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Abstract

As multi-processors become mainstream, software developers must harness 

the parallelism available in programs to keep up with multi-core performance. 

Writing parallel programs, however, is notoriously diffi  cult, even for the 

most advanced programmers. " e main reason for this lies in the non-

deterministic nature of concurrent programs, which makes it very diffi  cult 

to reproduce a program execution. As a result, reasoning about program 

behavior is challenging. For instance, debugging concurrent programs is 

known to be diffi  cult because of the non-determinism of multi-threaded 

programs. Malicious code can hide behind non-determinism, making software 

vulnerabilities much more diffi  cult to detect on multi-threaded programs.

In this article, we explore hardware and software avenues for improving the 

programmability of Intel® multi-processors. In particular, we investigate 

techniques for reproducing a non-deterministic program execution that can 

effi  ciently deal with the issues just mentioned. We identify the main challenges 

associated with these techniques, examine opportunities to overcome some 

of these challenges, and explore potential usage models of program execution 

reproducibility for debugging and fault tolerance of concurrent programs.

Introduction

A common assumption of many application developers is that software behaves 

deterministically: given program A, running A on the same machine several 

times should produce the same outcome. " is assumption is important for 

application performance, as it allows one to reason about program behavior. 

Most single-threaded programs executing on uni-processor systems exhibit this 

property because they are inherently sequential. However, when executed on 

multi-core processors, these programs need to be re-written to take advantage 

of all available computing resources to improve performance. Writing parallel 

programs, however, is a very diffi  cult task because parallel programs tend to be 

non-deterministic by nature: running the same parallel program A on the same 

multi-core machine several times can potentially lead to diff erent outcomes 

for each run. " is makes both improving performance and reasoning about 

program behavior very challenging.
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Deterministic multi-processor replay (DMR) can effi  ciently deal with the 

non-deterministic nature of parallel programs. " e main idea behind DMR is 

reproducibility of program execution. Reproducing a multi-threaded program 

execution requires recording all sources of non-determinism, so that during 

replay, these threads can be re-synchronized in the same way as in the original 

execution. On modern chip multi-processor (CMP) systems, the sources of 

non-determinism can be either input non-determinism (data inputs, keyboard, 

interrupts, I/O, etc.) or memory non-determinism (access interleavings among 

threads). " ese sources of non-determinism can be recorded by using either 

software or hardware, or a combination of both.

Software-only implementations of DMR can run on legacy machines without 

hardware changes, but they suff er from performance slowdowns that can 

restrict the applicability of DMR. To achieve performance levels comparable 

to hardware schemes, software approaches can be backed up with hardware 

support. In this article, we describe what the software-only approaches for 

DMR may look like, and what types of hardware support may be required to 

mitigate their performance. Our discussion starts with the details of DMR: 

we focus on the usage models and on the main challenges associated with 

recording and replaying concurrent programs. We then describe several ways 

in which DMR schemes can be implemented in software, and we elaborate 

on the various tradeoff s associated with these approaches. Finally, we describe 

hardware extensions to software-only implementations that can help mitigate 

performance and improve the applicability of DMR. 

Why Record-and-Replay Matters

Recording and deterministically replaying a program execution gives computer 

users the ability to travel backward in time, recreating past states and events 

in the computer. Time travel is achieved by recording key events when the 

software runs, and then restoring to a previous checkpoint and replaying the 

recorded log to force the software down the same execution path.  

" is mechanism enables a wide range of applications in modern systems, 

especially in multi-processor systems in which concurrent programs are subject 

to non-deterministic execution: such execution makes it very hard to reason 

about or reproduce a program behavior.

 • Debugging. Programmers can use time travel to help debug programs 

[36, 39, 15, 4, 1] including programs with non-determinism [20, 33], 

since time travel can provide the illusion of reverse execution and reverse 

debugging. 

 • Security. System builders can use time travel to replay the past execution of 

applications looking for exploits of newly discovered vulnerabilities [19], to 

inspect the actions of an attacker [12], or to run expensive security checks 

in parallel with the primary computation [9].  

 • Fault tolerance. System designers can use replay as an effi  cient mechanism 

for recreating the state of a system after a crash [5].

“Deterministic multi-processor replay 

(DMR) can effi  ciently deal with the 

non-deterministic nature of parallel 

programs.”

“Recording and deterministically 

replaying a program execution gives 

computer users the ability to travel 

backward in time.”
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Non-determinism of Concurrent Programs

" e goal of deterministic replay is to be able to reproduce the execution of a 

program in the way it was observed during recording. In order to reproduce 

an execution, each instruction should see the same input operands as in the 

original run. " is should guarantee the same execution paths for each thread. 

During an execution, a program reads data from either memory or register 

values. Some of the input is not deterministic across diff erent runs of the 

program, even if the program’s command line arguments are the same. Hence, 

in order to guarantee determinism these inputs need to be recorded in a 

log and injected at replay. In this section, we describe these sources of non-

determinism. 

