
The Need for Fast Communi
ation inHardware-Based Spe
ulative Chip Multipro
essors1Venkata Krishnan2 and Josep TorrellasUniversity of Illinois at Urbana-Champaign, IL 61801Venkata.Krishnan�
ompaq.
om torrellas�
s.uiu
.eduhttp://ia
oma.
s.uiu
.edu
Abstra
tChip-multipro
essor (CMP) ar
hite
tures are a promising de-sign alternative to exploit the ever-in
reasing number of tran-sistors that
an be put on a die. To deliver high performan
eon appli
ations that
annot be easily parallelized, CMPs
anuse additional support for spe
ulatively exe
uting the possi-bly data-dependent threads of an appli
ation. While some ofthe
ross-thread dependen
es in appli
ations must be handleddynami
ally, others
an be fully determined by the
ompiler.For the latter dependen
es, the threads
an be made to syn-
hronize and
ommuni
ate either at the register level or atthe memory level. In the past, it has been un
lear whetherthe higher hardware
ost of register-level
ommuni
ation is
ost-e�e
tive.In this paper, we show that the wide-issue dynami
 pro
es-sors that will soon populate CMPs, make fast
ommuni
ationa requirement for high performan
e. Consequently, we pro-pose an e�e
tive hardware me
hanism to support
ommuni
a-tion and syn
hronization of registers between on-
hip pro
es-sors. Our s
heme adds enough support to enable register-level
ommuni
ation without spe
ializing the ar
hite
ture so mu
htoward spe
ulation that it leads to mu
h unutilized hardwareunder workloads that do not need spe
ulative parallelization.Finally, the s
heme allows the system to a
hieve near idealperforman
e.1 Introdu
tionAdvan
es in VLSI te
hnology now allow over 100 million tran-sistors to be
on�gured on a single pro
essor die [14℄ anda billion-transistor pro
essor
hip is in the oÆng. Unfortu-nately, on-
hip inter
onne
ts are likely to be
ome a signi�
antbottlene
k in future pro
essors, where a signal is expe
tedto take multiple
lo
k
y
les to traverse the entire
hip [17℄.Thus, rather than implementing just one high-issue super-s
alar pro
essor on the
hip, many resear
hers have proposedde
entralized ar
hite
tures wherein multiple simpler pro
ess-ing units are
on�gured on a single
hip.Indeed, the
hip-multipro
essor (CMP) ar
hite
ture hasdrawn great attention, with ar
hite
ts proposing various re-lated designs [5, 10, 12, 16, 20, 22, 23, 24℄. Though the CMPis an ideal platform to run multiple sequential appli
ations ora fully-parallel appli
ation, if it is to be fully a

epted, it mustalso be able to give good performan
e when running a singlesequential appli
ation or one that
annot be parallelized bythe
ompiler e�e
tively. CMPs handle these appli
ations by1This work was supported in part by the National S
ien
e Foun-dation under grants NSF Young Investigator Award MIP-9457436,ASC-9612099, and MIP-9619351, DARPA Contra
t DABT63-95-C-0097, and gifts from Intel and IBM.2Now at Compaq Computer Corporation, 334 South Street,Shrewsbury, MA 01545.

resorting to a spe
ulative mode of exe
ution. In this mode, thethreads that exe
ute on the on-
hip pro
essors do not need tobe fully independent; they may have data dependen
es withea
h other. Su
h spe
ulative threads may be identi�ed ei-ther at
ompile time [4, 10, 12, 22, 23, 24℄ or
ompletely atrun-time with hardware support [16, 19℄.In these spe
ulative CMPs, additional hardware support isneeded to enfor
e inter-thread dependen
es and ensure thatsequential semanti
s are not violated. As a result, threadsmay be squashed and restarted when a dependen
e violationis identi�ed. For example, this o

urs when a thread generatesa datum that a spe
ulative thread has already prematurely
onsumed. The
onsumer thread must then be squashed.Not all of the dependen
es need to be handled in this spe
-ulative manner. Some of the
ross-thread dependen
es
an befully determined by the
ompiler from the stati

ode. In these
ases, spe
ulation
an be avoided. The hardware
an sim-ply syn
hronize the data transfer between pro
essors, therebypreventing a su

essor thread from using a stale value. Thesyn
hronizing data transfer
an o

ur at the memory level(typi
ally a shared L2
a
he) or at the register level with theaid of a fast inter
onne
t to
ommuni
ate the values.1.1 Current StatusThe performan
e of these spe
ulative CMPs is the subje
t ofintense
urrent study. It has been shown that there is
on-siderable performan
e potential for even integer appli
ationsusing this spe
ulative approa
h [23℄.Some designs are largely spe
ialized towards spe
ulation,like the Multis
alar [22℄ and Tra
e [20℄ pro
essors. Theyadd signi�
ant hardware, su
h as dupli
ate registers for ea
hpro
essor along with a bu�ered ring network for
ommuni
a-tion [3℄, or a
entralized global register set in addition to theper-pro
essor register sets [20℄.The other designs have less hardware support for spe
ula-tion [10, 12, 23, 24℄. The philosophy of these \spe
ulative-light" systems is to augment the CMP with just enough sup-port to allow spe
ulative exe
ution, while still maintainingthe generi
 CMP ar
hite
ture to some degree. Within thesedesigns, there are many di�eren
es. While some designs relyheavily on software for spe
ulative thread initiation,
ommitand squash [10, 23℄, others rely on hardware [12, 24℄.Hammond et al [10℄ have shown that large software over-heads in thread initiation and
ommit are responsible for onlymodest speedups, and in a few
ases slowdowns, of a spe
u-lative CMP over using just one pro
essor in the CMP. Theauthors further state that the grain size of the thread playsan important role in spe
ulative exe
ution. When it is toolarge, the probability of a dependen
e violation o

urring in-
reases leading to mu
h wasted work. On the other hand,when the grain size is small (< 100 instru
tions), softwareoverheads be
ome signi�
ant enough that they warrant hard-ware support for thread initiation and
ommit.Another fa
tor that a�e
ts performan
e is the
ommuni
a-tion of
ompiler-identi�able
ross-thread dependent values be-

tween pro
essors. Currently, an important di�eren
e betweenspe
ulative CMP ar
hite
tures is whether they support fast
ommuni
ation [12, 16, 20, 22℄ or not [10, 23℄. It is possiblethat register-allo
ating frequently-shared variables along withadding extra hardware for
ommuni
ating the values qui
klymay prove bene�
ial. Without su
h hardware support, a spe
-ulative pro
essor has to perform additional load and store op-erations to use the memory system to
ommuni
ate values.A study of the performan
e impa
t of
ommuni
ation la-ten
y in spe
ulative CMPs [23℄ argues that a fast
ommuni-
ation s
heme may not be required and that
ommuni
ationthrough the memory subsystem is suÆ
ient. However, su
h astudy was performed assuming CMPs made of stati
 single-issue pro
essors. In addition, it assumed threads of large grainsize, where the instru
tions were aggressively hand-s
heduledto minimize the waiting time for the
onsumer thread.However, future spe
ulative CMPs are likely to be popu-lated with wide-issue dynami
 supers
alars. In these systems,a faster mode of
ommuni
ation, possibly at the register level,may be required. Moreover, in the absen
e of the aggressiveinstru
tion s
heduling te
hniques assumed in [23℄, CMPs mustbe able to exploit �ner-grain parallelism better if they are tomat
h the performan
e of a
onventional supers
alar usingthe same die area [10℄.1.2 Our ContributionOur
ontribution is to study the impa
t of inter-pro
essor
ommuni
ation laten
ies in spe
ulative CMPs with wide-issuedynami
 supers
alars. Our design point is a \spe
ulative-light" CMP (in the sense dis
ussed above), but one in whi
hthread initiation,
ommit and squash are done with low over-head in hardware to allow better exploitation of threads withsmall grain size. Furthermore, our appli
ations are sequentialexe
utable �les, from whi
h we automati
ally extra
t threadswithout re
ompiling the sour
e.We show that wide-issue dynami
 supers
alars make fast
ommuni
ation a requirement for high performan
e. Con-sequently, we propose a hardware me
hanism to support
ommuni
ation and syn
hronization of registers between on-
hip pro
essors. The s
heme adds enough support to enableregister-level
ommuni
ation without spe
ializing the CMPar
hite
ture so mu
h towards a spe
ulative mode of exe
utionthat it leads to mu
h unutilized hardware under fully-parallel,
ompiler-analyzable appli
ations or multiprogrammed loadsof sequential programs. Finally, the s
heme allows the systemto a
hieve near ideal performan
e.This paper is organized as follows: Se
tion 2 motivates theproblem; Se
tion 3 des
ribes the basi
 support for spe
ulation;Se
tion 4 des
ribes the evaluation environment used; Se
tion 5looks at the impa
t of
ommuni
ation laten
y; and Se
tion 6des
ribes and evaluates our hardware support for register-level
ommuni
ation.2 MotivationProposed CMP ar
hite
tures in
lude hardware support to en-for
e data dependen
es, enabling
onsumer threads to a
quirethe appropriate value from the produ
er thread. In addi-tion, these ar
hite
tures also in
lude hardware to dete
t de-penden
e violations when they o

