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Universidad de Zaragoza, Spain
LAWRENCE RAUCHWERGER
Texas A&M University
and
JOSEP TORRELLAS
University of Illinois at Urbana-Champaign

Thread-Level Speculation (TLS) provides architectural support to aggressively run hard-to-analyze
code in parallel. As speculative tasks run concurrently, they generate unsafe or speculative memory
state that needs to be separately buffered and managed in the presence of distributed caches and
buffers. Such a state may contain multiple versions of the same variable. In this paper, we introduce
a novel taxonomy of approaches to buffer and manage multiversion speculative memory state in
multiprocessors. We also present a detailed complexity-benefit tradeoff analysis of the different
approaches. Finally, we use numerical applications to evaluate the performance of the approaches
under a single architectural framework. Our key insights are that support for buffering the state
of multiple speculative tasks and versions per processor is more complexity-effective than support
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for lazily merging the state of tasks with main memory. Moreover, both supports can be gainfully
combined and, in large machines, their effect is nearly fully additive. Finally, the more complex
support for storing future state in the main memory can boost performance when buffers are under
pressure, but hurts performance when squashes are frequent.

Categories and Subject Descriptors: C.1.4 [Processor Architectures]: Parallel Architectures

General Terms: Design, Performance

Additional Key Words and Phrases: Caching and buffering support, coherence protocol, memory
hierarchies, thread-level speculation, shared-memory multiprocessors

1. INTRODUCTION

Although parallelizing compilers have made significant advances, they still
often fail to parallelize codes with accesses through pointers or subscripted
subscripts, possible interprocedural dependences, or input-dependent access
patterns. To parallelize these codes, researchers have proposed architectural
support for Thread-Level Speculation (TLS). The approach is to build tasks
from the code and speculatively run them in parallel, hoping not to violate se-
quential semantics. As tasks execute, special support checks that no cross-task
dependence is violated. If any is, the offending tasks are squashed, the pol-
luted state is repaired, and the tasks are re-executed. Many different schemes
have been proposed, ranging from hardware-based [e.g. Akkary and Driscoll
1998; Cintra et al. 2000; Figueiredo and Fortes 2001; Franklin and Sohi 1996;
Garzarán et al. 2003; Gopal et al. 1998; Hammond et al. 1998; Knight 1986;
Krishnan and Torrellas 1999; Marcuello and González 1999; Prvulovic et al.
2001; Sohi et al. 1995; Steffan et al. 2000; Tremblay 1999; Tsai et al. 1999;
Zhang et al. 1999] to software-based schemes [e.g. Frank et al. 2001; Gupta
and Nim 1998; Rauchwerger and Padua 1995; Rundberg and Stenström 2000].

Each scheme for TLS has to solve two major problems: (1) detection of viola-
tions and, (2) if a violation occurs, state repair. Most schemes detect violations
in a similar way: data that is speculatively accessed (e.g., read) is marked with
some ordering tag, so that we can detect a later conflicting access (e.g., a write
from another task) that should have preceded the first access in sequential
order.

As for state repair, a key support is to buffer the unsafe memory state that
speculative tasks generate as they execute. Typically, this buffered state is
merged with main memory when speculation is proved successful, or is dis-
carded when a violation is detected. In some programs, different speculative
tasks running concurrently may generate different versions of the same vari-
able. In other cases, multiple tasks that run on the same processor in sequence
may create multiple versions of the same variable. In all cases, the TLS system
must keep the state generated by each speculative task separate from each
other. Moreover, it must organize such state such that reader tasks obtain the
correct versions. Finally, versions must eventually merge into the safe state in
order. All this is challenging in multiprocessors, given their distributed caches
and buffers.

A variety of approaches to buffer and manage speculative memory state
have been proposed. In some proposals, tasks buffer unsafe state dynamically
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in caches [Cintra et al. 2000; Figueiredo and Fortes 2001; Gopal et al. 1998;
Krishnan and Torrellas 1999; Steffan et al. 2000], write buffers [Hammond et al.
1998; Tsai et al. 1999] or special buffers [Franklin and Sohi 1996; Prvulovic et al.
2001] to avoid corrupting main memory. In other proposals, tasks generate a log
of updates that allow them to backtrack execution in case of a violation [Frank
et al. 2001; Garzarán et al. 2003; Zhang 1999; Zhang et al. 1999]. Often, there
are large differences in the way caches, buffers, and logs are used in different
schemes. Unfortunately, there is no study that systematically breaks down the
design space of buffering approaches by identifying major design decisions and
tradeoffs and provides a performance and complexity comparison of important
design points.

This paper makes three contributions:

1. It performs a systematic analysis of the design space of buffering approaches
in TLS, identifying major design decisions. We introduce a novel taxonomy
of approaches to buffer and manage multiversion speculative memory state
in multiprocessors.

2. It presents a detailed complexity-benefit tradeoff analysis of the different
approaches.

3. It uses numerical applications to evaluate the performance of the approaches
under a single architectural framework. In the evaluation, we examine both
single- and multi-chip multiprocessors.

Our analysis shows that buffering the state of multiple speculative tasks
and versions per processor is more complexity-effective than lazily merging
the state of tasks with main memory. Moreover, both supports can be gainfully
combined and, in large machines, their effect is nearly fully additive. Finally,
the more complex support for storing future state in main memory can boost
performance when buffers are under pressure, but hurts performance when
squashes are frequent.

This paper is organized as follows: Section 2 introduces the challenges of
buffering; Section 3 presents our taxonomy and the detailed complexity-benefit
tradeoff analysis; Section 4 describes our evaluation methodology; Section 5
evaluates the different buffering approaches; and Section 6 concludes.

2. BUFFERING MEMORY STATE

2.1 Basics of Thread-Level Speculation

Thread-Level Speculation (TLS) extracts tasks from sequential codes and ex-
ecutes them in parallel hoping not to violate any sequential semantics. Under
TLS, potentially dependent tasks execute in parallel. At run time, references
from a task may have data dependences with references from other tasks. Thus,
special software or hardware must ensure that such data dependences are han-
dled properly, enforcing the sequential semantics of the original code.

At all times, tasks have a relative order imposed by the sequential code they
come from. Consequently, we use the terms predecessor and successor tasks. If
we give increasing IDs to successor tasks, the lowest-ID task still running is
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Fig. 1. A set of tasks executing on four processors. The commit point (CP) advance is shown in the
nonspeculative task timeline.

nonspeculative, while the others are speculative. When the nonspeculative task
finishes execution, it commits. Conceptually, commiting involves making the
state generated by the task to be part of the safe state of the program. As part
of committing, tasks update a variable called the Commit Point (CP), which
identifies the committed task with the highest ID

When a speculative task finishes, it cannot commit until all its predecessors
have finished and committed. However, to better tolerate load imbalance, the
processor that ran it can start to execute another speculative task. At any time,
the system contains many speculative tasks, either finished or unfinished, and
one unfinished nonspeculative task. The set of all these tasks is called the
window of uncommitted tasks.

Figure 1 shows an example of several tasks running on four processors. In
this example, when task T3 executing in processor 4 finishes the execution, it
cannot commit. It has to wait until its predecessor tasks T1 and T2 also finish
and commit. However, processor 4 may be able to start to execute task T5. The
example also shows how the nonspeculative task status changes as tasks finish
and commit (nonspeculative task timeline).

As speculative tasks execute in parallel, special software or hardware checks
for cross-task data dependence violations. This is done by tracking memory
references. The possible data dependences are WAR (Write-After-Read), WAW
(Write-After-Write), and RAW (Read-After-Write), and they can occur in order
or out of order. Typically, a violation will occur if these dependences execute out-
of-order. However, out of order WAR and WAW dependences can be handled
at run-time and not induce violations in systems with support for multiple
versions of the same datum. In these systems, as tasks execute they generate
versions that are usually tagged with the ID of the producer task. WAR and
WAW dependences in these systems are handled by effectively renaming the
versions in hardware.

RAW dependences are harder to deal with. In an in-order RAW, the specula-
tion protocol must find the correct version and supply it to the reader task.
In an out-of-order RAW, a task has prematurely loaded a variable that is
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subsequently modified by a predecessor task. The speculation protocol must
detect this error and the reader task needs to be squashed. Ordinarily, all the
successors tasks are also squashed because they may have consumed data pro-
duced by the squashed task. While it is possible to resolve reference chains
and selectively squash only tasks at fault, it involves extra complexity that we
avoid. In any case, when a task is squashed, all its speculatively produced data
must be purged. The task can then be restarted.

Many different schemes have been proposed for TLS, ranging from hardware-
based to software-only, and targeting machines that range from chip multi-
processors to larger shared-memory machines. In hardware-based approaches,
dependence checks are piggybacked on top of the coherence protocol messages.
Moreover, coherence messages contain the ID of the task that issued the oper-
ation in addition to the type of operation, and the referenced memory address.
If the message is a write and a successor task has already read the same data
(out-of-order RAW), the reader task and its successors are squashed. If the mes-
sage is a read and the data was previously written by another task (in-order
RAW), the speculation protocol finds the correct data version.

