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Abstra
tChip-multipro
essor (CMP) ar
hite
tures are a promising de-sign alternative to exploit the ever-in
reasing number of tran-sistors that 
an be put on a die. To deliver high performan
eon appli
ations that 
annot be easily parallelized, CMPs 
anuse additional support for spe
ulatively exe
uting the possi-bly data-dependent threads of an appli
ation. While some ofthe 
ross-thread dependen
es in appli
ations must be handleddynami
ally, others 
an be fully determined by the 
ompiler.For the latter dependen
es, the threads 
an be made to syn-
hronize and 
ommuni
ate either at the register level or atthe memory level. In the past, it has been un
lear whetherthe higher hardware 
ost of register-level 
ommuni
ation is
ost-e�e
tive.In this paper, we show that the wide-issue dynami
 pro
es-sors that will soon populate CMPs, make fast 
ommuni
ationa requirement for high performan
e. Consequently, we pro-pose an e�e
tive hardware me
hanism to support 
ommuni
a-tion and syn
hronization of registers between on-
hip pro
es-sors. Our s
heme adds enough support to enable register-level
ommuni
ation without spe
ializing the ar
hite
ture so mu
htoward spe
ulation that it leads to mu
h unutilized hardwareunder workloads that do not need spe
ulative parallelization.Finally, the s
heme allows the system to a
hieve near idealperforman
e.1 Introdu
tionAdvan
es in VLSI te
hnology now allow over 100 million tran-sistors to be 
on�gured on a single pro
essor die [14℄ anda billion-transistor pro
essor 
hip is in the oÆng. Unfortu-nately, on-
hip inter
onne
ts are likely to be
ome a signi�
antbottlene
k in future pro
essors, where a signal is expe
tedto take multiple 
lo
k 
y
les to traverse the entire 
hip [17℄.Thus, rather than implementing just one high-issue super-s
alar pro
essor on the 
hip, many resear
hers have proposedde
entralized ar
hite
tures wherein multiple simpler pro
ess-ing units are 
on�gured on a single 
hip.Indeed, the 
hip-multipro
essor (CMP) ar
hite
ture hasdrawn great attention, with ar
hite
ts proposing various re-lated designs [5, 10, 12, 16, 20, 22, 23, 24℄. Though the CMPis an ideal platform to run multiple sequential appli
ations ora fully-parallel appli
ation, if it is to be fully a

epted, it mustalso be able to give good performan
e when running a singlesequential appli
ation or one that 
annot be parallelized bythe 
ompiler e�e
tively. CMPs handle these appli
ations by1This work was supported in part by the National S
ien
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resorting to a spe
ulative mode of exe
ution. In this mode, thethreads that exe
ute on the on-
hip pro
essors do not need tobe fully independent; they may have data dependen
es withea
h other. Su
h spe
ulative threads may be identi�ed ei-ther at 
ompile time [4, 10, 12, 22, 23, 24℄ or 
ompletely atrun-time with hardware support [16, 19℄.In these spe
ulative CMPs, additional hardware support isneeded to enfor
e inter-thread dependen
es and ensure thatsequential semanti
s are not violated. As a result, threadsmay be squashed and restarted when a dependen
e violationis identi�ed. For example, this o

urs when a thread generatesa datum that a spe
ulative thread has already prematurely
onsumed. The 
onsumer thread must then be squashed.Not all of the dependen
es need to be handled in this spe
-ulative manner. Some of the 
ross-thread dependen
es 
an befully determined by the 
ompiler from the stati
 
ode. In these
ases, spe
ulation 
an be avoided. The hardware 
an sim-ply syn
hronize the data transfer between pro
essors, therebypreventing a su

essor thread from using a stale value. Thesyn
hronizing data transfer 
an o

ur at the memory level(typi
ally a shared L2 
a
he) or at the register level with theaid of a fast inter
onne
t to 
ommuni
ate the values.1.1 Current StatusThe performan
e of these spe
ulative CMPs is the subje
t ofintense 
urrent study. It has been shown that there is 
on-siderable performan
e potential for even integer appli
ationsusing this spe
ulative approa
h [23℄.Some designs are largely spe
ialized towards spe
ulation,like the Multis
alar [22℄ and Tra
e [20℄ pro
essors. Theyadd signi�
ant hardware, su
h as dupli
ate registers for ea
hpro
essor along with a bu�ered ring network for 
ommuni
a-tion [3℄, or a 
entralized global register set in addition to theper-pro
essor register sets [20℄.The other designs have less hardware support for spe
ula-tion [10, 12, 23, 24℄. The philosophy of these \spe
ulative-light" systems is to augment the CMP with just enough sup-port to allow spe
ulative exe
ution, while still maintainingthe generi
 CMP ar
hite
ture to some degree. Within thesedesigns, there are many di�eren
es. While some designs relyheavily on software for spe
ulative thread initiation, 
ommitand squash [10, 23℄, others rely on hardware [12, 24℄.Hammond et al [10℄ have shown that large software over-heads in thread initiation and 
ommit are responsible for onlymodest speedups, and in a few 
ases slowdowns, of a spe
u-lative CMP over using just one pro
essor in the CMP. Theauthors further state that the grain size of the thread playsan important role in spe
ulative exe
ution. When it is toolarge, the probability of a dependen
e violation o

urring in-
reases leading to mu
h wasted work. On the other hand,when the grain size is small (< 100 instru
tions), softwareoverheads be
ome signi�
ant enough that they warrant hard-ware support for thread initiation and 
ommit.Another fa
tor that a�e
ts performan
e is the 
ommuni
a-tion of 
ompiler-identi�able 
ross-thread dependent values be-