Deterministic replay can be done at diff erent levels of the software stack. At 

the top level, one can replay only the user-level instructions that are executed. 

" ese include application code and system library code. " is is the approach 

taken by BugNet [26], Capo [25], iDNA [3], and PinPlay [29]. At the lowest 

level, a system can record and replay all instructions executed in the machine, 

including both system-level and user-level instructions. Regardless of the level 

one is looking at, the sources of non-determinism can be divided into two sets: 

input read by the program and memory interleavings across diff erent threads of 

execution. We now describe each source in more detail. 

Input Non-determinism

Input non-determinism diff ers, depending on which layer of the system is 

being recorded for replay. User-level replay has diff erent requirements from 

those of system-level replay. Conceptually, the non-deterministic inputs are 

all the inputs that are consumed by the system layer being recorded that are 

not produced by the same layer. For instance, for user-level replay, all inputs 

coming from the operating system are non-deterministic, because there is 

no guarantee of repeatability across two runs. A UNIX* system call, such as 

gettimeofday, is inherently non-deterministic across two runs, for instance. 

For a system-level record, all inputs that are external to the system are non-

deterministic inputs. External inputs are inputs coming from external devices 

(I/O, interrupts, DMAs). We now discuss the source of non-determinism at 

each level.

For user-level replay, the sources of non-determinism are listed as follows:

 • System calls. Many system calls are non-deterministic. An obvious example is 

a timing-dependent call, such as the UNIX call gettimeofday. Other system 

calls can also be non-deterministic. A system call reading information from 

a network card may return diff erent results, or a system-call reading from a 

disk may return diff erent results.

 • Signals. Programs can receive asynchronous signals that can be delivered at 

diff erent times across two runs, making the control fl ow non-deterministic.

“Some of the input is not deterministic 

across diff erent runs of the program, 

even if the program’s command line 

arguments are the same.”

“User-level replay has diff erent 

requirements from those of system-level 

replay.”

“For a system-level record, all inputs 

that are external to the system are 

non-deterministic inputs.”
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 • Special architectural instructions. On x86 architecture, some instructions 

are non-deterministic, such as RDTSC (read timestamp) and RDPMC 

(read performance counters). Across processor generations of the same 

architecture, CPUID will also return diff erent values, if the replay happens 

in a processor other than the one in which the recording happened.

In addition to the non-deterministic inputs just mentioned, other sources of 

non-determinism at the user-level are the location of the program stack that 

can change from run to run and the locations where dynamic libraries are 

loaded during execution. Although these are not inputs to the program, they 

also change program behavior and need to be taken care of for deterministic 

replay.

At the system-level, the major sources of non-determinism are the following:

 • I/O. It is common for most architectures to allow memory mapped 

I/O: loads and stores eff ectively read from and write to devices. If one is 

replaying the operating system code, the reads from I/O devices are not 

guaranteed to be repeatable. As a result, the values read by those load 

instructions need to be recorded. 

 • Hardware interrupts. Hardware interrupts trigger the execution of an 

interrupt service routine, which changes the control fl ow of the execution. 

Interrupts are used to notify the processor that some data (e.g., disk read) 

are available to be consumed. An interrupt is delivered at any point in time 

during the execution of the operating system code. A recorder needs to log 

the point at which the interrupt arrived and the content of the interrupt 

(what its source is: e.g., disk I/O, network I/O, timer interrupt, etc.).

 • Direct Memory Access (DMA). Direct memory accesses perform writes 

directly to memory without the intervention of the processor. " e values 

written by DMA as well as the timestamp at which those values were 

written need to be recorded to be reproducible during replay.

In addition, the results of processor-specifi c instructions, such as x86 RDTSC, 

also need to be recorded as is the case with user-level code, in order to ensure 

repeatability.

“Other sources of non-determinism at 

the user-level are the location of the 

program stack that can change from 

run to run and the locations where 

dynamic libraries are loaded during 

execution.”

“A recorder needs to log the point at 

which the interrupt arrived and the 

content of the interrupt.”
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Memory Interleaving

Input non-determinism is present on single-core and multi-core machines. 

However, in multi-core machines, an additional source of non-determinism is 

present and that is the order in which all threads in the system access shared 

memory. " is is typically known as memory races, where diff erent runs of 

a program may result in diff erent threads winning the race when trying to 

access a piece of shared memory. Memory races occur between synchronization 

operations (synchronization races) or between data accesses (data races). At the 

user-level, threads access memory in a diff erent order, because the operating 

system may schedule them in a diff erent order. " is is due to interrupts being 

delivered at diff erent times, because of diff erences in the architectural state 

(cache line misses, memory latencies, etc.) and also because of the load in the 

system. As a result, the shared memory values seen by each thread in diff erent 

runs can change, resulting in diff erent behavior for each thread across runs. 

" is is the major source of non-determinism in multi-threaded programs. 