2.2 Challenges in Buffering State in TLS

We identify five main difficulties in buffering state in a TLS multiprocessor
memory system.

2.2.1 Separation of Task State. The state produced by a speculative task
is unsafe, since the task may be squashed. Therefore, such state is typically
kept separate from that of other tasks and main memory by buffering it in
caches [Cintra et al. 2000; Figueiredo and Fortes 2001; Gopal et al. 1998;
Krishnan and Torrellas 1999; Steffan et al. 2000] or special buffers [Franklin
and Sohi 1996; Hammond et al. 1998; Prvulovic et al. 2001; Tsai et al.
1999]. Alternatively, the task state is merged with memory, but the memory
overwritten in the process is saved in an undo log [Frank et al. 2001; Garzarán
et al. 2003; Zhang 1999; Zhang et al. 1999].

2.2.2 Multiple Versions of the Same Variable in the System. A new version
of a variable appears in the system when a task writes for the first time to
that variable. Thus, two speculative tasks running on different processors may
create two different versions of the same variable [Cintra et al. 2000; Gopal
et al. 1998]. These versions need to be buffered separately and special actions
need to be designed so that a reader task can find the correct version out of
the several coexisting in the system. Such version will be the version created
by the task with the largest ID that is still a predecessor of the reader task.
Figure 2 shows an example where tasks T0, T1, and T3 create three different
versions of the variable x and task T2 reads variable x. For correctness, the
version produced by task T1 must be provided.

Notice that a task has, at most, a single version of any given variable. A task
can write several times to the same variable, but the processor only needs to
keep the latest version produced by that task. The reason is that, on a depen-
dence violation, the whole task is undone. Therefore, there is no need to keep
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Fig. 2. Multiple versions of the same variable in the system. The figure shows examples of in-order
RAW, out-of-order WAR, and WAW dependences.

Fig. 3. Example of a cache keeping state from several tasks (a) or state from several tasks and
multiple versions of the same variable (b).

the other intermediate versions that the task produced. In Figure 2, task T3
writes twice to the same variable. However, the processor only buffers the value
4 written by the last write.

2.2.3 Multiple Speculative Tasks per Processor. When a processor finishes
executing a task, the task may still be speculative. If the buffering support
is such that the processor can only hold state from a single speculative task,
the processor stalls until the task commits. However, to better tolerate task
load imbalance, the local buffer may have been designed to buffer state from
several speculative tasks, enabling the processor to execute another task. In
this case, the state of each task is tagged with the ID of the owner task
(Figure 3a).

2.2.4 Multiple Versions of the Same Variable in a Single Processor. When
a processor buffers state from multiple speculative tasks, it is possible that it
may even have to hold multiple versions of the same variable (Figure 3b). This
may occur in load-imbalanced applications with WAW dependences between
tasks.

Note that when a task creates its own version, any subsequent load of the
variable by that task will always read from its own version. However, if the
task reads a variable that it did not first write, it needs to send an external
request so that the correct version can be provided. Thus, on a cache read from
the local processor, the data is provided only if both address and task ID match.
On a external request, extra comparisons need to be done if the cache has two
versions of the same variable. For example, in Figure 4, the cache of processor
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Fig. 4. External request to a cache that has two versions of the same variable x.

Table I. Application Characteristics that Illustrate the Challenges of Buffering

Written Footprint
# Spec Tasks (Average) per Spec Task (Average)

Application In System Per-Proc Total (KB) Mostly Priv (%)
P3m 800.0 50.0 1.7 87.9
Tree 24.0 1.5 0.9 99.5
Bdna 25.6 1.6 23.7 99.4
Apsi 28.8 1.8 20.0 60.0
Track 20.8 1.3 2.3 0.6
Dsmc3d 17.6 1.1 0.8 0.5
Euler 17.4 1.1 7.3 0.7

4 has two versions of variable x, one created by task T3 and one by task T5. If
task T4 running on processor 1 reads x, it needs to get the version from task
T3.

2.2.5 Merging of Task State. When a task commits, its state can be merged
with the safe state in main memory. Since this merging is done frequently,
it should be efficient. Furthermore, if the system (and the buffer) can have
multiple versions of the same variable, they must be merged with memory
following task order.

2.3 Application Behavior

To gain insight into these challenges, Table I shows some application charac-
teristics. The applications (discussed in Section 4.2) execute speculatively par-
allelized loops on a simulated 16-processor machine (discussed in Section 4.1).
Columns 2 and 3 show the average number of speculative tasks that coexist
in the system and per-processor, respectively. In most applications, there are
17–29 speculative tasks in the system at a time, while each processor buffers
about 1 to 2 speculative tasks at a time. Only P3m, which is very imbalanced,
has many tasks.

Columns 4 and 5 show the size of the written footprint of a speculative task
and the fraction of such footprint that exhibits mostly privatization access pat-
terns, respectively. The written footprint is an indicator of the buffer size needed
per task. Accesses to a variable follow a privatization pattern when one or more
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Fig. 5. Examples of nonanalyzable loops. The outermost loop is speculatively parallelized.

tasks access the variable, but they all write it before reading it. In some cases,
accesses to a variable follow such a pattern, but either they do not follow it all
the time, or the compiler cannot prove that they follow it all the time. In this
case, we call the pattern mostly privatization. This pattern appears in tasks
with many WAW dependences. Such tasks create many versions of the same
variable.

As an example of code with mostly privatization patterns, Figure 5a shows
a loop from Apsi. Each task generates its own work(k) elements before reading
them. However, compiler analysis fails to prove work as privatizable, because
it is unable to guarantee that there is no intersection between the work(f(i,j,k))
elements that are read and the work(k) elements that are written. Table I shows
that mostly privatization patterns play a major role in P3m, Tree, Bdna, and,
to a lesser extent, in Apsi, increasing the complexity of buffering.

There are some applications without privatization patterns: Track, Dsmc3d,
and Euler. In these applications, each task reads and writes relatively scattered
elements in arrays. Thus, sometimes there is no intersection between the ele-
ments that each task accesses and, as a result, there are no data dependences
among tasks. Other times, more than one task access the same data. However,
if the colliding tasks are far apart, they will not overlap during execution and
data dependences will execute in order. On the other hand, if the colliding tasks
are close, they may overlap during the execution and data dependences may
execute out of order. Figure 5b shows a loop from Track, where array nused is
accessed with these patterns. Specifically, each iteration accesses one element
of the array. The actual element accessed depends on the values of the array
ihits.

3. TAXONOMY AND TRADEOFF ANALYSIS

To understand the tradeoffs in buffering speculative memory state under TLS,
we present a novel taxonomy of possible approaches (Section 3.1), map existing
schemes to it (Section 3.2), and perform a tradeoff analysis of benefits and
complexity (Section 3.3).

3.1 Novel Taxonomy of Approaches

We propose two axes to classify the possible approaches to buffering: how the
speculative task state in an individual processor is separated and how the task
state is merged system-wide. The taxonomy is shown in Figure 6a.
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Fig. 6. Buffering and managing speculative memory state: taxonomy (a) and difference between
architectural (AMM) and future main memory (FMM) schemes (b).

3.1.1 Separation of Task State. The vertical axis classifies the approaches
based on how the speculative state in the buffer (e.g., cache) of an individual
processor is separated: the buffer may be able to hold only the state of a single
speculative task at a time (SingleT), multiple speculative tasks but only a single
version of any given variable (MultiT&SV), or multiple speculative tasks and
multiple versions of the same variable (MultiT&MV).

In SingleT systems, when a processor finishes a speculative task, it has to
stall until the task commits. Only then can the processor start a new specula-
tive task. In the other schemes, when a processor finishes a speculative task,
it can immediately start a new one.1 In MultiT&SV schemes, however, the pro-
cessor stalls when a local speculative task is about to create its own version of
a variable that already has a speculative version in the local buffer. The pro-
cessor only resumes when the task that created the first local version becomes
nonspeculative. In MultiT&MV schemes, each local speculative task can keep
its own speculative version of the same variable.

3.1.2 Merging of Task State. The second (horizontal) axis classifies the
approaches based on how the state produced by tasks is merged with main
memory. This merging can be done strictly at task commit time (Eager Archi-
tectural Main Memory); at or after the task commit time (Lazy Architectural
Main Memory); or at any time (Future Main Memory). We call these schemes
Eager AMM, Lazy AMM, and FMM, respectively.

The largest difference between these approaches is on whether the main
memory contains only safe data (Eager or Lazy AMM) or it can contain spec-
ulative data as well (FMM). To help understand this difference, we use an
analogy with the concepts of architectural file, reorder buffer, future file, and
history buffer proposed by Smith and Pleszkun for register file management
Smith and Pleszkun [1988].

