
20 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Contributors

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract

As multi-processors become mainstream, software developers must harness

the parallelism available in programs to keep up with multi-core performance.

Writing parallel programs, however, is notoriously diffi cult, even for the

most advanced programmers. " e main reason for this lies in the non-

deterministic nature of concurrent programs, which makes it very diffi cult

to reproduce a program execution. As a result, reasoning about program

behavior is challenging. For instance, debugging concurrent programs is

known to be diffi cult because of the non-determinism of multi-threaded

programs. Malicious code can hide behind non-determinism, making software

vulnerabilities much more diffi cult to detect on multi-threaded programs.

In this article, we explore hardware and software avenues for improving the

programmability of Intel® multi-processors. In particular, we investigate

techniques for reproducing a non-deterministic program execution that can

effi ciently deal with the issues just mentioned. We identify the main challenges

associated with these techniques, examine opportunities to overcome some

of these challenges, and explore potential usage models of program execution

reproducibility for debugging and fault tolerance of concurrent programs.

Introduction

A common assumption of many application developers is that software behaves

deterministically: given program A, running A on the same machine several

times should produce the same outcome. " is assumption is important for

application performance, as it allows one to reason about program behavior.

Most single-threaded programs executing on uni-processor systems exhibit this

property because they are inherently sequential. However, when executed on

multi-core processors, these programs need to be re-written to take advantage

of all available computing resources to improve performance. Writing parallel

programs, however, is a very diffi cult task because parallel programs tend to be

non-deterministic by nature: running the same parallel program A on the same

multi-core machine several times can potentially lead to diff erent outcomes

for each run. " is makes both improving performance and reasoning about

program behavior very challenging.

Gilles Pokam

Intel Corporation

Cristiano Pereira

Intel Corporation

Klaus Danne

Intel Corporation

Lynda Yang

University of Illinois at

Urbana-Champaign

Sam King

University of Illinois at

Urbana-Champaign

Josep Torrellas

University of Illinois at

Urbana-Champaign

Concurrent Programs

Deterministic Replay Debugging

Fault Tolerance

Non-determinism

Memory Race Recording

Chunks

HARDWARE AND SOFTWARE APPROACHES FOR DETERMINISTIC

MULTI-PROCESSOR REPLAY OF CONCURRENT PROGRAMS

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 21

Deterministic multi-processor replay (DMR) can effi ciently deal with the

non-deterministic nature of parallel programs. " e main idea behind DMR is

reproducibility of program execution. Reproducing a multi-threaded program

execution requires recording all sources of non-determinism, so that during

replay, these threads can be re-synchronized in the same way as in the original

execution. On modern chip multi-processor (CMP) systems, the sources of

non-determinism can be either input non-determinism (data inputs, keyboard,

interrupts, I/O, etc.) or memory non-determinism (access interleavings among

threads). " ese sources of non-determinism can be recorded by using either

software or hardware, or a combination of both.

Software-only implementations of DMR can run on legacy machines without

hardware changes, but they suff er from performance slowdowns that can

restrict the applicability of DMR. To achieve performance levels comparable

to hardware schemes, software approaches can be backed up with hardware

support. In this article, we describe what the software-only approaches for

DMR may look like, and what types of hardware support may be required to

mitigate their performance. Our discussion starts with the details of DMR:

we focus on the usage models and on the main challenges associated with

recording and replaying concurrent programs. We then describe several ways

in which DMR schemes can be implemented in software, and we elaborate

on the various tradeoff s associated with these approaches. Finally, we describe

hardware extensions to software-only implementations that can help mitigate

performance and improve the applicability of DMR.

Why Record-and-Replay Matters

Recording and deterministically replaying a program execution gives computer

users the ability to travel backward in time, recreating past states and events

in the computer. Time travel is achieved by recording key events when the

software runs, and then restoring to a previous checkpoint and replaying the

recorded log to force the software down the same execution path.

" is mechanism enables a wide range of applications in modern systems,

especially in multi-processor systems in which concurrent programs are subject

to non-deterministic execution: such execution makes it very hard to reason

about or reproduce a program behavior.

 • Debugging. Programmers can use time travel to help debug programs

[36, 39, 15, 4, 1] including programs with non-determinism [20, 33],

since time travel can provide the illusion of reverse execution and reverse

debugging.

 • Security. System builders can use time travel to replay the past execution of

applications looking for exploits of newly discovered vulnerabilities [19], to

inspect the actions of an attacker [12], or to run expensive security checks

in parallel with the primary computation [9].

 • Fault tolerance. System designers can use replay as an effi cient mechanism

for recreating the state of a system after a crash [5].

“Deterministic multi-processor replay

(DMR) can effi ciently deal with the

non-deterministic nature of parallel

programs.”

“Recording and deterministically

replaying a program execution gives

computer users the ability to travel

backward in time.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

22 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Non-determinism of Concurrent Programs

" e goal of deterministic replay is to be able to reproduce the execution of a

program in the way it was observed during recording. In order to reproduce

an execution, each instruction should see the same input operands as in the

original run. " is should guarantee the same execution paths for each thread.

During an execution, a program reads data from either memory or register

values. Some of the input is not deterministic across diff erent runs of the

program, even if the program’s command line arguments are the same. Hence,

in order to guarantee determinism these inputs need to be recorded in a

log and injected at replay. In this section, we describe these sources of non-

determinism.

Deterministic replay can be done at diff erent levels of the software stack. At

the top level, one can replay only the user-level instructions that are executed.

" ese include application code and system library code. " is is the approach

taken by BugNet [26], Capo [25], iDNA [3], and PinPlay [29]. At the lowest

level, a system can record and replay all instructions executed in the machine,

including both system-level and user-level instructions. Regardless of the level

one is looking at, the sources of non-determinism can be divided into two sets:

input read by the program and memory interleavings across diff erent threads of

execution. We now describe each source in more detail.

Input Non-determinism

Input non-determinism diff ers, depending on which layer of the system is

being recorded for replay. User-level replay has diff erent requirements from

those of system-level replay. Conceptually, the non-deterministic inputs are

all the inputs that are consumed by the system layer being recorded that are

not produced by the same layer. For instance, for user-level replay, all inputs

coming from the operating system are non-deterministic, because there is

no guarantee of repeatability across two runs. A UNIX* system call, such as

gettimeofday, is inherently non-deterministic across two runs, for instance.