ur, so that threads
an besquashed and restarted. Dependen
e enfor
ement and vio-lation dete
tion
an be done with
entralized s
hemes likethe ARB [7℄ or with distributed s
hemes that use a mod-i�ed
a
he-
oheren
e proto
ol among the pro
essors in theCMP [8, 10, 12, 23℄.Frequently, however, the variable
ausing the dependen
e

is known to the
ompiler. This is illustrated in Figure 1,whi
h shows one of the most frequently exe
uted loops fromSPEC95's li appli
ation. Ea
h iteration of the loop reads vari-able prev and may later update it. In that
ase, we
an usemore advan
ed me
hanisms than the ones des
ribed above.Spe
i�
ally, depending on the hardware support available, twoalternatives are possible.while (TRUE) {if (prev == NIL)(1) return;if (prev->n_flags & LEFT) {if (live
dr(prev)) {(2) prev->n_flags &= ~LEFT;tmp =
ar(prev)rpla
a(prev,this);this =
dr(prev);rpla
d(prev,tmp);break;} else {tmp = prev;prev =
ar(tmp);(3) rpla
a(tmp,this);this = tmp;}} else {tmp = prev;prev =
dr(tmp);(4) rpla
d(tmp,this);this = tmp;}}Figure 1: Code segment from li.One approa
h is for the
ompiler to insert a syn
hronizationstep between the produ
er and the
onsumer threads throughthe memory hierar
hy. This approa
h requires an eÆ
ientsyn
hronization me
hanism, like a hardware-based full-emptybit me
hanism [21℄. For example, given an iteration, we knowthat it will not update prev any more when it is about toexe
ute any of the statements (1), (2), (3), or (4) in the �gure.At any of these points, an iteration
an syn
hronize with thenext thread through, for example, a shared L2
a
he. If, inaddition, the produ
er has just updated prev, the new value
an be forwarded to the L2
a
he in the same syn
hronizationstep.The se
ond approa
h is to provide mu
h faster inter-pro
essor
ommuni
ation. Spe
i�
ally, we
an register-allo
ate prev and use an on-
hip network [5, 12, 20, 22℄ to
ommuni
ate its value between pro
essors. This approa
h al-lows very fast
ommuni
ation.In a CMP with wide-issue dynami
 supers
alar pro
essors,performing syn
hronization through memory is slow. Con-sider, for example, a CMP with four 4-issue pro
essors wherethe L2
a
he has advan
ed hardware support for full-emptybit syn
hronization. The minimum time that it takes to trans-fer a datum between two threads is a round-trip a

ess to theL2
a
he. This may easily be 6
y
les, even for on-
hip
a
hes.Ea
h thread
an exe
ute many instru
tions in this time.If, instead, a fast inter
onne
t is used to
ommuni
ate thesevalues, the laten
ies
an be made mu
h smaller. Depending onthe distan
e between the two threads on the
hip, the laten
ymay vary. If we assume a 0.18�m te
hnology, the entire die
an be
overed in 2
lo
k
y
les, while for 0.13�m te
hnology,this will in
rease to 4
y
les [17℄.It
ould be argued that CMPs
ould be based on single-issuepro
essors, thereby allowing more pro
essors to be
on�guredon-
hip. In that
ase, the inter-pro
essor
ommuni
ation la-ten
y is not as
ru
ial. However, exploiting both thread- andinstru
tion-level parallelism is
riti
al for the performan
e ofmultithreaded appli
ations [15℄. Thus CMPs are likely to bebased on wide-issue dynami
 supers
alar pro
essors.Note that a fast inter
onne
tion may be used to
ommuni-
ate values without supporting register-level
ommuni
ation.

An example is the Superthreaded ar
hite
ture [24℄. Here, anon-
hip memory bu�er holds the dependent values from/towhi
h a pro
essor loads/stores the value. Fast
ommuni
a-tion of these values between pro
essors is fa
ilitated using aring network.Supporting register-level
ommuni
ation, however, hasthe advantage that fewer instru
tions need to be exe
uted.Memory-level
ommuni
ation needs instru
tions to expli
itlystore and load the
ommuni
ated values to and from memory.In addition, unless spe
ial hardware support is provided, italso needs instru
tions to syn
hronize the two
ommuni
atingthreads. In the example of Figure 1, prev must be expli
itlystored to memory right before points (3) and (4). In addi-tion, extra instru
tions for syn
hronization may need to beadded at points (1)-(4). All these instru
tions may degradeperforman
e [10℄.3 Support for Spe
ulationTo run an appli
ation on a spe
ulative CMP ar
hite
ture,we �rst need to identify threads. This may be a
hieved insoftware by performing a
ompilation step [4, 10, 22, 23, 24℄ orin hardware by using spe
ial hardware support that identi�esthreads at run-time [16, 19℄. We use a software approa
h.However, we perform the
ompilation step on the sequentialexe
utable �le. As a result, we do not need to re
ompile theprogram and
an operate on lega
y
odes.We have developed a binary annotator that identi�es unitsof work for ea
h thread and the register-level dependen
es be-tween these threads. Currently, we limit the threads to innerloop iterations. In our analysis, we mark the entry and exitpoints of ea
h loop. During the
ourse of exe
ution, when aloop entry point is rea
hed, multiple threads are spawned tobegin exe
ution of su

essive iterations spe
ulatively. How-ever, we follow sequential semanti
s for thread
ompletion.The binary annotator is dis
ussed in Appendix A.Unlike register dependen
es, memory dependen
es
annotbe easily identi�ed from the binary. Therefore, we assign thefull responsibility of dete
ting memory dependen
es to thehardware. We designed a modi�ed
a
he-
oheren
e proto
olto enfor
e data dependen
es as well as to dete
t their violationin a distributed manner [12℄. When a data dependen
e viola-tion o

urs | for example when a thread generates a datumthat a spe
ulative su

essor thread has already prematurely
onsumed | threads are squashed and then restarted. Wesquash the thread that violated the dependen
e and all itssu

essors. Overall, our
a
he
oheren
e proto
ol is similarto others [8, 10, 23℄. We do not detail it here be
ause itplays no role in evaluating the importan
e of
ommuni
ationlaten
y for
ompiler-identi�able dependen
e values. Finally,threads
an also be squashed for
ontrol dependen
e viola-tions. Spe
i�
ally, as soon as we identify the last iteration ofthe loop, any iterations that were spe
ulatively spawned afterit are squashed.4 Evaluation Environment4.1 Ar
hite
tures ModeledWe model CMPs with 4 pro
essors, where the pro
essors
anbe 1-, 2-, or 4-issue dynami
 supers
alars. The supers
alar
ore is modeled on the lines of the MIPS R10000 [18℄. This
ore has a large fully-asso
iative instru
tion window alongwith integer and
oating-point registers for renaming. Someof its
hara
teristi
s are shown in Table 1. A 2K-entry dire
t-mapped 2-level bran
h predi
tion table allows multiple bran
hpredi
tions to be performed even when there are pending un-