The architectural file in Smith and Pleszkun [1988] refers to the safe con-
tents of the register file. The architectural file is updated with the result of an

1Intuitively, in SingleT schemes, the assignment of tasks to processors is “physical” or tied to a
predetermined ordering of round-robin processors after the first round, while in MultiT schemes,
it is “virtual” or flexible.
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Fig. 7. Snapshot of the memory system state of a program under TLS using the concepts of
Memory-System Reorder Buffer (a) and Memory-System History Buffer (b).

instruction only when the instruction has completed and all previous instruc-
tions have already updated the architectural file. The reorder buffer allows
instructions to execute speculatively without modifying the architectural file.
The reorder buffer keeps the register updates generated by instructions that
have finished but are still speculative. When an instruction commits, its result
is moved into the architectural file.

Analogously, in systems with Architectural Main Memory (AMM), all spec-
ulative versions remain in caches or buffers that are kept separate from
the coherent main memory state. Only when a task becomes safe can its
buffered state be merged with main memory. In this approach, caches or buffers
become a distributed Memory-System Reorder Buffer (MROB). Figure 7a shows
a snapshot of the memory system state of a program using this idea. The
architectural state is composed of unmodified variables (black region) and the
committed versions of modified variables (white region). The remaining mem-
ory system state is comprised of speculative versions. These versions form the
distributed MROB.

In Smith and Pleszkun [1988], the result of an instruction updates the
architectural file at commit time. A straightforward approach in TLS closely
follows this analogy. Specifically, when a task commits, its entire buffered state
is eagerly merged with main memory. Such an approach we call Eager AMM.
Merging may involve write back dirty lines to memory [Cintra et al. 2000]
or requesting ownership for these lines to obtain coherence with main mem-
ory [Steffan et al. 2000].

Unfortunately, the state of a task can be large. Merging it all as the task
commits delays the commit of future tasks. To solve this problem, we can allow
the data versions produced by a committed task to remain in the cache where
they are kept incoherent with other committed versions of the same variables
in other caches or main memory. Committed versions are lazily merged with
main memory later, usually as a result of line displacements from the cache
or external requests. As a result, several different committed versions of the
same variable may temporarily coexist in different caches and main memory.
However, it is clear at any time which one is the latest one [Gopal et al. 1998;
Prvulovic et al. 2001]. We call this approach Lazy AMM.
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Consider now the future file in Smith and Pleszkun [1988]. It is the most
recent contents of the register file. A future file entry is updated by the youngest
instruction in program order updating that register. The future file is used as
the working file by later instructions. When an instruction commits, no data
movement or copying is needed because the future file has already been up-
dated. However, the future file is unsafe: it is updated by uncommitted instruc-
tions. The history buffer allows the future file to be speculatively updated. The
history buffer stores the previous contents of registers updated by speculative
instructions. When an instruction commits, its history buffer entry is freed
up. In an exception, the history buffer is used to revert the future file to the
architectural file.

Analogously, in systems with Future Main Memory (FMM), versions from
speculative tasks can be merged with the coherent main memory state. How-
ever, to enable recovery from task squashes, before a task generates a specu-
lative version of a variable, the previous version of the variable is saved in a
buffer or cache. This state is kept separate from the main memory state. Now,
caches or buffers become a distributed Memory-System History Buffer (MHB).
Figure 7b shows a snapshot of the memory system state of a program using this
idea. The future state is composed of unmodified variables, last speculative ver-
sions, and committed versions of modified variables that have no speculative
version. The remaining speculative and committed versions form the MHB.

It is important to note that, in all cases, part of the coherent main memory
state (architectural state in AMM systems and future state in FMM systems)
can temporarily reside in caches (Figure 6b). This is because caches also func-
tion in their traditional role of extensions to main memory.

Finally, we shade SingleT FMM and MultiT&SV FMM schemes in Figure 6a
to denote that they are relatively less interesting. We discuss why in
Section 3.3.4.

3.2 Mapping Existing Schemes to the Taxonomy

Figure 8 maps existing schemes for TLS in multiprocessors onto our taxonomy.2

Consider first SingleT Eager AMM schemes. They include Multiscalar with
hierarchical ARB [Franklin and Sohi 1996], Superthreaded [Tsai et al. 1999],
MDT [Krishnan and Torrellas 1999], and Marcuello99 [Marcuello and González
1999]. In these schemes, a per-processor buffer contains speculative state from,
at most, a single task (SingleT) and this state is eagerly merged with main mem-
ory at task commit (Eager AMM). These schemes buffer the speculative state
of a task in different parts of the cache hierarchy: one stage in the global ARB
of a hierarchical ARB in Multiscalar, the Memory Buffer in Superthreaded,
the L1 in MDT, and the register file (plus a shared Multi-Value cache) in
Marcuello99.

Multiscalar with SVC [Gopal et al. 1998] is SingleT Lazy AMM because a
processor cache contains speculative state from, at most, a single task (SingleT),

2Note that we are only concerned with the way in which the schemes buffer speculative memory
state. Any other features, such as support for interprocessor register communication, are orthogonal
to our taxonomy.
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Fig. 8. Mapping schemes for TLS in multiprocessors onto our taxonomy.

while committed versions linger in the cache after the owner task commits
(Lazy AMM). In DDSM [Figueiredo and Fortes 2001], speculative versions are
also kept in caches. It is, therefore, AMM. However, work is partitioned so that
each processor only executes a single task per speculative section. Since each
processor commits only once, the distinction between Eager and Lazy does not
apply.

MultiT&MV AMM schemes include Hydra [Hammond et al. 1998],
Steffan97&00 [Steffan et al. 2000, 1997], Cintra00 [Cintra et al. 2000], and
Prvulovic01 [Prvulovic et al. 2001]. Hydra stores speculative state in buffers
between L1 and L2, while the other schemes store it in L1 and, in some cases,
L2. A processor can start a new speculative task without waiting for the task
that it has just run to become nonspeculative.3 All schemes are MultiT&MV
because the private cache hierarchy of a processor may contain state from mul-
tiple speculative tasks, including multiple speculative versions of the same
variable. This requires appropriate cache design in Steffan97&00, Cintra00,
and Prvulovic01. In Hydra, the implementation is easier because the state of
each task goes to a different buffer. Two buffers filled by the same processor
can contain different versions of the same variable.

Of these schemes, Hydra, Steffan97&00, and Cintra00 eagerly merge ver-
sions with main memory. Merging involves writing the versions to main mem-
ory in Hydra and Cintra00, or asking for the owner state in Steffan97&00.
Prvulovic01 is Lazy: committed versions remain in caches and are merged when
they are displaced or when caches receive external requests.

One of the designs in Steffan97&00 [Steffan et al. 2000, 1997] is MultiT&SV.
The cache is not designed to hold multiple speculative versions of the same
variable. When a task is about to create a second local speculative version of a
variable, it stalls.

MultiT&MV FMM schemes include Zhang99&T [Zhang 1999; Zhang et al.
1999] and Garzaran03 [Garzarán et al. 2003]. In these schemes, task state
is merged with main memory when lines are displaced from the cache or are
requested externally, regardless of whether the task is speculative or not. The

3While this statement is true for Hydra in concept, the evaluation in Hammond et al. [1998]
assumes only as many buffers as processors, making the system SingleT.
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Table II. Different Supports Required

Support Description
Cache Task Storage and checking logic for a

ID (CTID) task-ID field in each cache line
Cache Retrieval Advanced logic in the cache to

Logic (CRL) service external requests for versions
Memory Task Task ID for each speculative variable

ID (MTID) in memory and needed comparison logic
Version Combining Logic for combining/invalidating

Logic (VCL) committed versions
Undo Log (ULOG) Logic and storage to support logging

Table III. Benefits Obtained and Support Required for Each of the Different Mechanisms

Upgrade Performance Benefit Additional Support Required
SingleT −→ MultiT&SV Tolerate load imbalance CTID

when there are no
mostly privatization
access patterns

MultiT&SV −→ MultiT&MV Tolerate load imbalance CRL
even when there are
mostly privatization
access patterns

Eager AMM −→ Lazy AMM Remove commit CTID and (VCL or MTID)
wavefront from
critical path

Lazy AMM −→ FMM Faster version commit ULOG and
but slower version (MTID if Lazy AMM had VCL)
recovery

MHB in Zhang99&T is kept in hardware structures called logs. In Garzaran03,
the MHB is a set of software log structures, which can be in caches or displaced
to memory.

Finally, there is a class of schemes labeled Coarse Recovery in Figure 8 that
is different from those discussed so far. These schemes only support coarse-
grain recovery. The MHB can only contain the state that existed before the
speculative section. In these schemes, if a violation occurs, the state reverts to
the beginning of the entire speculative section. These schemes typically use no
hardware support for buffering beyond plain caches. In particular, they rely on
software copying to create versions. The coarse recovery makes them effectively
SingleT. Examples of such schemes are LRPD [Rauchwerger and Padua 1995],
SUDS [Frank et al. 2001], and other proposals [Gupta and Nim 1998; Rundberg
and Stenström 2000].

3.3 Tradeoff Analysis of Benefits and Complexity

To explore the design space of Figure 6a, we start with the simplest scheme
(SingleT Eager AMM) and progressively complicate it. For each step, we con-
sider performance benefits and support required. Tables II and III summarize
the analysis.
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Fig. 9. Four tasks executing under SingleT (a), MultiT&SV (b), and MultiT&MV (c).

