
Appears in the Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA-30), June 2003.

ReEnact: Using Thread-Level Speculation Mechanisms
to Debug Data Races in Multithreaded Codes �

Milos Prvulovic and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract

While removing software bugs consumes vast amounts of hu-
man time, hardware support for debugging in modern computers
remains rudimentary. Fortunately, we show that mechanisms for
Thread-Level Speculation (TLS) can be reused to boost debug-
ging productivity. Most notably, TLS’s rollback capabilities can
be extended to support rolling back recent buggy execution and
repeating it as many times as necessary until the bug is fully char-
acterized. These incremental re-executions are deterministic even
in multithreaded codes. Importantly, this operation can be done
automatically on the fly, and is compatible with production runs.

As a specific implementation of a TLS-based debugging frame-
work, we introduce ReEnact. ReEnact targets a particularly hairy
class of bugs: data races in multithreaded programs. ReEnact ex-
tends the communication monitoring mechanisms in TLS to also
detect data races. It extends TLS’s rollback capabilities to be able
to roll back and deterministically re-execute the code with races to
obtain the race signature. Finally, the signature is compared to a li-
brary of race patterns and, if a match occurs, the execution may be
repaired. Overall, ReEnact successfully detects, characterizes, and
often repairs races automatically on the fly. Moreover, it is fully
compatible with always-on use in production runs: the slowdown
of race-free execution with ReEnact is on average only 5.8%.

1. Introduction

As the computing industry continues to mature, the issues of
reliability, maintainability, cost of ownership, and end-user satis-
faction are receiving more attention. As a result, there is now more
emphasis on devising novel architectural support for avoiding or
tolerating hardware failures (e.g. [2, 16, 20, 24]). While this is a
welcome trend, we note that some studies show that software fail-
ures account for as much as 40% of computer system failures [14].

Unfortunately, removing software bugs is a task that requires
enormous human labor. Entire teams of people are dedicated to
test the software and look for anomalies. These anomalies are re-
ported to developers who attempt to find the bugs that cause them.
Despite this vast effort, software released to end users still contains
numerous bugs. These bugs continue to consume human time in
the form of software problems at the user site, user-vendor com-
munication, and subsequent “bug-fix” software releases.

�

This work was supported in part by the National Science Foundation
under grants EIA-0081307, EIA-0072102, and CHE-0121357; by DARPA
under grant F30602-01-C-0078; and by gifts from IBM and Intel. Milos
Prvulovic is supported by an Intel PhD Fellowship.

Surprisingly enough, despite all of this, the hardware support
for debugging in modern computers remains rudimentary. Typ-
ically, it is limited to support for interrupting the program if it
accesses data from a specified address, or if it executes a speci-
fied instruction [12]. Many software tools to aid debugging have
been developed (e.g. GDB [25]), which make the best use of the
limited hardware support. Unfortunately, most sophisticated tools
have to rely on software instrumentation to perform their checks,
which degrades performance to a level that makes them incompat-
ible with production runs. If we could design effective debugging
hardware that remained on while in production runs, human time
to debug programs would be reduced drastically.

Fortunately, well-known architectural support for Thread-Level
Speculation (TLS) [5, 10, 11, 19, 26, 27] can be reused for soft-
ware debugging. Previous work has pointed out that TLS’s ability
to squash or commit the side effects of code sections as a unit
can be used to enhance software reliability [17]. In this paper,
we claim that TLS has the potential to be a core technology for
software debugging. Specifically, with simple extensions, it sup-
ports the ability to roll back recent buggy execution and repeat it as
many times as necessary until the bug is fully characterized. These
incremental re-executions are deterministic even in multithreaded
codes. Importantly, this operation can be done automatically on
the fly, and is compatible with production runs.

One particularly hairy class of bugs is data races in multi-
threaded programs. Data races occur when threads access shared
data in an unsynchronized manner. In this case, program execution
has some unintended non-determinism that is typically considered
a bug. Race bugs are notoriously difficult to reproduce and debug.
Consequently, we use them as the problem domain to flesh out our
ideas.

In this paper, we introduce ReEnact, a specific implementation
of a TLS-based debug framework that targets data races. ReEnact
detects, characterizes in detail, and often repairs races automati-
cally on the fly. It extends the communication monitoring mecha-
nisms in TLS to also detect data races. It enhances TLS’s rollback
capabilities to be able to roll back and deterministically re-execute
the code with races to obtain the race signature. Finally, the sig-
nature is compared to a library of race patterns and, if a match
occurs, the execution may be repaired. Our experiments using
SPLASH-2 applications show that ReEnact is very effective: it
successfully detects and characterizes data races, many of which
are also repaired on the fly. Moreover, ReEnact is fully compatible
with always-on use in production runs: the slowdown of race-free
execution with ReEnact is on average only 5.8%.

This paper is organized as follows: Section 2 describes the
challenges in debugging software; Section 3 describes how TLS



mechanisms can be reused for debugging; Section 4 describes
ReEnact; Section 5 addresses some implementation issues in
ReEnact; Section 6 describes how we evaluate ReEnact; Section 7
presents the results of the evaluation; Section 8 discusses related
work and, finally, Section 9 concludes.

2. Challenges in Debugging Software
Removing a software bug typically involves three phases: de-

tection, characterization, and repair. A bug is detected by observ-
ing one of its symptoms, such as program termination with a fault
or incorrect results. Bug characterization determines the cause of
the undesired behavior. Characterization typically involves back-
tracking from the point of detection to the actual cause of the
problem, and is usually done by placing breakpoints in “strate-
gic” places in the code, re-running the program, and examining
the state in these places. When the cause of the problem has been
determined, the program is repaired and re-executed.

All three phases of debugging often require extensive hu-
man involvement. Indeed, detection often requires careful cross-
examination of program inputs and results. Characterization often
involves many time-consuming iterations of the instrument-and-
rerun process. Finally, repair may require significant modifications
of the code.

To make matters worse, different phases of debugging are of-
ten performed in different environments. For example, bugs are
typically detected by testers and end users, but characterized and
repaired by programmers. As a result, it may be difficult for pro-
grammers to reconstruct the circumstances under which the bug
was detected. Moreover, the program inputs that resulted in bug
detection may contain sensitive information that the user is unwill-
ing to disclose to the programmer. Furthermore, in multithreaded
programs, some bugs such as data races are difficult to repeat even
when the inputs are known and the characterization is done in the
same environment. This is because the bug may depend on the
particular interleaving of actions from different threads in a way
that is outside direct program control.

To make debugging easier, we propose the following approach.
First, since bugs may be difficult to repeat, debugging should be
done on the fly, characterizing and possibly even repairing each
bug when and where it is detected. Second, since bugs in mul-
tithreaded programs may depend on the particular interleaving of
actions from different threads, bug characterization should be done
via deterministic re-execution of recently-executed code. Finally,
since bugs occurring in production runs can be costly and diffi-
cult to repeat, debugging should be always-on, even in production
runs.

This approach to debugging requires certain support. First, on-
the-fly bug characterization requires the ability to buffer recently-
executed code and incrementally roll it back and re-execute it;
if we had to re-run the entire program, the circumstances that
triggered the bug could change. Second, to ensure determinis-
tic re-execution in multithreaded environments, a mechanism is
needed to monitor the ordering of actions from different threads
as code executes; upon bug detection and state roll-back, the code
is re-executed using the collected ordering information. Finally,
always-on debugging in production runs mandates very low over-
heads in bug-free execution – users are unlikely to tolerate no-
ticeable performance loss in production runs. Since software-only

approaches to buffering and monitoring the execution order do not
meet this requirement, we need special hardware support. In the
rest of the paper, we present a design that fulfills these require-
ments.

3. Reusing TLS Mechanisms for Debugging
TLS is a technique that has been proposed for speculatively

parallelizing sequential programs [5, 10, 11, 19, 26, 27]. However,
we claim that its architectural mechanisms can be easily adapted
to provide support for our debugging requirements. In this section,
we first give an overview of TLS and then describe how it can be
adapted to provide the desired debugging supports.