tween pro
essors. Currently, an important di�eren
e betweenspe
ulative CMP ar
hite
tures is whether they support fast
ommuni
ation [12, 16, 20, 22℄ or not [10, 23℄. It is possiblethat register-allo
ating frequently-shared variables along withadding extra hardware for 
ommuni
ating the values qui
klymay prove bene�
ial. Without su
h hardware support, a spe
-ulative pro
essor has to perform additional load and store op-erations to use the memory system to 
ommuni
ate values.A study of the performan
e impa
t of 
ommuni
ation la-ten
y in spe
ulative CMPs [23℄ argues that a fast 
ommuni-
ation s
heme may not be required and that 
ommuni
ationthrough the memory subsystem is suÆ
ient. However, su
h astudy was performed assuming CMPs made of stati
 single-issue pro
essors. In addition, it assumed threads of large grainsize, where the instru
tions were aggressively hand-s
heduledto minimize the waiting time for the 
onsumer thread.However, future spe
ulative CMPs are likely to be popu-lated with wide-issue dynami
 supers
alars. In these systems,a faster mode of 
ommuni
ation, possibly at the register level,may be required. Moreover, in the absen
e of the aggressiveinstru
tion s
heduling te
hniques assumed in [23℄, CMPs mustbe able to exploit �ner-grain parallelism better if they are tomat
h the performan
e of a 
onventional supers
alar usingthe same die area [10℄.1.2 Our ContributionOur 
ontribution is to study the impa
t of inter-pro
essor
ommuni
ation laten
ies in spe
ulative CMPs with wide-issuedynami
 supers
alars. Our design point is a \spe
ulative-light" CMP (in the sense dis
ussed above), but one in whi
hthread initiation, 
ommit and squash are done with low over-head in hardware to allow better exploitation of threads withsmall grain size. Furthermore, our appli
ations are sequentialexe
utable �les, from whi
h we automati
ally extra
t threadswithout re
ompiling the sour
e.We show that wide-issue dynami
 supers
alars make fast
ommuni
ation a requirement for high performan
e. Con-sequently, we propose a hardware me
hanism to support
ommuni
ation and syn
hronization of registers between on-
hip pro
essors. The s
heme adds enough support to enableregister-level 
ommuni
ation without spe
ializing the CMPar
hite
ture so mu
h towards a spe
ulative mode of exe
utionthat it leads to mu
h unutilized hardware under fully-parallel,
ompiler-analyzable appli
ations or multiprogrammed loadsof sequential programs. Finally, the s
heme allows the systemto a
hieve near ideal performan
e.This paper is organized as follows: Se
tion 2 motivates theproblem; Se
tion 3 des
ribes the basi
 support for spe
ulation;Se
tion 4 des
ribes the evaluation environment used; Se
tion 5looks at the impa
t of 
ommuni
ation laten
y; and Se
tion 6des
ribes and evaluates our hardware support for register-level
ommuni
ation.2 MotivationProposed CMP ar
hite
tures in
lude hardware support to en-for
e data dependen
es, enabling 
onsumer threads to a
quirethe appropriate value from the produ
er thread. In addi-tion, these ar
hite
tures also in
lude hardware to dete
t de-penden
e violations when they o

ur, so that threads 
an besquashed and restarted. Dependen
e enfor
ement and vio-lation dete
tion 
an be done with 
entralized s
hemes likethe ARB [7℄ or with distributed s
hemes that use a mod-i�ed 
a
he-
oheren
e proto
ol among the pro
essors in theCMP [8, 10, 12, 23℄.Frequently, however, the variable 
ausing the dependen
e

is known to the 
ompiler. This is illustrated in Figure 1,whi
h shows one of the most frequently exe
uted loops fromSPEC95's li appli
ation. Ea
h iteration of the loop reads vari-able prev and may later update it. In that 
ase, we 
an usemore advan
ed me
hanisms than the ones des
ribed above.Spe
i�
ally, depending on the hardware support available, twoalternatives are possible.while (TRUE) {if (prev == NIL)(1) return;if (prev->n_flags & LEFT) {if (live
dr(prev)) {(2) prev->n_flags &= ~LEFT;tmp = 
ar(prev)rpla
a(prev,this);this = 
dr(prev);rpla
d(prev,tmp);break;} else {tmp = prev;prev = 
ar(tmp);(3) rpla
a(tmp,this);this = tmp;}} else {tmp = prev;prev = 
dr(tmp);(4) rpla
d(tmp,this);this = tmp;}}Figure 1: Code segment from li.One approa
h is for the 
ompiler to insert a syn
hronizationstep between the produ
er and the 
onsumer threads throughthe memory hierar
hy. This approa
h requires an eÆ
ientsyn
hronization me
hanism, like a hardware-based full-emptybit me
hanism [21℄. For example, given an iteration, we knowthat it will not update prev any more when it is about toexe
ute any of the statements (1), (2), (3), or (4) in the �gure.At any of these points, an iteration 
an syn
hronize with thenext thread through, for example, a shared L2 
a
he. If, inaddition, the produ
er has just updated prev, the new value
an be forwarded to the L2 
a
he in the same syn
hronizationstep.The se
ond approa
h is to provide mu
h faster inter-pro
essor 
ommuni
ation. Spe
i�
ally, we 
an register-allo
ate prev and use an on-
hip network [5, 12, 20, 22℄ to
ommuni
ate its value between pro
essors. This approa
h al-lows very fast 
ommuni
ation.In a CMP with wide-issue dynami
 supers
alar pro
essors,performing syn
hronization through memory is slow. Con-sider, for example, a CMP with four 4-issue pro
essors wherethe L2 
a
he has advan
ed hardware support for full-emptybit syn
hronization. The minimum time that it takes to trans-fer a datum between two threads is a round-trip a

ess to theL2 
a
he. This may easily be 6 
y
les, even for on-
hip 
a
hes.Ea
h thread 
an exe
ute many instru
tions in this time.If, instead, a fast inter
onne
t is used to 
ommuni
ate thesevalues, the laten
ies 
an be made mu
h smaller. Depending onthe distan
e between the two threads on the 
hip, the laten
ymay vary. If we assume a 0.18�m te
hnology, the entire die
an be 
overed in 2 
lo
k 
y
les, while for 0.13�m te
hnology,this will in
rease to 4 
y
les [17℄.It 
ould be argued that CMPs 
ould be based on single-issuepro
essors, thereby allowing more pro
essors to be 
on�guredon-
hip. In that 
ase, the inter-pro
essor 
ommuni
ation la-ten
y is not as 
ru
ial. However, exploiting both thread- andinstru
tion-level parallelism is 
riti
al for the performan
e ofmultithreaded appli
ations [15℄. Thus CMPs are likely to bebased on wide-issue dynami
 supers
alar pro
essors.Note that a fast inter
onne
tion may be used to 
ommuni-
ate values without supporting register-level 
ommuni
ation.