3.3.1 Implementing a SingleT Eager AMM Scheme. In SingleT Eager
AMM schemes, each task stores its state in the local MROB (e.g., the processor’s
cache). When the task commits, its state is merged with main memory. If a task
finishes while speculative, the processor stalls until it can commit the task. If
the state of the task does not fit in the cache, the processor stalls until the task
becomes nonspeculative to avoid polluting memory. Finally, recovery involves
invalidating at least all dirty lines in the cache that belong to the squashed
task.

3.3.2 Multiple Speculative Tasks and Versions per-Processor. The benefit
of these schemes is that they tolerate load imbalance and mostly-privatization
patterns; the supports required are Cache Task ID and Cache Retrieval Logic.
We consider each issue in turn.

Benefits. SingleT schemes may perform poorly if tasks have a load imbal-
ance: a processor that has completed a short speculative task has to wait for
the completion of all (long) predecessor tasks running elsewhere. Only when
the short task finally commits can the processor start a new task. For example,
consider Figure 9, where Ti and ci mean execution and commit, respectively, of
task i. Figure 9a shows a SingleT scheme: processor 1 completes task T1 and
waits; when it receives the commit token, it commits T1 and starts T3.

MultiT schemes do not need to slow down under load imbalance because
processors that complete a speculative task can immediately start a new one.
However, MultiT&SV schemes can still run slowly if tasks have both load imbal-
ance and create multiple versions per variable. The latter occurs, for example,
under mostly privatization patterns (Section 2.3). In this case, a processor stalls
when a task is about to create a second local speculative version of a variable.
When the task that created the first version becomes nonspeculative and, as a
result, the first version can merge with memory, the processor resumes.

As an example, Figure 9b shows that processor 1 generates a version of X
in T1. Then, it executes T2, but stalls when it is about to generate a second
version of X in T2. When processor 1 receives the commit token for T1, the first
version of X is merged with memory and T2 restarts.
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Under MultiT&MV, load imbalanced tasks do not cause stalls, even if they
have mostly privatization patterns. An example is shown in Figure 9c. The
result is faster execution.

Supports. In MultiT schemes, the cache hierarchy of a processor holds
speculative versions from the multiple tasks that the processor has been ex-
ecuting. As a result, each line (or variable in some protocols) must be tagged
with the owner task ID. Furthermore, when the cache is accessed, the address
tag and task ID of the chosen entry are compared to the requested address and
the ID of the requester task, respectively. This support we call Cache Task ID
(CTID) in Table II.

Access from the local processor hits only if both tag and task ID match. In
an external access, the action is different under MultiT&SV and MultiT&MV.
Under MultiT&SV, the cache hierarchy can only keep a single version of a given
variable. Therefore, an external access can trigger, at most, one address match.
In this case, the relative value of the IDs indicates if the external access is out
of order. If it is, a squash may be required. Otherwise, the data may be safely
returned.

Under MultiT&MV, a cache hierarchy can hold multiple entries with the
same address tag and different task ID. Such entries can go to different lines of
the same cache set [Cintra et al. 2000; Steffan et al. 1997]. In this case, access
to the cache may hit in several lines. Consider the case of an external read re-
quest. The cache controller has to identify which of the selected entries has the
highest task ID that is still lower than the requester’s ID. That one is the correct
version to return. This operation requires some comparisons that may increase
cache occupancy or more hardware for parallel comparisons. Furthermore,
responses may require combining different words from the multiple cached
versions of the requested line, depending on the speculative cache coherence
protocol. This support we call Cache Retrieval Logic (CRL) in Table II.

3.3.3 Lazy Merging with Architectural Main Memory (AMM). The benefit
of these schemes is that they remove the commit wavefront from the critical
path; the supports required are Cache Task ID and Version Combining Logic
(or Memory Task ID). We consider each issue in turn.

Benefits. Program execution under TLS involves the concurrent advance of
two wavefronts: the Execution Wavefront advances as processors execute tasks
in parallel, while the Commit Wavefront advances as tasks commit in strict
sequence by passing the commit token. Figure 10a shows the wavefronts for a
MultiT&MV Eager AMM scheme.

Under Eager AMM schemes, before a task passes the commit token to its
successor, the task needs to write the data it wrote back to memory [Cintra
et al. 2000] or get ownership for it [Steffan et al. 2000]. These operations may
cause the commit wavefront to appear in the critical path of program execution.
Specifically, they do it in two cases.

In one case, the commit wavefront appears at the end of the speculative
section (Figure 10a). To understand this case, we call Commit/Execution Ratio
the ratio between the average duration of a task commit and a task execution.
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Fig. 10. Progress of the execution and commit wavefronts under different schemes.

For a given machine, this ratio is an application characteristic that roughly
measures how much state the application generates per unit of execution. If
the Commit/Execution Ratio of the application, multiplied by the number of
processors, is higher than 1, the commit wavefront can significantly delay the
end of the speculative section (Figure 10a).

The second case occurs when the commit wavefront delays the restart of
processors stalled because of the load-balancing limitations of MultiT&SV or
SingleT (Figure 10c). In these schemes, a processor may have to stall until it
receives the commit token and, therefore, commits are in the critical path.

Under Lazy AMM, committed versions generated by a task are lazily merged
with main memory, on demand. Since commit now only involves passing the
commit token, the commit wavefront advances fast and can hardly affect the
critical path. As an example, Figures 10b and d correspond to Figures 10a
and c, respectively, under Lazy AMM. In Figure 10b, instead of a long commit
wavefront at the end of the speculative section, we have a final merge of the
versions still remaining in caches [Prvulovic et al. 2001]. This is shown in the
figure using diamonds. In Figure 10d, the commit wavefront affects the critical
path minimally. In both cases, the program runs faster.

Supports. Lazy schemes present two challenges. The first one is to ensure
that different versions of the same variable are merged into main memory in
version order. Such in order merging must be explicitly enforced, given that
committed versions are lazily written back to memory on displacement or ex-
ternal request. The second challenge is to find the latest committed version
of a variable in the machine; the difficulty is that several different committed
versions of the same variable can coexist in the machine.

These challenges are addressed with two supports: logic to combine versions
(Version Combining Logic or VCL in Table II) and logic for ordering the versions
of a variable. Different implementations of these two supports are proposed by
Prvulovic01 [Prvulovic et al. 2001] and Multiscalar with SVC [Gopal et al. 1998].

When a committed version is displaced from a cache, the VCL identifies the
latest committed version of the same variable still in the caches, writes it back
to memory, and invalidates the other versions [Gopal et al. 1998; Prvulovic et al.
2001]. This prevents the earlier committed versions from overwriting memory
later. A similar operation occurs when a committed version in a cache is re-
quested by a processor. Note that if the machine uses multiword cache lines on
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displacements and requests, the VCL has to collect the latest committed ver-
sions for all the words in the line from the caches and combine them [Prvulovic
et al. 2001].

For the VCL to work, it needs the second support indicated above: support to
order the different committed versions of the variable. This can be accomplished
by tagging all the versions in the caches with their task IDs. This support is
used by Prvulovic01 [Prvulovic et al. 2001] and was called CTID in Table II.
An alternative approach used by Multiscalar with SVC [Gopal et al. 1998] is to
link all the cached versions of a variable in an ordered linked list called VOL.
The relative version order is determined by the location of the version in the
list. This support is harder to maintain than CTID, especially when a cache can
hold multiple versions of the same variable. As a result, we only list CTID in
Table III.

We note that the version-combining support provided by VCL can instead
be provided by a scheme proposed in Zhang99&T [Zhang 1999]. The idea is
for main memory to selectively reject write-backs of versions. Specifically, for
each variable under speculation, main memory keeps a task-ID tag that in-
dicates what version the memory currently has. Moreover, when a dirty line
is displaced from a cache and written back to memory, the message includes
the producer task’s ID (from CTID). Main memory compares the task ID of the
incoming version with the one already in memory. The write-back is discarded
if it includes an earlier version than the one already in memory. This support
we call Memory Task ID (MTID) in Table II.

3.3.4 Future Main Memory (FMM). The benefit of these schemes is that
they commit version faster, although they recover more slowly; the supports
required are Cache Task ID, Memory Task ID, and Undo Log. In the following,
we consider each issue in turn.

Benefits. In AMM schemes, when a new speculative version of a variable is
created, it is simply written to the same address as the architectural version
of the variable. However, it is kept in a cache or buffer until it can commit, to
prevent overwriting the architectural version. Unfortunately, the processor may
have to stall to prevent the displacement of such a version from the buffer. The
problem gets worse when the buffer has to hold state from multiple speculative
tasks. A partial solution is to provide a special memory area where speculative
versions can safely overflow into [Prvulovic et al. 2001]. Unfortunately, such
an overflow area is slow when asked to return versions, which especially hurts
when committing a task. Overall, the process of going from a speculative to a
committed version in AMM schemes carries the potential performance cost of
stall to avoid overflows or of slow accesses to an overflow area.