3.1. Brief Overview of TLS

With TLS, a sequential program is divided into a sequence
of epochs (also called tasks, slices, or micro-threads), each of
which contains many dynamic instructions. These epochs are
then executed speculatively in parallel. The sequential seman-
tics of the program creates dependences between epochs. If any
such dependence is violated at run time by the parallel execution,
TLS rolls back the incorrectly-executed epochs and re-executes
them. To be able to do this, TLS saves the architectural register
state at the beginning of each epoch and, as the epoch executes,
keeps its memory state buffered, typically in the cache. With
this support, an epoch is rolled back (squashed) by invalidating
its buffered memory state from the cache and restoring its saved
register state. An epoch that can still be squashed is speculative.
Once an epoch is known to have executed correctly, it becomes
non-speculative. Non-speculative epochs can commit in order by
freeing their saved register state and allowing their buffered mem-
ory state to be merged with the architectural state of the system in
main memory.

3.1.1. State Buffering. For each epoch that is still uncommitted,
the processor contains a copy of the initial state of the architectural
registers. This copy is not used in normal operation: it is generated
when the epoch begins, read when the epoch is squashed, and freed
when the epoch commits.

The memory state of an uncommitted epoch is typically
buffered in the cache. In this paper, we assume that a given cache
can contain state from multiple uncommitted epochs [8]. In this
case, each cache line is tagged with the ID of the epoch to which
the line belongs. To track dependences, each cache line also con-
tains two status bits for each word: the Write and Exposed-Read
bits. The former is set when the word is written by the epoch; the
latter is set when the epoch reads the word without first writing to
it.

When an epoch accesses a memory line for the epoch’s first
time, a new cache line is allocated and tagged with the epoch’s ID.
If the cache already contained the line from an earlier epoch, a new
copy of the line is made in the cache, with an updated word if the
access was a write [19]. This cache support enables multiple un-
committed epochs to buffer overlapping data. A drawback is that
older line versions consume cache space, even though typically
only the latest line version is useful for future accesses.

3.1.2. Squashing and Committing. When an epoch is squashed,
all cache lines tagged with its ID are marked as invalid. In this
paper, we do this by examining all the lines in the cache one by



one. This process can take up to a few thousand cycles, but it does
not occur very often.

When an epoch commits, its buffered cache state is merged
with the main memory lazily. Specifically, its cache lines stay in
the cache until they are displaced or requested externally. Note,
however, that displacements of different dirty versions of the same
line from different (or the same) caches should not happen out of
epoch-ID order. This is prevented with special coherence protocol
support that ensures that memory is updated in order [19].

3.1.3. Dependence Tracking. When an epoch issues a read, the
cache is searched for a line with matching address and epoch ID. If
such a line is not found, or if the Write and Exposed-Read bits of
the requested word are clear, the access is an exposed read. Con-
sequently, the coherence protocol must find the correct version of
the word and bring it to the cache. Such a version is the one gener-
ated by the closest predecessor epoch that wrote to it. For that, all
sharer caches are interrogated with a request tagged with the ID of
the reader epoch. The cache coherence protocol ensures that the
requesting cache ends up with the closest predecessor version of
the word.

When an epoch issues a write, a message tagged with the ID
of the writing epoch is sent to all the sharers of the line. When
the message is received by a sharer, the ID in the message is com-
pared to that of the matching cached line(s). If the cached line
is from a successor epoch and the Exposed-Read bit of the word
is set, a dependence violation has occurred – rather than waiting
for the predecessor write, the successor epoch has read the word
prematurely and, therefore, has to be squashed.

In the TLS protocol that we use, dependences are tracked at the
granularity of words thanks to the per-word Write and Exposed-
Read bits. Per-word tracking prevents false sharing from causing
unnecessary squashes. However, it can cause substantial traffic
as individual coherence messages have to be sent for each of the
words of a cache line. To minimize this problem, we use the opti-
mization described in [19], which uses high-level access behavior
to filter out unnecessary per-word coherence actions. For example,
with this optimization, a cache miss can trigger the loading of an
entire memory line into the cache.

3.2. Adapting TLS for Code Rollback

The mechanisms for in-cache buffering and rollback present in
TLS can be reused to support our requirement for incremental roll-
back and re-execution of the buggy code. To illustrate how, con-
sider for now only a single thread executing on a single processor.
We divide this thread into epochs that execute sequentially. When
a new epoch starts, the register state is saved. From then on, all
memory accesses are tagged with the new epoch ID and the state
is buffered in the cache. When a bug is detected, recently executed
epochs are squashed and execution rolled back to a point before
the bug. Bug characterization can then proceed.

To support this new scheme, we need to modify TLS’s mech-
anism of committing epochs. Roughly speaking, in plain TLS,
epochs commit when they can no longer violate sequential seman-
tics. In our scheme, epochs execute in sequence and, therefore,
can never violate sequential semantics. However, we do not want
to commit them eagerly. Instead, epochs commit only when one
of two special events forces them to. One such event is a cache

conflict where space is needed in a set where all lines are uncom-
mitted. The other event is when the processor exceeds MaxEpochs,
the maximum number of uncommitted epochs it is allowed to have.
In the case of a cache conflict, the epoch that owns the line to be
displaced and its predecessors are forced to commit. Note that
this new commit policy does not affect forward progress, since the
buffering of epochs that can no longer cause violations is strictly a
best-effort approach — our scheme never prevents a displacement
that would be allowed by plain TLS.

With this scheme, a given cache hierarchy will frequently need
to contain multiple versions of the same cache line, each one
tagged with a different epoch ID. This is because epochs belong-
ing to a single thread of execution are likely to access overlapping
addresses. If we had to commit epochs simply because their ac-
cesses overlap, we would significantly reduce our rollback capa-
bility. Fortunately, support for multiple versions of the same line
in a cache is provided by plain TLS (Section 3.1.1). Section 5.3
discusses some implementation issues.

3.3. Adapting TLS for Deterministic Re-Execution

The mechanisms for epoch order monitoring and enforcement
present in TLS can be reused to order the actions from different
threads in multithreaded code. Such order is required to support
deterministic re-execution of the buggy code.

In plain TLS, epochs executing on different processors have a
total order, given by the sequential semantics of the program being
parallelized. To monitor and enforce epoch ordering, coherence
requests carry the ID of the originating epoch. In a cache, the ID
of the incoming request is compared to the IDs of the lines with
matching addresses. If the coherence action has been performed
out of order, epochs are squashed to enforce order.

In multithreaded codes, the epochs that we build within a thread
are ordered relative to each other by the sequential semantics of
that thread. However, there is no a-priori order between the epochs
of different threads. In our new scheme, we use the dynamic flow
of memory values to create an order: when a value generated by
one epoch is read by another epoch in another thread, we set the
first epoch to be a predecessor of the second epoch. The over-
all result is a partial order between the epochs of a multithreaded
program. Section 5.2 describes an implementation of distributed
epoch IDs based on logical vector clocks that supports such partial
order.

Once two epochs from two different threads have been ordered
by communication, plain TLS mechanisms are used to enforce
the existing order. Specifically, if these two epochs communicate
again, their epoch IDs are compared as in plain TLS and a viola-
tion is flagged if the communication is out-of-order. In this case,
the successor epoch is squashed and re-executed to maintain order.
Note that forward progress is guaranteed by the absence of cycles
in the partial order of epochs. Indeed, to create a cycle would re-
quire ordering epoch

�
to precede epoch � when � already pre-

cedes
�

. This cannot happen because new epoch ordering is only
introduced when two unordered epochs communicate for the first
time.

With this support, deterministic re-execution after rollback is
only a matter of re-executing the same epochs using the order ob-
served in the first execution. All reads get exactly the same data



as in the first execution, so each epoch performs exactly the same
computation and writes to memory as in the first execution.

3.4. Epoch Size Tradeoffs

To enhance debugging, we want to support a large Rollback
Window, which is the number of dynamic instructions per thread
that can be rolled back. However, we also want to minimize the
hardware support required and the slowdown caused to the appli-
cation. An important design decision that affects these parameters
is the epoch size.

