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Abstract

Chip-multiprocessor (CMP) architectures are a promising de-
sign alternative to exploit the ever-increasing number of tran-
sistors that can be put on a die. To deliver high performance
on applications that cannot be easily parallelized, CMPs can
use additional support for speculatively executing the possi-
bly data-dependent threads of an application. While some of
the cross-thread dependences in applications must be handled
dynamically, others can be fully determined by the compiler.
For the latter dependences, the threads can be made to syn-
chronize and communicate either at the register level or at
the memory level. In the past, it has been unclear whether
the higher hardware cost of register-level communication is
cost-effective.

In this paper, we show that the wide-issue dynamic proces-
sors that will soon populate CMPs, make fast communication
a requirement for high performance. Consequently, we pro-
pose an effective hardware mechanism to support communica-
tion and synchronization of registers between on-chip proces-
sors. Our scheme adds enough support to enable register-level
communication without specializing the architecture so much
toward speculation that it leads to much unutilized hardware
under workloads that do not need speculative parallelization.
Finally, the scheme allows the system to achieve near ideal
performance.

1 Introduction

Advances in VLSI technology now allow over 100 million tran-
sistors to be configured on a single processor die [14] and
a billion-transistor processor chip is in the offing. Unfortu-
nately, on-chip interconnects are likely to become a significant
bottleneck in future processors, where a signal is expected
to take multiple clock cycles to traverse the entire chip [17].
Thus, rather than implementing just one high-issue super-
scalar processor on the chip, many researchers have proposed
decentralized architectures wherein multiple simpler process-
ing units are configured on a single chip.

Indeed, the chip-multiprocessor (CMP) architecture has
drawn great attention, with architects proposing various re-
lated designs [5, 10, 12, 16, 20, 22, 23, 24]. Though the CMP
is an ideal platform to run multiple sequential applications or
a fully-parallel application, if it is to be fully accepted, it must
also be able to give good performance when running a single
sequential application or one that cannot be parallelized by
the compiler effectively. CMPs handle these applications by
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resorting to a speculative mode of execution. In this mode, the
threads that execute on the on-chip processors do not need to
be fully independent; they may have data dependences with
each other. Such speculative threads may be identified ei-
ther at compile time [4, 10, 12, 22, 23, 24] or completely at
run-time with hardware support [16, 19].

In these speculative CMPs, additional hardware support is
needed to enforce inter-thread dependences and ensure that
sequential semantics are not violated. As a result, threads
may be squashed and restarted when a dependence violation
is identified. For example, this occurs when a thread generates
a datum that a speculative thread has already prematurely
consumed. The consumer thread must then be squashed.

Not all of the dependences need to be handled in this spec-
ulative manner. Some of the cross-thread dependences can be
fully determined by the compiler from the static code. In these
cases, speculation can be avoided. The hardware can sim-
ply synchronize the data transfer between processors, thereby
preventing a successor thread from using a stale value. The
synchronizing data transfer can occur at the memory level
(typically a shared L2 cache) or at the register level with the
aid of a fast interconnect to communicate the values.

1.1 Current Status

The performance of these speculative CMPs is the subject of
intense current study. It has been shown that there is con-
siderable performance potential for even integer applications
using this speculative approach [23].

Some designs are largely specialized towards speculation,
like the Multiscalar [22] and Trace [20] processors. They
add significant hardware, such as duplicate registers for each
processor along with a buffered ring network for communica-
tion [3], or a centralized global register set in addition to the
per-processor register sets [20].

The other designs have less hardware support for specula-
tion [10, 12, 23, 24]. The philosophy of these “speculative-
light” systems is to augment the CMP with just enough sup-
port to allow speculative execution, while still maintaining
the generic CMP architecture to some degree. Within these
designs, there are many differences. While some designs rely
heavily on software for speculative thread initiation, commit
and squash [10, 23], others rely on hardware [12, 24].

Hammond et al [10] have shown that large software over-
heads in thread initiation and commit are responsible for only
modest speedups, and in a few cases slowdowns, of a specu-
lative CMP over using just one processor in the CMP. The
authors further state that the grain size of the thread plays
an important role in speculative execution. When it is too
large, the probability of a dependence violation occurring in-
creases leading to much wasted work. On the other hand,
when the grain size is small (< 100 instructions), software
overheads become significant enough that they warrant hard-
ware support for thread initiation and commit.