Races also occur among threads within the operating system, and the behavior 

across two runs is also not guaranteed to be the same. Hence the order in 

which races occur within the operating system code also needs to be recorded 

to guarantee deterministic replay.

Software Approaches for Deterministic Replay

Software-only approaches to record-and-replay (R&R) can be deployed on 

current commodity hardware at no cost. As described in the previous section, 

an R&R solution needs to tackle two issues: logging and replaying non-

deterministic inputs and enforcing memory access interleavings. We describe 

software-only solutions to both of these challenges next, and we provide details 

on the techniques used in recent deterministic replay approaches extant in 

literature. Because there are more software-only R&R-like systems than can 

possibly be discussed in this article, we choose to mention those that best 

characterize our focus. Once we’ve surveyed the literature, we discuss the 

remaining open challenges in software-only solutions.

Reproducing Input Non-determinism

Systems and programs execute non-deterministically due to the external 

resources they are exposed to and the timing of these resources. " us, these 

external resources can be all viewed as inputs, whether they are user inputs, 

interrupts, system call eff ects, etc. Given the same inputs and the same initial 

state, the behavior of the system or application is deterministic. " e approach to 

R&R, therefore, is to log these inputs during the logging phase and inject them 

back during replay. 

“In multi-core machines, an 

additional source of non-determinism 

is present and that is the order in 

which all threads in the system access 

shared memory.”

“# e order in which races occur 

within the operating system code also 

needs to be recorded to guarantee 

deterministic replay.”

“An R&R solution needs to tackle two 

issues: logging and replaying non-

deterministic inputs and enforcing 

memory access interleavings.”
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Table 1 summarizes the replay systems under discussion in terms of the level of 

replay (user-level or system-level), usage model, and how they are implemented 

for replaying inputs.

Replay System Level of Replay Usage Model Implementation

Bressoud and Schneider [5] System Fault-tolerance Virtual machine

CapoOne [25] User General notion of “time travel” 

for multiple purposes

Kernel modifi cations, ptrace

Flashback [36] User Debugging Kernel modifi cations

iDNA [3] User Debugging, profi ling Dynamic instrumentation

Jockey [34] User Debugging Library-based, rewrites system calls

Liblog [16] User Debugging Library-based, intercepts calls to libc

ODR [2] User Debugging Kernel modifi cations, ptrace

PinPlay [29] User Debugging, profi ling Dynamic instrumentation

R2 [17] User Debugging Library-based, stubs for replayed function calls

ReVirt [13] System Security Virtual machine

TTVM [20] System Debugging Virtual machine

VMWare [38] System General replay Virtual machine

Table 1:  Summary of Approaches to Replaying Input Non-determinism

Source:  Intel Corporation, 2009

User-level Input Non-determinism

First, let us consider user application replay. For the most part, we discuss 

how several approaches handle system calls and signals, since together they 

represent a large part of the non-deterministic external resources exposed to the 

application. " ey also represent resources that have inherently deterministic 

timing and non-deterministic timing, respectively. 

System Calls

An application’s interaction with the external system state is generally confi ned 

to its system calls. We discuss in detail how two recent replay systems — 

Flashback [36] and CapoOne [25] — handle these system calls. Flashback can 

roll back the memory state of a process to user-defi ned checkpoints, and it 

supports replay by logging the process’s interaction with the system. Flashback’s 

usage model is for debugging software. CapoOne can log and replay multiple 

threads and processes in a given replay group, cohesively, while concurrently 

supporting multiple independent replay groups. It re-executes the entire 

application during replay. CapoOne requires additional hardware to support 

multi-processor replay; however, its technique for enforcing an application’s 

external inputs is completely software-based.

“Flashback can roll back the memory 

state of a process to user-defi ned 

checkpoints.”
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Both Flashback and CapoOne interpose on system call routines: they log the 

inputs, results, and side-eff ects (copy_to_user) of each system call, and they 

inject the data back in during re-execution of system call entry and exit points. 

If the eff ect of a given system call is isolated to only the user application (e.g., 

getpid()), the actual call is bypassed during replay, and its eff ects are emulated 

by injecting the values retrieved from the log. On the other hand, if a system 

call modifi es a system state that is outside of the replayed application (e.g., 

fork()), the system call is re-executed during replay in a manner such that its 

eff ect on the application is the same as during the logging phase. CapoOne 

interposes on system calls in user space via the ptrace mechanism, while 

Flashback does so with kernel modifi cations. Another replay scheme called 

ODR [2] describes similar techniques to handle system calls, by using both 

ptrace and kernel modules. Jockey [34], a replay debugger, is slightly diff erent 

from Flashback and CapoOne in that Jockey links its own shared-object fi le to 

the replayed application and then rewrites the system calls of interest.

While all of these approaches automatically defi ne the interface at which 

logging and replay occur, namely the system call boundary, R2 [17] is a library-

based replay debugger tool that allows the user to choose this demarcation. 