resolved bran
hes. All instru
tions take 1
y
le to
omplete.The only ex
eptions are multiply and divide operations. In-teger multiplies and divides take 2 and 8
y
les respe
tively.Floating-point multiplies take 2
y
les, while
oating-point di-vides take 4
y
les for single pre
ision and 7
y
les for doublepre
ision.Issue Number of Entries in Number ofWidth Fun
t. Units Instru
tion Renaming Regs.(int/ld-st/fp) Window (int/fp)1 1/1/1 16 16/162 2/1/1 32 32/324 4/2/2 64 64/64Table 1: Chara
teristi
s of the dynami
 supers
alar
ore.We model the memory subsystem in detail. Ca
hes are nonblo
king and support full load bypassing. We assume a perfe
tI-
a
he for all our experiments and model only the D-
a
hehierar
hy. The 4-, 2-, and 1-issue pro
essors
an have up to 32,16, and 8 outstanding memory a

esses respe
tively, of whi
h16, 8, and 4
an be loads respe
tively. Ea
h pro
essor in theCMP has a relatively small private L1
a
he of 16 Kbytes. Allpro
essors share a larger on-
hip L2
a
he. The
hara
teristi
sof the memory hierar
hy are shown in Table 2.Parameter Value[L1 / L2℄ Ca
he Size (Kbytes) [16x4 / 1024℄[L1 / L2℄ Ca
he Line Size (Bytes) [32 / 64℄[L1 / L2℄ Ca
he Asso
iativity [2 / 4℄L1 Banks 3L1 Laten
y (Cy
les) 1L2 Laten
y (Cy
les) VariableMemory Laten
y (Cy
les) 26Table 2: Chara
teristi
s of the CMP memory hier-ar
hy. All laten
ies
orrespond to a
ontention-freeround trip from the pro
essor.4.2 Simulation Approa
hWe evaluate the ar
hite
tures using an exe
ution-driven sim-ulation environment [11℄. Our environment in
ludes MINT asa front-end [25℄. The environment
aptures both appli
ationand library
ode and generates events by instrumenting bina-ries. The ba
k-end simulator is very detailed and performs a
y
le-a

urate simulation of the di�erent CMP ar
hite
tures.As appli
ations, we use highly-optimized sequential bina-ries generated by the MIPS
ompiler. The appli
ations in-
lude four programs from the SPEC95 suite (hydro2d, wave5,li, and ijpeg), two programs from the MediaBen
h suite [13℄(adp
m and epi
), and two programs from the Perfe
t Clubsuite [1℄ (trfd and o
ean). Table 3 lists the appli
ations. Weuse the train set as input for the SPEC95 appli
ations and thedefault input for the rest of the appli
ations. We
hose theseappli
ations be
ause they are good
andidates for spe
ulativeexe
ution. The integer appli
ations have many
ross-iterationdependen
es. The
oating-point appli
ations, ex
ept for hy-dro2d,
annot be parallelized e�e
tively even with advan
edparallelizing
ompiler te
hniques [2, 9℄.Table 3 gives additional loop-level details for ea
h appli
a-tion. The data is
olle
ted while exe
uting the appli
ationsin sequential mode. The third
olumn (A) gives the totalnumber of loops that are identi�ed and annotated by our bi-nary annotation pass. These are the inner loops of the
ode.The fourth
olumn gives the per
entage of time that is spentin these loops relative to overall exe
ution time. From theper
entage of time spent in these loops, we see that the fourpro
essors in the CMP will be a
tive over 94% of the serial

Integ. Number Per
ent. Number of Loops w/ Per
ent. Weighted WeightedAppli
ation or of Inner of Serial Compiler-Identi�able of Serial Iteration Number ofFloat. Loops Time Cross-Iteration Time Grain Size Cross-Iteration(A) in (A) Dependen
es (B) in (B) (Instru
t.) Dependen
eshydro2d Float 128 100 23 34 46 1.53wave5 Float 86 86 25 53 50 1.50o
ean Float 58 98 16 69 31 1.91trfd Float 20 65 13 64 35 3.37li Integ 18 50 7 27 31 2.98ijpeg Integ 112 79 43 26 70 2.46adp
m Integ 1 100 1 100 71 6.00epi
 Integ 25 94 12 35 53 1.50Harmoni
 Mean 80 42 44 2.15Table 3: Loop-level pro�le of the appli
ations used.time in four appli
ations, namely hydro2d , o
ean, adp
m, andepi
. They will be a
tive over 79% of the serial time in wave5and ijpeg . For li and trfd , there is a large portion of the
odethat is run serially on one pro
essor. On average, for all theappli
ations, we are able to perform spe
ulative paralleliza-tion on over 80% of the serial exe
ution time using our binaryanalysis.The �fth
olumn in the table shows how many of the anno-tated loops have
ompiler-identi�able
ross-iteration depen-den
es. For this
ategory, we ignored dependen
es
aused byindu
tion variables. It must be mentioned that, even thoughhydro2d
an be fully parallelized by Polaris [2℄ or SUIF [9℄, theoptimized sequential binary generated by the MIPS
ompilerintrodu
es some dependen
es by assigning to registers thosememory lo
ations that are repeatedly loaded in su

essive it-erations. This strategy avoids redundant loads to be issuedto the L1
a
he, although it for
es arti�
ial
ross-iteration de-penden
es to appear. This e�e
t o

urs to a
ertain extent inthe other
oating-point appli
ations, even though these otherappli
ations also have true dependen
es. The sixth
olumngives the per
entage of serial time that is spent in these loopswith identi�able dependen
es. It is this part of the exe
u-tion time that
an be a�e
ted by using a fast inter-pro
essor
ommuni
ation s
heme as dis
ussed before.Finally, the last two
olumns give the iteration grain sizeand the number of
ross-iteration dependen
es on a weightedbasis. Rather than giving a simple average value of all therelevant loops, we give a weighted average: we assign a weightto ea
h relevant loop based on the fra
tion of serial time spentin that loop. Hen
e a loop that dominates the exe
ution timewill tend to
ontribute more to the grain size and number of
ross-iteration dependen
es. The �ne grain sizes shown in thetable highlight the need to use a hardware-based approa
h tothread initiation and termination as opposed to a software-based one. Furthermore, the last
olumn tells us that, mostoften, an iteration only needs to
ommuni
ate a
ouple ofvariables to su

essor iterations.4.3 Statisti
s Colle
tionWe gather detailed statisti
s on an issue-slot basis. For ea
hpro
essor in the CMP, we s
an the entire instru
tion windowevery
y
le and re
ord the type of hazard fa
ed by ea
h in-stru
tion that is unable to issue. At the end of the program,the total wasted slots are divided proportionally among thedi�erent types of hazards re
orded. The di�erent types ofhazards that we
onsider are: waiting on a datum transferredfrom a prede
essor thread (syn
), data dependen
es (data),waiting on a memory a

ess (memory), waiting due to a se-rial se
tion (serial), and instru
tions squashed on bran
h mis-predi
tions or when a thread is squashed (squashed). Thereis also an other
ategory, whi
h in
ludes slots wasted due tostru
tural hazards,
ontrol hazards (restarting the pipelineafter a bran
h mispredi
tion), and due to la
k of renaming