An example is the Superthreaded ar
hite
ture [24℄. Here, anon-
hip memory bu�er holds the dependent values from/towhi
h a pro
essor loads/stores the value. Fast 
ommuni
a-tion of these values between pro
essors is fa
ilitated using aring network.Supporting register-level 
ommuni
ation, however, hasthe advantage that fewer instru
tions need to be exe
uted.Memory-level 
ommuni
ation needs instru
tions to expli
itlystore and load the 
ommuni
ated values to and from memory.In addition, unless spe
ial hardware support is provided, italso needs instru
tions to syn
hronize the two 
ommuni
atingthreads. In the example of Figure 1, prev must be expli
itlystored to memory right before points (3) and (4). In addi-tion, extra instru
tions for syn
hronization may need to beadded at points (1)-(4). All these instru
tions may degradeperforman
e [10℄.3 Support for Spe
ulationTo run an appli
ation on a spe
ulative CMP ar
hite
ture,we �rst need to identify threads. This may be a
hieved insoftware by performing a 
ompilation step [4, 10, 22, 23, 24℄ orin hardware by using spe
ial hardware support that identi�esthreads at run-time [16, 19℄. We use a software approa
h.However, we perform the 
ompilation step on the sequentialexe
utable �le. As a result, we do not need to re
ompile theprogram and 
an operate on lega
y 
odes.We have developed a binary annotator that identi�es unitsof work for ea
h thread and the register-level dependen
es be-tween these threads. Currently, we limit the threads to innerloop iterations. In our analysis, we mark the entry and exitpoints of ea
h loop. During the 
ourse of exe
ution, when aloop entry point is rea
hed, multiple threads are spawned tobegin exe
ution of su

essive iterations spe
ulatively. How-ever, we follow sequential semanti
s for thread 
ompletion.The binary annotator is dis
ussed in Appendix A.Unlike register dependen
es, memory dependen
es 
annotbe easily identi�ed from the binary. Therefore, we assign thefull responsibility of dete
ting memory dependen
es to thehardware. We designed a modi�ed 
a
he-
oheren
e proto
olto enfor
e data dependen
es as well as to dete
t their violationin a distributed manner [12℄. When a data dependen
e viola-tion o

urs | for example when a thread generates a datumthat a spe
ulative su

essor thread has already prematurely
onsumed | threads are squashed and then restarted. Wesquash the thread that violated the dependen
e and all itssu

essors. Overall, our 
a
he 
oheren
e proto
ol is similarto others [8, 10, 23℄. We do not detail it here be
ause itplays no role in evaluating the importan
e of 
ommuni
ationlaten
y for 
ompiler-identi�able dependen
e values. Finally,threads 
an also be squashed for 
ontrol dependen
e viola-tions. Spe
i�
ally, as soon as we identify the last iteration ofthe loop, any iterations that were spe
ulatively spawned afterit are squashed.4 Evaluation Environment4.1 Ar
hite
tures ModeledWe model CMPs with 4 pro
essors, where the pro
essors 
anbe 1-, 2-, or 4-issue dynami
 supers
alars. The supers
alar
ore is modeled on the lines of the MIPS R10000 [18℄. This
ore has a large fully-asso
iative instru
tion window alongwith integer and 
oating-point registers for renaming. Someof its 
hara
teristi
s are shown in Table 1. A 2K-entry dire
t-mapped 2-level bran
h predi
tion table allows multiple bran
hpredi
tions to be performed even when there are pending un-

resolved bran
hes. All instru
tions take 1 
y
le to 
omplete.The only ex
eptions are multiply and divide operations. In-teger multiplies and divides take 2 and 8 
y
les respe
tively.Floating-point multiplies take 2 
y
les, while 
oating-point di-vides take 4 
y
les for single pre
ision and 7 
y
les for doublepre
ision.Issue Number of Entries in Number ofWidth Fun
t. Units Instru
tion Renaming Regs.(int/ld-st/fp) Window (int/fp)1 1/1/1 16 16/162 2/1/1 32 32/324 4/2/2 64 64/64Table 1: Chara
teristi
s of the dynami
 supers
alar
ore.We model the memory subsystem in detail. Ca
hes are nonblo
king and support full load bypassing. We assume a perfe
tI-
a
he for all our experiments and model only the D-
a
hehierar
hy. The 4-, 2-, and 1-issue pro
essors 
an have up to 32,16, and 8 outstanding memory a

esses respe
tively, of whi
h16, 8, and 4 
an be loads respe
tively. Ea
h pro
essor in theCMP has a relatively small private L1 
a
he of 16 Kbytes. Allpro
essors share a larger on-
hip L2 
a
he. The 
hara
teristi
sof the memory hierar
hy are shown in Table 2.Parameter Value[L1 / L2℄ Ca
he Size (Kbytes) [16x4 / 1024℄[L1 / L2℄ Ca
he Line Size (Bytes) [32 / 64℄[L1 / L2℄ Ca
he Asso
iativity [2 / 4℄L1 Banks 3L1 Laten
y (Cy
les) 1L2 Laten
y (Cy
les) VariableMemory Laten
y (Cy
les) 26Table 2: Chara
teristi
s of the CMP memory hier-ar
hy. All laten
ies 
orrespond to a 
ontention-freeround trip from the pro
essor.4.2 Simulation Approa
hWe evaluate the ar
hite
tures using an exe
ution-driven sim-ulation environment [11℄. Our environment in
ludes MINT asa front-end [25℄. The environment 
aptures both appli
ationand library 
ode and generates events by instrumenting bina-ries. The ba
k-end simulator is very detailed and performs a
y
le-a

urate simulation of the di�erent CMP ar
hite
tures.As appli
ations, we use highly-optimized sequential bina-ries generated by the MIPS 
ompiler. The appli
ations in-
lude four programs from the SPEC95 suite (hydro2d, wave5,li, and ijpeg), two programs from the MediaBen
h suite [13℄(adp
m and epi
), and two programs from the Perfe
t Clubsuite [1℄ (trfd and o
ean). Table 3 lists the appli
ations. Weuse the train set as input for the SPEC95 appli
ations and thedefault input for the rest of the appli
ations. We 
hose theseappli
ations be
ause they are good 
andidates for spe
ulativeexe
ution. The integer appli
ations have many 
ross-iterationdependen
es. The 
oating-point appli
ations, ex
ept for hy-dro2d, 
annot be parallelized e�e
tively even with advan
edparallelizing 
ompiler te
hniques [2, 9℄.Table 3 gives additional loop-level details for ea
h appli
a-tion. The data is 
olle
ted while exe
uting the appli
ationsin sequential mode. The third 
olumn (A) gives the totalnumber of loops that are identi�ed and annotated by our bi-nary annotation pass. These are the inner loops of the 
ode.The fourth 
olumn gives the per
entage of time that is spentin these loops relative to overall exe
ution time. From theper
entage of time spent in these loops, we see that the fourpro
essors in the CMP will be a
tive over 94% of the serial