If epochs are small, both application slowdown and hardware
requirements increase, without actually delivering a large Rollback
Window. Indeed, in this case, we need many epochs to maintain
even a modest Rollback Window size. These many small epochs
slow down the application with the overhead of frequent copy-
ing to save the architectural registers. Moreover, they increase
hardware requirements because we need storage for many regis-
ter copies and wider tags in the cache to maintain the numerous
local epoch IDs.

Even with all these costs, the Rollback Window is hard to ex-
pand. The reason is that all these epochs frequently create multiple
versions of the same line (Section 3.2). All the versions of a given
line map into a single set of the cache. Given that a cache has a lim-
ited associativity, only a limited number of uncommitted versions
of a given line can remain in the cache. As a result, some epochs
simply have to commit to allow a displacement (Section 3.2) and,
therefore, the Rollback Window shrinks. Consequently, its size
remains modest.

Having sizable epochs eliminates these problems. However,
having few, very large epochs is not optimal either. Committing
a large epoch results in having little rollback capability left at that
point. Therefore, with large epochs, the size of the Rollback Win-
dow oscillates widely, which is undesirable.

To control epoch size, we set a limit on the footprint of the data
that an epoch can access before it is terminated. The implementa-
tion of this threshold is discussed in Section 5.1.

In addition to the size of the epoch, another important design
decision is the product of epoch size times the allowed number of
uncommitted epochs. If this product is so large that uncommitted
epochs use a sizable fraction of the cache storage, the application
may slow down. This is because uncommitted epochs create mul-
tiple versions of the same line, therefore using cache space ineffi-
ciently. As a result, there is less effective space for the working set
of the application and the cache miss rate goes up.

This particular problem can be addressed by allowing the state
of uncommitted epochs to overflow into a special area in main
memory. Support for such overflow area has been proposed for
TLS [19] and can be reused here. However, in this initial study,
we choose to keep all uncommitted state in the caches for simplic-
ity.

3.5. Synchronization-Induced Epoch Ordering

If the only criterion that we use to decide when to terminate
an epoch is the size of its data footprint, our system can livelock
programs. This may occur when threads synchronize, depending
on the order of thread arrival. As an example, Figure 1-(a) shows
two threads that synchronize on a flag. Consider the case when
the consumer arrives before the producer. Assuming that no prior

ordering exists between the current epochs in the producer and
consumer threads, our system orders a spinning epoch in the con-
sumer thread before an epoch that sets the flag in the producer
thread. From this point on, the TLS hardware enforces this or-
der. As a result, the spinning epoch keeps getting the old value of
the flag because the new value has been generated by a successor
epoch. The result is that the spinning epoch spins forever.

WAIT F

WAIT F

WAIT F

WAIT F

SET F

ST X

(c)

Thread BThread A

LD X

EpochBegin
EpochBegin

WAIT F

WAIT F

WAIT F

ST X

(a)

FlagWait(F);

FlagSet(F); ...=X;

Thread B

X=...;

Thread A Thread BThread A

(b)

WAIT F

EpochBegin

EpochEnd

LD X

WAIT F

EpochEnd

SET F

EpochEnd

Figure 1. Example code of two threads synchronizing (a), and
the results of our optimizations to eliminate livelock (b) and to
eliminate unnecessary thread spinning (c). The arrows show
the ordering of epochs across threads from predecessor to suc-
cessor.

3.5.1. Eliminating Livelocks. To address this problem, we add
a second criterion to terminate an epoch: when it has executed a
certain maximum number of instructions. With this extra support,
the spinning epoch in the example eventually terminates. Then,
the new epoch in that thread reads the flag again, is ordered as a
successor of the epoch that set the flag, gets the updated value, and
ends the spinning (Figure 1-(b)). Overall, with this support, we
eliminate the possibility of livelocks.

3.5.2. Eliminating Synchronization Delays. The approach de-
scribed above still has a drawback: when threads synchronize, de-
pending on the order of thread arrival, a thread may spin for longer
than necessary. The result is a slower program execution.

To eliminate this overhead, we force epochs to terminate when
they synchronize. Moreover, synchronization operations are per-
formed using the plain coherent memory accesses that the proces-
sors support by default, rather than using TLS accesses. Finally,
after synchronization, a new epoch starts. With this extra support,
threads do not spin unnecessarily. For example, Figure 1-(c) shows
the result of the optimization: since the spinning on the flag uses
plain coherent accesses, the flag update is observed as soon as it
occurs, and the consumer thread can proceed immediately. The ar-
row in Figure 1-(c) shows the ordering introduced between epochs
of different threads by these flag synchronization operations.

Figure 2 shows how different synchronization operations order
epochs across threads. Of course, epochs from the same thread are
ordered by the sequential execution of that thread. Furthermore,
epoch ordering is transitive. The result is again a partial ordering
of the epochs in a multithreaded program.

To implement the ordering introduced by synchronization, we
modify the macros or libraries that implement synchronization op-



Lock(L)

Thread BThread A

(b)

Thread BThread A

Thread BThread A

�������������
�������������
�������������

�������������
�������������
�������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Unlock(L)

n

m

l

l
l

k

k

k

j

(c)

FlagWait(F)
FlagSet(F)

Barrier(B) Barrier(B)

j

j

i

ii

(a)

Lock(L)

Unlock(L)

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

	�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�	


�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�


�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

������
������
������
������

�������������
�������������
�������������
�������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

Figure 2. Epoch ordering introduced by lock (a), barrier (b), and
flag (c) synchronization. Letters i, j, ... n represent epochs,
while the arrows show the introduced ordering of epochs from
different threads.

erations (e.g. ANL macros or the pthreads library for POSIX-
compliant codes). In addition to synchronizing, these macros or
libraries now end the epoch, transfer order information between
epochs on different threads, and start a new epoch. To transfer
ordering, each synchronization variable has some storage to hold
epoch IDs: a single ID in locks and flags, and N IDs in barriers.
Epochs performing release-type synchronization operations write
their IDs; epochs performing acquire-type operations read those
IDs and set their own IDs to be successors of the releasing epochs.
More specifically, in a flag, the producer thread writes its epoch ID
before setting the flag; the consumer thread reads that ID only af-
ter finding the flag set. For a lock, the current owner thread writes
its epoch ID before releasing the lock; the next owner thread reads
the ID only after acquiring the lock. For a barrier, arriving threads
write their epoch IDs before incrementing the counter; departing
threads read all N IDs only when they are ready to depart. Overall,
with this approach, applications only need to be re-linked with the
new libraries to benefit from our epoch-ordering optimization.

In addition to terminating an epoch on synchronization, we still
need to terminate it when its data footprint reaches a certain maxi-
mum size, and when it has executed a certain maximum number of
instructions. The first condition is necessary for programs where
threads synchronize infrequently. The second one is necessary for
programs where, for example, threads use plain variables to syn-
chronize. In this case, the instruction count threshold is still needed
to prevent livelocks as in Section 3.5.1.

4. ReEnact: Debugging Data Races with TLS
While the framework just described can be used to debug many

different classes of bugs, we now demonstrate it for one class of
bugs: data races in multithreaded programs. Data race bugs are
important for two reasons. First, they are notoriously difficult to
reproduce and debug. Second, our framework is already capable
of detecting them. For other classes of bugs, bug-specific detection
mechanisms need to be provided. In the following, the application
of our framework to race debugging is called ReEnact.

In this section, we describe the detection, characterization, and
repair of race bugs in ReEnact. After that, we consider how to
change ReEnact to debug other classes of bugs.

4.1. Detecting Data Races

Two accesses in a parallel program are conflicting if they are to
the same location and at least one is a store [23]. In most programs,
conflicting accesses are ordered by well-defined synchronization
operations. When they are not, a data race occurs. In this case,
program execution has some unintended non-determinism that is
typically considered a bug.

Since ReEnact orders epochs using the synchronization opera-
tions in the program (Section 3.5.2), in the absence of data races,
all cross-thread data sharing happens between epochs that are al-
ready ordered. If a race is present, instead, it will appear as com-
munication between epochs that are still unordered. Recall that,
when an external request is received by a cache, plain TLS hard-
ware compares the epoch ID of the incoming request and the epoch
ID of the matching cache line (Section 3.1.3). Consequently, data
race detection in ReEnact is simple: if and only if the epoch ID
comparison finds that the two IDs are unordered, then a data race
has occurred.