In FMM schemes, the process of going from speculative to committed version
is simpler and avoids penalizing performance. Specifically, when a task gener-
ates a new speculative version, the older version is copied to another address
and the new version takes its place. The new version can be freely displaced
from the cache at any time and written back to main memory. When the task
commits, the version automatically becomes committed and nothing needs to be
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Fig. 11. Implementing the MROB and the MHB.

done. The older version can also be safely displaced from the cache and written
back to memory at any time, since it lives in a different address. Hopefully, it
is never reaccessed.

FMM, however, loses out in version recovery. AMM recovery simply involves
discarding from the MROB (e.g., cache) the speculative versions generated by
the offending task and successors. In contrast, FMM recovery involves restoring
from the MHB to main memory all the versions overwritten by the offending
task and successors in strict reverse task order.

Supports. Consider an example of a program where each task generates its
own private version of variable X. Figure 11a shows the code for two tasks that
run on the same processor. If we use an AMM scheme, Figure 11b shows the
processor’s cache and local MROB, assuming MultiT&MV support.

If we use an FMM scheme, Figure 11c shows the processor’s cache and local
MHB. The MHB is a hardware or software structure in the cache or in memory.
When a task is about to generate its own version of a variable, the MHB saves
the most recent local version of the variable (the one belonging to an earlier
local task).

Note that we need to know what versions we have in the MHB. Such in-
formation is needed after a violation when, to recover the system, we need to
reconstruct the total order of the versions of a variable across the distributed
MHB. It is also needed in the rare case when a logged version is needed
during normal execution. Such case, called retrieval, occurs at an in order RAW
dependence if the requested version has been pushed into the log of the pro-
ducer processor by a newer task that both runs on the producer processor and
overwrote the variable.

Consequently, each MHB entry is tagged with the ID of the task that gen-
erated that version (Producer Task ID i in the MHB of Figure 11c). This ID
cannot be deduced from the task that overwrites the version. Consequently, all
versions in the cache must be tagged with their task IDs, so that the latter
can be saved in the MHB when the version is overwritten. Finally, groups of
MHB entries are also tagged with the Overwriting Task ID (i+j in the MHB of
Figure 11c).

Overall, FMM schemes need three supports. One is a per-processor, sequen-
tially accessed undo log that implements the MHB. When a task updates a
variable for the task’s first time, a log entry is created. Logs are accessed on
recovery and on the rare retrieval operations. Both hardware [Zhang 1999;
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Zhang et al. 1999] and software [Garzarán et al. 2003] logs have been proposed.
This support is called Undo Log (ULOG) in Table II.

The second support (discussed above) is to tag all the versions in the caches
with their task IDs. This is the CTID support in Table II. Unfortunately, such
tags are needed even in SingleT schemes. This is unlike in the MROB, where
SingleT schemes do not need task-ID tags. Therefore, SingleT FMM needs
nearly as much hardware as MultiT&SV FMM, without the latter’s potential
benefits. The same can be shown for MultiT&SV FMM relative to MultiT&MV
FMM. For this reason, we claim that the shaded area in Figure 6a is uninter-
esting (except for coarse recovery).

A third support is needed to ensure that main memory is updated with
versions in increasing task-ID order for any given variable. Committed and
uncommitted versions can be displaced from caches to main memory and the
main memory has to always keep the latest future state possible. To avoid up-
dating main memory out of task-ID order, FMM schemes [Garzarán et al. 2003;
Zhang 1999; Zhang et al. 1999] use the Memory Task ID (MTID) support of
Section 3.3.3 (see Table II). Note that the Version Combining Logic (VCL) of
Section 3.3.3 is not an acceptable alternative to MTID in FMM schemes. The
reason is that, under FMM, even an uncommitted version can be written to
memory. In this case, earlier versions may be unavailable for invalidating/
combining because they may not have been created yet. Consequently, VCL
would not work.

3.3.5 Discussion. Table III can be used to qualitatively compare the imple-
mentation complexity of the different supports. We start with SingleT Eager
AMM and progressively add features.

We argue that full support for multiple tasks&versions (MultiT&MV Eager
AMM) is less complex than support for laziness (SingleT Lazy AMM): the former
needs CTID and CRL, while the latter needs CTID and either VCL or MTID.
CRL only requires local modification to the tag checking logic in caches, while
VCL requires version combining logic in main memory, as well as global changes
to the coherence protocol. The alternative to VCL is MTID, which is arguably
more complex than VCL (Section 3.3.3). This is because MTID requires main-
taining tags for regions of memory and comparison logic in the main memory.
Such tags have to be maintained in the presence of page remapping, multiple
speculative sections, etc.

Supporting multiple tasks&versions and laziness under AMM (MultiT&MV
Lazy AMM) is less complex than supporting the FMM scheme. The latter needs
all the support of the former (with MTID instead of VCL), plus ULOG.

3.4 Effect of Application Characteristics

Complexity considerations should be assessed against expected performance
gains. In this section, we examine the main application characteristics that
limit the performance of our schemes. A summary of our discussion is shown
in Figure 12.

If we compare AMM to FMM systems, the main application characteristics
that determine the performance are the frequency of true data dependences
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Fig. 12. Application characteristics that limit the performance of our schemes.

across neighboring tasks and the amount of speculative state generated by the
tasks. If the frequency of dependences across neighboring tasks is high, some of
them are likely to cause violations at run time, as tasks may execute out of order.
If so, they will cause task squashes and recoveries, which are more expensive
under FMM systems. On the other hand, if the amount of speculative state
generated by the tasks is large, it may overflow the caches and the tasks will
have to stall in AMM systems. Adding an overflow area in the local memory to
hold an overflowing speculative state is only a partial solution, because versions
still need to be accessed at commit time in AMM systems and such accesses are
slow. The situation can get worse in MultiT schemes, where a cache can hold
the speculative state of multiple tasks.

If we compare Eager to Lazy AMM schemes, the performance of Eager
schemes will suffer if the Task Commit Wavefront appears in the critical path.
This can occur under SingleT or MultiT&SV schemes for load-imbalanced ap-
plications. It also occurs under MultiT&MV schemes for applications with a
high Commit/Execution Ratio if they execute with many processors.

Finally, we compare SingleT, MultiT&SV, and MultiT&MV AMM schemes.
The performance of SingleT schemes is low for applications with task load im-
balance. This shortcoming can be removed with MultiT schemes. However, if
the support only includes MultiT&SV, and the application has mostly priva-
tization access patterns, the performance will be similar to SingleT schemes.
This problem is completely eliminated with MultiT&MV support.

All of these tradeoffs are evaluated in Section 5.

4. EVALUATION METHODOLOGY

4.1 Simulation Environment

We use execution-driven simulations to model two architectures: a multichip
shared-memory machine with one processor per chip (SMP) and a chip mul-
tiprocessor (CMP). Both systems use four-issue dynamic superscalars with a
64-entry instruction window, 4 Int, 2 FP, and 2 Ld/St functional units, up to 8
pending loads and 16 stores, and a 2K-entry BTB with two-bit counters.
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The SMP has 16 single-processor chips. Each chip has a two-way 32-Kbyte
D-L1 and a four-way 512-Kbyte L2, both write-back with 64-byte lines. We use
a small L2 because the applications’s working sets are relatively small. The
minimum round-trip latencies from a processor to the L1 and L2 are 2 and 12
cycles, respectively. The chips are connected with a two-dimensional (2D) mesh.

The CMP has eight cores. Each one has a two-way 32-Kbyte D-L1 and a four-
way 256-Kbyte L2. As indicated above, L2s are small to account for the small
problem size simulated. All caches are write-back with 64-byte lines. The L2s
connect through a crossbar to eight on-chip banks of both directory and L3 tags.
Each bank has its own control logic and private interface to connect with its
corresponding data array bank of a shared off-chip L3. The L3 has four ways
and holds 16 Mbytes. The minimum round-trip latencies from a processor to the
L1, L2, another processor’s L2, and L3 are 2, 8, 18, and 38 cycles, respectively.

Both systems have a high-performance main memory subsystem, with DDR2
DRAM. The front side bus has a width of 128 bits, while the DRAM has a
bandwidth of 8.52 GB/sµ. The minimum round trip latency to the main memory
for the CMP is 102 ns. For the SMP, it ranges from 75 ns for the closest memory
module to 208 ns for the farthest one.

We model all the nonshaded buffering approaches in our taxonomy of
Figure 6a. To model the approaches, we use a TLS protocol similar to Prvulovic
et al. [2001], but without its support for high-level access patterns. The proto-
col is appropriately modified to adapt to each box in Figure 6a. Using the same
base protocol for all cases is needed to evaluate the true differences between
them. This protocol supports multiple concurrent versions of the same variable
in the system, and triggers squashes only on out-of-order RAWs to the same
word [Prvulovic et al. 2001]. It needs a single task-ID tag per cache line. We do
not use any data dependence predictor. We avoid processor stalls in AMM due
to L2 conflict or capacity limitations by using a per-processor overflow mem-
ory area similar to Prvulovic et al. [2001]. For FMM systems, the per-processor
MHB is allocated in main memory.