Functions above the user-defi ned interface are re-executed during replay, while 

those below it are emulated by using data from log fi les. Implementation-

wise, R2 generates, and later calls, the stub associated with each function that 

needs to be logged or replayed. " e authors of R2 also address the issue of 

preserving order between function calls that are executed by diff erent threads. 

R2 uses a Lamport clock [21] to either serialize all calls or allow them to occur 

concurrently, as long as causal-order is maintained.

Signals

With system calls, we are only interested in recording their eff ects, since they 

always execute at the same point in a given application. " is is, however, 

untrue for signals. " e purpose of a signal is to notify an application of a given 

event, and since signals are asynchronous and can occur at any point during 

the application’s execution, they are a good example of a non-deterministic 

input that is time-related. Although Flashback does not support signal replay, 

Flashback’s developers suggest using the approach described in [35]: i.e., use the 

processor’s instruction counter to log exactly when the signal occurred. During 

replay, the signal would be re-delivered when the instruction counter reaches 

the logged value. Jockey, on the other hand, delays all signals encountered 

during the logging phase until the end of the next system call, which it logs 

with that system call. " us, during replay, the signal is re-delivered at the end 

of the same system call. CapoOne and liblog [16], another replay debugger, use 

a similar technique. 

“Functions above the user-defi ned 

interface are re-executed during 

replay.”

“Since signals are asynchronous and 

can occur at any point during the 

application’s execution, they are a good 

example of a non-deterministic input 

that is time-related.”
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Dynamic Instrumentation

PinPlay [29] and iDNA [3] are replay systems that focus on the application 

debugging usage model: they are based on the dynamic binary instrumentation 

of a captured program trace. Non-deterministic input is logged and replayed, 

by tracking and restoring changes to registers and main memory. PinPlay 

replays asynchronous signals by logging the instruction count of where signals 

occur. 

Full-system Input Non-determinism

We move on to consider approaches for software-based, full-system replay, 

which include ReVirt [13], TTVM [20], the system described by [5], and 

VMWare [38]. " e fi rst three were designed for the usage models of security, 

debugging, and fault tolerance. Perhaps, unsurprisingly, all of these methods 

take advantage of virtual machines. 

ReVirt uses UMLinux [6], a virtual machine that runs as a process on the 

host. Hardware components and events of the guest are emulated by software 

analogues. For example, the guest hard disk is a host fi le, the guest CD-ROM 

is a host device, and guest hardware interrupt events are simulated by the host 

delivering a signal to the guest kernel. With these abstractions, ReVirt is able to 

provide deterministic replay by checkpointing the virtual disk and then logging 

and replaying the inputs that are external to the virtual machine. Similar to 

user-application replay, each external input may require that only the data 

associated with it need be logged, or additionally, it may require that a timing-

factor for those that are asynchronous be logged as well. ReVirt logs the input 

from external devices such as the keyboard and CD-ROM, non-deterministic 

results returned by system calls from the guest kernel to the host kernel, and 

non-deterministic hardware instructions such as RDTSC. Guest hardware 

interrupts, emulated by signals, are asynchronous, and thus ReVirt has to 

ensure that these are delivered at the same point in the execution path. " e 

authors chose to use the program counter and the hardware retired branches 

counter to uniquely identify the point to deliver the signal.

TTVM uses ReVirt for its logging and replaying functionality, but makes 

changes that make it more suitable for its debugging usage model; for example, 

TTVM provides support for greater and more frequent checkpoints.

Reproducing Memory Access Non-determinism

" e techniques we just described guarantee determinism for replaying single-

threaded applications or multi-threaded applications where the threads are 

independent from one another. Deterministic replay of multi-threaded 

applications, with threads communicating via synchronization or through 

shared memory, require additional support.

“Non-deterministic input is logged 

and replayed, by tracking and 

restoring changes to registers and main 

memory.”

“ReVirt is able to provide 

deterministic replay by checkpointing 

the virtual disk and then logging and 

replaying the inputs that are external 

to the virtual machine.”

“Deterministic replay of multi-

threaded applications, with threads 

communicating via synchronization 

or through shared memory, require 

additional support.”
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Table 2 summarizes the replay systems we describe next in terms of usage 

model, multi-processor support, support for replaying data-races without 

additional analysis, and support for immediate replay without a state-

exploration stage.

Replay System Usage Model Multiprocessor 

Support?

Data Race Support? Immediate Replay 

(no offl  ine state-

exploration stage)?

DejaVu [8] Debugging No Yes Yes

iDNA [3] Debugging, profi ling Yes No Yes

Instant Replay [23] Debugging Yes No Yes

Kendo [27] Debugging, fault-tolerance Yes No Yes

Liblog [16] Debugging No Yes Yes

ODR [2] Debugging Yes Yes No

PinPlay [29] Debugging Yes Yes Yes

PRES [28] Debugging Yes Yes No

RecPlay [32] Debugging Yes No Yes

Russinovich and Cogswell [33] Debugging No Yes Yes

SMP-ReVirt [11] General replay Yes Yes Yes

Table 2: Summary of Approaches to Replaying Memory Access Non-

determinism

Source:  Intel Corporation, 2009

Replay in Uniprocessors

In a uni-processor system, it was observed that since only one thread can run at 

any given time, recording the order of how the threads were scheduled on the 

processor is suffi  cient for later replaying of the memory access interleaving [16, 

8, 33]. " ese solutions have been implemented at the operating-system level 

[33], virtual-machine level [8], and user level [16].