Another factor that affects performance is the communica-
tion of compiler-identifiable cross-thread dependent values be-



tween processors. Currently, an important difference between
speculative CMP architectures is whether they support fast
communication [12, 16, 20, 22] or not [10, 23]. It is possible
that register-allocating frequently-shared variables along with
adding extra hardware for communicating the values quickly
may prove beneficial. Without such hardware support, a spec-
ulative processor has to perform additional load and store op-
erations to use the memory system to communicate values.

A study of the performance impact of communication la-
tency in speculative CMPs [23] argues that a fast communi-
cation scheme may not be required and that communication
through the memory subsystem is sufficient. However, such a
study was performed assuming CMPs made of static single-
issue processors. In addition, it assumed threads of large grain
size, where the instructions were aggressively hand-scheduled
to minimize the waiting time for the consumer thread.

However, future speculative CMPs are likely to be popu-
lated with wide-issue dynamic superscalars. In these systems,
a faster mode of communication, possibly at the register level,
may be required. Moreover, in the absence of the aggressive
instruction scheduling techniques assumed in [23], CMPs must
be able to exploit finer-grain parallelism better if they are to
match the performance of a conventional superscalar using
the same die area [10].

1.2 Our Contribution

Our contribution is to study the impact of inter-processor
communication latencies in speculative CMPs with wide-issue
dynamic superscalars. Our design point is a “speculative-
light” CMP (in the sense discussed above), but one in which
thread initiation, commit and squash are done with low over-
head in hardware to allow better exploitation of threads with
small grain size. Furthermore, our applications are sequential
executable files, from which we automatically extract threads
without recompiling the source.

We show that wide-issue dynamic superscalars make fast
communication a requirement for high performance. Con-
sequently, we propose a hardware mechanism to support
communication and synchronization of registers between on-
chip processors. The scheme adds enough support to enable
register-level communication without specializing the CMP
architecture so much towards a speculative mode of execution
that it leads to much unutilized hardware under fully-parallel,
compiler-analyzable applications or multiprogrammed loads
of sequential programs. Finally, the scheme allows the system
to achieve near ideal performance.

This paper is organized as follows: Section 2 motivates the
problem; Section 3 describes the basic support for speculation;
Section 4 describes the evaluation environment used; Section 5
looks at the impact of communication latency; and Section 6
describes and evaluates our hardware support for register-level
communication.

2 Motivation

Proposed CMP architectures include hardware support to en-
force data dependences, enabling consumer threads to acquire
the appropriate value from the producer thread. In addi-
tion, these architectures also include hardware to detect de-
pendence violations when they occur, so that threads can be
squashed and restarted. Dependence enforcement and vio-
lation detection can be done with centralized schemes like
the ARB [7] or with distributed schemes that use a mod-
ified cache-coherence protocol among the processors in the
CMP [8, 10, 12, 23].

Frequently, however, the variable causing the dependence

is known to the compiler. This is illustrated in Figure 1,
which shows one of the most frequently executed loops from
SPEC95’s li application. Each iteration of the loop reads vari-
able prev and may later update it. In that case, we can use
more advanced mechanisms than the ones described above.
Specifically, depending on the hardware support available, two
alternatives are possible.

while (TRUE) {
if (prev == NIL)
(1) return;
if (prev->n_flags & LEFT) {
if (livecdr(prev)) {

(2) prev->n_flags &= “LEFT;
tmp = car(prev)
rplaca(prev,this) ;
this = cdr(prev);
rplacd(prev,tmp) ;
break;

} else {
tmp = prev;
prev = car(tmp);

(3) rplaca(tmp,this);
this = tmp;

¥

} else {
tmp = prev;
prev = cdr(tmp);

(4) rplacd(tmp,this);

this = tmp;

}

}

Figure 1: Code segment from li.

One approach is for the compiler to insert a synchronization
step between the producer and the consumer threads through
the memory hierarchy. This approach requires an efficient
synchronization mechanism, like a hardware-based full-empty
bit mechanism [21]. For example, given an iteration, we know
that it will not update prev any more when it is about to
execute any of the statements (1), (2), (3), or (4) in the figure.
At any of these points, an iteration can synchronize with the
next thread through, for example, a shared L2 cache. If, in
addition, the producer has just updated prev, the new value
can be forwarded to the L2 cache in the same synchronization
step.

The second approach is to provide much faster inter-
processor communication.  Specifically, we can register-
allocate prev and use an on-chip network [5, 12, 20, 22] to
communicate its value between processors. This approach al-
lows very fast communication.