For a system-level record, all inputs that are external to the system are non-

deterministic inputs. External inputs are inputs coming from external devices

(I/O, interrupts, DMAs). We now discuss the source of non-determinism at

each level.

For user-level replay, the sources of non-determinism are listed as follows:

 • System calls. Many system calls are non-deterministic. An obvious example is

a timing-dependent call, such as the UNIX call gettimeofday. Other system

calls can also be non-deterministic. A system call reading information from

a network card may return diff erent results, or a system-call reading from a

disk may return diff erent results.

 • Signals. Programs can receive asynchronous signals that can be delivered at

diff erent times across two runs, making the control fl ow non-deterministic.

“Some of the input is not deterministic

across diff erent runs of the program,

even if the program’s command line

arguments are the same.”

“User-level replay has diff erent

requirements from those of system-level

replay.”

“For a system-level record, all inputs

that are external to the system are

non-deterministic inputs.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 23

 • Special architectural instructions. On x86 architecture, some instructions

are non-deterministic, such as RDTSC (read timestamp) and RDPMC

(read performance counters). Across processor generations of the same

architecture, CPUID will also return diff erent values, if the replay happens

in a processor other than the one in which the recording happened.

In addition to the non-deterministic inputs just mentioned, other sources of

non-determinism at the user-level are the location of the program stack that

can change from run to run and the locations where dynamic libraries are

loaded during execution. Although these are not inputs to the program, they

also change program behavior and need to be taken care of for deterministic

replay.

At the system-level, the major sources of non-determinism are the following:

 • I/O. It is common for most architectures to allow memory mapped

I/O: loads and stores eff ectively read from and write to devices. If one is

replaying the operating system code, the reads from I/O devices are not

guaranteed to be repeatable. As a result, the values read by those load

instructions need to be recorded.

 • Hardware interrupts. Hardware interrupts trigger the execution of an

interrupt service routine, which changes the control fl ow of the execution.

Interrupts are used to notify the processor that some data (e.g., disk read)

are available to be consumed. An interrupt is delivered at any point in time

during the execution of the operating system code. A recorder needs to log

the point at which the interrupt arrived and the content of the interrupt

(what its source is: e.g., disk I/O, network I/O, timer interrupt, etc.).

 • Direct Memory Access (DMA). Direct memory accesses perform writes

directly to memory without the intervention of the processor. " e values

written by DMA as well as the timestamp at which those values were

written need to be recorded to be reproducible during replay.

In addition, the results of processor-specifi c instructions, such as x86 RDTSC,

also need to be recorded as is the case with user-level code, in order to ensure

repeatability.

“Other sources of non-determinism at

the user-level are the location of the

program stack that can change from

run to run and the locations where

dynamic libraries are loaded during

execution.”

“A recorder needs to log the point at

which the interrupt arrived and the

content of the interrupt.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

24 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Memory Interleaving

Input non-determinism is present on single-core and multi-core machines.

However, in multi-core machines, an additional source of non-determinism is

present and that is the order in which all threads in the system access shared

memory. " is is typically known as memory races, where diff erent runs of

a program may result in diff erent threads winning the race when trying to

access a piece of shared memory. Memory races occur between synchronization

operations (synchronization races) or between data accesses (data races). At the

user-level, threads access memory in a diff erent order, because the operating

system may schedule them in a diff erent order. " is is due to interrupts being

delivered at diff erent times, because of diff erences in the architectural state

(cache line misses, memory latencies, etc.) and also because of the load in the

system. As a result, the shared memory values seen by each thread in diff erent

runs can change, resulting in diff erent behavior for each thread across runs.

" is is the major source of non-determinism in multi-threaded programs.

Races also occur among threads within the operating system, and the behavior

across two runs is also not guaranteed to be the same. Hence the order in

which races occur within the operating system code also needs to be recorded

to guarantee deterministic replay.

Software Approaches for Deterministic Replay

Software-only approaches to record-and-replay (R&R) can be deployed on

current commodity hardware at no cost. As described in the previous section,

an R&R solution needs to tackle two issues: logging and replaying non-

deterministic inputs and enforcing memory access interleavings. We describe

software-only solutions to both of these challenges next, and we provide details

on the techniques used in recent deterministic replay approaches extant in

literature. Because there are more software-only R&R-like systems than can

possibly be discussed in this article, we choose to mention those that best

characterize our focus. Once we’ve surveyed the literature, we discuss the

remaining open challenges in software-only solutions.

Reproducing Input Non-determinism

Systems and programs execute non-deterministically due to the external

resources they are exposed to and the timing of these resources. " us, these

external resources can be all viewed as inputs, whether they are user inputs,

interrupts, system call eff ects, etc. Given the same inputs and the same initial

state, the behavior of the system or application is deterministic. " e approach to

R&R, therefore, is to log these inputs during the logging phase and inject them

back during replay.

“In multi-core machines, an

additional source of non-determinism

is present and that is the order in

which all threads in the system access

shared memory.”

“# e order in which races occur

within the operating system code also

needs to be recorded to guarantee

deterministic replay.”

“An R&R solution needs to tackle two

issues: logging and replaying non-

deterministic inputs and enforcing

memory access interleavings.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 25

Table 1 summarizes the replay systems under discussion in terms of the level of

replay (user-level or system-level), usage model, and how they are implemented

for replaying inputs.

Replay System Level of Replay Usage Model Implementation

Bressoud and Schneider [5] System Fault-tolerance Virtual machine

CapoOne [25] User General notion of “time travel”

for multiple purposes

Kernel modifi cations, ptrace

Flashback [36] User Debugging Kernel modifi cations

iDNA [3] User Debugging, profi ling Dynamic instrumentation

Jockey [34] User Debugging Library-based, rewrites system calls

Liblog [16] User Debugging Library-based, intercepts calls to libc

ODR [2] User Debugging Kernel modifi cations, ptrace

PinPlay [29] User Debugging, profi ling Dynamic instrumentation

R2 [17] User Debugging Library-based, stubs for replayed function calls

ReVirt [13] System Security Virtual machine

TTVM [20] System Debugging Virtual machine

VMWare [38] System General replay Virtual machine

Table 1: Summary of Approaches to Replaying Input Non-determinism

Source: Intel Corporation, 2009

User-level Input Non-determinism

First, let us consider user application replay. For the most part, we discuss

how several approaches handle system calls and signals, since together they

represent a large part of the non-deterministic external resources exposed to the

application. " ey also represent resources that have inherently deterministic

timing and non-deterministic timing, respectively.