Replay of Synchronized Accesses

On a multi-processor, thread-scheduling information is not suffi  cient for 

deterministic replay, since diff erent threads can be running on diff erent 

processors or cores concurrently. Earlier proposals, such as Instant Replay [23] 

and RecPlay [32], recorded the order of operations at a coarse granularity; 

that is, at the level of user-annotated shared objects and synchronization 

operations, respectively. " erefore, these schemes were only able to guarantee 

deterministic replay for data-race free programs. Both proposals were designed 

with debugging in mind. As an illustrative example, Instant Replay used the 

concurrent-read-exclusive-write (CREW) [10] protocol when diff erent threads 

wanted access to a shared object. CREW guarantees that when a thread has 

permission to write to a shared object, no other threads are allowed to write to 

or read from that object. On the other hand, multiple threads can read from 

the object concurrently. Instant Replay uses the recorded sequence of write 

operations and the “version” number of the object for each read operation 

during replay.

“On a multi-processor, thread-

scheduling information is not 

suffi  cient for deterministic replay, 

since diff erent threads can be running 

on diff erent processors or cores 

concurrently.”
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Some recent proposals also do not support deterministic replay of programs 

with data races. iDNA [3] schedules a thread’s execution trace according to 

instruction sequences that are ordered via synchronization operations. Kendo 

[27] off ers deterministic multi-threading in software by assuring the same 

sequence of lock acquisition for a given input. While not technically a replay 

system, Kendo also requires that programs be correctly synchronized. Kendo’s 

usage models include debugging and support for fault-tolerant replicas.

Replay with State-exploration

ODR [2] and PRES [28] are two novel approaches that facilitate replay 

debugging, but are not able to immediately replay an application, given the 

log data during the logging phase. Instead, they intelligently explore the 

space of possible program execution paths until the original output or bug is 

reproduced. Such analysis must be done off -line, but ODR and PRES gain in 

having smaller logging phase overtimes (since they log less data) compared to 

software schemes that provide for immediate replay. 

PinPlay and SMP-ReVirt

PinPlay [29] and SMP-ReVirt [11, 14] provide for immediate replay, and they 

order shared memory operations rather than coarse-grained objects. 

PinPlay’s approach is to implement a software version of the fl ight data 

recorder (FDR) [37]. FDR exploits cache coherence messages to fi nd memory 

access dependencies and to order pairs of instructions. 

SMP-ReVirt is a generalization of the CREW protocol for shared objects in 

Instant Replay [23] to shared pages of memory. A given page in memory can 

only be in a state that is concurrently read or exclusively written during the 

logging phase. " ese access controls are implemented by changing a thread’s 

page permissions — read-access, write-access, or no-access for a given page 

— during the system’s execution. For example, if a thread wants to write to a 

page and thus needs to elevate its permission to write-access, all other threads 

must have their permissions reduced to no-access fi rst. Each thread has its 

own log. When a thread has its page permission elevated during logging, it 

logs the point at which it received the elevated permission and the points 

where the other threads reduced their page permissions. Additionally, the 

threads that had their permissions reduced log the same points where their 

permissions were reduced. SMP-ReVirt specifi es these “points” in the execution 

of the system by means of instruction counts. " e instructions count of each 

processor is also updated in a globally visible vector. " us, during replay, when 

a thread encounters a page permission elevation entry, it waits until the other 

permission-reducing threads reach the instruction count value indicated in the 

log. On the other hand, when a thread encounters a page permission reduction 

entry, it updates the global vector with its instruction count.

“iDNA [3] schedules a thread’s 

execution trace according to 

instruction sequences that are ordered 

via synchronization operations.”

“FDR exploits cache coherence 

messages to fi nd memory access 

dependencies and to order pairs of 

instructions.”
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Challenges in Software-only Deterministic Replay

It has been shown that designing a software-only solution for recording and 

replaying input non-determinism is reasonable in terms of execution speed, 

and it can be done with an overhead of less than ten percent [20, 28, 36]. It is 

diffi  cult to compare and summarize input log size growth rates for the diff erent 

approaches discussed here, since diff erent approaches log diff erent events, may 

compress the log diff erently, and use diff erent applications as their benchmarks. 

However, it can be noted that Flashback’s [36] log size is linear to the number 

of system call invocations. Other similar input logging techniques may likely 

exhibit similar behavior. In short, enforcing input determinism in software 

seems to be a reasonable approach, considering the low overhead.