To guarantee the detection of all races, ReEnact should not
commit an epoch for as long as any other epoch that is unordered
with it is still running. This is because the second epoch could still
issue a conflicting access. In practice, the finite buffering capac-
ity of the caches and other hardware limitations (Section 3.2) may
force ReEnact to commit epochs earlier. Therefore, not all races
will be detected, especially long-distance ones. Fortunately, it can
be argued that short-distance races rather than long-distance ones
are the true dangerous races. Indeed, random scheduling and other
factors are more likely to invert the order of accesses in some exe-
cutions for short-distance races, making program execution unpre-
dictable. Long-distance races are unlikely to cause unpredictabil-
ity.

Finally, there are programs that have intended data races. While
they make the code hard to maintain, they may be necessary to
obtain peak performance. To support this case, we allow the pro-
grammer to explicitly mark the accesses that are involved in in-
tended data races. When ReEnact detects such races, it does not
trigger debugging actions.

4.2. Characterizing Data Race Bugs

As soon as a race is detected, ReEnact starts the bug character-
ization phase. Often, a single problem such as a missing barrier
causes multiple nearby races. Consequently, the goal of this phase
is to uncover the signature or full structure of the race or set of
nearby races. The signature includes information such as the in-
structions and memory locations involved in the races, the values
of such memory locations and, within each epoch, the number of
instructions that separate the accesses involved in races.

At the point of race detection, the only available information
is one address and one instruction involved in a race. To generate
the signature of the set of races, ReEnact proceeds in two steps.
First, it continues program execution for more time to detect more
nearby races. In the second step, the epochs in the Rollback Win-
dow are undone and re-executed in exactly the same order with
additional instrumentation.

In the first step, ReEnact will collect the memory locations in-
volved in any races detected. When a race is detected (includ-
ing the first one), ReEnact sets the relative order between the two



involved (unordered) epochs as indicated in Section 3.3. To en-
force this order, and as per normal TLS, any further races be-
tween the same two epochs may cause one of the epochs to be
squashed, rolled back to its beginning and re-executed, possibly
several times. In this first step, program execution is not allowed
to go too far. In particular, when further execution would require
committing any of the epochs involved in a race already found, ex-
ecution stops. At that point, for each race, ReEnact has recorded
the address of the participating memory location, and the execu-
tion order of the participating epochs.

In the second step, all the epochs not involved in the races that
can commit, do so, while the others are rolled back. ReEnact then
sets watchpoints at the addresses participating in the races. This
can be done, for example, with the Debug registers of Pentium
4, which will stop the program whenever the processor accesses
one of the marked addresses [12]. Finally, ReEnact re-executes
the rolled-back epochs in the same order that was observed and
recorded in the first step. Every time that execution stops because
the program accesses one of the watchpoints, a ReEnact handler
records all the information necessary to build the race signature.
If the processor does not have enough Debug registers to generate
the complete signature in a single re-rerun, ReEnact can squash
and re-execute the Rollback Window several times. In each run,
the execution is deterministic.

Our use of exceptions to collect the signature of races requires
an extension to plain TLS. In plain TLS, an exception causes spec-
ulation to end. In ReEnact, these exception handlers run non-
speculatively while the state of the epochs remains buffered. To
prevent the displacement of speculative state from the caches,
these handlers run uncached.

4.3. Pattern Matching Data Race Bugs

Many common data race bugs have obvious signatures. Con-
sequently, we can further characterize a race bug by comparing
its signature against a library of known race patterns. If a match
occurs, ReEnact can report the cause of the bug to the program-
mer with high confidence. Such pattern matching can be done by
ReEnact on the fly while debugging.

As a proof of concept, we have created a small library with race
patterns caused by common bugs. These bugs include using syn-
chronization operations that are hand-crafted with plain variables,
and missing synchronization operations. The former are important
to detect because such synchronization operations may exhibit un-
expected behavior in modern machines that use relaxed memory
consistency models. Figure 3 shows the race bugs considered in
the ReEnact library. For each bug, the figure shows an example
code snippet (a1 to d1) and the resulting race pattern to be matched
(a2 to d2). In the patterns, the arrows represent detected data races.

The library matches two instances of hand-crafted synchroniza-
tion. The first one is a plain variable used as a flag where the con-
sumer thread arrives first (Figure 3-(a1,a2)). The second one is
an all-thread hand-crafted barrier that is built with a critical sec-
tion protecting a count, and a spin on a plain variable (Figure 3-
(b1,b2)).

The library also matches two instances of missing synchroniza-
tion. The first one is a missing lock/unlock for a simple critical
section where threads only read and then write a single conflicting
location (Figure 3-(c1,c2)). The second one is a missing all-thread

barrier that would separate individual threads writing an address
and then reading a different one, or vice-versa. Figure 3-(d1,d2)
shows one possible case. Note that some of these patterns also
take into account the values of variables causing the races and, in
the case of barriers, the number of threads involved in the race.
Further details are omitted due to lack of space in this paper.

4.4. Repairing Data Race Bugs

After ReEnact generates the race signature, it can present it
to the user or send it to the programmer. The signature likely has
enough information for a skilled programmer to repair the bug eas-
ily. If, in addition, the signature matches a pattern in the library,
ReEnact can tell the programmer the cause of the bug with high
confidence.

We also envision two scenarios where the bug could be repaired
automatically on the fly. The first one is under high-confidence
patterns like the ones recognized by our library. In this case, ReEn-
act could force an ordering of the participating epochs that is both
legal and consistent with a repair. As an example, consider the
missing lock/unlock case (Figure 3-(c1,c2)). Since ReEnact con-
trols the execution, it can undo the Rollback Window one last time.
Then, it can stall Thread B before executing the LD X until Thread
A has executed at least the ST X. The code is not modified at all,
and this execution is perfectly legal. At the same time, it is consis-
tent with the repair of adding the missing lock/unlock. Of course,
this repair only fixes one dynamic instance of this bug; the next
time this code is executed, the race(s) will reappear. For the other
three patterns in our library, a similar analysis can be made. It
remains the subject of future work, however, to find out how gen-
erally applicable this approach is.

The second scenario for on-the-fly, automatic repair is if the
race signature can be sent in real time to the software vendor, and
the latter has a patch ready to correct the bug. The patch could
then be sent to the user and installed, and execution resumed.

4.5. Extending ReEnact for Other Bugs

The ideas and mechanisms of ReEnact can be extended to de-
bug other classes of bugs. For each class of bugs, we need a few
bug-specific extensions: new bug-detection mechanisms, a new
set of heuristics to guide bug characterization so it can gather rel-
evant information, and a new library of bug patterns. However,
ReEnact’s main support, which is the ability to incrementally roll
back and deterministically repeat recent execution, can be largely
reused.

5. Implementation Issues
We now briefly consider some implementation issues in ReEn-

act, namely support for epochs, partially-ordered epoch IDs, and
multiple line versions.

5.1. Epochs

Most of the hardware needed in ReEnact has already been pro-
posed to support plain TLS. For example, several TLS schemes
support multiple speculative epochs per processor (e.g. [5, 26]).
Several TLS schemes have a special instruction used to create a
new epoch. When the instruction is executed, there is hardware
support to back up the architectural registers and generate the ID



Thread B

(c2)

LD X

ST X

Thread A Thread B Thread C

cnt++;

while(cnt!=N);

cnt++;

while(cnt!=N);

while(cnt!=N);

cnt++;

(b1)

lock(L);

...

Thread A Thread B

ptr++;

ptr++;

(c1)

Thread A

unlock(L);

(b2)

LD X
LD X
LD X
LD X
LD X

LD X
LD X
LD X

ST X

LD XLD X
LD X

LD X
...

Thread C

lock(L);

unlock(L);

lock(L);

unlock(L);

Thread BThread A

LD X
LD X
LD X
LD X
LD X

(a2)

ST X

LD X

Thread A Thread B Thread A Thread B Thread C

ST X

LD X
LD Y

ST Y

ST Z

Thread A

while(!flag);

Thread B

flag=1;

(a1)

Thread A Thread B

A[0]=...

...=A[1]

A[1]=...