registers. Finally, the issued instru
tion slots are grouped un-der issued .5 Impa
t of Communi
ation La-ten
y in a Spe
ulative CMPTo evaluate the performan
e impa
t of memory-level
ommu-ni
ation, we simulate CMPs where all the
ross-thread depen-den
es that
ould use register
ommuni
ation are
ommuni-
ated through the L2
a
he. The threads are syn
hronizedusing a full-empty bit me
hanism [21℄. We assume spe
ialstorage beside the shared L2
a
he where the syn
hronizationvariables are kept. For our experiments, we do not
onsiderindu
tion variables, nor do we model the extra instru
tionsthat are needed to evaluate those variables independently inea
h pro
essor of the CMP. We
onsider three types of CMPsthat di�er in the issue width of their four pro
essors: 1, 2, and4-issue (Se
tion 4.1). We negle
t any port
ontention to a
-
ess the
ommuni
ated variables in the L2
a
he. We
onsiderthree environments by varying the laten
y of the L2
a
he. Inthese environments, the one-way trip laten
y from the pro-
essor to the L2
a
he is 5, 3, and 0
y
les respe
tively. Inthe latter environment,
alled Ideal, there is no
ommuni
a-tion laten
y: any produ
er update is visible to the
onsumerinstantaneously.Figure 2 shows the exe
ution time of the eight appli
ationson a CMP with four 1-issue dynami
 pro
essors. The exe
u-tion time is divided into the di�erent
ategories des
ribed inSe
tion 4.3. For ea
h appli
ation, the bars are normalized tothe Ideal environment. The IPC for ea
h appli
ation and L2
a
he laten
y is given at the top of the �gure.From the �gure, we
an see that the added L2
a
he laten
ytranslates dire
tly into a large syn
hronization time, therebyresulting in an in
reased exe
ution time. Note that, in oursetup, a pro
essor in the CMP does not blo
k if the a

ess tothe full-empty bit does not immediately su

eed. Instead, thea

ess remains outstanding and the pro
essor
an
ontinueissuing instru
tions not dependent on that a

ess. In the �g-ure, the syn
 time in Ideal shows the time when the
onsumerarrives at the syn
hronization point before the produ
er. Ap-pli
ations su
h as wave5 , o
ean and trfd have little or no syn
time in Ideal. This denotes that the value is always availableto the
onsumer. However, with an in
rease in
ommuni
a-tion laten
y, syn
 time be
omes signi�
ant enough to
ause aperforman
e degradation of 19% to 35%.Adp
m belongs to the other extreme
ase, where even Idealhas syn
 time. Though this appli
ation has pra
ti
ally noserial se
tions and fully exploits the spe
ulative mode, theperforman
e is severely a�e
ted by the presen
e of several
ross-iteration dependen
es. This invariably results in manyinstru
tions being unable to issue, eventually leading up toan exe
ution stall. An in
rease in the
ommuni
ation laten
y

E
xe

cu
ti

on
 T

im
e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

2.
36

2.
17

2.
04

Id
ea

l

100

3
cy

cl
es

109

5
cy

cl
es

116

wave5

2.
30

2.
07

1.
90

Id
ea

l

100

3
cy

cl
es

110

5
cy

cl
es

119

ocean

2.
94

2.
76

2.
42

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

121

trfd

1.
76

1.
54

1.
29

Id
ea

l

100

3
cy

cl
es

114

5
cy

cl
es

135

li

1.
13

1.
03

0.
95

Id
ea

l

100

3
cy

cl
es

110

5
cy

cl
es

118

ijpeg

1.
93

1.
82

1.
75

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

111

adpcm

1.
35

1.
03

0.
89

Id
ea

l

100

3
cy

cl
es

131

5
cy

cl
es

152

epic

2.
23

2.
05

2.
05

Id
ea

l

100

3
cy

cl
es

108

5
cy

cl
es

108

|
|

|
|

|
|

|

0

20

40

60

80

100

120

140

Figure 2: Impa
t of the L2
a
he laten
y on the exe
ution time and IPC for a CMP based on four 1-issuedynami
 pro
essors.
E

xe
cu

ti
on

 T
im

e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

3.
56

3.
33

2.
98

Id
ea

l

100

3
cy

cl
es

107

5
cy

cl
es

119

wave5

3.
59

3.
00

2.
79

Id
ea

l

100

3
cy

cl
es

120

5
cy

cl
es

128

ocean

3.
95

3.
37

2.
75

Id
ea

l

100

3
cy

cl
es

117
5

cy
cl

es

144

trfd

2.
76

2.
07

1.
69

Id
ea

l
100

3
cy

cl
es

133

5
cy

cl
es

162

li

1.
64

1.
44

1.
32

Id
ea

l

100

3
cy

cl
es

114

5
cy

cl
es

124

ijpeg

3.
33

3.
09

2.
91

Id
ea

l

100

3
cy

cl
es

108

5
cy

cl
es

114

adpcm
2.

02
1.

46
1.

20

Id
ea

l

100

3
cy

cl
es

138

5
cy

cl
es

168

epic

3.
07

2.
89

2.
76

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

111

|
|

|
|

|
|

|
|

0

20

40

60

80

100

120

140

160

Figure 3: Impa
t of the L2
a
he laten
y on the exe
ution time and IPC for a CMP based on four 2-issuedynami
 supers
alar pro
essors.only exa
erbates the problems, resulting in a 50% slowdownrelative to Ideal. The remaining appli
ations also performpoorly as
ommuni
ation laten
y in
reases. Overall, we ob-serve performan
e losses of 6-31% with a 3-
y
le L2
a
hea

ess laten
y and 8-52% with a 5-
y
le laten
y.Sin
e CMPs will likely be built out of supers
alar pro
es-sors, Figures 3 and 4 show the results of the previous exper-iments for CMPs with 2- and 4-issue dynami
 supers
alarsrespe
tively. Comparing this data to that in Figure 2, wesee that, for nearly all appli
ations, the performan
e di�er-en
e between Ideal and the rest has widened. For example,while for the 1-issue pro
essors the average di�eren
e in per-forman
e between Ideal and 5-
y
les is 23%, the di�eren
ejumps to 34% for the 2-issue pro
essors (Figure 3) and, �-nally, to 45% for the 4-issue pro
essors (Figure 4). Theseresults show that there is a need for a fast
ommuni
ationme
hanism for these variables in spe
ulative CMPs, and thatit be
omes more important when higher-issue pro
essors areused as building blo
ks.6 Hardware Support for Register-Level Communi
ationThe fast
ommuni
ation needed in spe
ulative CMPs may ormay not support register-level
ommuni
ation. However, asmentioned in Se
tion 2, supporting register-level transfers hasadded bene�ts. Consequently, we propose to support
exibleinter-thread register
ommuni
ation by augmenting a
onven-tional s
oreboard to what we
all a Syn
hronizing S
oreboard(SS).For our hardware to work, ea
h thread maintains its status

in the form of a bit mask (
alled ThreadMask) in a spe-
ial register. The status of a thread
an be any of the fourvalues shown in Table 4. Inside a loop, the non-spe
ulativethread exe
utes the
urrent iteration. Spe
ulative su

essors1, 2, and 3 exe
ute the su

essor iterations, whi
h we
all the�rst, se
ond, and third spe
ulative iteration respe
tively. Asthreads
omplete, the non-spe
ulative ThreadMask will movefrom one thread to its immediate su

essor. In the follow-ing, we des
ribe the SS, assess its
omplexity, and evaluate itsperforman
e.Thread Status ThreadMaskNon-Spe
ulative 0001Spe
ulative Su

essor 1 0011Spe
ulative Su

essor 2 0111Spe
ulative Su

essor 3 1111Table 4: Possible status of a thread.6.1 The Syn
hronizing S
oreboard (SS)We propose a fully-de
entralized stru
ture, where ea
h pro
es-sor has its own SS. The SS is a s
oreboard augmented withadditional bits. It is used by a thread to syn
hronize and
ommuni
ate register values with other threads. The SSs inthe di�erent pro
essors are
onne
ted with a broad
ast bus,on whi
h register values are transferred. This bus, whi
h we
all the SS Bus, has a limited bandwidth of 1 register per
y
le and one read and one write port to the register �le ofea
h pro
essor. For a 4-pro
essor CMP, a value written bya pro
essor onto the bus takes between 1 to 3
y
les without
ontention to get to the destination pro
essor, depending onthe physi
al distan
e between the produ
er and the re
eiverpro
essors. The laten
y assumes a 0.13�m
hip te
hnology,