Integ. Number Per
ent. Number of Loops w/ Per
ent. Weighted WeightedAppli
ation or of Inner of Serial Compiler-Identi�able of Serial Iteration Number ofFloat. Loops Time Cross-Iteration Time Grain Size Cross-Iteration(A) in (A) Dependen
es (B) in (B) (Instru
t.) Dependen
eshydro2d Float 128 100 23 34 46 1.53wave5 Float 86 86 25 53 50 1.50o
ean Float 58 98 16 69 31 1.91trfd Float 20 65 13 64 35 3.37li Integ 18 50 7 27 31 2.98ijpeg Integ 112 79 43 26 70 2.46adp
m Integ 1 100 1 100 71 6.00epi
 Integ 25 94 12 35 53 1.50Harmoni
 Mean 80 42 44 2.15Table 3: Loop-level pro�le of the appli
ations used.time in four appli
ations, namely hydro2d , o
ean, adp
m, andepi
. They will be a
tive over 79% of the serial time in wave5and ijpeg . For li and trfd , there is a large portion of the 
odethat is run serially on one pro
essor. On average, for all theappli
ations, we are able to perform spe
ulative paralleliza-tion on over 80% of the serial exe
ution time using our binaryanalysis.The �fth 
olumn in the table shows how many of the anno-tated loops have 
ompiler-identi�able 
ross-iteration depen-den
es. For this 
ategory, we ignored dependen
es 
aused byindu
tion variables. It must be mentioned that, even thoughhydro2d 
an be fully parallelized by Polaris [2℄ or SUIF [9℄, theoptimized sequential binary generated by the MIPS 
ompilerintrodu
es some dependen
es by assigning to registers thosememory lo
ations that are repeatedly loaded in su

essive it-erations. This strategy avoids redundant loads to be issuedto the L1 
a
he, although it for
es arti�
ial 
ross-iteration de-penden
es to appear. This e�e
t o

urs to a 
ertain extent inthe other 
oating-point appli
ations, even though these otherappli
ations also have true dependen
es. The sixth 
olumngives the per
entage of serial time that is spent in these loopswith identi�able dependen
es. It is this part of the exe
u-tion time that 
an be a�e
ted by using a fast inter-pro
essor
ommuni
ation s
heme as dis
ussed before.Finally, the last two 
olumns give the iteration grain sizeand the number of 
ross-iteration dependen
es on a weightedbasis. Rather than giving a simple average value of all therelevant loops, we give a weighted average: we assign a weightto ea
h relevant loop based on the fra
tion of serial time spentin that loop. Hen
e a loop that dominates the exe
ution timewill tend to 
ontribute more to the grain size and number of
ross-iteration dependen
es. The �ne grain sizes shown in thetable highlight the need to use a hardware-based approa
h tothread initiation and termination as opposed to a software-based one. Furthermore, the last 
olumn tells us that, mostoften, an iteration only needs to 
ommuni
ate a 
ouple ofvariables to su

essor iterations.4.3 Statisti
s Colle
tionWe gather detailed statisti
s on an issue-slot basis. For ea
hpro
essor in the CMP, we s
an the entire instru
tion windowevery 
y
le and re
ord the type of hazard fa
ed by ea
h in-stru
tion that is unable to issue. At the end of the program,the total wasted slots are divided proportionally among thedi�erent types of hazards re
orded. The di�erent types ofhazards that we 
onsider are: waiting on a datum transferredfrom a prede
essor thread (syn
), data dependen
es (data),waiting on a memory a

ess (memory), waiting due to a se-rial se
tion (serial), and instru
tions squashed on bran
h mis-predi
tions or when a thread is squashed (squashed). Thereis also an other 
ategory, whi
h in
ludes slots wasted due tostru
tural hazards, 
ontrol hazards (restarting the pipelineafter a bran
h mispredi
tion), and due to la
k of renaming

registers. Finally, the issued instru
tion slots are grouped un-der issued .5 Impa
t of Communi
ation La-ten
y in a Spe
ulative CMPTo evaluate the performan
e impa
t of memory-level 
ommu-ni
ation, we simulate CMPs where all the 
ross-thread depen-den
es that 
ould use register 
ommuni
ation are 
ommuni-
ated through the L2 
a
he. The threads are syn
hronizedusing a full-empty bit me
hanism [21℄. We assume spe
ialstorage beside the shared L2 
a
he where the syn
hronizationvariables are kept. For our experiments, we do not 
onsiderindu
tion variables, nor do we model the extra instru
tionsthat are needed to evaluate those variables independently inea
h pro
essor of the CMP. We 
onsider three types of CMPsthat di�er in the issue width of their four pro
essors: 1, 2, and4-issue (Se
tion 4.1). We negle
t any port 
ontention to a
-
ess the 
ommuni
ated variables in the L2 
a
he. We 
onsiderthree environments by varying the laten
y of the L2 
a
he. Inthese environments, the one-way trip laten
y from the pro-
essor to the L2 
a
he is 5, 3, and 0 
y
les respe
tively. Inthe latter environment, 
alled Ideal, there is no 
ommuni
a-tion laten
y: any produ
er update is visible to the 
onsumerinstantaneously.Figure 2 shows the exe
ution time of the eight appli
ationson a CMP with four 1-issue dynami
 pro
essors. The exe
u-tion time is divided into the di�erent 
ategories des
ribed inSe
tion 4.3. For ea
h appli
ation, the bars are normalized tothe Ideal environment. The IPC for ea
h appli
ation and L2
a
he laten
y is given at the top of the �gure.From the �gure, we 
an see that the added L2 
a
he laten
ytranslates dire
tly into a large syn
hronization time, therebyresulting in an in
reased exe
ution time. Note that, in oursetup, a pro
essor in the CMP does not blo
k if the a

ess tothe full-empty bit does not immediately su

eed. Instead, thea

ess remains outstanding and the pro
essor 
an 
ontinueissuing instru
tions not dependent on that a

ess. In the �g-ure, the syn
 time in Ideal shows the time when the 
onsumerarrives at the syn
hronization point before the produ
er. Ap-pli
ations su
h as wave5 , o
ean and trfd have little or no syn
time in Ideal. This denotes that the value is always availableto the 
onsumer. However, with an in
rease in 
ommuni
a-tion laten
y, syn
 time be
omes signi�
ant enough to 
ause aperforman
e degradation of 19% to 35%.Adp
m belongs to the other extreme 
ase, where even Idealhas syn
 time. Though this appli
ation has pra
ti
ally noserial se
tions and fully exploits the spe
ulative mode, theperforman
e is severely a�e
ted by the presen
e of several
ross-iteration dependen
es. This invariably results in manyinstru
tions being unable to issue, eventually leading up toan exe
ution stall. An in
rease in the 
ommuni
ation laten
y
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Figure 2: Impa
t of the L2 
a
he laten
y on the exe
ution time and IPC for a CMP based on four 1-issuedynami
 pro
essors.
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Figure 3: Impa
t of the L2 
a
he laten
y on the exe
ution time and IPC for a CMP based on four 2-issuedynami
 supers
alar pro
essors.only exa
erbates the problems, resulting in a 50% slowdownrelative to Ideal. The remaining appli
ations also performpoorly as 
ommuni
ation laten
y in
reases. Overall, we ob-serve performan
e losses of 6-31% with a 3-
y
le L2 
a
hea