In Eager AMM systems, each processor uses a hardware table to record the
lines that a speculative task modifies in the L2 and overflow area. When the task
commits, these lines are written back to main memory, either explicitly by the
processor (SingleT schemes) or in the background by special hardware (MultiT
schemes). If we changed our baseline speculative protocol, we could instead
use the ORB table proposed by Steffan et al. [2000]. The ORB only contains
modified lines that are not owned and triggers line ownership requests rather
than write-backs. Using an ORB and a compatible speculation protocol may
change the overheads of eager data merging relative to those measured in this
paper. Quantifying these changes is beyond the scope of this paper.4

In all AMM and FMM systems, there is also a similar table for the L1.
The table is traversed when a task finishes to write back modified lines to L2.

4We note that, for numerical codes like the ones considered in this paper (Section 4.2), the ORB has
to hold many more lines that the number reported by Steffan et al. [2000], who used nonnumerical,
fine-grained applications. Indeed, for numerical applications, Prvulovic et al. [2001] shows that the
number of nonowned modified lines per speculative task is about 200, on average.
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Table IV. Application Characteristicsa

Commit/Exec
Ratio (%) Appl Characteristics

# Invoc; # Instr Most Comm/
% of # Tasks per Task Load Priv Exec

Appl Tseq per Invoc (Thous.) SMP CMP Imbal Pattern Ratio
P3m 56.5 1;97336 69.1 0.3 0.1 High Med Low
Tree 92.2 41;4096 28.7 1.4 0.4 Med High Low
Bdna 44.2 1;1499 103.3 6.0 3.9 Low High Med
Apsi 29.3 900;63 102.6 11.4 6.1 Low High High-Med
Track 58.1 56;126 22.3 8.4 2.0 Med Low High-Med
Dsmc3d 41.2 80;46777 5.4 6.2 4.4 Low Low Med
Euler 89.8 120;1871 3.9 12.6 14.5 Low Low High
Average 58.8 171;21681 47.9 6.6 4.5

aEach task is one iteration, except in Track, Dsmc3d, and Euler, where it is 4, 16, and 32 consecutive iterations,
respectively. In Apsi, we use an input grid of 512 × 1 × 64. In P3m, while the loop has 97,336 iterations, we
only use the first 9000 iterations in the evaluation. In Euler, since all six loops have the same patterns, we
only simulate dflux do100. All the numbers except Tseq correspond to this loop. In the table, Med stands for
Medium.

This table traversal takes largely negligible time, given the size of the tasks
(Section 4.2).

Finally, our simulations model all overheads, including dynamic scheduling
of tasks, task commit, and recovery from dependence violations. In FMM sys-
tems, recovery is performed using software handlers, whose execution is fully
simulated. However, in all of our simulations, we assume that the TLS circuitry
added to the caches does not increase their access time.

4.2 Applications

For the evaluation, we use a set of numerical applications. In each application,
we use the Polaris parallelizing compiler [Blume et al. 1996] to identify the
sections that are not fully analyzable by a compiler. Typically, these are sec-
tions where the dependence structure is either too complicated or unknown, for
example, because it depends on input data or control flow. These code sections
often include arrays with subscripted subscripts and conditionals that depend
on array values.

The applications used are: Apsi from SPECfp2000, Track and Bdna from
Perfect Club, Dsmc3d and Euler from HPF-2, P3m from NCSA, and Tree from
Barnes [1994]. We use these applications because they spend a large fraction of
their time executing code that is not fully analyzable by a parallelizing compiler.
The only exception is Bdna, which has been shown parallelizable by research
compiler techniques [Eigenmann et al. 1998], although no commercial compiler
can parallelize it. Our application suite contains only numerical applications
because our compiler infrastructure only allows us to analyze Fortran codes.
While the results of our evaluation are necessarily a function of the architec-
tures simulated and application domain used, we will see that our applications
cover a very wide range of buffering behaviors.

Table IV characterizes the non analyzable sections of the applications. These
sections are the following loops: pp do100 (P3m), accel do10 (Tree), actfor do240
(Bdna), run do[20,30,40,50,60,100] (Apsi), nlfilt do300 (Track), move3 goto100
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(Dsmc3d) and dflux do[100,200], psmoo do20 and eflux do[100,200,300]
(Euler). The speculative tasks are one or several consecutive iterations of these
loops. The tasks are dynamically scheduled. Column 2 of Table IV lists the com-
bined weight of these loops relative to Tseq, the total sequential execution time
of the application with I/O excluded. This value, which is obtained on a work-
station, is, on average, 58.8%. The table also shows the number of invocations
of these loops during execution, the number of tasks per invocation, the number
of instructions per task, and the ratio between the time taken by a task to com-
mit and to execute (Commit/Execution Ratio). This ratio was computed under
MultiT&MV Eager, where tasks do not stall. It is shown for both the SMP and
CMP architectures. Finally, the last three columns give a qualitative measure
of the load imbalance between nearby tasks, the weight of mostly privatization
patterns, and the value of the Commit/Execution Ratio.

The applications exhibit a range of squashing behaviors. Specifically, Euler’s
execution is substantially affected by squashes, as it suffers 0.02 squashes per
committed task. On the other hand, while the selected sections of P3m, Tree,
Bdna, and Apsi are not fully analyzable, the interleaving of tasks is such that
no squashes occur in the execution that we measure. Finally, Track and Dsmc3d
have an intermediate behavior, as they suffer squashes but fewer than Euler.

All the data presented in Section 5, including speedups, refer only to
the code sections in the table. Given that barriers separate analyzable from
nonanalyzable code sections, the overall application speedup can be estimated
by weighting the speedups that we show in Section 5 by the percentage of Tseq
from the table.

5. EVALUATION

We first focus on the SMP system, and then evaluate the CMP in Section 5.3.

5.1 Separation of Task State under Eager AMM

Figure 13 compares the execution time of the nonanalyzable sections of
the applications under schemes where individual processors support: a sin-
gle speculative task (SingleT), multiple speculative tasks, but only single
versions (MultiT&SV), and multiple speculative tasks and multiple versions
(MultiT&MV). Both Eager and Lazy AMM schemes are shown for each case.
The bars are normalized to SingleT Eager and broken down into: (a) instruc-
tion execution plus nonmemory pipeline hazards (Busy), (b) and stalls due to
memory access, not enough task/version support, and end-of-loop stall due to
commit wavefront or load imbalance (Stall). It is not possible for our simulator
to accurately separate the components of the Stall category. The numbers on
top of the bars are the speedups over sequential execution of the code where all
data is in the memory module closest to the processor chip. In this section, we
examine the Eager schemes, which are the bars in odd positions; we leave the
Lazy ones for Section 5.2.

5.1.1 Comparing MultiT&MV to SingleT. MultiT&MV should perform
better than SingleT in two cases. One is in highly load-imbalanced applications
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Fig. 13. Supporting single or multiple speculative tasks or versions per processor, for eager or
lazy architectural main memory (AMM) schemes. In the figure, E and L stand for Eager and Lazy,
respectively.

(Figure 9c vs 9a). According to Table IV, only P3m has high imbalance. As
shown in Figure 13, MultiT&MV is faster than SingleT in P3m.

The other case is under modest load imbalance, but medium-sized Commit/
Execution Ratio. The latter affects performance because commits in Sin-
gleT are in the critical path of restarting stalled processors (Figure 10c).
MultiT&MV removes the commits from the critical path. Note, however, that
the Commit/Execution Ratio should not be high. If it is, the end-of-loop com-
mit wavefront eliminates any gains of MultiT&MV (Figure 10a). According to
Table IV, Bdna and Dsmc3d have a medium Commit/Execution Ratio in SMP.
As shown in Figure 13, MultiT&MV is faster than SingleT in Bdna and Dsmc3d.
In the other applications, the Commit/Execution Ratio is either too high or too
low and MultiT&MV tends to be only moderately faster than SingleT.

Overall, however, MultiT&MV is a good scheme: applications run on average
32% faster than in SingleT.

5.1.2 Comparing MultiT&SV to the Other Schemes. MultiT&SV should
match MultiT&MV when mostly privatization patterns are rare. According to
Table IV, Track, Dsmc3d; and Euler do not have such patterns. As shown in
Figure 13, MultiT&SV largely matches MultiT&MV in these applications. This
observation indirectly agrees with Steffan et al. [2000], who found no need to
support multiple writers in their applications.

However, MultiT&SV should resemble SingleT when mostly privatization
patterns dominate. This is because, as shown in Figure 9b, as tasks write to
mostly privatized variables early in their execution, processors stall immedi-
ately as in SingleT. According to Table IV, such patterns are common in P3m
and dominant in Tree, Bdna, and Apsi. As shown in Figure 13, MultiT&SV per-
forms in between SingleT and MultiT&MV in P3m. For Tree, Bdna, and Apsi,
however, MultiT&SV is even slower than SingleT.

The reason for this poor MultiT&SV performance is that our simple greedy
assignment of tasks to processors at run time causes unfavorable task interac-
tions in MultiT&SV. The result is additional stalls over SingleT.