E
xe

cu
ti

on
 T

im
e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

4.
38

4.
12

3.
68

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

120

wave5

4.
98

3.
87

3.
54

Id
ea

l

100

3
cy

cl
es

127

5
cy

cl
es

139

ocean

4.
95

4.
05

3.
02

Id
ea

l

100

3
cy

cl
es

122

5
cy

cl
es

164

trfd

4.
00

2.
68

2.
10

Id
ea

l

100

3
cy

cl
es

149

5
cy

cl
es

190

li

2.
21

1.
91

1.
77

Id
ea

l

100

3
cy

cl
es

116

5
cy

cl
es

125

ijpeg

4.
86

4.
30

3.
96

Id
ea

l

100

3
cy

cl
es

113

5
cy

cl
es

123

adpcm

2.
42

1.
68

1.
31

Id
ea

l

100

3
cy

cl
es

144

5
cy

cl
es

184

epic

3.
62

3.
36

3.
17

Id
ea

l

100

3
cy

cl
es

107

5
cy

cl
es

113

|
|

|
|

|
|

|
|

|

0

20

40

60

80

100

120

140

160

180

Figure 4: Impa
t of the L2
a
he laten
y on the exe
ution time and IPC for a CMP based on four 4-issuedynami
 supers
alar pro
essors.where a signal takes up to 4
lo
k
y
les to traverse the entiredie [17℄. After ea
h
y
le, the values are lat
hed before beingdriven to the next stage in the following
y
le. Thus, arbitra-tion for the bus is performed one stage at a time. Dependingon the dire
tion of the message, the value is stored in oneof two dire
tional lat
hes at ea
h stage. A pro
essor
annotwrite a new value onto the bus when a value is pending in its
orresponding staging lat
hes. The overall hardware setup isshown in Figure 5.

F F F F S S S S

Synchronizing
Scoreboard

Processor 3Processor 2Processor 0

FU

X X X

Local

1 2 3 0 1 2 3

Global

StartSync SyncSent

Processor 1

(1R, 1W port) SS Bus (Bandwidth: 1 word/cycle)

VRegID

Valid

Registers

(Replicated)

0 1 2 3Figure 5: Hardware for register
ommuni
ation.6.1.1 Data Stru
turesAs in a
onventional s
oreboard, ea
h SS has one entry perregister. Figure 5 shows the di�erent �elds for one entry.The �elds are grouped into lo
al and global �elds. The lo
al�elds are private to ea
h pro
essor. To avoid
entralization,the global �elds are repli
ated but easily kept
oherent a
rossthe SSs in the di�erent pro
essors. This is des
ribed later inthe se
tion. The global �elds in
lude the Syn
 (S) and theStartSyn
 (F) �elds. Ea
h of these �elds has one bit for ea
hof the pro
essors on
hip. Table 5 shows an example of theglobal �elds of a SS.RegID StartSyn
 Syn
F0F1F2F3 S0S1S2S3...13 0 1 0 0 0 1 0 014 1 0 1 0 1 0 0 0...Table 5: Example of the global �elds of a SS.For a given register, the Si bit, if set, implies that the threadrunning on pro
essor i has not made the register available tosu

essor threads yet. When a thread starts on pro
essor i,it sets the Si bit for all the looplive registers (see AppendixA) that the thread may
reate. The Si bit for a register is
leared when the thread exe
utes either a safe de�nition orthe release instru
tion for that register (Appendix A). When

this o

urs, the thread also writes the register value on thebus, thereby allowing other pro
essors to update their valuesif needed. At that point, the register is safe to be used bysu

essor threads.The Fi and Si bits for all the registers are automati
allyinitialized with dedi
ated hardware. They are set in the SSof all pro
essors when a thread starts on pro
essor i. TheF bit simply keeps the value that S was given to when thethread was initiated in the pro
essor. From then on, the F bitremains un
hanged throughout the exe
ution of the thread.The Fi bits are used to indi
ate the looplive registers that maybe generated at any time during the iteration by the threadrunning on pro
essor i.The private �elds in
lude the Valid (V) and Sent (X) �elds.We will
onsider the X �eld later. The V bit for ea
h registertells whether the pro
essor has a valid
opy of the register.When a parallel se
tion of the
ode is rea
hed, the pro
essorsthat were idle in the pre
eding serial se
tion start with their Vbits set to zero. The V bit for a register is set when the registervalue is generated by the lo
al thread or is
ommuni
ated fromanother pro
essor.Within a given parallel se
tion, a pro
essor
an reuse regis-ters a
ross threads. When a pro
essor initiates a new thread(the latest spe
ulative thread), it sets the V bit for ea
h of itsregisters as: V = V � [Fpred. This invalidates any registersthat are written by any of the three prede
essor threads.Note that the startup overhead for spe
ulative task initi-ation involves just setting a register bit-mask for the
orre-sponding thread ID in the SS and initializing the program
ounter to start exe
ution at a spe
i�
 lo
ation. This
an bea
hieved with modest hardware in a single
y
le.6.1.2 Communi
ationRegister
ommuni
ation between threads
an be produ
er-initiated or
onsumer-initiated. The produ
er-initiated ap-proa
h has already been outlined. When a thread performs asafe de�nition for a register or exe
utes a release instru
tionfor a register, it
lears the S bit for the register and writesthe register on the SS bus. At that point, in hardware, ea
hof the su

essor threads
he
ks its own V bit for the registerand also the F bits for all the threads between the produ
er(non-in
lusive) and itself (in
lusive) for the same register. Ifall these bits are zero, the hardware in the su

essor threadautomati
ally loads the register and sets the V bit of the
or-responding register to 1. At the same time, the hardware also
lears the S bit
orresponding to the produ
er thread in allthe SSs. The F bits, however, remain un
hanged.It is possible that the
onsumer thread is not yet runningwhen the produ
er generates the register. We
ould allow

the values to be stored by using a bu�ered
ommuni
ationme
hanism, rather than using a simple broad
ast bus. Thebu�er would have to potentially hold all the live registers afterthe last spe
ulative thread until a new thread is initiated onthe su

essor. In addition, this approa
h would require fur-ther hardware support in the form of dupli
ate register setsin ea
h pro
essor to enable re
overy from squashes [3℄. Al-ternatively, a global register set may be maintained to storethese values [20℄, but at the
ost of maintaining an additional
entralized stru
ture.Instead, in our s
heme, we add minimal hardware to alsosupport a
onsumer-initiated approa
h, where
ommuni
ationo

urs when the
onsumer needs the register. To support it,the SS has logi
 that allows a
onsumer thread to identifythe
orresponding produ
er and get the register value fromit. The logi
 works as follows. The
onsumer thread �rst
he
ks the V bit for the register. If it is set, the register islo
ally available. Otherwise, the F bit of the immediately pre-
eding thread is
he
ked. If it is set, the prede
essor threadis the produ
er. If the prede
essor's S bit is set, it meansthat the register has not been produ
ed yet and the
onsumerblo
ks. Otherwise, the
onsumer gets the register value fromthe prede
essor. However, if the thread immediately pre
ed-ing the
onsumer has F equal to zero, that thread
annot bethe produ
er. In that
ase, the bit
he
ks are repeated onthe next previous thread. This pro
ess is repeated until thenon-spe
ulative thread is rea
hed. For example, assume thatthread 0 is the non-spe
ulative thread, that threads 1, 2, and3 are spe
ulative, and that thread 3 tries to read a register.In that
ase, the register will be available to thread 3 if:V3 + S2(F2 + S1(F1 + S0)) (1)Suppose now, instead, that thread 1 is the non-spe
ulativethread, that threads 2, 3, and 0 are spe
ulative threads, andthat the a

ess
ame from the highest spe
ulative thread,namely 0. In that
ase, the register will be available to thread0 using a similar equation:V0 + S3(F3 + S2(F2 + S1)) (2)The a

esses to these bits are always masked out with theThreadMask of Table 4. In examples (1) and (2), the request
ame from spe
ulative su

essor 3. Therefore, we have usedmask 1111, thereby enabling all bits and
omputing the wholeexpression (1) or (2). Consider a s
enario like in (2), wherethread 1 is non-spe
ulative, ex
ept that the a