...=A[2]

Thread C

A[2]=...

...=A[0]

(d1)

LD Z

(d2)

...
LD X

ST X

Figure 3. Race bugs considered in the ReEnact library: examples of code snippets with the bug (a1 to d1) and resulting race patterns to
be matched (a2 to d2). In the patterns, the arrows represent detected data races.

of the new epoch very quickly and without software intervention
(e.g. [5, 10, 13]).

One difference in ReEnact is in the way epochs are terminated
and started. An epoch terminates by default when it reaches a
synchronization operation; in this case, the next epoch is gener-
ated with an epoch-creation instruction. However, as indicated in
Section 3.5.2, an epoch is also forced to terminate when it has
generated a large data footprint or it has been running for a long
time. Consequently, we need two hardware counters: one in the
cache that counts the lines that are being accessed by the running
epoch for the epoch’s first time, and one that counts the instruc-
tions executed by the epoch. When one of these counters reaches
a threshold count (MaxSize and MaxInst, respectively), a hardware
signal forces a transition in the processor as if it were executing an
epoch creation instruction. A new epoch then starts.

5.2. Partially-Ordered Epoch IDs

Partially ordered, distributed epoch IDs are implemented using
logical vector clocks [7]. This approach has been used in an off-
line software-only race detection tool [21]. Each ID is composed
of N counters, where N is the number of threads in the system.
For example, if we have 4 processors in our chip multiprocessor
(Section 6.1), and each counter has 20 bits (allowing up to �

���

epochs per thread), we have 80 bits per epoch ID. In our design,
we implement them in hardware.

Epoch IDs are manipulated in three situations. First, when we
terminate an epoch and start a new one locally, the ID of the latter
is made a successor of the former’s. Second, the ID(s) of epoch(s)
that perform an acquire-type synchronization operation are made
successors of the ID(s) of epoch(s) that have performed the most
recent release-type synchronization operation on that same vari-
able (Section 3.5.2). Finally, when epochs communicate or com-
mit, their IDs are compared to check whether the IDs are ordered.
These three actions are implemented in hardware. They involve
simple arithmetic and logic operations as described in [21].

In our implementation, each cache hierarchy has 32 registers to
hold the IDs of the local epochs. Each cache line is tagged with

an index to these registers. Note that, since the state of commit-
ted epochs is merged with the architectural state in main memory
lazily, lines from committed epochs linger in the cache. As a result,
their epoch-ID registers cannot be freed until all their lines have
been displaced from the cache. We limit the number of epoch-
ID registers that are needed by providing each L2 cache with a
hardware scrubber that, when the number of free epoch-ID regis-
ters is too low, traverses the cache in the background and with a
low priority. It looks for lines that belong to the oldest committed
versions and, when such lines are found, displaces them from the
cache. Each pass of the scrubber typically frees a few committed
epochs. If, despite of this, a processor runs out of epoch-ID reg-
isters, the processor stalls until one is available. However, in our
experiments with 32 epoch-ID registers, no such stalls occur.

The ID of the originator epoch is included in every message
sent by a processor. In a cache, the ID in an incoming coherence
message is compared in hardware against the ID(s) of the match-
ing line(s). To minimize the frequency of these comparisons, it is
possible to cache the results of comparing pairs of IDs in a tiny
cache, and simply read them out on demand. Most of this hard-
ware support is already present in plain TLS.

5.3. Keeping Multiple Versions

As indicated in Section 3.2, a given cache hierarchy may need
to hold multiple versions of the same cache line, each one tagged
with a different epoch ID. To reduce the hardware complexity and
impact on cycle time, we allow only one (the most recent) version
of a line to be in L1. Since the L2 is larger and less critical for
performance, it can be designed to hold multiple versions of the
same line, at the expense of increasing its access time. Finally,
when an epoch finds in the L1 a line belonging to an older epoch,
the line is displaced (and written back to L2 if dirty) and a new line
is allocated for the new epoch in both L1 and L2. This operation
likely induces overhead visible to the processor.



6. Evaluation Setup
To evaluate ReEnact, we use execution-driven simulations with

detailed models of out-of-order superscalar processors and their
memory subsystems. In the following, we describe the architecture
simulated and the applications evaluated.

6.1. Architecture Simulated

The Baseline system is a 4-processor state-of-the-art chip mul-
tiprocessor. Each of the four processors has two levels of on-
chip private caches, and communicates with the other processors
through a fast, on-chip 4X4 crossbar network. The caches are kept
coherent with a MESI protocol. The chip is connected to main
memory with a bus. The details of the Baseline architecture are
shown in the top three parts of Table 1. Note that the caches are
relatively small because the data sets of the programs are small.

Processor
Frequency: 3.2 GHz Integer,FP units: 5,3
Dynamic issue: 6-wide Pending Ld,St: 16,16
I-window size: 64 Branch penalty: 14 cycles
Reorder buffer size: 128 Branch predictor:
Ld,St,branch units: 2,2,1 Like Alpha 21464

Caches & Network
L1 size, assoc: 16 KB, 4-way L1, L2 line size: 64 B
L1 OC,RT: 1,2 cycles On-chip network: 4X4 crossbar
L2 size,assoc: 128 KB, 8-way RT to neighbor’s L2: 20 cycles
L2 OC,RT: 2,10 cycles

Front-Side Bus & Memory
Bus: 400 MHz, 128 bits wide DRAM bandwidth: 3.2 GB/s
Memory: 2-channel Rambus Main memory RT: 79 ns

ReEnact Parameters
Threads/processor: 1 MaxSize: Varies (2KB-16KB)
Epoch-ID registers/processor: 32 MaxInst: 65,536
MaxEpochs: 2,4, or 8 New L1 version: 2 cycles
Epoch creation: 30 cycles Any L2 access: +2 cycles
Epoch-ID size: 80 bits

Table 1. Simulated architecture. In the table, OC stands for
occupancy and RT for minimum-latency round trip from the
processor. All cycle counts are in processor cycles.

Execution under ReEnact is modeled using the same baseline
architecture, except that the two-level cache hierarchy of a proces-
sor can hold data from multiple epochs. The last part of Table 1
shows the values of the parameter used — refer to Section 3.2
and Section 5.1 and for their definition. We perform experiments
with different parameter values. For example, we vary MaxE-
pochs and MaxSize. In our simulations, we model the overhead of
epoch creation with a fixed 30-cycle penalty. This penalty includes
hardware-based register checkpointing and epoch-ID generation.

As indicated in Section 5.3, the L1 contains only a single ver-
sion of any line. Consequently, we do not penalize its access time.
However, if we need to displace an old version from L1 to create a
new version of the line, we charge 2 extra cycles. As for the L2, we
assume that the complexity involved in holding multiple versions
increases its access time by two cycles over Baseline.

In most aspects, execution under ReEnact proceeds like under
ordinary TLS. One major difference is in the treatment of displace-
ments of uncommitted data from the L2 cache. In ordinary TLS,
cache lines containing data accessed by an uncommitted epoch

cannot be displaced; otherwise program correctness could be com-
promised. Consequently, we choose the victim for line replace-
ment to be a committed line. If no such line exists in the cache
set, the processor stalls until the epoch that owns the line to be
displaced commits.

In ReEnact, we also try to avoid displacing lines containing
data accessed by an uncommitted epoch. However, if we have to
displace such a line, we immediately commit its epoch and all its
predecessor epochs, and displace the line. This can be done be-
cause epochs remain uncommitted only to enable race debugging.
Of course, committing epochs reduces the size of the code that can
be undone.

6.2. Applications Evaluated

We evaluate ReEnact using the 12 SPLASH-2 [28] applica-
tions. Table 2 lists the input set used in each of the applications.
We do not modify the source code of the applications, except when
we introduce bugs for our evaluation in Section 7.3. However, we
do modify the implementation of the ANL macros that SPLASH-2
applications use to synchronize. Each macro is extended to end the
current epoch, create a new epoch, and introduce the appropriate
epoch ordering described in Section 3.5.2. To support such epoch
ordering, the software data structures that implement the synchro-
nization variables are modified to also store epoch IDs as discussed
in Section 3.5.2. These modifications are minimal.