To see why this happens, consider the following case that occurs in Tree.
In this example, we consider six tasks running on three processors. The tasks
are load imbalanced as shown in Figure 14a and have mostly privatization
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Fig. 14. Example in Tree where MultiT&SV is slower than SingleT. Charts (c) and (d) also show
the status of the tasks at time t, where C, E, F, and S stand for committed, executing, finished, and
stalled.

patterns. Suppose that tasks T0, T1, and T2 have been assigned to processors
P0, P1, and P2, respectively. Figure 14b shows the time when P2 finishes T2.
Under SingleT (Figure 14c), P2 will wait until T2 commits (point c2) and then
grab the next available task (in our case, T5). Under MultiT&SV (Figure 14d),
P2 will greedily start executing T3 and then stall as soon as T3 attempts to
generate a new version of a variable that has been accessed by T2. Recall that
in MultiT&SV, a cache can only contain a single speculative version of any
given variable. Unfortunately, with this scheduling, P0 will later grab a task
(T4) that is far from the nonspeculative task at that time (namely, T1). After
P0 finishes T4, it grabs T5. During the execution of T5, P0 remains stalled for a
long time, again because T5 attempts to generate new versions of variables that
have been accessed by T4 (and are still speculative in the cache). The overall
result is that MultiT&SV is slower than SingleT: the commit time of the last
task (c5) in Figure 14d is later than in Figure 14c.

The reason why SingleT’s round-robin assignment often suffers fewer stalls
in this environment is that the tasks that are making progress are often those
that are the closest to the task that is currently nonspeculative. For example,
consider Figure 14c at time t, where T1 is the nonspeculative task. We can
see that T1 is executing (E), T2 is finished (F), and T3 is executing in P0.

However, under MultiT&SV’s greedy assignment, tasks far from the
nonspeculative one may be making progress, while other tasks closer to the
nonspeculative one are stalled. For example, consider Figure 14d at time t. We
can see that the nonspeculative task T1 is executing (E), T2 is finished (F), T3 is
stalled (S), and T4 is executing in P0. Stalling tasks closer to the nonspeculative
one delays the commit wavefront, which is counterproductive for MultiT&SV
schemes running applications with mostly privatization patterns: the commit
wavefront is in the critical path because a stalled task cannot resume execution
until the previous task that ran on the same processor commits.

Overall, we conclude that MultiT&SV is not an attractive scheme.
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5.2 Merging of Task State with Main Memory

5.2.1 Comparing Eager to Lazy AMM Schemes. Laziness can speed up
execution in the two cases where the commit wavefront appears in the critical
path of an Eager scheme. These cases are shown in Figures 10c and 10a.

The first case (Figure 10c) occurs when processors stall during task ex-
ecution, typically under SingleT and, if mostly privatization patterns domi-
nate, under MultiT&SV. It can be shown that this situation occurs frequently
in our applications: in all applications under SingleT, and in the privati-
zation applications (P3m, Tree, Bdna, and Apsi) under MultiT&SV. In this
case, the impact of laziness (Figure 10d) is roughly proportional to the ap-
plication’s Commit/Execution Ratio. From Table IV, we see that the ratio is
significant for all applications except P3m and Tree. Consequently, in this
first case, laziness should speed up SingleT for Bdna, Apsi, Track, Dsmc3d,
and Euler, and MultiT&SV for Bdna and Apsi. Figure 13 confirms these
expectations.

The second case where the wavefront is in the critical path (Figure 10a)
occurs when processors do not stall during task execution, but the Commit/
Execution Ratio times the number of processors is higher than 1. In this
case, the wavefront appears at the end of the loop. This case could occur in
all applications under MultiT&MV and in the nonprivatization ones (Track,
Dsmc3d, and Euler) under MultiT&SV. However, according to Table IV, only
Apsi, Track, and Euler have a Commit/Execution Ratio sufficiently high in
SMP such that, when multiplied by 16, the result is over 1. Consequently,
laziness (Figure 10b) should speed up MultiT&MV for Apsi, Track, and
Euler, and MultiT&SV for Track and Euler. Figure 13 again confirms these
expectations.5

Overall, Lazy AMM is effective. For the simpler schemes (SingleT and
MultiT&SV), it reduces the average execution time by about 30%, while for
MultiT&MV the reduction is 24%.

We have also evaluated a MultiT&MV system where the number of supported
versions is limited by the size and associativity of the L2 cache: 512-Kbyte and
4, respectively, in our experiments. Figure 15 shows results for an Eager and a
Lazy scheme. For each scheme there are two bars. The first one has an overflow
area with support for as many versions as necessary (Ovf). This bar repeats the
one in Figure 13. In the second one, there is no overflow area and, as a result,
a task stalls in case of trying to displace a cache line with uncommitted data
(NoOvf). The stalled task can only proceed when the task that produced the
data that needs to be displaced becomes nonspeculative.

Figure 15 shows differences only for P3m and Bdna. In P3m, which is an
imbalanced application, limiting the amount of speculative versions hurts per-
formance in both Eager and Lazy schemes. In Bdna, NoOvf runs 16% slower

5Our conclusions on laziness agree with [Prvulovic et al. 2001] for 16 processors for the applications
common to both papers: Tree, Bdna, and Euler (Apsi and Track cannot be compared because the
problem sizes or the number of iterations per task are different). Our MultiT&MV Eager and
Lazy schemes roughly correspond to their OptNoCT and Opt, respectively, without the support for
high-level access patterns [Prvulovic et al. 2001].
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Fig. 15. Effect of limited support for Eager or Lazy merging with main memory state.

Fig. 16. Supporting an architectural main memory (AMM) or a future (FMM) one.

than Ovf with an Eager system. However, the difference between NoOvf and
Ovf with a Lazy system is only 7%. The reason is that with a Lazy scheme,
commit is faster. Laziness speeds-up the transfer of the commit token, reduc-
ing the probability of task stall. For the rest of our applications, since they are
only slightly imbalanced and their working sets tend to largely fit in the cache,
there are almost no differences between Ovf and NoOvf.

Thus, the conclusion of this experiment is that when the speculative state
moderately overflows, laziness helps reduce the stall time. However, in case
of high imbalance, where speculative versions would overflow, laziness has no
effect, as the execution time is dominated by the task stall time.

5.2.2 Comparing AMM to FMM Schemes. Figure 16 compares the execu-
tion time of AMM schemes (Eager and Lazy) to the FMM scheme. All schemes
are MultiT&MV. We also show the same FMM scheme except that the im-
plementation and management of the MHB is done in software, with plain
instructions added to the application [Garzarán et al. 2003] (FMM.Sw). This
scheme eliminates the need for hardware support for the undo log. The appendix
describes how the MHB is implemented and managed in software.

Section 3.3.4 argued that FMM schemes are better suited to version commit,
while AMM schemes are better at version recovery. Figure 16 shows that there
are few differences between Lazy AMM and FMM. The only significant ones
occur in P3m and Euler. P3m has high load imbalance and mostly privatization
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Fig. 17. Supporting architectural main memory (AMM) schemes in a CMP. In the figure, E and L
stand for Eager and Lazy, respectively.

patterns. As a result, in Lazy (and Eager) AMM, the MROB in a processor may
need to keep the state of numerous speculative tasks, with multiple versions
of the same variable competing for the same cache set. Overflowing read-only,
nonspeculative data is silently discarded, while overflowing speculative data
is sent to the overflow area. Note that, unlike the versions in the MHB, the
versions in the overflow area have to be accessed eventually. Overall, the re-
sulting long-latency accesses to the overflow area or to memory to refetch data
slow down P3m. To eliminate this problem, we have increased L2’s size and
associativity to 4 Mbytes and 16 ways, respectively (Lazy.L2 bar in P3m). In
this case, AMM performs just as well as FMM.

In Euler, the Lazy AMM scheme performs better than the FMM scheme. The
reason is that Euler has frequent squashes due to violations. Recall that AMM
schemes recover faster than FMM schemes (Section 3.3.4).

We conclude that, in general, Lazy AMM and FMM schemes deliver a similar
performance. However, Lazy AMM has an advantage in the presence of frequent
squashes, while FMM has an advantage when task execution puts pressure on
the size or associativity of the caches.

Finally, Figure 16 shows that the slowdown caused by updating the MHB
in software (FMM.Sw) is modest. This agrees with Garzarán et al. [2003]. In
Garzarán et al. [2003], we analyze in detail the effects of updating the MHB in
software. On average, FMM.Sw takes 6% longer to run than FMM. FMM.Sw
eliminates the need for the ULOG hardware in Table III, although it still needs
the other FMM hardware in the table.

5.3 Evaluation of the Chip Multiprocessor (CMP)

Figure 17 repeats Figure 13 for the CMP architecture. Overall, we see that
the trends are the same as in the SMP architecture. The most obvious change
is that the relative differences between the different buffering schemes are
smaller in the CMP than in the SMP architecture. This is not surprising, since
buffering mainly affects memory system behavior. The CMP is less affected by
the choice of buffering because its lower memory latencies, on average, result
in less memory stall time. This observation is clear from the relatively higher
Busy time in the CMP bars.