ess laten
y and 8-52% with a 5-
y
le laten
y.Sin
e CMPs will likely be built out of supers
alar pro
es-sors, Figures 3 and 4 show the results of the previous exper-iments for CMPs with 2- and 4-issue dynami
 supers
alarsrespe
tively. Comparing this data to that in Figure 2, wesee that, for nearly all appli
ations, the performan
e di�er-en
e between Ideal and the rest has widened. For example,while for the 1-issue pro
essors the average di�eren
e in per-forman
e between Ideal and 5-
y
les is 23%, the di�eren
ejumps to 34% for the 2-issue pro
essors (Figure 3) and, �-nally, to 45% for the 4-issue pro
essors (Figure 4). Theseresults show that there is a need for a fast 
ommuni
ationme
hanism for these variables in spe
ulative CMPs, and thatit be
omes more important when higher-issue pro
essors areused as building blo
ks.6 Hardware Support for Register-Level Communi
ationThe fast 
ommuni
ation needed in spe
ulative CMPs may ormay not support register-level 
ommuni
ation. However, asmentioned in Se
tion 2, supporting register-level transfers hasadded bene�ts. Consequently, we propose to support 
exibleinter-thread register 
ommuni
ation by augmenting a 
onven-tional s
oreboard to what we 
all a Syn
hronizing S
oreboard(SS).For our hardware to work, ea
h thread maintains its status

in the form of a bit mask (
alled ThreadMask) in a spe-
ial register. The status of a thread 
an be any of the fourvalues shown in Table 4. Inside a loop, the non-spe
ulativethread exe
utes the 
urrent iteration. Spe
ulative su

essors1, 2, and 3 exe
ute the su

essor iterations, whi
h we 
all the�rst, se
ond, and third spe
ulative iteration respe
tively. Asthreads 
omplete, the non-spe
ulative ThreadMask will movefrom one thread to its immediate su

essor. In the follow-ing, we des
ribe the SS, assess its 
omplexity, and evaluate itsperforman
e.Thread Status ThreadMaskNon-Spe
ulative 0001Spe
ulative Su

essor 1 0011Spe
ulative Su

essor 2 0111Spe
ulative Su

essor 3 1111Table 4: Possible status of a thread.6.1 The Syn
hronizing S
oreboard (SS)We propose a fully-de
entralized stru
ture, where ea
h pro
es-sor has its own SS. The SS is a s
oreboard augmented withadditional bits. It is used by a thread to syn
hronize and
ommuni
ate register values with other threads. The SSs inthe di�erent pro
essors are 
onne
ted with a broad
ast bus,on whi
h register values are transferred. This bus, whi
h we
all the SS Bus, has a limited bandwidth of 1 register per
y
le and one read and one write port to the register �le ofea
h pro
essor. For a 4-pro
essor CMP, a value written bya pro
essor onto the bus takes between 1 to 3 
y
les without
ontention to get to the destination pro
essor, depending onthe physi
al distan
e between the produ
er and the re
eiverpro
essors. The laten
y assumes a 0.13�m 
hip te
hnology,
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Figure 4: Impa
t of the L2 
a
he laten
y on the exe
ution time and IPC for a CMP based on four 4-issuedynami
 supers
alar pro
essors.where a signal takes up to 4 
lo
k 
y
les to traverse the entiredie [17℄. After ea
h 
y
le, the values are lat
hed before beingdriven to the next stage in the following 
y
le. Thus, arbitra-tion for the bus is performed one stage at a time. Dependingon the dire
tion of the message, the value is stored in oneof two dire
tional lat
hes at ea
h stage. A pro
essor 
annotwrite a new value onto the bus when a value is pending in its
orresponding staging lat
hes. The overall hardware setup isshown in Figure 5.

F  F  F  F    S  S  S  S
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Processor 1
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Registers

(Replicated)

0   1   2   3Figure 5: Hardware for register 
ommuni
ation.6.1.1 Data Stru
turesAs in a 
onventional s
oreboard, ea
h SS has one entry perregister. Figure 5 shows the di�erent �elds for one entry.The �elds are grouped into lo
al and global �elds. The lo
al�elds are private to ea
h pro
essor. To avoid 
entralization,the global �elds are repli
ated but easily kept 
oherent a
rossthe SSs in the di�erent pro
essors. This is des
ribed later inthe se
tion. The global �elds in
lude the Syn
 (S) and theStartSyn
 (F) �elds. Ea
h of these �elds has one bit for ea
hof the pro
essors on 
hip. Table 5 shows an example of theglobal �elds of a SS.RegID StartSyn
 Syn
F0F1F2F3 S0S1S2S3...13 0 1 0 0 0 1 0 014 1 0 1 0 1 0 0 0...Table 5: Example of the global �elds of a SS.For a given register, the Si bit, if set, implies that the threadrunning on pro
essor i has not made the register available tosu

essor threads yet. When a thread starts on pro
essor i,it sets the Si bit for all the looplive registers (see AppendixA) that the thread may 
reate. The Si bit for a register is
leared when the thread exe
utes either a safe de�nition orthe release instru
tion for that register (Appendix A). When

this o

urs, the thread also writes the register value on thebus, thereby allowing other pro
essors to update their valuesif needed. At that point, the register is safe to be used bysu

essor threads.The Fi and Si bits for all the registers are automati
allyinitialized with dedi
ated hardware. They are set in the SSof all pro
essors when a thread starts on pro
essor i. TheF bit simply keeps the value that S was given to when thethread was initiated in the pro
essor. From then on, the F bitremains un
hanged throughout the exe
ution of the thread.The Fi bits are used to indi
ate the looplive registers that maybe generated at any time during the iteration by the threadrunning on pro
essor i.The private �elds in
lude the Valid (V) and Sent (X) �elds.We will 
onsider the X �eld later. The V bit for ea
h registertells whether the pro
essor has a valid 
opy of the register.When a parallel se
tion of the 
ode is rea
hed, the pro
essorsthat were idle in the pre
eding serial se
tion start with their Vbits set to zero. The V bit for a register is set when the registervalue is generated by the lo
al thread or is 
ommuni
ated fromanother pro
essor.Within a given parallel se
tion, a pro
essor 
an reuse regis-ters a
ross threads. When a pro
essor initiates a new thread(the latest spe
ulative thread), it sets the V bit for ea
h of itsregisters as: V = V � [Fpred. This invalidates any registersthat are written by any of the three prede
essor threads.Note that the startup overhead for spe
ulative task initi-ation involves just setting a register bit-mask for the 
orre-sponding thread ID in the SS and initializing the program
ounter to start exe
ution at a spe
i�
 lo
ation. This 
an bea
hieved with modest hardware in a single 
y
le.6.1.2 Communi
ationRegister 
ommuni
ation between threads 
an be produ
er-initiated or 
onsumer-initiated. The produ
er-initiated ap-proa
h has already been outlined. When a thread performs asafe de�nition for a register or exe
utes a release instru
tionfor a register, it 
lears the S bit for the register and writesthe register on the SS bus. At that point, in hardware, ea
hof the su