App. Input App. Input App. Input
Barnes 16K Cholesky tk25.0 FFT 256K
FMM 16K LU 512x512 Ocean 130x130
Radiosity -test Radix 4M keys Raytrace car
Volrend head Water-n2 512 Water-sp 512

Table 2. Applications evaluated and their input sets.

7. Evaluation
To evaluate ReEnact, we perform three sets of experiments.

First, we explore the design space for some key parameters to
identify attractive design points. Next, we determine the execu-
tion time overhead of ReEnact in race-free execution. Finally, we
examine the effectiveness of ReEnact at debugging data races. In
all our discussions, the execution time overhead of ReEnact is the
additional execution time of the applications on our baseline chip
multiprocessor architecture of Section 6.1 when we add support
for ReEnact.

7.1. Exploring the Design Space

The main design tradeoff in ReEnact is the one between the
average size of the Rollback Window and the execution time over-
head. Ideally, we want a very large average Rollback Window
without slowing down the application much. To select design
points in this space, we have two knobs: the maximum number of
uncommitted epochs that we allow a processor to simultaneously
have (MaxEpochs), and the maximum allowed size of an individ-
ual epoch. The second knob can be set by changing the termina-
tion thresholds for the epochs: maximum number of instructions
executed (MaxInst) and maximum size of the data access footprint
(MaxSize). Of these three parameters, we only vary MaxEpochs
and MaxSize. MaxInst is set to a large value that does not affect



performance. It can not be infinite because that would create dead-
locks in situations described in Section 3.4.

Figures 4-(a) and (b) show the execution time overhead and the
size of the Rollback Window, respectively, as we vary our knobs.
We vary the maximum number of uncommitted epochs per pro-
cessor (MaxEpochs) from 2 to 8, and the maximum epoch foot-
print size (MaxSize) from 2 to 16 Kbytes. The Rollback Window
is measured in dynamic instructions per thread. To generate the
charts, we compute the average within each application and then
across applications.

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MaxSize: Maximum Epoch Footprint (Kbytes)

E
xe

cu
ti

o
n

 T
im

e 
O

ve
rh

ea
d

8 Uncommitted Epochs/Proc

4 Uncommitted Epochs/Proc

2 Uncommitted Epochs/Proc

Balanced

Cautious

(a)

0

20,000

40,000

60,000

80,000

100,000

120,000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MaxSize: Maximum Epoch Footprint (Kbytes)

R
o

llb
ac

k 
W

in
d

o
w

 S
iz

e
(D

yn
am

ic
 In

st
ru

ct
io

n
s)

8 Uncommitted Epochs/Proc

4 Uncommitted Epochs/Proc

2 Uncommitted Epochs/Proc

Balanced

Cautious

(b)

Figure 4. Execution time overhead (a) and size of the Roll-
back Window (b) for different values of the maximum number
of uncommitted epochs per processor (MaxEpochs), and the
maximum size of the epoch footprint (MaxSize).

The figures show that, as we increase the maximum number
of uncommitted epochs per processor or the maximum size of the
epoch footprint, both the Rollback Window size and the execu-
tion time overhead generally increase. The main reason for this
increase is that uncommitted epochs use an increasingly higher
fraction of the cache storage. Recall from Section 3.2 that un-
committed epochs use cache space inefficiently due to replication.
Indeed, when two uncommitted epochs access the same memory
line, each of them creates its own version. The net effect is less ef-
fective space for the working set of the application and, therefore,
a higher miss rate. Therefore, we want to limit the number of un-
committed epochs per processor (MaxEpochs) and the maximum
epoch size (MaxSize) so that a larger Rollback Window does not
come at the expense of unreasonable slowdowns.

The MaxEpochs parameter provides a clear tradeoff between
performance degradation and the Rollback Window – more un-
committed epochs per processor allows more rollback, but also
results in more replication.

The MaxSize parameter is more difficult to choose. If it is too
small, the Rollback Window is small as expected, but the over-
head is increased due to frequent copying of registers whenever
a new epoch begins. By looking at the leftmost part of Figure 4-
(a) we see that MaxSize should be at least 4 Kbytes to avoid this
unfavorable behavior. Larger sizes of MaxSize provide a tradeoff
between performance and Rollback Window size, but there are di-
minishing returns in Rollback Window size as MaxSize becomes
larger. This is due to other limitations on epoch size, the most im-
portant of which is that synchronization ends an epoch and begins
a new one. When MaxSize is very large, most epochs end because
a synchronization is reached and not because MaxSize is reached.
Under such circumstances, further increases in MaxSize have little
effect on the average epoch size.

As our chosen design point for further evaluation, we select
MaxEpochs to be 4 uncommitted epochs per processor, and Max-
Size to be 8 Kbytes of buffered state per epoch. We call the cho-
sen design point Balanced (B). This configuration has a modest
execution time overhead (5.8% on average) and a large Rollback
Window (56,000 instructions per processor on average). As a sec-
ond design point, we select a Cautious (C) configuration that sup-
ports a large Rollback Window, albeit at a higher performance cost.
Such a configuration allows the number of uncommitted epochs
per processor to increase to 8. As a result, it suffers a 13.8% aver-
age execution time overhead while providing an average Rollback
Window of 111,000 instructions per processor. Further increases
in Rollback Window size result in performance overhead that is
incompatible with our goal of using ReEnact even in production
runs.

7.2. Time Overhead in Race-Free Execution

Figure 5 shows the execution time overhead of our Balanced
and Cautious configurations for each of the applications. The over-
head is caused by two main sources. The first one is increased
stalls due to memory system effects (Memory) such as a higher
cache miss rate (Section 7.1), higher L1 and L2 hit times (Sec-
tion 6.1), and slightly higher memory system traffic. The second
source is epoch creation (Creation), as described in Section 6.1.
Note that some of the SPLASH-2 applications have data races, as
we discuss in Section 7.3.1. However, these races do not cause in-
correct results for any of the program runs that we have performed.
Consequently, in this first experiment, ReEnact simply ignores any
races upon detection, to emulate race-free execution.

The average overhead in the Balanced configuration is 5.8%.
This is small enough to make it attractive to use ReEnact on pro-
duction runs. All the applications except Ocean have overheads
lower than 10%. Looking at the sources of overhead, we see that
most of the overhead comes from Memory. The exception to this is
Radiosity, where frequent synchronization results in frequent cre-
ation of small epochs and, consequently, high Creation overhead.

In the Balanced configuration, the maximum size of all the un-
committed epochs per processor is 4 times 8Kbytes, or 32Kbytes.
While this is only one quarter of the L2 cache in each processor,
the data replication present reduces the space available for the rest
of the application working set. As a result, on average for the ap-
plications, the L2 miss rate in Balanced is 6.2% higher than in the
baseline system. This causes most of the overhead in the figure.
Ocean has a large working set and, therefore, suffers relatively



0%

10%

20%

30%

40%

50%

60%

70%

B
ar

ne
s

C
ho

le
sk

y

F
F

T

F
M

M LU

O
ce

an

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
ol

re
nd

W
at

er
-n

2

W
at

er
-s

p

A
ve

ra
ge

B
ar

ne
s

C
ho

le
sk

y

F
F

T

F
M

M LU

O
ce

an

R
ad

io
si

ty

R
ad

ix

R
ay

tr
ac

e

V
ol

re
nd

W
at

er
-n

2

W
at

er
-s

p

A
ve

ra
ge

E
xe

cu
ti

o
n

 T
im

e 
O

ve
rh

ea
d Memory

Creation

Balanced

Cautious

Figure 5. Execution time overhead of the Balanced and Cautious configurations for each of the applications.

more from reduced cache space. Its L2 miss rate in Balanced is
14.7% higher than in the baseline system. This is the reason for
Ocean’s higher overhead in Figure 5.

For the Cautious configuration, the average overhead is 13.8%.
In this case, the maximum size of all the uncommitted epochs per
processor is 8 times 8Kbytes, which is half the size of the L2.
Due to the tighter space in L2, the L2 miss rate is 28.2% higher
than in the baseline system. In Ocean, the L2 miss rate is 76.2%
higher than in the baseline system. As a result, Ocean’s execution
time overhead in Figure 5 is 54%. This is too high an overhead to
impose on a production run. Consequently, configurations such as
the Cautious one can only be used in development runs.