One observation in the CMP is that the improvement of Lazy over Eager
schemes is smaller than before. There are two reasons for this. First, since the
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number of processors is smaller, the commit serialization is less of a bottleneck.
Second, the Commit/Execution Ratios are smaller (Table IV) because of the
lower memory latencies. Overall, laziness reduces the average execution time
by 9% in the simpler schemes (SingleT and MultiT&SV) and by only 3% in
MultiT&MV. We also note that adding support for multiple task&versions still
significantly improves speedups: when applied to SingleT Eager, it reduces the
execution time by 23%, on average (compared to 32%, in SMP).

Finally, a comparison between Lazy AMM and FMM schemes for CMP is
not shown because it is very similar to Figure 16. The Lazy AMM and FMM
schemes perform similarly to each other.

5.4 Summary

Starting from the simplest scheme (SingleT Eager AMM), we have the choice
of adding support for multiple tasks&versions (MultiT&MV) or for laziness.
Our main conclusion is that supporting multiple tasks&versions is more
complexity-effective than supporting laziness: the reduction in execution time
is higher (32 versus 30% in our SMP; 23 versus 9% in our CMP), and Sec-
tion 3.3.5 showed that the implementation complexity is lower for adding mul-
tiple tasks&versions. We also note that laziness is only modestly effective in
tightly coupled architectures like our CMP.

A second conclusion is that the improvements due to multiple tasks&versions
and due to laziness are fairly orthogonal in a large machine like our SMP.
Indeed, adding laziness to the MultiT&MV Eager AMM scheme reduces the
execution time by an additional 24% (Figure 13). In our CMP, however, the
gains are only 3% (Figure 17).

A third conclusion is that the resulting system (MultiT&MV Lazy AMM)
is competitive against what Table III indicated was the most complex system:
MultiT&MV FMM. The Lazy AMM scheme is generally as fast as the FMM
scheme (Figure 16). While Lazy AMM is not as tolerant of high capacity and
conflict pressure on the buffers (P3m in Figure 16), it behaves better when
squashes, because of dependence violations are frequent (Euler in Figure 16).

Finally, we show that MultiT&SV is not very attractive for applications
like the ones we use, which often have mostly privatization patterns: it is as
fast as SingleT (Figures 13 and 17), while it requires support beyond SingleT
(Table III).

6. CONCLUSION

The contribution of this paper is threefold. First, it introduces a novel taxonomy
of approaches to buffer multiversion memory state for TLS in multiprocessors.
Second, it presents a detailed complexity-benefit tradeoff analysis of the ap-
proaches. Finally, it uses numerical applications to evaluate their performance
under a single architectural framework.

Our analysis provides an upgrade path of features with decreasing
complexity-effectiveness. Specifically, starting from the simplest scheme
(SingleT Eager AMM), the most complexity-effective improvement is to add sup-
port for multiple tasks and versions per processor (MultiT&MV Eager AMM).
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Fig. 18. Per-processor software structures that we use to implement the software MHB in
FMM.Sw.

Performance can then be additionally improved in large machines by adding
support for lazy merging of task state (MultiT&MV Lazy AMM). Finally, if the
applications do not suffer frequent squashes, additional performance can be
obtained by supporting future main memory (MultiT&MV FMM). This change
adds complexity and only modest average performance benefits. If, instead, ap-
plications suffer frequent squashes, MultiT&MV Lazy AMM is faster. Overall,
with our mix of applications, we find that MultiT&MV Lazy AMM and FMM
have a similar performance.

APPENDIX: IMPLEMENTING AND MANAGING THE MHB IN SOFTWARE

The MHB is a logging system that must support four operations, namely, sav-
ing a new record in the log (Insertion), finding a record in the log (Retrieval),
unwinding the log to undo tasks (Recovery), and freeing up log records after
their information is not needed for retrieval or recovery (Recycle).

Figure 18 shows the per-processor software structures that we use to im-
plement the software MHB in FMM.Sw. A Log Buffer is broken down into
fixed-sized sectors that are used to log individual tasks. The compiler sets
the size of the sectors and Log Buffer based on the estimated number of
writes per task and the estimated number of uncommitted tasks per processor,
respectively.

When a task starts running, it is dynamically assigned an entry in the Task
Pointer Table and one sector in the Log Buffer. Free sectors are obtained from
the Free Sector Stack. Two pointers in the Task Pointer Table point to the
Next entry to fill and the End entry to check for overflow. If the task needs
more entries than a sector, we dynamically assign another sector and link it
to the previous one, while we set the Overflow bit and update the End pointer
(Figure 18). If the Free Sector Stack runs out of entries, we resize the Log Buffer
and Stack accordingly.

With these software structures, the following four operations are supported:

� Insertion. At compile time, the compiler instruments stores in the code
with instructions to save a log record. As shown in Figure 18, a record includes
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the following information about the variable that is about to be updated: its
virtual address (the only one the software knows), the ID of its producer task,
and the value before the update. After the record is inserted at run time, the
Next pointer is incremented. At the end of a task, all the records that the
task generated are in contiguous locations in one or more sectors—easily
retrievable through the Task Pointer Table with the ID of that task.

� Recycle. When a task commits, its entry in the Task Pointer Table becomes
useless: its updates will never have to be undone. Consequently, a processor
regularly runs the log-recycle algorithm. It involves identifying the entries
in the Task Pointer Table that correspond to committed tasks. These entries
are invalidated, and their sectors in the Log Buffer are recycled by returning
them to the Free Sector Stack.

� Recovery and Retrieval. Recovery occurs when we need to repair the
state after the detection of a data dependence violation due to an out-of-order
RAW across tasks. Retrieval occurs in an in order RAW dependence across
tasks that requires log access. The access is required when a new task running
on the producer processor has overwritten a variable that is requested by the
consumer processor, pushing the desired version of the variable into the log.
These two cases happen infrequently for our applications and, therefore, are
not performance critical. We solve them with software exception handlers
that access the logs.

The compiler should instrument the application so that, at run time, the
log is managed fully in software. Of all the operations described, insertion is
the only one that is truly overhead-sensitive. This is because it is performed
very frequently. The other operations occur much less frequently and can be
handled by less efficient routines. Inserting a record in the local log involves
collecting the items to save, saving them in sequence using the Next pointer, and
advancing the pointer (Figure 18). Notice that a record should be inserted for
both speculative and nonspeculative stores. A store is considered speculative
if it may access data whose access pattern cannot be fully analyzed by the
compiler; speculative stores should trigger the TLS protocol.

To reduce code instrumentation, the log only saves the value overwritten by
the first store to the variable in the task. Identifying first stores for variables
accessed with nonspeculative accesses should be easy, since their dependence
structure is analyzable. To identify first stores for speculative accesses, the ID
of the writing task is compared with the producer task ID of the variable. If
they are the same, this is not a first store and logging is skipped. Otherwise, a
new record is inserted in the log. It can be shown [Garzarán et al. 2003] that,
for speculative stores, inserting an entry in the log involves executing a total of
10 additional instructions if the store is a first store, while only 2 instructions
if the store is not a first store.
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RUNDBERG, P. AND STENSTRÖM, P. 2000. Low-cost thread-level data dependence speculation on
multiprocessors. In Fourth Workshop on Multithreaded Execution, Architecture and Compilation.

SMITH, J. E. AND PLESZKUN, A. R. 1988. Implementing precise interrupts in pipelined processors.
IEEE Transactions on Computers C-37, 5 (May), 562–573.

SOHI, G. S., BREACH, S., AND VIJAYKUMAR, S. 1995. Multiscalar processors. In Proceedings of the
22nd Annual International Symposium on Computer Architecture. 414–425.

STEFFAN, J., COLOHAN, C. B., AND MOWRY, T. C. 1997. Architectural Support for Thread-Level Data
Speculation. Tech. rep., CMU-CS-97-188, Carnegie Mellon University. November.

STEFFAN, J., COLOHAN, C., ZHAI, A., AND MOWRY, T. C. 2000. A scalable approach to thread-level spec-
ulation. In Proceedings of the 27th Annual International Symposium on Computer Architecture.
1–12.

TREMBLAY, M. 1999. MAJC: Microprocessor Architecture for Java Computing. Hot Chips.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.



Tradeoffs in Buffering Speculative Memory State for TLS • 279

TSAI, J. Y., HUANG, J., AMLO, C., LILJA, D., AND YEW, P. C. 1999. The superthreaded processor
architecture. IEEE Trans. on Computers 48, 9 (Sept.), 881–902.

ZHANG, Y. 1999. Hardware for Speculative Run-Time Parallelization in DSM Multiprocessors.
Ph.D. Thesis, Dept. of Elec. and Comp. Engin., Univ. of Illinois at Urbana-Champaign.

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1999. Hardware for speculative parallelization of
partially-parallel loops in DSM multiprocessors. In Proceedings of the 5th International Sympo-
sium on High-Performance Computer Architecture. 135–139.

Received February 2005; revised July 2005; accepted July 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.