essor threads 
he
ks its own V bit for the registerand also the F bits for all the threads between the produ
er(non-in
lusive) and itself (in
lusive) for the same register. Ifall these bits are zero, the hardware in the su

essor threadautomati
ally loads the register and sets the V bit of the 
or-responding register to 1. At the same time, the hardware also
lears the S bit 
orresponding to the produ
er thread in allthe SSs. The F bits, however, remain un
hanged.It is possible that the 
onsumer thread is not yet runningwhen the produ
er generates the register. We 
ould allow



the values to be stored by using a bu�ered 
ommuni
ationme
hanism, rather than using a simple broad
ast bus. Thebu�er would have to potentially hold all the live registers afterthe last spe
ulative thread until a new thread is initiated onthe su

essor. In addition, this approa
h would require fur-ther hardware support in the form of dupli
ate register setsin ea
h pro
essor to enable re
overy from squashes [3℄. Al-ternatively, a global register set may be maintained to storethese values [20℄, but at the 
ost of maintaining an additional
entralized stru
ture.Instead, in our s
heme, we add minimal hardware to alsosupport a 
onsumer-initiated approa
h, where 
ommuni
ationo

urs when the 
onsumer needs the register. To support it,the SS has logi
 that allows a 
onsumer thread to identifythe 
orresponding produ
er and get the register value fromit. The logi
 works as follows. The 
onsumer thread �rst
he
ks the V bit for the register. If it is set, the register islo
ally available. Otherwise, the F bit of the immediately pre-
eding thread is 
he
ked. If it is set, the prede
essor threadis the produ
er. If the prede
essor's S bit is set, it meansthat the register has not been produ
ed yet and the 
onsumerblo
ks. Otherwise, the 
onsumer gets the register value fromthe prede
essor. However, if the thread immediately pre
ed-ing the 
onsumer has F equal to zero, that thread 
annot bethe produ
er. In that 
ase, the bit 
he
ks are repeated onthe next previous thread. This pro
ess is repeated until thenon-spe
ulative thread is rea
hed. For example, assume thatthread 0 is the non-spe
ulative thread, that threads 1, 2, and3 are spe
ulative, and that thread 3 tries to read a register.In that 
ase, the register will be available to thread 3 if:V3 + S2(F2 + S1(F1 + S0)) (1)Suppose now, instead, that thread 1 is the non-spe
ulativethread, that threads 2, 3, and 0 are spe
ulative threads, andthat the a

ess 
ame from the highest spe
ulative thread,namely 0. In that 
ase, the register will be available to thread0 using a similar equation:V0 + S3(F3 + S2(F2 + S1)) (2)The a

esses to these bits are always masked out with theThreadMask of Table 4. In examples (1) and (2), the request
ame from spe
ulative su

essor 3. Therefore, we have usedmask 1111, thereby enabling all bits and 
omputing the wholeexpression (1) or (2). Consider a s
enario like in (2), wherethread 1 is non-spe
ulative, ex
ept that the a

ess 
ame fromthread 3 (spe
ulative su

essor thread 2). Consequently, wewould use ThreadMask 0111 from Table 4. This means thatwe are examining only 2 prede
essors. The fun
tion is:V3 + S2(F2 + S1)Overall, the 
omplete logi
 to determine whether a reg-ister is available is shown in Figure 6. This logi
 is addedfor ea
h register in the pro
essor. If the register is available,the reader thread gets the value from the 
losest prede
essorwhose F bit is set (the thread should generate the register)and S bit is 
lear (the thread has already generated it). Ifall the bits are 
lear, the non-spe
ulative thread provides thevalue. The transfer of the value is initiated by the 
onsumerthread putting a request on the SS bus to read the regis-ter from the appropriate thread. The request and the replymessages 
an take 1-3 
y
les ea
h, depending on the distan
ebetween produ
er and 
onsumer, plus the 
ontention for theSS bus.Sin
e the S and F bits are de
entralized, it is the responsi-bility of the hardware in ea
h of the pro
essors to automati-
ally update the bits. Sin
e there is a delay in the SS bus, fora short period of time, the bits may be in
onsistent a
ross pro-
essors. However, the proto
ol has been designed su
h thatthere is no e�e
t on the 
orre
tness of the overall me
hanism.For example, when a produ
er pro
essor writes a register on

the SS bus, the S bit for the produ
er will be reset. During ashort period of time, the bit will be 0 in the pro
essors 
loserto the produ
er while it is still 1 in the pro
essors far awayfrom it. However, when the register value from the produ
errea
hes the end pro
essor, the S bit for the produ
er pro
essorin the end pro
essor is zeroed out.6.1.3 ExampleIn this se
tion, we give an example of how the SS entries
hange. Let threads t, t+ 1, t+ 2, and t+ 3 exe
ute on pro-
essors 0, 1, 2, and 3 respe
tively. Assume that all threads,ex
ept t, have r3 marked invalid and that thread t + 1 pro-du
es a live-out value. The SS entry appears as follows. Notethat ea
h V bit is lo
al to a pro
essor and is denoted by thesubs
ript, while the F and S bits are global and repli
ated.Pro
essor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe
 spe
1 spe
2 spe
3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 0 0 0 0 1 0 0 0 1 0 0When thread t+1 updates r3, it 
lears its S bit and writesthe register for its su

essors to read. This is a produ
er-driven approa
h. The SS entry looks as follows:Pro
essor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe
 spe
1 spe
2 spe
3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 1 1 1 0 1 0 0 0 0 0 0Now, assume that t 
ompletes and a new thread t + 4 isinitiated on pro
essor 0. Note that r3 in pro
essor 0 is stale.At this point, V for pro
essor 0 (V0) is set a