In a CMP with wide-issue dynamic superscalar processors,
performing synchronization through memory is slow. Con-
sider, for example, a CMP with four 4-issue processors where
the L2 cache has advanced hardware support for full-empty
bit synchronization. The minimum time that it takes to trans-
fer a datum between two threads is a round-trip access to the
L2 cache. This may easily be 6 cycles, even for on-chip caches.
Each thread can execute many instructions in this time.

If, instead, a fast interconnect is used to communicate these
values, the latencies can be made much smaller. Depending on
the distance between the two threads on the chip, the latency
may vary. If we assume a 0.18um technology, the entire die
can be covered in 2 clock cycles, while for 0.13um technology,
this will increase to 4 cycles [17].

It could be argued that CMPs could be based on single-issue
processors, thereby allowing more processors to be configured
on-chip. In that case, the inter-processor communication la-
tency is not as crucial. However, exploiting both thread- and
instruction-level parallelism is critical for the performance of
multithreaded applications [15]. Thus CMPs are likely to be
based on wide-issue dynamic superscalar processors.

Note that a fast interconnection may be used to communi-
cate values without supporting register-level communication.



An example is the Superthreaded architecture [24]. Here, an
on-chip memory buffer holds the dependent values from/to
which a processor loads/stores the value. Fast communica-
tion of these values between processors is facilitated using a
ring network.

Supporting register-level communication, however, has
the advantage that fewer instructions need to be executed.
Memory-level communication needs instructions to explicitly
store and load the communicated values to and from memory.
In addition, unless special hardware support is provided, it
also needs instructions to synchronize the two communicating
threads. In the example of Figure 1, prev must be explicitly
stored to memory right before points (3) and (4). In addi-
tion, extra instructions for synchronization may need to be
added at points (1)-(4). All these instructions may degrade
performance [10].

3 Support for Speculation

To run an application on a speculative CMP architecture,
we first need to identify threads. This may be achieved in
software by performing a compilation step [4, 10, 22, 23, 24] or
in hardware by using special hardware support that identifies
threads at run-time [16, 19]. We use a software approach.
However, we perform the compilation step on the sequential
executable file. As a result, we do not need to recompile the
program and can operate on legacy codes.

We have developed a binary annotator that identifies units
of work for each thread and the register-level dependences be-
tween these threads. Currently, we limit the threads to inner
loop iterations. In our analysis, we mark the entry and exit
points of each loop. During the course of execution, when a
loop entry point is reached, multiple threads are spawned to
begin execution of successive iterations speculatively. How-
ever, we follow sequential semantics for thread completion.
The binary annotator is discussed in Appendix A.

Unlike register dependences, memory dependences cannot
be easily identified from the binary. Therefore, we assign the
full responsibility of detecting memory dependences to the
hardware. We designed a modified cache-coherence protocol
to enforce data dependences as well as to detect their violation
in a distributed manner [12]. When a data dependence viola-
tion occurs — for example when a thread generates a datum
that a speculative successor thread has already prematurely
consumed — threads are squashed and then restarted. We
squash the thread that violated the dependence and all its
successors. Overall, our cache coherence protocol is similar
to others [8, 10, 23]. We do not detail it here because it
plays no role in evaluating the importance of communication
latency for compiler-identifiable dependence values. Finally,
threads can also be squashed for control dependence viola-
tions. Specifically, as soon as we identify the last iteration of
the loop, any iterations that were speculatively spawned after
it are squashed.

4 Evaluation Environment
4.1 Architectures Modeled

We model CMPs with 4 processors, where the processors can
be 1-, 2-; or 4-issue dynamic superscalars. The superscalar
core is modeled on the lines of the MIPS R10000 [18]. This
core has a large fully-associative instruction window along
with integer and floating-point registers for renaming. Some
of its characteristics are shown in Table 1. A 2K-entry direct-
mapped 2-level branch prediction table allows multiple branch
predictions to be performed even when there are pending un-

resolved branches. All instructions take 1 cycle to complete.
The only exceptions are multiply and divide operations. In-
teger multiplies and divides take 2 and 8 cycles respectively.
Floating-point multiplies take 2 cycles, while floating-point di-
vides take 4 cycles for single precision and 7 cycles for double
precision.

Issue Number of Entries in Number of
Width || Funct. Units | Instruction | Renaming Regs.
(int/Id-st/fp) Window (int/fp)
1 1/1/1 16 16/16
2 2/1/1 32 32/32
4 4/2/2 64 64/64

Table 1: Characteristics of the dynamic superscalar
core.

