(alone) show that the relative emphasis on computing
and memory activity varies across applications: Swim, Tomcatv, and Mgrid run
faster on P.mem, while LU runs faster on P.host and TFFT2 runs equally fast
on both processors. Depending on the input set, Bzip2 can be much faster on
P.host or almost as fast in P.host as in P.mem. Overall, these bars show that
neither P.host nor P.mem is the best place to run all and every application. If
an application executes on the less optimal processor, it may take up to 100%
longer to run.

Static schedules modules in the floating-point applications according to the
static predictor; if the latter cannot estimate the affinity, the module runs on
P.host. From the figure, we see that Static performs relatively well. It runs quite
fast for Swim, LU, and TFFT2. Overall, Static is attractive because of its sim-
plicity. However, the static predictor does not currently analyze the complicated
code in the integer application (Bzip2). Consequently, Static in Bzip2 uses profil-
ing information, which does not necessarily perform well. Specifically, when the
input set is very different from the input set used for profiling, Static performs
poorly, as it is shown with Input2 in Bzip2.

Coarse and CoarseR tend to be good choices. They are usually as fast or
faster than Static. The reason is that they adaptively run the modules on the
processors for which the modules have the true affinity. In the process of doing
so, however, they are likely to run each module sub-optimally at least once.

Coarse and CoarseR behave similarly for Swim, Tomcatv, Mgrid, and Bzip2
(Input2). In these applications, the workload in a given module tends to remain
constant across invocations. As a result, CoarseR does not offer any advantage
over Coarse. However, in LU, TFFT2, and Bzip2 (Inputl), the workload in a
given module varies across invocations. The variation of the modules in LU and
Bzip2 (Inputl) is gradual, which means that CoarseR can adapt well. The result
is that CoarseR is about 20% faster than Coarse in LU. In TFFT2, however, the
workload of the largest module varies abruptly, with peaks at every 8 invoca-
tions. After one of these abrupt peaks is recorded on a processor, the module is
scheduled on the other processor for many subsequent invocations, even though
it would run faster on the first processor. This behavior disrupts the smooth
execution of the CoarseR algorithm, slowing it down slightly, relative to Coarse.

The fine strategies are not as attractive. Specifically, Fine is sometimes slow
because of the high overhead resulting from its frequent decision runs (TFFT2).
As for FineF, although it has the lowest decision run overhead of all the dynamic
schemes, it often suffers because all decisions are made based exclusively on the

Swim

alli1] UoINJaX3 PazifewioN

%

9
o@ \\@
\@&z ®
\\ao@mw
(2

4

Idle m WB&INV

% Busy X Memory B Other

Tomcatv

o §\,\Z
| \\x\\% %,

(N AN
A 5
N

) AN

, 4
N

vz %

) A
v %

il

P 2

| |
A

, V. \&% %.@

[
[%\,\\\\\\ .
[|

[£, oy,

_, [,—Q\\\\\\\\,\\W%/ «M\W%MMO
N %, %, 0
\\\\\\\\\\\; B
B/ 5%
HOOONONYMANHO e«@@@@%
i46666666666 \@%@
ov.Q

4

allI] UoIN9aX3 poazifeulio

0
% 4o,
A 4%

Idle m WB&INV

Busy X Memory m Other

LU

© v NQ
dod o

: OV
N Y,

| N
N YT

(Y

V22

NN
e

M
=]

g

® QoY NQ
(oo o 0

alli1] UoINJaxX3 PazifewioN

! %D

" GV

BN
S
D
&

Idle m WB&INV

Memory m Other

Busy =

%

Fig. 2. Execution time of the applications. The bars are divided into execution of in-

structions (Busy), stall due to memory accesses (Memory), stall due to pipeline hazards
(Other), time waiting for the other processor (ldle), and time spent writing back or

invalidating lines in the caches of P.host (WB&INV).

TFFT2

N VA

M. .5,

saomo oo Bl
4 dd00o0o0 o0 \@\z@.
()

0,

(2

v

alli1] UoINJaX3 PazifewioN

Idle m WB&INV

Busy X Memory m Other

Z

(AN
[1 4 o¥%,0
} mm&@ﬁw
[% %&. Q&vaév
L ANy
o) _, I V &eo;ee\ X
= L %@ \@@4@4 s
0 AN 9,%3%
M _, I [N &QQW«\@
L Z é&. %
AN 9.7
L ’ oo %
_, L A \&9&@&
M QOQQW@&O
| %
| 7. @%&,\@%

allI] UoIN9aX3 poazifeulio

Idle m WB&INV

Busy X Memory m Other

Bzip2

input2

1

LB

A

MO

P
“\
NS

2

D,

A\

N

-

.