ording to V0 =V0 � [Fpred. Sin
e F1 = 1, V0 is set to 0. The s
oreboardentry looks as follows:Pro
essor 0 1 2 3Thread t+ 4 t+ 1 t+ 2 t+ 3Status spe
3 non-spe
 spe
1 spe
2V0 V1 V2 V3 F0F1F2F3 S0S1S2S30 1 1 1 0 1 0 0 0 0 0 0Now, when t + 4 tries to read r3, it 
he
ks the registeravailability logi
, V0 + S3(F3 + S2(F2 + S1)), whi
h evaluatesto TRUE, and determines that the value is available from thenon-spe
ulative thread t+ 1. At that point, it puts a requeston the SS bus. This is a 
onsumer-driven approa
h. Finally,when pro
essor 1 supplies the value to the bus, pro
essor 0reads register r3.6.1.4 The Last Copy ProblemWhen the last spe
ulative thread updates a looplive register,it has no su

essors to whi
h it 
an send the value. As a result,any future 
onsumer threads will have to expli
itly request it.Also, re
all that when a new thread is initiated, it invalidatesany lo
al register that a prede
essor may produ
e. Underthese 
onditions, a situation may o

ur where all the 
opiesof a given register on 
hip are about to be
ome invalid. We
all this the last 
opy problem.The last 
opy problem is illustrated in Figure 7. In theexample, register r3 is live a
ross all threads. Ea
h threadreads r3 before writing it. Therefore, any thread will inval-idate its lo
al 
opy of r3 on initiation. In Figure 7-(a), thelast spe
ulative thread (thread 3) updates r3 and no otherthread 
onsumes it. Some time later, threads 0, 1, and 2 have�nished; threads 4, 5, and 6 have started in their pla
e; and
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Figure 7: The last 
opy problem. The arrow pointsto the 
urrently-exe
uting instru
tions.thread 3 has a
quired non-spe
ulative status and is about to�nish (Figure 7-(b)). If we now spawn thread 7 on the right-most pro
essor, we fa
e the last 
opy problem: r3 will be lost.This is be
ause thread 4 has not read r3 yet, while thread 7will 
lear its valid bit for r3 upon initialization.The last 
opy problem will not o

ur if we use a 
ommuni-
ation me
hanism that bu�ers live-out values to per
olate tothe new threads, or when there is a 
entralized global registerset that maintains live-out values. For instan
e, the Multi-s
alar pro
essor [22℄ uses the �rst approa
h. A ring stru
-ture is used to forward register values. All values move fromone thread to another in the ring and are bu�ered after thelast spe
ulative thread until they 
an be forwarded further.The forwarding 
an pro
eed on
e the non-spe
ulative threadis 
ompleted and a new thread initiated on it. Sin
e this is afully produ
er-driven approa
h, registers must be ba
ked upin 
ase the 
onsumer thread is squashed. Thus, ea
h pro
es-sor maintains two 
opies of the register �le: one to maintainthe past values and the other to store the present values. For-warded 
opies from prede
essors are held by the past registerset, while the new ones 
reated by the thread are held in thepresent set. In addition, to restore the state, up to 6 di�erentregister masks are maintained in ea
h pro
essor [3℄. This isin 
ontrast to our s
heme, whi
h supports both a produ
er-and a 
onsumer-driven approa
h, thereby simplifying re
ov-ery from squashes. Squashed threads that are restarted simplyre-request the register values from the appropriate produ
er.The Tra
e pro
essor [20℄ avoids the last-
opy problem bykeeping a 
entralized global register set that is visible to allpro
essors. This is in addition to the lo
al register set in

ea
h pro
essor. Live-out register values are sent to the globalregisters, from where any pro
essor 
an read them.In both of the above approa
hes, the ar
hite
ture mustprovide signi�
ant hardware support for spe
ulation. Unfor-tunately, all these resour
es remain unutilized when runningappli
ations that do not need spe
ulative parallelization.Our SS design 
an be enhan
ed with simple hardware sup-port to over
ome the last-
opy problem. The idea is for ea
hthread to remember whi
h of the other 3 threads it has for-warded the register to. This in
ludes both produ
er- and
onsumer-initiated transa
tions. Consequently, ea
h pro
es-sor has 3 private bits per register 
alled the Sent (X) bits.They are set if the register has been sent to the 
orrespond-ing thread. These bits are used as follows. Before we retirea non-spe
ulative thread, we will use the Sent bits to ensurethat no last-
opies of registers are going to be lost. For anysu
h last-
opy, the thread will simply write it on the SS bus,so that spe
ulative threads read it.The logi
 used by the non-spe
ulative thread to identifylast 
opies is as follows. Assume that pro
essor 0 performsthe 
he
k. For ea
h of the looplive registers (those with theF0 bit set) that it produ
es, the register needs to be writtenon the SS bus if X1(F1 +X2(F2 +X3)) evaluates to FALSE.The idea is to 
he
k if the looplive value has rea
hed up tothe thread that kills the value. If Fi is set, then that threadkills the value. The logi
 is repli
ated for ea
h register asin the 
ase of register availability. At thread retire time, ea
hregister 
an be 
he
ked in parallel for last-
opy status. Finally,when a new thread is initiated on a pro
essor, the remainingpro
essors 
lear the 
orresponding X bit, thereby noting thatthe value is yet to be sent to the new thread.6.2 Complexity of the SSTo understand the 
ost of the SS me
hanism, we examine itsarea and its potential impa
t on the pro
essor's 
y
le time. Toestimate the area, we need to 
onsider �rst the logi
 to 
he
kfor register availability and last-
opy status (Se
tions 6.1.2and 6.1.4). The AND-OR logi
, whi
h is traditionally imple-mented as a 
arry-propagate-kill fun
tion, and the extra gatesto sele
tively mask out some of the S, F, and X bits requireonly a few gates. Repli
ating this logi
 for ea
h register im-plies an extra overhead of only a few hundreds of gates evenfor a pro
essor with a large number of registers.In addition, the register �le in ea
h pro
essor needs someextra spa
e to store the V, X, F, and S bits. The numberof extra bits per register is 3n, where n is the number ofpro
essors on 
hip (Figure 5). For a 4-pro
essor CMP with64-bit registers, this works to around 12% storage overhead.Finally, we need to in
lude a SS bus in the 
hip. Overall,however, we feel that these are modest hardware requirementswhen 
ompared to repli
ating the register sets in ea
h pro
es-sor [3℄ or using a 
entralized global register �le [20℄.As for the impa
t on 
y
le time, if we refer to equation (1)in Se
tion 6.1.2, it may seem that, in the worst-
ase s
enariowhere all the bits have to be 
onsidered, the delay in
urred bythe SS logi
 in
reases qui
kly with the number of pro
essors inthe CMP. However, by using a binary-tree approa
h, the logi

an be implemented using only log2 n levels of gates, where nis the number of pro
essors in the CMP. Consequently, this
ir
uitry is shallow and unlikely to a�e
t the 
y
le time. Fur-thermore, the SS bus is implemented with staging bu�ers.By pipelining the bus in this manner, we likely eliminate anyadverse impa
t on the pro
essor 
y
le time.Finally, we note that the 
omplexity that we add to theregister �les is modest: we add only one read and one writeport to ea
h register �le.