7.3. Effectiveness at Debugging Races

To evaluate the effectiveness of ReEnact at debugging data
races, we experiment on both applications that originally have
races and applications where we insert races. In the experiments,
we are interested in five questions: (1) is the race detected?, (2)
is the detection early enough that allows ReEnact to roll back ex-
ecution to a point before the bug occurred?, (3) is the race fully
characterized?, (4) does the race signature match one of our race
patterns?, and (5) is the race repaired on the fly and application
execution successfully completed?

In answering these questions, our sample of experiments is very
small: a few hundred dynamic instances of existing bugs and 8
inserted bugs. Consequently, for each of the five questions, we
can only assess the effectiveness of ReEnact qualitatively. Table 3
shows a summary of our assessment using words like “high” or
“medium”. We now describe each experiment in detail.

7.3.1. Applications with Existing Bugs. ReEnact detects many
dynamic instances of races in several of the SPLASH-2 applica-
tions. Specifically, out-of-the-box versions of Barnes, Cholesky,
FMM, Ocean, Radiosity, Raytrace and Volrend have races. Over-
all, we encountered a few hundred such instances. These races
do not cause incorrect results for any of the program runs that we
have performed. They are caused by hand-crafted synchronization
(Section 4.3) and other constructs.

Hand-crafted synchronization occurs often. For example, func-
tion Ray Trace in Volrend uses a hand-crafted barrier (Figure 6-
(a)). Function Hackcofm in Barnes uses a hand-crafted flag called

...

while(b−>interaction_synch!=b−>num_children);
...

...

(c)

...

...
LOCK(gl−>IndexLock);

UNLOCK(gl−>IndexLock);
ProcID=gl−>Index++;

(d) ...

...
INTRAF(&gl−>VIR,ProcID);
BARRIER(gl−>start,NumProcs);
INTERF(gl−>start,&gl−>VIR,ProcID);
for(i=1;i<=NSTEP;i++){

(e)

UNLOCK(Gl−>lock_array[b−>parent−>exp_lock_index]);

...
Done(l)=TRUE;
...

...
Done(r)=FALSE;

while(!Done(r));
...

...

(b)

Global−>Counter−−;
LOCK(Global−>CountLock);

UNLOCK(Global−>CountLock);
while(Global−>Counter);

...

...

(a)

...
LOCK(Gl−>lock_array[b−>parent−>exp_lock_index]);
pb−>interaction_synch+=1;

Figure 6. Code examples of hand-crafted barrier (a), flag (b),
and custom (c) synchronization, and of lock (d) and barrier (e)
synchronization removed to induce bugs.

Done in each element of the cell structure (Figure 6-(b)). In FMM,
each element of the Box structure has a hand-crafted synchroniza-
tion counter called interaction synch, which threads increment and
wait on until it becomes equal to num children (Figure 6-(c)).

For hand-crafted synchronization, ReEnact’s effectiveness at
race detection is very high (Table 3). It detects all instances where
the consumer thread arrives first and spins, since it appears as an
infinite loop. It also detects many cases when the consumer arrives
last and finds the variable set. Execution rollback and race charac-
terization are also very effective. At this point, however, ReEnact
only pattern-matches hand-crafted barriers and flags, which have
a very clear signature (Section 4.3). Other hand-crafted synchro-
nizations do not match any pattern in our library. For example,
the counter in Figure 6-(c) from FMM involves reads and writes
that do not match our patterns for hand-crafted barriers or flags
(Section 4.3). Consequently, we set the entry for pattern-match in



Experiment Type of Bug Detection? Rollback? Characterization? Pattern-Match? Repair?

Existing bug Hand-crafted synch Very high Very high Very high High High
(Instances: several hundred) Other High Unknown Unknown No No

Induced bug Missing lock Very high Very high High High High
(Instances: 8) Missing barrier Very high Medium Medium Medium Medium

Table 3. Qualitative assessment of the effectiveness of ReEnact.

the first row of Table 3 to only high. As for repair of these races,
ReEnact repairs them by introducing epoch ordering as described
in Section 4.4. All races that match the patterns in the library are
successfully repaired.

There are other constructs that create races in SPLASH-2, such
as multiple updates to a single variable by different threads with-
out synchronizing. They are accounted for in the second row of
Table 3. Since ReEnact flags many such problems when running
SPLASH-2, we rate the detection effectiveness as high. However,
we have not examined the effectiveness of rollback or characteri-
zation. We do not pattern-match or repair these bugs.

7.3.2. Applications with Induced Bugs. We have performed
eight experiments adding race bugs to SPLASH-2 applications.
Our experiments consist of removing a single static instance of
a lock or a barrier per run. For example, in Water-sp, we re-
move the lock that protects the assignment of thread-IDs to newly-
formed threads at the beginning of the parallel section (Figure 6-
(d)). These IDs take the values 0-3, and are used to partition the
work to do. Without the lock, the program never completes.

As another example, we remove one barrier at a time in Water-
sp. For example, we remove the barrier that separates the initial-
ization into two phases (Figure 6-(e)), or the one that separates
initialization and main computation.

In all our missing lock and barrier experiments, ReEnact de-
tects the bug. After detection, however, there are differences be-
tween missing locks and barriers. For missing locks, rollback is
also very effective because the size of the code that needs to be
rolled back is usually modest – critical sections tend to be small.
Characterization, pattern-matching, and repair for missing locks
are a bit less effective. This is because some missing locks pro-
duce slightly complicated race signatures, which include multi-
ple reads and writes per thread to multiple variables. Recall from
Section 4.3 that we only pattern-match the simplest race signa-
tures for missing locks. However, all those races that are success-
fully pattern-matched are also repaired by imposing ordering on
the epochs involved as described in Section 4.4.

For missing barriers, rollback is less effective because long-
distance rollback is sometimes required. Indeed, consider a load-
imbalanced code section followed by a missing-barrier bug. A
thread with little load may go past the missing barrier early on.
When the other threads arrive at the missing barrier and issue con-
flicting accesses, we may be able to detect the race. However, by
this time, the early thread may have already committed the code
around the missing barrier and, as a result, not support rollback
to that point. This limitation also makes it hard to characterize
the bug as a missing barrier, and the pattern-matching fails. This
problem occurs in every instance of the missing-barrier bug for the
Balanced configuration. For the Cautions configuration, rollback
succeeds in some cases, which are then characterized, pattern-
matched, and repaired as usual. Thus, we rate the effectiveness
of these steps as medium.

7.4. Discussion

ReEnact’s main goal is to effectively detect, roll back, and fully
characterize race bugs on the fly while, in race-free conditions,
induce overhead small enough to be compatible with production
runs. The data in this section has shown that the goal is attained.
Highly-accurate pattern matching and subsequent automatic re-
pair, while important, are more elusive targets that may need ar-
tificial intelligence algorithms. In any case, after the race is fully
characterized, a skilled programmer can likely fix it quickly.

We have not reported execution time overhead for the runs
where races are detected and characterized. The reason is that our
simulator and debugging handler infrastructure are not streamlined
enough to provide representative overhead numbers for character-
ization and repair code.

8. Related Work
Data races are a well-known source of problems in multi-

threaded programs and much work has been done to address them.
Previous work on data race detection includes software implemen-
tations of race detectors (e.g. [3, 6, 18, 21, 22]), hardware-based
proposals to detect violations of consistency models [9] and theo-
retical work (e.g. [1, 4, 15]).

The work most related to ours is RecPlay by Ronsse and De
Bosschere [21], which describes a multi-pass race debugging tool
that uses software instrumentation to detect data races and record
the ordering of execution for deterministic replay. However, the
overheads of data race detection in RecPlay are too expensive for
always-on use in production runs: the execution times are 36.3
times longer than in uninstrumented execution. Furthermore, Rec-
Play provides no rollback mechanism, so each re-execution in the
bug characterization phase starts from the beginning of the entire
program. In contrast, ReEnact provides data race detection, buffer-
ing for incremental rollback and recording of the execution order
with the overall performance degradation of only 5.8%. Addition-
ally, unlike RecPlay, ReEnact automates the bug characterization
phase. The advantages of RecPlay are that it requires no hardware
support, and that it can provide data race detection and determinis-
tic re-execution across the entire execution of the program. ReEn-
act’s limited buffering capabilities confine its data race detection,
incremental rollback, and deterministic re-execution to a window
of several tens of thousands of dynamic instructions per thread.
However, our evaluation indicated that this limited window is very
effective at debugging races.