System Calls

An application’s interaction with the external system state is generally confi ned

to its system calls. We discuss in detail how two recent replay systems —

Flashback [36] and CapoOne [25] — handle these system calls. Flashback can

roll back the memory state of a process to user-defi ned checkpoints, and it

supports replay by logging the process’s interaction with the system. Flashback’s

usage model is for debugging software. CapoOne can log and replay multiple

threads and processes in a given replay group, cohesively, while concurrently

supporting multiple independent replay groups. It re-executes the entire

application during replay. CapoOne requires additional hardware to support

multi-processor replay; however, its technique for enforcing an application’s

external inputs is completely software-based.

“Flashback can roll back the memory

state of a process to user-defi ned

checkpoints.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

26 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Both Flashback and CapoOne interpose on system call routines: they log the

inputs, results, and side-eff ects (copy_to_user) of each system call, and they

inject the data back in during re-execution of system call entry and exit points.

If the eff ect of a given system call is isolated to only the user application (e.g.,

getpid()), the actual call is bypassed during replay, and its eff ects are emulated

by injecting the values retrieved from the log. On the other hand, if a system

call modifi es a system state that is outside of the replayed application (e.g.,

fork()), the system call is re-executed during replay in a manner such that its

eff ect on the application is the same as during the logging phase. CapoOne

interposes on system calls in user space via the ptrace mechanism, while

Flashback does so with kernel modifi cations. Another replay scheme called

ODR [2] describes similar techniques to handle system calls, by using both

ptrace and kernel modules. Jockey [34], a replay debugger, is slightly diff erent

from Flashback and CapoOne in that Jockey links its own shared-object fi le to

the replayed application and then rewrites the system calls of interest.

While all of these approaches automatically defi ne the interface at which

logging and replay occur, namely the system call boundary, R2 [17] is a library-

based replay debugger tool that allows the user to choose this demarcation.

Functions above the user-defi ned interface are re-executed during replay, while

those below it are emulated by using data from log fi les. Implementation-

wise, R2 generates, and later calls, the stub associated with each function that

needs to be logged or replayed. " e authors of R2 also address the issue of

preserving order between function calls that are executed by diff erent threads.

R2 uses a Lamport clock [21] to either serialize all calls or allow them to occur

concurrently, as long as causal-order is maintained.

Signals

With system calls, we are only interested in recording their eff ects, since they

always execute at the same point in a given application. " is is, however,

untrue for signals. " e purpose of a signal is to notify an application of a given

event, and since signals are asynchronous and can occur at any point during

the application’s execution, they are a good example of a non-deterministic

input that is time-related. Although Flashback does not support signal replay,

Flashback’s developers suggest using the approach described in [35]: i.e., use the

processor’s instruction counter to log exactly when the signal occurred. During

replay, the signal would be re-delivered when the instruction counter reaches

the logged value. Jockey, on the other hand, delays all signals encountered

during the logging phase until the end of the next system call, which it logs

with that system call. " us, during replay, the signal is re-delivered at the end

of the same system call. CapoOne and liblog [16], another replay debugger, use

a similar technique.

“Functions above the user-defi ned

interface are re-executed during

replay.”

“Since signals are asynchronous and

can occur at any point during the

application’s execution, they are a good

example of a non-deterministic input

that is time-related.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 27

Dynamic Instrumentation

PinPlay [29] and iDNA [3] are replay systems that focus on the application

debugging usage model: they are based on the dynamic binary instrumentation

of a captured program trace. Non-deterministic input is logged and replayed,

by tracking and restoring changes to registers and main memory. PinPlay

replays asynchronous signals by logging the instruction count of where signals

occur.

Full-system Input Non-determinism

We move on to consider approaches for software-based, full-system replay,

which include ReVirt [13], TTVM [20], the system described by [5], and

VMWare [38]. " e fi rst three were designed for the usage models of security,

debugging, and fault tolerance. Perhaps, unsurprisingly, all of these methods

take advantage of virtual machines.

ReVirt uses UMLinux [6], a virtual machine that runs as a process on the

host. Hardware components and events of the guest are emulated by software

analogues. For example, the guest hard disk is a host fi le, the guest CD-ROM

is a host device, and guest hardware interrupt events are simulated by the host

delivering a signal to the guest kernel. With these abstractions, ReVirt is able to

provide deterministic replay by checkpointing the virtual disk and then logging

and replaying the inputs that are external to the virtual machine. Similar to

user-application replay, each external input may require that only the data

associated with it need be logged, or additionally, it may require that a timing-

factor for those that are asynchronous be logged as well. ReVirt logs the input

from external devices such as the keyboard and CD-ROM, non-deterministic

results returned by system calls from the guest kernel to the host kernel, and

non-deterministic hardware instructions such as RDTSC. Guest hardware

interrupts, emulated by signals, are asynchronous, and thus ReVirt has to

ensure that these are delivered at the same point in the execution path. " e

authors chose to use the program counter and the hardware retired branches

counter to uniquely identify the point to deliver the signal.

TTVM uses ReVirt for its logging and replaying functionality, but makes

changes that make it more suitable for its debugging usage model; for example,

TTVM provides support for greater and more frequent checkpoints.

Reproducing Memory Access Non-determinism

" e techniques we just described guarantee determinism for replaying single-

threaded applications or multi-threaded applications where the threads are

independent from one another. Deterministic replay of multi-threaded

applications, with threads communicating via synchronization or through

shared memory, require additional support.

“Non-deterministic input is logged

and replayed, by tracking and

restoring changes to registers and main

memory.”

“ReVirt is able to provide

deterministic replay by checkpointing

the virtual disk and then logging and

replaying the inputs that are external

to the virtual machine.”