ess
ame fromthread 3 (spe
ulative su

essor thread 2). Consequently, wewould use ThreadMask 0111 from Table 4. This means thatwe are examining only 2 prede
essors. The fun
tion is:V3 + S2(F2 + S1)Overall, the
omplete logi
 to determine whether a reg-ister is available is shown in Figure 6. This logi
 is addedfor ea
h register in the pro
essor. If the register is available,the reader thread gets the value from the
losest prede
essorwhose F bit is set (the thread should generate the register)and S bit is
lear (the thread has already generated it). Ifall the bits are
lear, the non-spe
ulative thread provides thevalue. The transfer of the value is initiated by the
onsumerthread putting a request on the SS bus to read the regis-ter from the appropriate thread. The request and the replymessages
an take 1-3
y
les ea
h, depending on the distan
ebetween produ
er and
onsumer, plus the
ontention for theSS bus.Sin
e the S and F bits are de
entralized, it is the responsi-bility of the hardware in ea
h of the pro
essors to automati-
ally update the bits. Sin
e there is a delay in the SS bus, fora short period of time, the bits may be in
onsistent a
ross pro-
essors. However, the proto
ol has been designed su
h thatthere is no e�e
t on the
orre
tness of the overall me
hanism.For example, when a produ
er pro
essor writes a register on

the SS bus, the S bit for the produ
er will be reset. During ashort period of time, the bit will be 0 in the pro
essors
loserto the produ
er while it is still 1 in the pro
essors far awayfrom it. However, when the register value from the produ
errea
hes the end pro
essor, the S bit for the produ
er pro
essorin the end pro
essor is zeroed out.6.1.3 ExampleIn this se
tion, we give an example of how the SS entries
hange. Let threads t, t+ 1, t+ 2, and t+ 3 exe
ute on pro-
essors 0, 1, 2, and 3 respe
tively. Assume that all threads,ex
ept t, have r3 marked invalid and that thread t + 1 pro-du
es a live-out value. The SS entry appears as follows. Notethat ea
h V bit is lo
al to a pro
essor and is denoted by thesubs
ript, while the F and S bits are global and repli
ated.Pro
essor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe
 spe
1 spe
2 spe
3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 0 0 0 0 1 0 0 0 1 0 0When thread t+1 updates r3, it
lears its S bit and writesthe register for its su

essors to read. This is a produ
er-driven approa
h. The SS entry looks as follows:Pro
essor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe
 spe
1 spe
2 spe
3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 1 1 1 0 1 0 0 0 0 0 0Now, assume that t
ompletes and a new thread t + 4 isinitiated on pro
essor 0. Note that r3 in pro
essor 0 is stale.At this point, V for pro
essor 0 (V0) is set a

ording to V0 =V0 � [Fpred. Sin
e F1 = 1, V0 is set to 0. The s
oreboardentry looks as follows:Pro
essor 0 1 2 3Thread t+ 4 t+ 1 t+ 2 t+ 3Status spe
3 non-spe
 spe
1 spe
2V0 V1 V2 V3 F0F1F2F3 S0S1S2S30 1 1 1 0 1 0 0 0 0 0 0Now, when t + 4 tries to read r3, it
he
ks the registeravailability logi
, V0 + S3(F3 + S2(F2 + S1)), whi
h evaluatesto TRUE, and determines that the value is available from thenon-spe
ulative thread t+ 1. At that point, it puts a requeston the SS bus. This is a
onsumer-driven approa
h. Finally,when pro
essor 1 supplies the value to the bus, pro
essor 0reads register r3.6.1.4 The Last Copy ProblemWhen the last spe
ulative thread updates a looplive register,it has no su

essors to whi
h it
an send the value. As a result,any future
onsumer threads will have to expli
itly request it.Also, re
all that when a new thread is initiated, it invalidatesany lo
al register that a prede
essor may produ
e. Underthese
onditions, a situation may o

ur where all the
opiesof a given register on
hip are about to be
ome invalid. We
all this the last
opy problem.The last
opy problem is illustrated in Figure 7. In theexample, register r3 is live a
ross all threads. Ea
h threadreads r3 before writing it. Therefore, any thread will inval-idate its lo
al
opy of r3 on initiation. In Figure 7-(a), thelast spe
ulative thread (thread 3) updates r3 and no otherthread
onsumes it. Some time later, threads 0, 1, and 2 have�nished; threads 4, 5, and 6 have started in their pla
e; and

StartSync/Sync
Logic

Register # Valid StartSync Sync

Available?
Register

ThreadMask

Figure 6: Logi
 to
he
k register availability.

r3 =

= r3

r3 =

= r3

r3 =

= r3

r3 =

= r3

Non−
Speculative

Speculative
Successor 1

Speculative
Successor 2

Speculative
Successor 3

(a)

Thread 0 Thread 1 Thread 2 Thread 3

Speculative
Successor 1

Speculative
Successor 3

(b)

r3 =

= r3

r3 =

= r3

r3 =

= r3

r3 =

= r3

Speculative
Successor 2

Non−
Speculative

Thread 3Thread 4 Thread 5 Thread 6

Figure 7: The last
opy problem. The arrow pointsto the
urrently-exe
uting instru
tions.thread 3 has a
quired non-spe
ulative status and is about to�nish (Figure 7-(b)). If we now spawn thread 7 on the right-most pro
essor, we fa
e the last
opy problem: r3 will be lost.This is be
ause thread 4 has not read r3 yet, while thread 7will
lear its valid bit for r3 upon initialization.The last
opy problem will not o

ur if we use a
ommuni-
ation me
hanism that bu�ers live-out values to per
olate tothe new threads, or when there is a
entralized global registerset that maintains live-out values. For instan
e, the Multi-s
alar pro
essor [22℄ uses the �rst approa
h. A ring stru
-ture is used to forward register values. All values move fromone thread to another in the ring and are bu�ered after thelast spe
ulative thread until they
an be forwarded further.The forwarding
an pro
eed on
e the non-spe
ulative threadis
ompleted and a new thread initiated on it. Sin
e this is afully produ
er-driven approa
h, registers must be ba
ked upin
ase the
onsumer thread is squashed. Thus, ea
h pro
es-sor maintains two
opies of the register �le: one to maintainthe past values and the other to store the present values. For-warded
opies from prede
essors are held by the past registerset, while the new ones
reated by the thread are held in thepresent set. In addition, to restore the state, up to 6 di�erentregister masks are maintained in ea
h pro
essor [3℄. This isin
ontrast to our s
heme, whi
h supports both a produ
er-and a
onsumer-driven approa
h, thereby simplifying re
ov-ery from squashes. Squashed threads that are restarted simplyre-request the register values from the appropriate produ
er.The Tra
e pro
essor [20℄ avoids the last-
opy problem bykeeping a
entralized global register set that is visible to allpro
essors. This is in addition to the lo
al register set in