SN
eqx\

inputl
& \S\Qx

<«

N

<

4444000000000

alli1] UoNNJaxX3 pazifewioN

<
N
<

<X

o'
°

T
<

)
<
X

o“%\s\

D,
2

O
Qe
PISNN

Idle m WB&INV

#Z Busy X Memory m Other

Fig. 3. Execution time of the applications. The bars are divided into execution of in-

structions (Busy), stall due to memory accesses (Memory), stall due to pipeline hazards
(Other), time waiting for the other processor (ldle), and time spent writing back or

invalidating lines in the caches of P.host (WB&INV).

first two iterations of the first invocation of the module. Consequently, unless
the workload of the module is constant across invocations and iterations, the
decision is likely to be sub-optimal (Tomcatv).

The figures show that advanced partitioning has little impact on the perfor-
mance of numeric applications. Indeed, the AdvCoarse and AdvCoarseR bars are
similar to the Coarse and CoarseR ones. The reason is that basic modules are al-
ready large enough to dwarf scheduling and other overheads. However, advanced
partitioning is effective for Bzip2. Although not shown in the figure, AdvCoarse
and AdvCoarseR are significantly faster than Coarse and CoarseR for Bzip2. The
reason is that basic modules are quite small in Bzip2 and, therefore, overheads
are relatively large.

Overall, we conclude that, among the non-overlapped execution schemes,
AdvCoarseR is the best. It is on average 23% faster than P.host(alone) and 20%
faster than P.mem(alone).

Overlapped Execution

Overlapped execution speeds up the application significantly in 3 out of 6
applications. Specifically, in Swim, Tomcatv, and Mgrid, the overlapped schemes
OverSta and OverDyn speed up the application by 30-40% relative to AdvCoarseR.
With these schemes, we are utilizing processor resources that would otherwise
remain idle. In LU and Bzip2 (not shown), the overlapped schemes have no
impact over AdvCoarseR. The reason is that the most significant modules in these
codes have dependences that prevent them from being partitioned following the
algorithm of Section 4.

In TFFT2, however, overlapped execution is noticeably slower than Adv-
CoarseR. The reason is that overlapped scheduling induces extra overheads on
P.host. Specifically, it causes extra instruction execution and more cache misses
on P.host, all to ensure data coherence. The extra instructions are necessary to
write back and invalidate cached data structures when execution is transferred
to P.mem and back (WB&INV in Figure 3) and to generate the addresses of these
data structures (higher Busy in Figure 3). The extra misses occur when, after
the cache invalidations, the data is reloaded into P.host’s cache (higher Memory
Stall in Figure 3).

Interestingly, the chart for TFFT2 shows that, while OverSta suffers greatly
from these overheads, OverDyn is able to eliminate most of them and only takes
12% longer than AdvCoarseR. OverDyn is better because it is aware of the ex-
tra overheads involved with overlapped execution and schedules modules more
conservatively.

Overall, taking the average over all applications, OverDyn is 18% faster than
AdvCoarseR, the best non-overlapped scheme. Consequently, OverDyn is our best
scheme of all and, therefore, overlapped execution is our choice.

Summary

As a summary, Table 6 compares the speedups obtained by AdvCoarseR and
OverDyn, and the ideal Amdahl’s speedups for a machine that has 2 P.host
processors with plain memory. From the table, we can see that, by running each
section of the code on the processor where we expect it to run best, OverDyn

delivers an average speedup of 1.6 over a single host with plain memory. The
application speedups are very close and often higher than the ideal speedups on a
more expensive multiprocessor system composed of two identical host processors.

Table 6. Comparing speedups.