Conversely, the overhead incurred in enforcing memory access interleaving in 

software is a diff erent story. SMP-ReVirt [11, 14] and PinPlay [29] allow for 

the most fl exible and immediate replay, but they incur a huge overhead. Since 

SMP-ReVirt instruments and protects shared memory at the page level of 

granularity, it has issues with false sharing and page contention [28], especially 

as the number of processors increases [14]. With four CPUs, the logging phase 

runtime of an application in SMP-ReVirt can be up to 9 times that of a native 

run [14]. PinPlay, like iDNA, which uses dynamic instrumentation and has a 

12 to 17 times slowdown [3], cannot be turned on all the time.

" e rest of the schemes previously described for replaying multi-threaded 

applications are either less fl exible (uniprocessor only [8, 16, 33], data-race free 

programs only [3, 23, 27, 32]), or they trade off  short on-line recording times 

with potentially long off -line state exploration times for replay [2, 28].

Another challenge with software-based schemes is their ability to pinpoint 

asynchronous events during replay. " is issue was exemplifi ed earlier in 

reference to asynchronous signals and interrupts. While some replay schemes 

choose to use hardware performance counters in their implementation [36, 35, 

13], others choose to delay the event until a later synchronous event occurs [25, 

34, 16]. " e latter solution, though simpler, can theoretically aff ect program 

correctness, while the former solution requires the use of performance counters 

that are often inaccurate and non-deterministic [11, 27].

In the end, the selection of an appropriate replay system depends on the usage 

model. If we are to assume a debugging model where a programmer may 

not mind waiting a while for a bug to be reproduced, large replay overheads, 

though not desirable, may be reasonable. In fact, for most of the methods 

described here, the developers assumed a debugging usage model. Alternatively, 

a fault-tolerance replay model would require that backup replicas be able to 

keep up with the production replica, and thus good performance would be 

much more important. Note that performance is not the only factor that 

should be considered when determining which replay system works best with 

a usage model. For example, if the usage model is to replay system intrusions, 

it would be more suitable to use a full-system replay scheme rather than a user-

application replay scheme.

“Enforcing input determinism in 

software seems to be a reasonable 

approach, considering the low 

overhead.”

“Another challenge with software-

based schemes is their ability to 

pinpoint asynchronous events during 

replay.”

“In the end, the selection of an 

appropriate replay system depends on 

the usage model.”
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Hardware Support for Recording Memory Non-
determinism

Deterministically replaying a program execution is a very diffi  cult problem, 

as we just described. In addition to logging input non-determinism, existing 

software approaches have to record the interleavings of shared memory 

accesses. " is can be done at various levels of granularity (e.g., page level or 

individual memory operations), but as discussed previously, the overhead 

incurred can be prohibitive and therefore detrimental to applications of R&R, 

such as fault-tolerance. For this reason, there has been a lot of emphasis on 

providing hardware support for logging the interleavings of shared memory 

accesses more effi  ciently. We call the proposed mechanisms for logging the 

order in which memory operations interleave memory race recorders (MRR). 

Prior work on hardware support for MRR piggybacks on timestamps located 

on cache coherence messages and logs the outcome of memory races by using 

either a point-to-point or a chunk-based approach. In this section we describe 

these two approaches and suggest directions for making them practical in 

modern multi-processor systems.

Point-to-point Approach

In point-to-point approaches [26, 37], memory dependencies are tracked at 

the granularity level of individual shared memory operations. In this approach, 

each memory block has a timestamp, and each memory operation updates the 

timestamp of the accessed block. In general, a block can be anything ranging 

from a memory word to multiple memory words [37, 31]. We now describe 

the FDR [37], a state-of-the-art implementation of a point-to-point MRR 

approach.

FDR augments each core in a multi-processor system with an instruction 

counter (IC) that counts retired instructions. FDR further augments each 

cache line with a cache instruction count (CIC) that stores the IC of the last 

store or load instruction that accessed the cache line (see Figure 1). When a 

core receives a remote coherence request to a cache line, it includes the 

corresponding CIC and its core ID in the response message. " e requesting 

core can then log a dependency by storing the ID and CIC of the responding 

core and the current IC of the requesting core. To reduce the amount of 

information logged by the requesting core, a dependency is logged only if it 

cannot be inferred by a previous one. " is optimization is called transitive 

reduction. For example, in Figure 1, only the dependency from T1:W(b) to 

T2:R(b) is logged, as T1:R(a) to T2:W(a) is consequentially implied by 

T1:W(b) to T2:R(b). Transitive reduction is implemented by augmenting each 

core with a vector instruction count that keeps track of the latest CIC received 

by each core.

“# ere has been a lot of emphasis 

on providing hardware support for 

logging the interleavings of shared 

memory accesses more effi  ciently.”
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Figure 1: Point-to-point Approach
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Chunk-based Approach
A chunk defi nes a block of memory instructions that executes in isolation, i.e., 

without a remote coherence request intervening and causing a confl ict. Chunks 

are represented by using signatures, which are hardware implementations 

of Bloom Filters. Signatures are used to compactly represent sets of locally 

accessed read or write memory addresses and to disambiguate a remote shared 

memory reference against them. A confl ict with the signatures ends a chunk 

and clears the signatures. 