“Deterministic replay of multi-

threaded applications, with threads

communicating via synchronization

or through shared memory, require

additional support.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

28 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Table 2 summarizes the replay systems we describe next in terms of usage

model, multi-processor support, support for replaying data-races without

additional analysis, and support for immediate replay without a state-

exploration stage.

Replay System Usage Model Multiprocessor

Support?

Data Race Support? Immediate Replay

(no offl ine state-

exploration stage)?

DejaVu [8] Debugging No Yes Yes

iDNA [3] Debugging, profi ling Yes No Yes

Instant Replay [23] Debugging Yes No Yes

Kendo [27] Debugging, fault-tolerance Yes No Yes

Liblog [16] Debugging No Yes Yes

ODR [2] Debugging Yes Yes No

PinPlay [29] Debugging Yes Yes Yes

PRES [28] Debugging Yes Yes No

RecPlay [32] Debugging Yes No Yes

Russinovich and Cogswell [33] Debugging No Yes Yes

SMP-ReVirt [11] General replay Yes Yes Yes

Table 2: Summary of Approaches to Replaying Memory Access Non-

determinism

Source: Intel Corporation, 2009

Replay in Uniprocessors

In a uni-processor system, it was observed that since only one thread can run at

any given time, recording the order of how the threads were scheduled on the

processor is suffi cient for later replaying of the memory access interleaving [16,

8, 33]. " ese solutions have been implemented at the operating-system level

[33], virtual-machine level [8], and user level [16].

Replay of Synchronized Accesses

On a multi-processor, thread-scheduling information is not suffi cient for

deterministic replay, since diff erent threads can be running on diff erent

processors or cores concurrently. Earlier proposals, such as Instant Replay [23]

and RecPlay [32], recorded the order of operations at a coarse granularity;

that is, at the level of user-annotated shared objects and synchronization

operations, respectively. " erefore, these schemes were only able to guarantee

deterministic replay for data-race free programs. Both proposals were designed

with debugging in mind. As an illustrative example, Instant Replay used the

concurrent-read-exclusive-write (CREW) [10] protocol when diff erent threads

wanted access to a shared object. CREW guarantees that when a thread has

permission to write to a shared object, no other threads are allowed to write to

or read from that object. On the other hand, multiple threads can read from

the object concurrently. Instant Replay uses the recorded sequence of write

operations and the “version” number of the object for each read operation

during replay.

“On a multi-processor, thread-

scheduling information is not

suffi cient for deterministic replay,

since diff erent threads can be running

on diff erent processors or cores

concurrently.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 29

Some recent proposals also do not support deterministic replay of programs

with data races. iDNA [3] schedules a thread’s execution trace according to

instruction sequences that are ordered via synchronization operations. Kendo

[27] off ers deterministic multi-threading in software by assuring the same

sequence of lock acquisition for a given input. While not technically a replay

system, Kendo also requires that programs be correctly synchronized. Kendo’s

usage models include debugging and support for fault-tolerant replicas.

Replay with State-exploration

ODR [2] and PRES [28] are two novel approaches that facilitate replay

debugging, but are not able to immediately replay an application, given the

log data during the logging phase. Instead, they intelligently explore the

space of possible program execution paths until the original output or bug is

reproduced. Such analysis must be done off -line, but ODR and PRES gain in

having smaller logging phase overtimes (since they log less data) compared to

software schemes that provide for immediate replay.

PinPlay and SMP-ReVirt

PinPlay [29] and SMP-ReVirt [11, 14] provide for immediate replay, and they

order shared memory operations rather than coarse-grained objects.

PinPlay’s approach is to implement a software version of the fl ight data

recorder (FDR) [37]. FDR exploits cache coherence messages to fi nd memory

access dependencies and to order pairs of instructions.

SMP-ReVirt is a generalization of the CREW protocol for shared objects in

Instant Replay [23] to shared pages of memory. A given page in memory can

only be in a state that is concurrently read or exclusively written during the

logging phase. " ese access controls are implemented by changing a thread’s

page permissions — read-access, write-access, or no-access for a given page

— during the system’s execution. For example, if a thread wants to write to a

page and thus needs to elevate its permission to write-access, all other threads

must have their permissions reduced to no-access fi rst. Each thread has its

own log. When a thread has its page permission elevated during logging, it

logs the point at which it received the elevated permission and the points

where the other threads reduced their page permissions. Additionally, the

threads that had their permissions reduced log the same points where their

permissions were reduced. SMP-ReVirt specifi es these “points” in the execution

of the system by means of instruction counts. " e instructions count of each

processor is also updated in a globally visible vector. " us, during replay, when

a thread encounters a page permission elevation entry, it waits until the other

permission-reducing threads reach the instruction count value indicated in the

log. On the other hand, when a thread encounters a page permission reduction

entry, it updates the global vector with its instruction count.

“iDNA [3] schedules a thread’s

execution trace according to

instruction sequences that are ordered

via synchronization operations.”

“FDR exploits cache coherence

messages to fi nd memory access

dependencies and to order pairs of

instructions.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

30 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Challenges in Software-only Deterministic Replay

It has been shown that designing a software-only solution for recording and

replaying input non-determinism is reasonable in terms of execution speed,

and it can be done with an overhead of less than ten percent [20, 28, 36]. It is

diffi cult to compare and summarize input log size growth rates for the diff erent

approaches discussed here, since diff erent approaches log diff erent events, may

compress the log diff erently, and use diff erent applications as their benchmarks.

However, it can be noted that Flashback’s [36] log size is linear to the number

of system call invocations. Other similar input logging techniques may likely

exhibit similar behavior. In short, enforcing input determinism in software

seems to be a reasonable approach, considering the low overhead.

Conversely, the overhead incurred in enforcing memory access interleaving in

software is a diff erent story. SMP-ReVirt [11, 14] and PinPlay [29] allow for

the most fl exible and immediate replay, but they incur a huge overhead. Since

SMP-ReVirt instruments and protects shared memory at the page level of

granularity, it has issues with false sharing and page contention [28], especially

as the number of processors increases [14]. With four CPUs, the logging phase

runtime of an application in SMP-ReVirt can be up to 9 times that of a native

run [14]. PinPlay, like iDNA, which uses dynamic instrumentation and has a

12 to 17 times slowdown [3], cannot be turned on all the time.