6.3 Evaluating the SS Performan
eWe now evaluate a CMP augmented with our SS and 
om-pare its performan
e to the Ideal environment of Se
tion 5.Re
all that, in Ideal, there is no 
ommuni
ation laten
y: anyprodu
er update is visible to the 
onsumer instantaneously.Figure 8 shows the exe
ution time of the eight appli
ations ona CMP with four 4-issue pro
essors under our SS hardwareand under Ideal. The exe
ution time is normalized to Ideal.In our simulations, we assume a SS bus with a high band-width (5 words per 
y
le), so that we 
an fa
tor out the e�e
tof 
ontention. We will redu
e the bandwidth later. Registersare 1-word wide. Re
all that the request and reply messagesin the SS 
an take 1-3 
y
les ea
h.
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Figure 8: Performan
e of a CMP with four 4-issuepro
essors under our SS hardware and under Ideal.The �gure shows that, for all the appli
ations, the perfor-man
e of SS is very 
lose to that of Ideal. The SS introdu
esvery little overhead. This �gure should be 
ompared to Fig-ure 4, whi
h 
ompared Ideal to CMPs where all 
ommuni-
ation o

urred via the L2 
a
he. That �gure showed that
ommuni
ation via the L2 
a
he slows down the appli
ationsby an average of 23% (for a 3-
y
le one-way a

ess to the L2
a
he) and 45% (for a 5-
y
le a

ess). These results, therefore,indi
ate that fast 
ommuni
ation is very bene�
ial.The fa
t that there is a 3-
y
le laten
y between pro
essorsthat are lo
ated far apart does not seem to a�e
t the per-forman
e mu
h. This may suggest that, most of the time,the produ
er and 
onsumer threads are in adja
ent pro
es-sors of the CMP. This would be 
onsistent with [6℄, whi
hindi
ated that, in 70-80% of the 
ases, the register valuesare 
onsumed by the immediate su

essor thread. Anotherfa
tor that helps redu
e the e�e
t of laten
y is the supportfor produ
er-initiated 
ommuni
ation. It avoids unne
essarydelay when the 
onsumer �nally needs the value. Finally,register 
ommuni
ation is also faster be
ause it needs fewerinstru
tions than memory 
ommuni
ation.We now 
hange the bandwidth of the SS bus to determineits impa
t on performan
e. Figure 9 shows the exe
ution timeof the appli
ations for values of bus bandwidth ranging from1 word per 
y
le to in�nite bandwidth. For ea
h appli
ation,the exe
ution time is normalized to the time taken when thebandwidth is 1 word per 
y
le. From the �gure, we 
an seethat there is little performan
e gain in in
reasing the band-width of the SS bus beyond one word per 
y
le. In fa
t, anenvironment with in�nite bandwidth is less than 5% faster.Consequently, we suggest a bus bandwidth no higher than 1register per 
y
le.Overall, we 
on
lude that support for fast 
ommuni
ationis quite bene�
ial for CMPs with wide-issue dynami
 super-s
alars. In addition, we have shown that this support 
an beprovided at the register level with modest hardware require-
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Figure 9: Impa
t of 
hanging the bandwidth of theSS bus on the exe
ution time.ments.7 Con
lusionsChip-multipro
essor ar
hite
tures (CMP) are a promising de-sign alternative to exploit the ever-in
reasing number of tran-sistors that 
an be put on a die. Sin
e CMPs must also han-dle appli
ations that are diÆ
ult to parallelize, mu
h e�orthas gone into providing support for spe
ulative paralleliza-tion. For spe
ulative CMPs that are based on high-issue dy-nami
 supers
alar pro
essors, 
ommuni
ation laten
y is one
riti
al fa
tor in de
iding performan
e. We have shown thatrelying only on a plain memory subsystem for 
ommuni
ationbetween pro
essors degrades the performan
e and that hard-ware support for fast 
ommuni
ation is required. We alsoproposed a hardware s
heme that enables a CMP to perform
ommuni
ation and syn
hronization at the register level. Thehardware support is modest, yet e�e
tive enough to allow theappli
ations to deliver near ideal performan
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Appendix A: Binary AnnotationThe steps involved in the annotation of the binary are illustratedin Figure 10. The approa
h that we use is similar to that of Mul-tis
alar [22℄, ex
ept that we operate on the binary 
ode instead ofon the intermediate 
ode. First, we identify loop iterations andannotate their initiation and termination points. Then, we identifythe register-level dependen
es between these threads. This involvesidentifying looplive registers, whi
h are those that are live at loopentry and exits and may also be rede�ned in the loop. We thenidentify the rea
hing de�nitions at loop exits of all the loopliveregisters. From these looplive rea
hing de�nitions, we identify safede�nitions, whi
h are de�nitions that may o

ur but whose valuewill never be overwritten later in the loop body.
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Figure 10: Binary annotation pro
ess.
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looplive: r3

entry

entry

(safe)r3=..

Figure 11: Safe de�nitions and release points.Similarly, we identify the release points for the remaining def-initions whose value may be overwritten by another de�nition.Figure 11 illustrates the safe de�nitions and release points for alooplive register r3. These points are identi�ed by �rst perform-ing a ba
kward rea
hing de�nition analysis. This is followed by adepth-�rst sear
h, starting at the loop entry point, for ea
h andevery looplive rea
hing de�nition. Finally, indu
tion variables areidenti�ed and their updates are per
olated 
loser to the threadentry point provided the updating instru
tions dominate the exitpoints of the loop. This redu
es the waiting time for the su

eed-ing iteration before it 
an use the indu
tion variable. However, toevaluate the e�e
t of 
ommuni
ation laten
y, we do not 
onsiderindu
tion variables. Instead, we 
onsider only true 
ross-iterationdependen
e variables.In
orporating these additions in a binary is quite simple andrequires only minor extensions to the ISA. Additional instru
tionsare needed only to identify thread entry, exit, and register valuerelease points.At present, our 
urrent approa
h of analyzing sequential binariesis restri
ted to inner loop iterations. Consequently, we 
an onlyexamine appli
ations whi
h are largely loop-based. However, webelieve that the approa
h 
an be easily expanded to in
lude otherse
tions of the 
ode by using heuristi
s similar to those used fortask sele
tion in the Multis
alar pro
essor [26℄.