Application igggﬁgi‘;’gg P.ng:g;:e) Ideal Using
2 P.hosts
Swim 1.67 2.71 2.00
Tomcatv 1.17 1.60 1.67
LU 1.26 1.22 1.04
TFFT2 1.42 1.22 1.91
Mgrid 1.05 1.55 1.94
Bzip2 (Input2) 1.17 1.17 1.00
HAverage H 1.29 1.58 1.59 H

7 Conclusions

We presented and evaluated a compiler and run-time algorithm to automati-
cally partition and map code to a simple intelligent memory architecture. A
major conclusion is that some applications run best on the sophisticated P.host,
while others run best on the simpler P.mem. Furthermore, the same is true for
different code sections within an application. Overall, our results indicate that
a heterogeneous mix of processors is a promising approach to speed-up appli-
cations cost-effectively. The cost-effectiveness of such architectures is likely to
be higher than that of a conventional multiprocessor system with homogeneous
processors. We are in the process of extending our algorithms to architectures
with several P.hosts and several P.mems.

8 Acknowledgments

We thank D. Padua, A. Hoisie, C. Cascaval, P. Wu, M. Cintra, and anonymous
reviewers for useful discussion and feedback on the draft version of this paper.
We also thank M. Huang, J. Renau, and C. Cascaval for help with the software
used in this study.

References

[1] NAS Parallel Benchmark. http://www.nas.nasa.gov/Pubs/TechReports/
NASreports/NAS-98-009/.

[2] A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz, and D. A.
Patterson. ISTORE: Introspective Storage for Data-Intensive Network Services.
Proceedings of the Tth Workshop on Hot Topics in Operating Systems (HotOS-
VII), March 1999.

(3]

[10]

C. Cascaval, L. DeRose, D. A. Padua, and D. Reed. Compile-Time Based Perfor-
mance Prediction. In Twelfth International Workshop on Languages and Compil-
ers for Parallel Computing, 1999.

J. Chame, J. Shin, and M. Hall. Compiler Transformations for Exploiting Band-
width in PIM-Based Systems. In Solving the Memory Wall Problem Workshop,
June 2000.

M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,
J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, and J. Park. Mapping
Irregular Applications to DIVA, a PIM-Based Data-Intensive Architecture. In
Supercomputing 1999 (SC99), November 1999.

S. S. Iyer and H. L. Kalter. Embedded DRAM Technology: Opportunities and
Challenges. IEEE Spectrum, April 1999.

Y. Kang, M. Huang, S. Yoo, Z. Ge, D. Keen, V. Lam, P. Pattnaik, and J. Torrellas.
FlexRAM: Toward an Advanced Intelligent Memory System. In Proceedings of
the International Conference on Computer Design, October 1999.

P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pursuing a Petaflop: Point
Designs for 100 TF Computers Using PIM Technologies. In Proceedings of the
1996 Frontiers of Massively Parallel Computation Symposium, 1996.

V. Krishnan and J. Torrellas. An Execution-Driven Framework for Fast and
Accurate Simulation of Superscalar Processors. In International Conference on
Parallel Architectures and Compilation Techniques (PACT), October 1998.

J. Lee, Y. Solihin, and J. Torrellas. Automatically Mapping Code in an Intel-
ligent Memory Architecture. In International Symposium on High Performance
Computer Architecture, January 2001.

K. Mai, T. Paaske, N. Jayasena, R. Ho, and M. Horowitz. Smart Memories: A
Modular Reconfigurable Architecture. In International Symposium on Computer
Architecture, June 2000.

IBM Microelectronics. Blue Logic SA-27E ASIC. In News and Ideas of IBM
Microelectronics, February 1999. http://www.chips.ibm.com/news/1999/sa27e.
M. Oskin, F. Chong, and T. Sherwood. Active Pages: A Computation Model
for Intelligent Memory. In International Symposium on Computer Architecture,
pages 192203, June 1998.

M. Oskin, J. Hensley, D. Keen, F. T. Chong, M. Farrens, and A. Chopra. Ex-
ploiting ILP in Page-Based Intelligent Memory. In International Symposium on
Microarchitecture, November 1999.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Tomas, and K. Yelick. A Case for Intelligent DRAM. In IEEE Micro, pages
33-44, March/April 1997.

D. Patterson and M. Smith. Workshop on Mixing Logic and DRAM: Chips that
Compute and Remember. 1997.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in Fortran 77. Cambridge University Press, 1992.

S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Matt-
son, and J. D. Owens. A Bandwidth-Efficient Architecture for Media Processing.
In International Symposium on Microarchitecture, November 1998.

J. Veenstra and R. Fowler. MINT: A Front End for Efficient Simulation of Shared-
Memory Multiprocessors. In MASCOTS’94, pages 201207, January 1994.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring
it All to Software: Raw Machines. IEEE Computer, pages 86-93, September 1997.