" e rest of the schemes previously described for replaying multi-threaded

applications are either less fl exible (uniprocessor only [8, 16, 33], data-race free

programs only [3, 23, 27, 32]), or they trade off short on-line recording times

with potentially long off -line state exploration times for replay [2, 28].

Another challenge with software-based schemes is their ability to pinpoint

asynchronous events during replay. " is issue was exemplifi ed earlier in

reference to asynchronous signals and interrupts. While some replay schemes

choose to use hardware performance counters in their implementation [36, 35,

13], others choose to delay the event until a later synchronous event occurs [25,

34, 16]. " e latter solution, though simpler, can theoretically aff ect program

correctness, while the former solution requires the use of performance counters

that are often inaccurate and non-deterministic [11, 27].

In the end, the selection of an appropriate replay system depends on the usage

model. If we are to assume a debugging model where a programmer may

not mind waiting a while for a bug to be reproduced, large replay overheads,

though not desirable, may be reasonable. In fact, for most of the methods

described here, the developers assumed a debugging usage model. Alternatively,

a fault-tolerance replay model would require that backup replicas be able to

keep up with the production replica, and thus good performance would be

much more important. Note that performance is not the only factor that

should be considered when determining which replay system works best with

a usage model. For example, if the usage model is to replay system intrusions,

it would be more suitable to use a full-system replay scheme rather than a user-

application replay scheme.

“Enforcing input determinism in

software seems to be a reasonable

approach, considering the low

overhead.”

“Another challenge with software-

based schemes is their ability to

pinpoint asynchronous events during

replay.”

“In the end, the selection of an

appropriate replay system depends on

the usage model.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 31

Hardware Support for Recording Memory Non-
determinism

Deterministically replaying a program execution is a very diffi cult problem,

as we just described. In addition to logging input non-determinism, existing

software approaches have to record the interleavings of shared memory

accesses. " is can be done at various levels of granularity (e.g., page level or

individual memory operations), but as discussed previously, the overhead

incurred can be prohibitive and therefore detrimental to applications of R&R,

such as fault-tolerance. For this reason, there has been a lot of emphasis on

providing hardware support for logging the interleavings of shared memory

accesses more effi ciently. We call the proposed mechanisms for logging the

order in which memory operations interleave memory race recorders (MRR).

Prior work on hardware support for MRR piggybacks on timestamps located

on cache coherence messages and logs the outcome of memory races by using

either a point-to-point or a chunk-based approach. In this section we describe

these two approaches and suggest directions for making them practical in

modern multi-processor systems.

Point-to-point Approach

In point-to-point approaches [26, 37], memory dependencies are tracked at

the granularity level of individual shared memory operations. In this approach,

each memory block has a timestamp, and each memory operation updates the

timestamp of the accessed block. In general, a block can be anything ranging

from a memory word to multiple memory words [37, 31]. We now describe

the FDR [37], a state-of-the-art implementation of a point-to-point MRR

approach.

FDR augments each core in a multi-processor system with an instruction

counter (IC) that counts retired instructions. FDR further augments each

cache line with a cache instruction count (CIC) that stores the IC of the last

store or load instruction that accessed the cache line (see Figure 1). When a

core receives a remote coherence request to a cache line, it includes the

corresponding CIC and its core ID in the response message. " e requesting

core can then log a dependency by storing the ID and CIC of the responding

core and the current IC of the requesting core. To reduce the amount of

information logged by the requesting core, a dependency is logged only if it

cannot be inferred by a previous one. " is optimization is called transitive

reduction. For example, in Figure 1, only the dependency from T1:W(b) to

T2:R(b) is logged, as T1:R(a) to T2:W(a) is consequentially implied by

T1:W(b) to T2:R(b). Transitive reduction is implemented by augmenting each

core with a vector instruction count that keeps track of the latest CIC received

by each core.

“# ere has been a lot of emphasis

on providing hardware support for

logging the interleavings of shared

memory accesses more effi ciently.”

Rb

Ra

Wa

Wb

response CIC=5

response CIC=6

CIC(a)=5

CIC(b)=6

$line

a

b

. . .

CIC

5

6

. . .

T1 T2

Figure 1: Point-to-point Approach

Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

32 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Chunk-based Approach
A chunk defi nes a block of memory instructions that executes in isolation, i.e.,

without a remote coherence request intervening and causing a confl ict. Chunks

are represented by using signatures, which are hardware implementations

of Bloom Filters. Signatures are used to compactly represent sets of locally

accessed read or write memory addresses and to disambiguate a remote shared

memory reference against them. A confl ict with the signatures ends a chunk

and clears the signatures.

Similar to point-to-point approaches, chunk-based approaches can also take

advantage of transitive reduction to reduce the amount of logged information.

As shown in Figure 2, the remote read T2:R(b) confl icts with the write

signature of T1 and causes T1 to end its chunk and to clear its signatures.

Consequently, the request T2:W(a) does not confl ict and the dependency

T1:R(a) to T2:W(a) is implied. In contrast to point-to-point approaches in

which a timestamp is stored with each memory block, chunk-based approaches

only need to store a timestamp per core to order chunks between threads.

We now describe two similar implementations of chunk-based approaches.

Rerun

In Rerun [18], episodes are like chunks. Rerun records a memory dependency

by logging the length of an episode along with a timestamp. To identify the

episodes that need to be logged, Rerun augments each core with a read and

a write signature that keep track of the cache lines read and written by that

core during the current episode, respectively. When a cache receives a remote

coherence request, it checks its signatures to detect a confl ict. If a confl ict is

detected, the core ends its current episode, which involves clearing the read and

write signatures, creating a log entry containing the length of the terminating

episode along with its timestamp, and updating the timestamp value. " e

timestamp represents a scalar clock maintained by each core to provide a

total order among the episodes. " e cores keep their timestamp up to date by

piggybacking them on each cache coherence reply.

Deterministic replay is achieved by sequentially executing the episodes in order

of increasing timestamps. To do so, a replayer typically examines the logs to

identify which thread should be dispatched next and how many instructions it

is allowed to execute until an episode of a diff erent thread needs to be replayed.