Similar to point-to-point approaches, chunk-based approaches can also take 

advantage of transitive reduction to reduce the amount of logged information. 

As shown in Figure 2, the remote read T2:R(b) confl icts with the write 

signature of T1 and causes T1 to end its chunk and to clear its signatures. 

Consequently, the request T2:W(a) does not confl ict and the dependency 

T1:R(a) to T2:W(a) is implied. In contrast to point-to-point approaches in 

which a timestamp is stored with each memory block, chunk-based approaches 

only need to store a timestamp per core to order chunks between threads.

We now describe two similar implementations of chunk-based approaches.

Rerun

In Rerun [18], episodes are like chunks. Rerun records a memory dependency 

by logging the length of an episode along with a timestamp. To identify the 

episodes that need to be logged, Rerun augments each core with a read and 

a write signature that keep track of the cache lines read and written by that 

core during the current episode, respectively. When a cache receives a remote 

coherence request, it checks its signatures to detect a confl ict. If a confl ict is 

detected, the core ends its current episode, which involves clearing the read and 

write signatures, creating a log entry containing the length of the terminating 

episode along with its timestamp, and updating the timestamp value. " e 

timestamp represents a scalar clock maintained by each core to provide a 

total order among the episodes. " e cores keep their timestamp up to date by 

piggybacking them on each cache coherence reply.

Deterministic replay is achieved by sequentially executing the episodes in order 

of increasing timestamps. To do so, a replayer typically examines the logs to 

identify which thread should be dispatched next and how many instructions it 

is allowed to execute until an episode of a diff erent thread needs to be replayed.

DeLorean

Similar to Rerun, DeLorean [24] also logs chunks by using signatures, but does 

so in a diff erent multi-processor execution environment. In this environment, 

cores continuously execute chunks that are separated by register checkpoints. 

A chunk execution in this environment is speculative, i.e., its side eff ects are 

visible to other cores only until after commit. Before a chunk can commit, 

however, its signatures are compared against the signatures of other chunks 

to detect confl icts. If a confl ict is detected with a chunk, its signatures are 

cleared and the chunk is squashed and re-executed. While such an execution 

environment is not standard in today’s multi-processors, it has been shown to 

perform well [7]. " e required hardware extensions are similar to hardware-

supported transactional memory systems [22].
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Figure 2: Chunk-based Approach

Source: Intel Corporation, 2009

“If a confl ict is detected with a chunk, 

its signatures are cleared and the 

chunk is squashed and re-executed.”
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To enable deterministic replay, DeLorean logs the total order of chunk 

commits. Because in this execution environment chunks have a fi xed size, e.g., 

1000 dynamic instructions, no additional information needs to be logged, 

except in the rare cases where chunks need to end early because of events such 

as interrupts. Consequently, the log size of DeLorean is about one order of 

magnitude smaller than in Rerun. DeLorean can even reduce the log size by 

another order of magnitude when operating in PicoLog mode. In this execution 

mode, the architecture commits chunks in a deterministic order, e.g., round 

robin. Although this execution mode sacrifi ces performance, DeLorean only 

needs to log the chunks that end due to non-deterministic events, such as 

interrupts.

Making Memory Race Recorders Practical for Modern CMPs

MRR approaches discussed so far are eff ective in logging the events required 

for deterministic replay, but they also impose some non-negligible amount of 

complexity and performance cost that can preclude hardware vendors from 

deploying similar solutions in real products. In this section, we pinpoint some 

of these issues and discuss possible ways to remedy them.

Implementation Complexity

Showstoppers with previous MRR approaches are the implementation 

complexity of proposed techniques and their associated hardware cost. 

With point-to-point approaches, for instance, a hardware estate for storing 

the timestamp of each accessed memory block is required. If the granularity 

of a memory block is a cache line, then each cache line must be augmented 

with storage for the timestamp. Because a cache line eviction throws away the 

information stored into it, the timestamp must also be stored at the next cache 

level to reduce logging frequency. FDR estimates this cost to be ~6 percent of 

the capacity of a 32KB L1 cache. 

" e main hardware cost associated with chunk-based approaches lies in the 

storage required for signatures. In Rerun, for instance, the authors suggest 

using 1024-bit signatures to store read memory addresses and 256-bit 

signatures to store written memory addresses. In contrast to point-to-point 

approaches, these changes do not require modifi cations to the cache sub-system 

and are therefore less invasive. However, there is some complexity involved 

in implementing signatures. " e authors in [30] show that implementing 

signatures in modern CMPs involves subtle interactions with the hierarchy 

and policy decisions of on-chip caches. " e authors show that the signature 

placement in a multi-level cache hierarchy can degrade performance by 

increasing the traffi  c to the caches. " ey propose hybrid L1/L2 signature 

placement strategies to mitigate this performance degradation.