ea
h pro
essor. Live-out register values are sent to the globalregisters, from where any pro
essor
an read them.In both of the above approa
hes, the ar
hite
ture mustprovide signi�
ant hardware support for spe
ulation. Unfor-tunately, all these resour
es remain unutilized when runningappli
ations that do not need spe
ulative parallelization.Our SS design
an be enhan
ed with simple hardware sup-port to over
ome the last-
opy problem. The idea is for ea
hthread to remember whi
h of the other 3 threads it has for-warded the register to. This in
ludes both produ
er- and
onsumer-initiated transa
tions. Consequently, ea
h pro
es-sor has 3 private bits per register
alled the Sent (X) bits.They are set if the register has been sent to the
orrespond-ing thread. These bits are used as follows. Before we retirea non-spe
ulative thread, we will use the Sent bits to ensurethat no last-
opies of registers are going to be lost. For anysu
h last-
opy, the thread will simply write it on the SS bus,so that spe
ulative threads read it.The logi
 used by the non-spe
ulative thread to identifylast
opies is as follows. Assume that pro
essor 0 performsthe
he
k. For ea
h of the looplive registers (those with theF0 bit set) that it produ
es, the register needs to be writtenon the SS bus if X1(F1 +X2(F2 +X3)) evaluates to FALSE.The idea is to
he
k if the looplive value has rea
hed up tothe thread that kills the value. If Fi is set, then that threadkills the value. The logi
 is repli
ated for ea
h register asin the
ase of register availability. At thread retire time, ea
hregister
an be
he
ked in parallel for last-
opy status. Finally,when a new thread is initiated on a pro
essor, the remainingpro
essors
lear the
orresponding X bit, thereby noting thatthe value is yet to be sent to the new thread.6.2 Complexity of the SSTo understand the
ost of the SS me
hanism, we examine itsarea and its potential impa
t on the pro
essor's
y
le time. Toestimate the area, we need to
onsider �rst the logi
 to
he
kfor register availability and last-
opy status (Se
tions 6.1.2and 6.1.4). The AND-OR logi
, whi
h is traditionally imple-mented as a
arry-propagate-kill fun
tion, and the extra gatesto sele
tively mask out some of the S, F, and X bits requireonly a few gates. Repli
ating this logi
 for ea
h register im-plies an extra overhead of only a few hundreds of gates evenfor a pro
essor with a large number of registers.In addition, the register �le in ea
h pro
essor needs someextra spa
e to store the V, X, F, and S bits. The numberof extra bits per register is 3n, where n is the number ofpro
essors on
hip (Figure 5). For a 4-pro
essor CMP with64-bit registers, this works to around 12% storage overhead.Finally, we need to in
lude a SS bus in the
hip. Overall,however, we feel that these are modest hardware requirementswhen
ompared to repli
ating the register sets in ea
h pro
es-sor [3℄ or using a
entralized global register �le [20℄.As for the impa
t on
y
le time, if we refer to equation (1)in Se
tion 6.1.2, it may seem that, in the worst-
ase s
enariowhere all the bits have to be
onsidered, the delay in
urred bythe SS logi
 in
reases qui
kly with the number of pro
essors inthe CMP. However, by using a binary-tree approa
h, the logi

an be implemented using only log2 n levels of gates, where nis the number of pro
essors in the CMP. Consequently, this
ir
uitry is shallow and unlikely to a�e
t the
y
le time. Fur-thermore, the SS bus is implemented with staging bu�ers.By pipelining the bus in this manner, we likely eliminate anyadverse impa
t on the pro
essor
y
le time.Finally, we note that the
omplexity that we add to theregister �les is modest: we add only one read and one writeport to ea
h register �le.

6.3 Evaluating the SS Performan
eWe now evaluate a CMP augmented with our SS and
om-pare its performan
e to the Ideal environment of Se
tion 5.Re
all that, in Ideal, there is no
ommuni
ation laten
y: anyprodu
er update is visible to the
onsumer instantaneously.Figure 8 shows the exe
ution time of the eight appli
ations ona CMP with four 4-issue pro
essors under our SS hardwareand under Ideal. The exe
ution time is normalized to Ideal.In our simulations, we assume a SS bus with a high band-width (5 words per
y
le), so that we
an fa
tor out the e�e
tof
ontention. We will redu
e the bandwidth later. Registersare 1-word wide. Re
all that the request and reply messagesin the SS
an take 1-3
y
les ea
h.

E
xe

cu
ti

on
 T

im
e

Other
Squashed
Serial
Memory
Data
Sync
Issued

IPC

hydro2d

4.
38

4.
38

Id
ea

l

100

SS

100

wave5

4.
98

4.
92

Id
ea

l

100

SS

101

ocean

4.
95

4.
95

Id
ea

l

100

SS

100

trfd

4.
00

3.
98

Id
ea

l

100

SS

100

li

2.
21

2.
16

Id
ea

l

100

SS

103

ijpeg

4.
86

4.
81

Id
ea

l

100

SS

101

adpcm

2.
42

2.
29

Id
ea

l

100
SS

105

epic

3.
62

3.
55

Id
ea

l

100

SS

102

|
|

|
|

|

0

20

40

60

80

100

Figure 8: Performan
e of a CMP with four 4-issuepro
essors under our SS hardware and under Ideal.The �gure shows that, for all the appli
ations, the perfor-man
e of SS is very
lose to that of Ideal. The SS introdu
esvery little overhead. This �gure should be
ompared to Fig-ure 4, whi
h
ompared Ideal to CMPs where all
ommuni-
ation o

urred via the L2
a
he. That �gure showed that
ommuni
ation via the L2
a
he slows down the appli
ationsby an average of 23% (for a 3-
y
le one-way a

ess to the L2
a
he) and 45% (for a 5-
y
le a

ess). These results, therefore,indi
ate that fast
ommuni
ation is very bene�
ial.The fa
t that there is a 3-
y
le laten
y between pro
essorsthat are lo
ated far apart does not seem to a�e
t the per-forman
e mu
h. This may suggest that, most of the time,the produ
er and
onsumer threads are in adja
ent pro
es-sors of the CMP. This would be
onsistent with [6℄, whi
hindi
ated that, in 70-80% of the
ases, the register valuesare
onsumed by the immediate su

essor thread. Anotherfa
tor that helps redu
e the e�e
t of laten
y is the supportfor produ
er-initiated
ommuni
ation. It avoids unne
essarydelay when the
onsumer �nally needs the value. Finally,register
ommuni
ation is also faster be
ause it needs fewerinstru
tions than memory
ommuni
ation.We now
hange the bandwidth of the SS bus to determineits impa
t on performan
e. Figure 9 shows the exe
ution timeof the appli
ations for values of bus bandwidth ranging from1 word per
y
le to in�nite bandwidth. For ea
h appli
ation,the exe
ution time is normalized to the time taken when thebandwidth is 1 word per
y
le. From the �gure, we
an seethat there is little performan
e gain in in
reasing the band-width of the SS bus beyond one word per
y
le. In fa
t, anenvironment with in�nite bandwidth is less than 5% faster.Consequently, we suggest a bus bandwidth no higher than 1register per
y
le.Overall, we
on
lude that support for fast
ommuni
ationis quite bene�
ial for CMPs with wide-issue dynami
 super-s
alars. In addition, we have shown that this support
an beprovided at the register level with modest hardware require-

E
xe

cu
ti

on
 T

im
e

Bandwidth of the SS bus (words)
1 2 3 4 5 INF

hydro2d
ocean
wave5

1 2 3 4 5 INF1 2 3 4 5 INF1 2 3 4 5 INF

trfd

1 2 3 4 5 INF1 2 3 4 5 INF

ijpeg

1 2 3 4 5 INF1 2 3 4 5 INF

adpcm
epic
li

|
|

|
|

|

90

92

94

96

98

100

Figure 9: Impa
t of
hanging the bandwidth of theSS bus on the exe
ution time.ments.7 Con
lusionsChip-multipro
essor ar
hite
tures (CMP) are a promising de-sign alternative to exploit the ever-in
reasing number of tran-sistors that
an be put on a die. Sin
e CMPs must also han-dle appli
ations that are diÆ
ult to parallelize, mu
h e�orthas gone into providing support for spe
ulative paralleliza-tion. For spe
ulative CMPs that are based on high-issue dy-nami
 supers
alar pro
essors,
ommuni
ation laten
y is one
riti
al fa
tor in de
iding performan
e. We have shown thatrelying only on a plain memory subsystem for
ommuni
ationbetween pro
essors degrades the performan
e and that hard-ware support for fast
ommuni
ation is required. We alsoproposed a hardware s
heme that enables a CMP to perform
ommuni
ation and syn
hronization at the register level. Thehardware support is modest, yet e�e
tive enough to allow theappli
ations to deliver near ideal performan
e.Referen
es[1℄ M. Berry et al. The Perfe
t Club Ben
hmarks. InternationalJournal of Super
omputer Appli
ations, 3(3):5{40, 1989.[2℄ W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
inger, T. Lawren
e, J. Lee, D. Padua, Y. Paek, B. Pottenger,L. Rau
hwerger, and P. Tu. Parallel Programming with Po-laris. IEEE Computer, 29(12):78{82, De
ember 1996.[3℄ S. Brea
h, T. N. Vijaykumar, and G. Sohi. The Anatomy ofthe Register File in a Multis
alar Pro
essor. In 27th Interna-tional Symposium on Mi
roar
hite
ture (MICRO-27), pages181{190, De
ember 1994.[4℄ P. Dubey, K. O'Brien, K. O'Brien, and C. Barton. Single-Program Spe
ulative Multithreading (SPSM) Ar
hite
ture:Compiler-Assisted Fine-Grained Multithreading. In Pro
eed-ings of the IFIP WG 10.3 Working Conferen
e on ParallelAr
hite
tures and Compilation Te
hniques, PACT '95, pages109{121, June 1995.[5℄ M. Fillo, S. Ke
kler, W. Dally, N. Carter, A. Chang, Y. Gure-vi
h, and W. Lee. The M-Ma
hine Multi
omputer. In28th International Symposium on Computer Mi
roar
hite
-ture (MICRO-28), pages 146{156, November 1995.[6℄ M. Franklin and G. Sohi. Register TraÆ
 Analysis for Stream-lining Inter-Operation Communi
ation in Fine-Grain ParallelPro
essors. In 25th International Symposium on Mi
roar
hi-te
ture (MICRO-25), pages 236{245, De
ember 1992.