DeLorean

Similar to Rerun, DeLorean [24] also logs chunks by using signatures, but does

so in a diff erent multi-processor execution environment. In this environment,

cores continuously execute chunks that are separated by register checkpoints.

A chunk execution in this environment is speculative, i.e., its side eff ects are

visible to other cores only until after commit. Before a chunk can commit,

however, its signatures are compared against the signatures of other chunks

to detect confl icts. If a confl ict is detected with a chunk, its signatures are

cleared and the chunk is squashed and re-executed. While such an execution

environment is not standard in today’s multi-processors, it has been shown to

perform well [7]. " e required hardware extensions are similar to hardware-

supported transactional memory systems [22].

Rb

Ra

Wa

Wb

T1 T2

b a

WS RS

read request hits WS;

signatures are cleared

Invalidation request:

no hit in WS or RS

Figure 2: Chunk-based Approach

Source: Intel Corporation, 2009

“If a confl ict is detected with a chunk,

its signatures are cleared and the

chunk is squashed and re-executed.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 33

To enable deterministic replay, DeLorean logs the total order of chunk

commits. Because in this execution environment chunks have a fi xed size, e.g.,

1000 dynamic instructions, no additional information needs to be logged,

except in the rare cases where chunks need to end early because of events such

as interrupts. Consequently, the log size of DeLorean is about one order of

magnitude smaller than in Rerun. DeLorean can even reduce the log size by

another order of magnitude when operating in PicoLog mode. In this execution

mode, the architecture commits chunks in a deterministic order, e.g., round

robin. Although this execution mode sacrifi ces performance, DeLorean only

needs to log the chunks that end due to non-deterministic events, such as

interrupts.

Making Memory Race Recorders Practical for Modern CMPs

MRR approaches discussed so far are eff ective in logging the events required

for deterministic replay, but they also impose some non-negligible amount of

complexity and performance cost that can preclude hardware vendors from

deploying similar solutions in real products. In this section, we pinpoint some

of these issues and discuss possible ways to remedy them.

Implementation Complexity

Showstoppers with previous MRR approaches are the implementation

complexity of proposed techniques and their associated hardware cost.

With point-to-point approaches, for instance, a hardware estate for storing

the timestamp of each accessed memory block is required. If the granularity

of a memory block is a cache line, then each cache line must be augmented

with storage for the timestamp. Because a cache line eviction throws away the

information stored into it, the timestamp must also be stored at the next cache

level to reduce logging frequency. FDR estimates this cost to be ~6 percent of

the capacity of a 32KB L1 cache.

" e main hardware cost associated with chunk-based approaches lies in the

storage required for signatures. In Rerun, for instance, the authors suggest

using 1024-bit signatures to store read memory addresses and 256-bit

signatures to store written memory addresses. In contrast to point-to-point

approaches, these changes do not require modifi cations to the cache sub-system

and are therefore less invasive. However, there is some complexity involved

in implementing signatures. " e authors in [30] show that implementing

signatures in modern CMPs involves subtle interactions with the hierarchy

and policy decisions of on-chip caches. " e authors show that the signature

placement in a multi-level cache hierarchy can degrade performance by

increasing the traffi c to the caches. " ey propose hybrid L1/L2 signature

placement strategies to mitigate this performance degradation.

“# e log size of DeLorean is about one

order of magnitude smaller than in

Rerun.”

“Showstoppers with previous MRR

approaches are the implementation

complexity of proposed techniques and

their associated hardware cost.”

“# e main hardware cost associated

with chunk-based approaches lies in

the storage required for signatures.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

34 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Performance Overhead

With the exception of DeLorean, all MRR approaches discussed in this

section must piggyback on cache coherence messages to maintain ordering

among events in the system. For instance, in FDR, the core ID and the CIC

are piggybacked on each coherence reply to log a point-to-point dependency

between two instructions from diff erent threads, whereas in Rerun a timestamp

is piggybacked on each coherence reply to maintain causal ordering between

chunks. " is overhead can hurt performance by putting a lot of pressure on the

bandwidth. FDR and Rerun, for instance, report a performance cost of ~10

percent, an estimation based on functional simulation. Ideally, we want this

coherence traffi c overhead to be nonexistent in real implementations of MRR.

One way to attain this objective with a chunk-based approach has recently

been proposed in [30]. " e authors make the observation that maintaining

causality at the chunk boundary is all that is needed to order chunks. Doing

so eliminates the requirement to piggyback a timestamp on each coherence

message. Using this approach, they show that the coherence traffi c overhead

can be reduced by several orders of magnitude compared to Rerun or FDR.

Replay Performance

As discussed previously, there are plenty of applications that can benefi t from

deterministic replay. Each of these applications places diff erent replay speed

requirements on the system. For instance, while an application developer can

easily accommodate slow replay during debugging, this is not the case for

high-availability applications in which the downtime window during recovery

must be shortened. Slow replay in this case can have devastating eff ects on the

system. Instead, we would like a second machine to continuously replay the

execution of the primary machine at a similar speed, and to be able to take

over instantly if the primary fails. Ideally, we do not want a R&R system to be

constrained by speed, because such a constraint would limit the system’s scope

and restrict its applicability. " erefore, techniques are needed to improve the

replay speed of MRR approaches.

DeLorean and FDR can replay a program at production run speed. In

DeLorean, this is achieved by replaying chunks in parallel and re-synchronizing

them according to the same commit order as recorded during their original

execution. With FDR, threads are replayed in parallel and are only re-

synchronized at the locations corresponding to the point-to-point dependencies

recorded during their original execution. Neither FDR nor DeLorean, however,

is a likely choice for a practical MRR implementation today. As discussed

previously, the complexity of FDR is a major showstopper in modern CMPs.

For DeLorean, the execution environment it assumes is not standard in today’s

multi-processors.

“# e authors make the observation

that maintaining causality at the

chunk boundary is all that is needed

to order chunks.”