“# e log size of DeLorean is about one 

order of magnitude smaller than in 

Rerun.”

“Showstoppers with previous MRR 

approaches are the implementation 

complexity of proposed techniques and 

their associated hardware cost.”

“# e main hardware cost associated 

with chunk-based approaches lies in 

the storage required for signatures.”
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Performance Overhead

With the exception of DeLorean, all MRR approaches discussed in this 

section must piggyback on cache coherence messages to maintain ordering 

among events in the system. For instance, in FDR, the core ID and the CIC 

are piggybacked on each coherence reply to log a point-to-point dependency 

between two instructions from diff erent threads, whereas in Rerun a timestamp 

is piggybacked on each coherence reply to maintain causal ordering between 

chunks. " is overhead can hurt performance by putting a lot of pressure on the 

bandwidth. FDR and Rerun, for instance, report a performance cost of ~10 

percent, an estimation based on functional simulation. Ideally, we want this 

coherence traffi  c overhead to be nonexistent in real implementations of MRR. 

One way to attain this objective with a chunk-based approach has recently 

been proposed in [30]. " e authors make the observation that maintaining 

causality at the chunk boundary is all that is needed to order chunks. Doing 

so eliminates the requirement to piggyback a timestamp on each coherence 

message. Using this approach, they show that the coherence traffi  c overhead 

can be reduced by several orders of magnitude compared to Rerun or FDR. 

Replay Performance

As discussed previously, there are plenty of applications that can benefi t from 

deterministic replay. Each of these applications places diff erent replay speed 

requirements on the system. For instance, while an application developer can 

easily accommodate slow replay during debugging, this is not the case for 

high-availability applications in which the downtime window during recovery 

must be shortened. Slow replay in this case can have devastating eff ects on the 

system. Instead, we would like a second machine to continuously replay the 

execution of the primary machine at a similar speed, and to be able to take 

over instantly if the primary fails. Ideally, we do not want a R&R system to be 

constrained by speed, because such a constraint would limit the system’s scope 

and restrict its applicability. " erefore, techniques are needed to improve the 

replay speed of MRR approaches.

DeLorean and FDR can replay a program at production run speed. In 

DeLorean, this is achieved by replaying chunks in parallel and re-synchronizing 

them according to the same commit order as recorded during their original 

execution. With FDR, threads are replayed in parallel and are only re-

synchronized at the locations corresponding to the point-to-point dependencies 

recorded during their original execution. Neither FDR nor DeLorean, however, 

is a likely choice for a practical MRR implementation today. As discussed 

previously, the complexity of FDR is a major showstopper in modern CMPs. 

For DeLorean, the execution environment it assumes is not standard in today’s 

multi-processors.

“# e authors make the observation 

that maintaining causality at the 

chunk boundary is all that is needed 

to order chunks.”

“DeLorean and FDR can replay a 

program at production run speed.”
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Replaying episodes in Rerun is done sequentially, following increasing 

timestamp order. As such, Rerun cannot therefore meet the replay speed 

requirement of DMR usage models, such as fault-tolerance. As an alternative 

to Rerun, the authors in [30] have proposed a chunk-based replay scheme 

called a concurrent chunk region. A concurrent chunk region defi nes a set of 

chunks that can be replayed in parallel, because each chunk in such a region 

features the same timestamp as the chunk in other regions. To build such 

concurrent chunk regions, whenever a chunk must terminate due to a confl ict, 

for instance, all chunks with similar timestamps must also be terminated 

simultaneously. " erefore, concurrent chunk regions trade off  replay speed 

for log size. " e authors in [30] have shown that, by using concurrent chunk 

regions, replay speed can be improved by several orders of magnitude at the 

cost of moderate log size increases. 

Conclusions

In this article we presented a comprehensive survey of DMR techniques to deal 

with multi-threaded program execution on CMP machines. We showed that 

software-only implementations of DMR are quite eff ective in recording and 

replaying concurrent programs, but they suff er from performance limitations 

that can restrict their applicability. To improve on performance, the memory 

non-determinism of multi-threaded programs must be recorded more 

effi  ciently. We described the hardware support needed to deal with fi ne-grained 

logging of memory interleavings more effi  ciently, using either point-to-point 

approaches or chunk-based approaches. Combined with software approaches, 

these hardware techniques can provide better performance and address a wider 

range of usage models. However, there are still several remaining challenges 

that need to be met before a complete solution can be deployed on real 

hardware. One such challenge involves recording memory non-determinism 

with non-sequentially consistent memory models. We hope that the discussions 

presented here help foster the research on DMR and that they stimulate a 

broader interest in DMR usage models.    

“A concurrent chunk region defi nes a 

set of chunks that can be replayed in 

parallel.”

“To improve on performance, the 

memory non-determinism of multi-

threaded programs must be recorded 

more effi  ciently..”
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