The hardware mechanisms we use for debugging are based on
TLS [5, 10, 11, 19, 26, 27]. Recently, Oplinger and Lam [17]
have proposed using TLS to execute software assertion checks in
parallel with the main program, and to provide transaction-like se-
mantics to the programmer. Software assertion checks can be used
to detect many types of bugs, while ReEnact currently only detects
data races. However, parallelizing assertion checks as in [17] re-
quires the availability of “free” processors or execution contexts



on which to run them. In reality, multithreaded codes may not
leave free processors for this. In contrast, ReEnact does not re-
quire extra processors and is fully compatible with multithreaded
software. As for the transaction-like blocks provided by Oplinger
and Lam, they can be used to recover from errors that the appli-
cation programmer has anticipated and written handlers for. In
contrast, ReEnact provides always-on support for incremental roll-
back without requiring changes to the application. Additionally,
ReEnact provides support for deterministic re-execution and a set
of heuristics to automate bug characterization and possibly repair.

9. Conclusions and Future Work
The broad goal of our research is to design hardware support to

effectively detect, characterize, and possibly repair software bugs
on the fly in production runs. When this is accomplished, the pay-
off will be a major productivity increase in software debugging.
We feel that this paper makes a step in this direction.

We identified TLS as a key technology for software debugging.
Specifically, with simple extensions, it supports the ability to roll
back the buggy execution and repeat it as many times as neces-
sary until the bug is fully characterized. These incremental re-
executions are deterministic even in multithreaded codes. More-
over, this operation can be done automatically on the fly, and is
compatible with production runs.

As a specific implementation of a TLS-based debugging frame-
work, we introduced ReEnact. ReEnact targets data races in mul-
tithreaded programs. Our experiments using SPLASH-2 applica-
tions show that ReEnact is very effective at detecting and charac-
terizing data-race bugs automatically on the fly. This we consider
our most valuable contribution. Moreover, in many cases, ReEnact
also repairs the bug. Last but not least, ReEnact is fully compati-
ble with production runs: the slowdown of race-free execution is
on average only 5.8%.

We are currently following two major research extensions. The
first one is to support the debugging of races that require long-
distance rollback, such as those that occur in load-imbalanced code
that is followed by a missing-barrier bug. A promising solution
is to develop architectural support to extend cache buffering into
main memory, therefore enabling very large Rollback Windows.
The second extension is to expand ReEnact to target other types of
bugs besides data races. While the core TLS-based mechanisms in
ReEnact will not change, we have to provide different bug detec-
tion and bug characterization mechanisms.

References
[1] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detect-

ing Data Races on Weak Memory Systems. In 18th Intl. Symp. on
Computer Architecture, pages 234–243, 1991.

[2] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron Mi-
croarchitecture Design. In 32nd Intl. Symp. on Microarchitecture,
pages 196 –207, 1999.

[3] J.-D. Choi et al. Efficient and Precise Datarace Detection for Multi-
threaded Object-Oriented Programs. In ACM SIGPLAN 2002 Conf.
on Prog. Lang. Design and Implementation, pages 258–269, 2002.

[4] J.-D. Choi and S. L. Min. Race Frontier: Reproducing Data Races in
Parallel-Program Debugging. In 3rd ACM SIGPLAN Symp. on Prin-
ciples & Practice of Parallel Programming, pages 145–154, 1991.

[5] M. Cintra, J. F. Martinez, and J. Torrellas. Architectural Support
for Scalable Speculative Parallelization in Shared-Memory Multi-
processors. In 27th Intl. Symp. on Computer Architecture, pages
13–24, 2000.

[6] K. D. Cooper et al. The ParaScope Parallel Programming Environ-
ment. Proc. of the IEEE, 81(2):244–263, 1993.

[7] C. Fidge. Logical Time in Distributed Computing Systems. IEEE
Computer, 24(8):23–33, 1991.

[8] M. Garzaran et al. Tradeoffs in Buffering Memory State for Thread-
Level Speculation in Multiprocessors. In 8th Intl. Symp. on High-
Performance Computer Architecture, pages 191–202, 2003.

[9] K. Gharachorloo and P. B. Gibbons. Detecting Violations of Sequen-
tial Consistency. In 3rd Symp. on Parallel Algorithms and Architec-
tures, pages 316–326, 1991.

[10] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Specu-
lative Versioning Cache. In 4th Intl. Symp. on High-Performance
Computer Architecture, pages 195–205, 1998.

[11] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Sup-
port for a Chip Multiprocessor. In 8th Intl. Conf. on Arch. Support
for Prog. Lang. and Operating Sys., pages 58–69, 1998.

[12] Intel Corporation. The IA-32 Intel Architecture Software Developer’s
Manual, Volume 3: System Programming Guide. Intel Corporation,
2002.

[13] S. W. Keckler et al. Exploiting Fine-Grain Thread-Level Parallelism
on the MIT Multi-ALU Processor. In 25th Intl. Symp. on Computer
Architecture, pages 306–317, 1998.

[14] E. Marcus and H. Stern. Blueprints for High Availability. John
Willey & Sons, 2000.

[15] S. L. Min and J.-D. Choi. An Efficient Cache-Based Access
Anomaly Detection Scheme. In 4th Intl. Conf. on Arch. Support
for Prog. Lang. and Operating Sys., pages 235–244, 1991.

[16] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design
and Evaluation of Redundant Multithreading Alternatives. In 29th
Intl. Symp. on Computer Architecture, pages 99–110, 2002.

[17] J. Oplinger and M. S. Lam. Enhancing Software Reliability with
Speculative Threads. In 10th Intl. Conf. on Arch. Support for Prog.
Lang. and Operating Sys., pages 184–196, 2002.

[18] D. Perkovic and P. J. Keleher. A Protocol-Centric Approach to On-
the-Fly Race Detection. IEEE Trans. on Parallel and Distributed
Systems, 11(10):1058–1072, 2000.

[19] M. Prvulovic, M. J. Garzaran, L. Rauchwerger, and J. Torrellas. Re-
moving Architectural Bottlenecks to the Scalability of Speculative
Parallelization. In 28th Intl. Symp. on Computer Architecture, pages
204–215, 2001.

[20] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-Effective Ar-
chitectural Support for Rollback Recovery in Shared-Memory Mul-
tiprocessors. In 29th Intl. Symp. on Computer Architecture, pages
111–122, 2002.

[21] M. Ronsse and K. D. Bosschere. RecPlay: A Fully Integrated Prac-
tical Record/Replay System. ACM Trans. on Computer Systems,
17(2):133–152, 1999.

[22] S. Savage et al. Eraser: A Dynamic Data Race Detector for Multi-
Threaded Programs. ACM Trans. on Computer Systems, 15(4):391–
411, 1997.

[23] D. Shasha and M. Snir. Efficient and Correct Execution of Paral-
lel Programs that Share Memory. ACM Trans. on Prog. Lang. and
Systems, 10(2):282–312, 1988.

[24] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet:
Improving the Availability of Shared Memory Multiprocessors with
Global Checkpoint/Recovery. In 29th Intl. Symp. on Computer Ar-
chitecture, pages 123–134, 2002.

[25] R. Stallman, R. Pesch, and S. Shebs. Debugging with GDB - The
GNU Source-Level Debugger. Free Software Foundation, 2002.

[26] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scal-
able Approach to Thread-Level Speculation. In 27th Intl. Symp. on
Computer Architecture, pages 1–12, 2000.

[27] J. Y. Tsai et al. The Superthreaded Processor Architecture. IEEE
Trans. on Computers, 48(9):881–902, 1999.

[28] S. C. Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In 22nd Intl. Symp. on Computer
Architecture, pages 24–38, 1995.