“DeLorean and FDR can replay a

program at production run speed.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 35

Replaying episodes in Rerun is done sequentially, following increasing

timestamp order. As such, Rerun cannot therefore meet the replay speed

requirement of DMR usage models, such as fault-tolerance. As an alternative

to Rerun, the authors in [30] have proposed a chunk-based replay scheme

called a concurrent chunk region. A concurrent chunk region defi nes a set of

chunks that can be replayed in parallel, because each chunk in such a region

features the same timestamp as the chunk in other regions. To build such

concurrent chunk regions, whenever a chunk must terminate due to a confl ict,

for instance, all chunks with similar timestamps must also be terminated

simultaneously. " erefore, concurrent chunk regions trade off replay speed

for log size. " e authors in [30] have shown that, by using concurrent chunk

regions, replay speed can be improved by several orders of magnitude at the

cost of moderate log size increases.

Conclusions

In this article we presented a comprehensive survey of DMR techniques to deal

with multi-threaded program execution on CMP machines. We showed that

software-only implementations of DMR are quite eff ective in recording and

replaying concurrent programs, but they suff er from performance limitations

that can restrict their applicability. To improve on performance, the memory

non-determinism of multi-threaded programs must be recorded more

effi ciently. We described the hardware support needed to deal with fi ne-grained

logging of memory interleavings more effi ciently, using either point-to-point

approaches or chunk-based approaches. Combined with software approaches,

these hardware techniques can provide better performance and address a wider

range of usage models. However, there are still several remaining challenges

that need to be met before a complete solution can be deployed on real

hardware. One such challenge involves recording memory non-determinism

with non-sequentially consistent memory models. We hope that the discussions

presented here help foster the research on DMR and that they stimulate a

broader interest in DMR usage models.

“A concurrent chunk region defi nes a

set of chunks that can be replayed in

parallel.”

“To improve on performance, the

memory non-determinism of multi-

threaded programs must be recorded

more effi ciently..”

Intel® Technology Journal | Volume 13, Issue 4, 2009

36 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

References

[1] H. Agrawal. “Towards automatic debugging of computer programs.”

PhD thesis, Department of Computer Sciences, Purdue University, West

Lafayette, Indiana, 1991.

[2] G. Altekar and I. Stoica. “ODR: Output-deterministic replay for

multicore debugging.” In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, pages 193-206, 2009.

[3] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinic,

D. Mihocka, and J. Chau. “Framework for instruction-level tracing and

analysis of program executions.” In Proceedings of the 2nd International

Conference on Virtual Execution Environments, pages 154-163, 2006.

[4] B. Boothe. “A fully capable bidirectional debugger.” ACM SIGSOFT

Software Engineering Notes, 25(1), pages 36-37, 2000.

[5] T. C. Bressoud and F. B. Schneider. “Hypervisor-based fault tolerance.”

In Proceedings of the 15th ACM Symposium on Operating Systems

Principles, pages 1-11, 2009.

[6] K. Buchacker and V. Sieh. “Framework for testing the fault-tolerance

of systems including OS and network aspects.” In Proceedings of the 6th

IEEE International Symposium on High-Assurance Systems Engineering:

Special Topic: Impact of Networking, pages 95-105, 2001.

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. “BulkSC: Bulk

enforcement of sequential consistency.” ACM SIGARCH Computer

Architecture News, 35(2), pages 278-289, 2007.

[8] J. Choi and H. Srinivasan. “Deterministic replay of Java multithreaded

applications.” In Proceedings of the SIGMETRICS Symposium on Parallel

and Distributed Tools, pages 48-59, 1998.

[9] J. Chow, T. Garfi nkel, and P. M. Chen. “Decoupling dynamic program

analysis from execution in virtual environments.” In Proceedings of the

USENIX Annual Technical Conference, pages 1–14, 2008.

[10] P. Courtois, F. Heymans, and D. Parnas. “Concurrent control with

readers and writers.” Communications of the ACM, 14(10), pages 667-

668, 1971.

[11] G. Dunlap. “Execution replay for intrusion analysis.” PhD thesis, EECS

Department, University of Michigan, Ann Arbor, Michigan, 2006.

Available at http://www.eecs.umich.edu/~pmchen/papers/dunlap06.pdf

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 37

[12] S. King, G. Dunlap, and P. Chen. “Operating system support for virtual

machines.” In Proceedings of the 2003 USENIX Technical Conference,

pages 71-84, 2003.

[13] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. “ReVirt:

Enabling intrusion analysis through virtual-machine logging and

replay.” ACM SIGOPS Operating Systems Review, 36(SI), pages 211-224,

2002.

[14] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. “Execution

replay of multiprocessor virtual machines.” In Proceedings of the Fourth

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, pages 121-130, 2008.

[15] S. Feldman and C. Brown. “IGOR: a system for program debugging via

reversible execution.” In Proceedings of the 1988 ACM SIGPLAN and

SIGOPS Workshop on Parallel and Distributed Debugging, pages 112-

123, 1988.

[16] D. Geels, G. Altekar, S. Shenker, and I. Stoica. “Replay debugging for

distributed applications.” In Proceedings of the USENIX ‘06 Annual

Technical Conference, 27, 2006.

[17] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, F. Kaashoek, and

Z. Zhang. “R2: An application-level kernel for record and replay.” In

Proceedings of the 8th USENIX Symposium on Operating System Design

and Implementation, pages 193-208, 2008.

[18] D. Hower and M. Hill. “Rerun: Exploiting episodes for lightweight

memory race recording.” ACM SIGARCH Computer Architecture News,

36(3), pages 265-276, 2008.

[19] A. Joshi, S. King, G. Dunlap, and P. Chen. “Detecting past and present

intrusions through vulnerability-specifi c predicates.” In Proceedings of

the Twentieth ACM Symposium on Operating Systems Principles, pages

91-104, 2005.

[20] S. King, G. W. Dunlap, and P. M. Chen. “Debugging operating systems

with time-traveling virtual machines.” In Proceedings of the USENIX

Annual Technical Conference, 1, 2005.

[21] L. Lamport. “Time, clocks and the ordering of events in a distributed

system.” CACM, 21(7):558–565, 1978.

[22] J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool,

2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

38 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

[23] T. LeBlanc and J. Mellor-Crummey. “Debugging parallel programs with

instant replay.” IEEE Transactions on Computers, 36(4), pages 471-482,

1987.

[24] P. Montesinos, L. Ceze, and J. Torrellas. “DeLorean: Recording and

deterministically replaying shared-memory multiprocessor execution

effi ciently.” In Proceedings of the 35th International Symposium on

Computer Architecture, pages 289-300, 2008.