[7℄ M. Franklin and G. Sohi. ARB: A Hardware Me
hanism forDynami
 Memory Disambiguation. IEEE Transa
tions onComputers, 45(5):552{571, May 1996.[8℄ S. Gopal, T. N. Vijaykumar, J. Smith, and G. Sohi. Spe
-ulative Versioning Ca
he. In 4th International Symposiumon High-Performan
e Computer Ar
hite
ture, pages 195{205,February 1998.[9℄ M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao,E. Bugnion, and M. Lam. Maximizing Multipro
essor Perfor-man
e with the SUIF Compiler. IEEE Computer, 29(12):84{89, De
ember 1996.[10℄ L. Hammond, M. Willey, and K. Olukotun. Data Spe
ulationSupport for a Chip Multipro
essor. In 8th International Con-feren
e on Ar
hite
tural Support for Programming Languagesand Operating Systems (ASPLOS), O
tober 1998.[11℄ V. Krishnan and J. Torrellas. A Dire
t-Exe
ution Frameworkfor Fast and A

urate Simulation of Supers
alar Pro
essors.In PACT '98, pages 286{293, O
tober 1998.[12℄ V. Krishnan and J. Torrellas. A Chip-Multipro
essor Ar
hite
-ture with Spe
ulative Multithreading. Spe
ial Issue on Multi-threaded Ar
hite
ture, IEEE Transa
tions on Computers, De-
ember 1999.[13℄ C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-Ben
h: A Tool for Evaluating and Synthesizing Multimediaand Communi
ations Systems . In 30th International Sympo-sium on Mi
roar
hite
ture (MICRO-30), pages 330{335, De-
ember 1997.[14℄ G. Lesartre and D. Hunt. PA-8500: The Continuing Evolutionof the PA-8000 Family. In COMPCON, 1997.[15℄ J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen.Converting Thread-Level Parallelism Into Instru
tion-LevelParallelism via Simultaneous Multithreading. ACM Trans-a
tions on Computer Systems, 15(3):322{354, August 1997.[16℄ P. Mar
uello and A. Gonzalez. Clustered Spe
ulative Mul-tithreaded Pro
essors. In 13th International Conferen
e onSuper
omputing (ICS), June 1999.[17℄ D. Matzke. Will Physi
al S
alability Sabotage Performan
eGains? IEEE Computer, 30(9):37{39, September 1997.[18℄ MIPS Te
hnologies, In
. R10000 Mi
ropro
essor Chipset,Produ
t Overview, 1994.[19℄ E. Rotenberg, S. Bennett, and J. Smith. Tra
e Ca
he: ALow Laten
y Approa
h to High Bandwidth Instru
tion Fet
h-ing. In 29th International Symposium on Mi
roar
hite
ture(MICRO-29), pages 24{34, De
ember 1996.[20℄ E. Rotenberg, Q. Ja
obson, Y. Sazeides, and J. Smith. Tra
ePro
essors. In 30th International Symposium on Mi
roar
hi-te
ture (MICRO-30), pages 138{148, De
ember 1997.[21℄ B. Smith. Ar
hite
ture and appli
ations of the HEP multipro-
essor
omputer system. SPIE (Real-Time Signal Pro
essingIV), 298:241{248, 1984.[22℄ G. Sohi, S. Brea
h, and T. N. Vijaykumar. Multis
alar Pro-
essors. In 22nd International Symposium on Computer Ar-
hite
ture, pages 414{425, June 1995.[23℄ J. Ste�an and T. Mowry. The Potential for Using Thread-LevelData Spe
ulation to Fa
ilitate Automati
 Parallelization. In4th International Symposium on High-Performan
e ComputerAr
hite
ture, pages 2{13, February 1998.[24℄ J. Tsai and P. Yew. The Superthreaded Ar
hite
ture: ThreadPipelining with Run-Time Data Dependen
e Che
king andControl Spe
ulation. In PACT '96, pages 35{46, O
tober 1996.[25℄ J. Veenstra and R. Fowler. MINT: A Front End for EÆ-
ient Simulation of Shared-Memory Multipro
essors. In MAS-COTS'94, pages 201{207, January 1994.[26℄ T. N. Vijaykumar and G. Sohi. Task Sele
tion for a Multis
alarPro
essor. In 31st International Symposium on Mi
roar
hi-te
ture (MICRO-31), De
ember 1998.

Appendix A: Binary AnnotationThe steps involved in the annotation of the binary are illustratedin Figure 10. The approa
h that we use is similar to that of Mul-tis
alar [22℄, ex
ept that we operate on the binary
ode instead ofon the intermediate
ode. First, we identify loop iterations andannotate their initiation and termination points. Then, we identifythe register-level dependen
es between these threads. This involvesidentifying looplive registers, whi
h are those that are live at loopentry and exits and may also be rede�ned in the loop. We thenidentify the rea
hing de�nitions at loop exits of all the loopliveregisters. From these looplive rea
hing de�nitions, we identify safede�nitions, whi
h are de�nitions that may o

ur but whose valuewill never be overwritten later in the loop body.

registers (i.e. registers live at looplooplive

Perform live variable and

Generate control flow graph

defintions & release points for all

Identify induction variables & move the induction

reaching definition analysis

Annotate task initiation and

termination points

 Annotate safe/release points

entry/exits & also redefined in loop)

and back-edge information

looplive reaching definitions

updates that dominate all exits closer to entry point

safe

Identify basic blocks

Executable

Identify loops using dominator

looplive reaching definitions at all exitsAnnotated

Executable

Identify

Identify

Get

Figure 10: Binary annotation pro
ess.

release r3

entry

..=r3

(unsafe)r3=..

looplive: r3

entry

entry

(safe)r3=..

Figure 11: Safe de�nitions and release points.Similarly, we identify the release points for the remaining def-initions whose value may be overwritten by another de�nition.Figure 11 illustrates the safe de�nitions and release points for alooplive register r3. These points are identi�ed by �rst perform-ing a ba
kward rea
hing de�nition analysis. This is followed by adepth-�rst sear
h, starting at the loop entry point, for ea
h andevery looplive rea
hing de�nition. Finally, indu
tion variables areidenti�ed and their updates are per
olated
loser to the threadentry point provided the updating instru
tions dominate the exitpoints of the loop. This redu
es the waiting time for the su

eed-ing iteration before it
an use the indu
tion variable. However, toevaluate the e�e
t of
ommuni
ation laten
y, we do not
onsiderindu
tion variables. Instead, we
onsider only true
ross-iterationdependen
e variables.In
orporating these additions in a binary is quite simple andrequires only minor extensions to the ISA. Additional instru
tionsare needed only to identify thread entry, exit, and register valuerelease points.At present, our
urrent approa
h of analyzing sequential binariesis restri
ted to inner loop iterations. Consequently, we
an onlyexamine appli
ations whi
h are largely loop-based. However, webelieve that the approa
h
an be easily expanded to in
lude otherse
tions of the
ode by using heuristi
s similar to those used fortask sele
tion in the Multis
alar pro
essor [26℄.