[25] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. “Capo:

Abstractions and software-hardware interface for hardware-assisted

deterministic multiprocessor replay.” In Proceedings of the 14th

International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 73-84, 2009.

[26] S. Narayanasamy, G. Pokam, and B. Calder. “Bugnet: Continuously

recording program execution for deterministic replay debugging.” In

Proceedings of the 32nd Annual International Symposium on Computer

Architecture, pages 284-295, 2005.

[27] M. Olszewski, J. Ansel, and S. Amarasinghe. “Kendo: Effi cient

deterministic multithreading in software.” In Proceedings of the 14th

International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 97-108, 2009.

[28] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. Lee, and

S. Lu. “PRES: Probabilistic replay with execution sketching on

multiprocessors.” In Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles, pages 177-192, 2009.

[29] C. Pereira. “Reproducible user-level simulation of multi-threaded

workloads.” PhD thesis, Department of Computer Science and

Engineering, University of California – San Diego, San Diego,

California, 2007. Available at http://cseweb.ucsd.edu/~calder/papers/

thesis-cristiano.pdf.

[30] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A. Adl-Tabatabai.

“Architecting a chunk-based memory race recorder in modern CMPs.”

In Proceedings of the 42nd International Symposium on Microarchitecture,

2009.

[31] M. Prvulovic. “CORD: Cost-eff ective (and nearly overhead-free)

order-recording and data race detection.” In Proceedings of the Twelfth

International Symposium on High-Performance Computer Architecture,

2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 39

[32] M. Ronsse and K. De Bosschere. “RecPlay: a fully integrated practical

record/replay system.” ACM Transactions on Computer Systems, 17(2),

pages 133–152, 1999.

[33] M. Russinovich and B. Cogswell. “Replay for concurrent non-

deterministic shared-memory applications.” In Proceedings of the ACM

SIGPLAN 1996 Conference on Programming language Design and

Implementation, pages 258-266, 1996.

[34] Y. Saito. “Jockey: A user-space library for record-replay debugging.” In

Proceedings of the Sixth International Symposium on Automated Analysis-

Driven Debugging, pages 69-76, 2005.

[35] J. Slye and E. Elnozahy. “Supporting nondeterministic execution

in fault-tolerant systems.” In Proceedings of the Twenty-Sixth Annual

International Symposium on Fault-Tolerant Computing, pages 250, 1996.

[36] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. “Flashback: A

lightweight extension for rollback and deterministic replay for software

debugging.” In Proceedings of the USENIX Annual Technical Conference,

3, 2004.

[37] M. Xu, R. Bodik, and M. Hill. “A fl ight data recorder for enabling

full-system multiprocessor deterministic replay.” In Proceedings of the

30th Annual International Symposium on Computer Architecture, pages

122-135, 2003.

[38] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B. Weissman, and

VMWare Inc. “Retrace: Collecting execution trace with virtual machine

deterministic replay.” In Proceedings of the 3rd Annual Workshop on

Modeling, Benchmarking and Simulation, 2007.

[39] M. Zelkowitz. “Reversible execution.” Communications of the ACM,

16(9):566, 1973.

Intel® Technology Journal | Volume 13, Issue 4, 2009

40 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Authors’ Biographies

Gilles Pokam is a Senior Research Scientist in the Microprocessor &

Programming Research at Intel Labs. His research interests are in multi-core

architectures and software, with a current focus on concurrent programming

and programmer productivity. Before joining Intel Labs, he was a researcher at

IBM T.J. Watson Research Center in NY, and a postdoctoral research scientist

at the University of California, San Diego. He received a PhD degree from

INRIA Lab and the University of Rennes I, in France. He is the recipient of

the IEEE MICRO Top Picks Award 2006 that recognizes the most signifi cant

papers in computer architecture. Gilles is a member of IEEE and ACM. His

e-mail is gilles.a.pokam at intel.com.

Cristiano Pereira is an Engineer in the Technology Pathfi nding and

Innovation team, at Intel’s Software and Services Group. His research interests

are in the areas of hardware support for better programmability of multi-core

architectures and software tools to improve programmer’s productivity. He

received a PhD degree from the University of California, San Diego, in 2007

and a Masters degree from the Federal University of Minas Gerais, Brazil, in

2000. Prior to that, Cristiano worked for a number of small companies in

Brazil. He is a member of IEEE. His e-mail is cristiano.l.pereira at intel.com.

Klaus Danne is an Engineer in the Microprocessor & Programming Research

Group at Intel Labs. His research interests are in multi-core architectures,

deterministic replay, design emulation, and reconfi gurable computing

systems. He received a PhD degree and Masters degree from the University of

Paderborn Germany in 2006 and 2002, respectively. His e-mail is klaus.danne

at intel.com.

Lynda Yang is a graduate student in Computer Science at the University of

Illinois at Urbana-Champaign. Her research interests are in multi-processor

architectures and operating systems. She received a BS degree in Computer

Science in 2008 from the University of North Carolina at Chapel Hill. Her

e-mail is yang61 at illinois.edu.

Samuel T. King is an Assistant Professor in the Computer Science Department

at the University of Illinois. His research interests include security, experimental

software systems, operating systems, and computer architecture. His current

research focuses on defending against malicious hardware, deterministic replay,

designing and implementing secure web browsers, and applying machine

learning to systems problems. Sam received his PhD degree in Computer

Science and Engineering from the University of Michigan in 2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.

Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other

countries.

*Other names and brands may be claimed as the property of others.

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 41

Josep Torrellas is a Professor of Computer Science and Willett Faculty

Scholar at the University of Illinois, Urbana-Champaign. He received a PhD

degree from Stanford University in 1992. His research area is multi-processor

computer architecture. He has participated in the Stanford DASH and the

Illinois Cedar experimental multi-processor projects, and in several DARPA

initiatives in novel computer architectures. Currently, he leads the Bulk Multi-

core Architecture project for programmability in collaboration with Intel. He

has published over 150 papers in computer architecture and received several

best-paper awards. He has graduated 27 PhD students, many of whom are now

leaders in academia and industry. He is an IEEE Fellow.