We model the memory subsystem in detail. Caches are non
blocking and support full load bypassing. We assume a perfect
I-cache for all our experiments and model only the D-cache
hierarchy. The 4-, 2-; and 1-issue processors can have up to 32,
16, and 8 outstanding memory accesses respectively, of which
16, 8, and 4 can be loads respectively. Each processor in the
CMP has a relatively small private L1 cache of 16 Kbytes. All
processors share a larger on-chip L2 cache. The characteristics
of the memory hierarchy are shown in Table 2.

[[ Parameter [ Value I
[L1 / L2] Cache Size (Kbytes) [16x4 / 1024]
[L1 / L2] Cache Line Size (Bytes) [32 / 64]

[L1 / L2] Cache Associativity 2/ 4]
L1 Banks 3

L1 Latency (Cycles) 1

L2 Latency (Cycles) Variable
Memory Latency (Cycles) 26

Table 2: Characteristics of the CMP memory hier-
archy. All latencies correspond to a contention-free
round trip from the processor.

4.2 Simulation Approach

We evaluate the architectures using an execution-driven sim-
ulation environment [11]. Our environment includes MINT as
a front-end [25]. The environment captures both application
and library code and generates events by instrumenting bina-
ries. The back-end simulator is very detailed and performs a
cycle-accurate simulation of the different CMP architectures.

As applications, we use highly-optimized sequential bina-
ries generated by the MIPS compiler. The applications in-
clude four programs from the SPEC95 suite (hydro2d, wave5,
li, and ijpeg), two programs from the MediaBench suite [13]
(adpcm and epic), and two programs from the Perfect Club
suite [1] (¢rfd and ocean). Table 3 lists the applications. We
use the train set as input for the SPEC95 applications and the
default input for the rest of the applications. We chose these
applications because they are good candidates for speculative
execution. The integer applications have many cross-iteration
dependences. The floating-point applications, except for hy-
dro2d, cannot be parallelized effectively even with advanced
parallelizing compiler techniques [2, 9].

Table 3 gives additional loop-level details for each applica-
tion. The data is collected while executing the applications
in sequential mode. The third column (A) gives the total
number of loops that are identified and annotated by our bi-
nary annotation pass. These are the inner loops of the code.
The fourth column gives the percentage of time that is spent
in these loops relative to overall execution time. From the
percentage of time spent in these loops, we see that the four
processors in the CMP will be active over 94% of the serial



Integ. Number | Percent. Number of Loops w/ | Percent. Weighted Weighted
Application or of Inner | of Serial Compiler-Identifiable | of Serial Iteration Number of
Float. Loops Time Cross-Iteration Time Grain Size | Cross-Iteration
(A) in (A) Dependences (B) in (B) (Instruct.) Dependences
hydro2d Float 128 100 23 34 46 1.53
waves Float 86 86 25 53 50 1.50
ocean Float 58 98 16 69 31 1.91
trfd Float 20 65 13 64 35 3.37
li Integ 18 50 7 27 31 2.98
ijpeg Integ 112 79 43 26 70 2.46
adpcm Integ 1 100 1 100 71 6.00
epic Integ 25 94 12 35 53 1.50
[[ Harmonic Mean | I [ 80 I | 42 I 44 [ 2.15 I

Table 3: Loop-level profile of the applications used.

time in four applications, namely hydro2d, ocean, adpcm, and
epic. They will be active over 79% of the serial time in wave5
and #jpeg. For li and trfd, there is a large portion of the code
that is run serially on one processor. On average, for all the
applications, we are able to perform speculative paralleliza-
tion on over 80% of the serial execution time using our binary
analysis.

The fifth column in the table shows how many of the anno-
tated loops have compiler-identifiable cross-iteration depen-
dences. For this category, we ignored dependences caused by
induction variables. It must be mentioned that, even though
hydro2d can be fully parallelized by Polaris [2] or SUIF [9], the
optimized sequential binary generated by the MIPS compiler
introduces some dependences by assigning to registers those
memory locations that are repeatedly loaded in successive it-
erations. This strategy avoids redundant loads to be issued
to the L1 cache, although it forces artificial cross-iteration de-
pendences to appear. This effect occurs to a certain extent in
the other floating-point applications, even though these other
applications also have true dependences. The sixth column
gives the percentage of serial time that is spent in these loops
with identifiable dependences. It is this part of the execu-
tion time that can be affected by using a fast inter-processor
communication scheme as discussed before.

Finally, the last two columns give the iteration grain size
and the number of cross-iteration dependences on a weighted
basis. Rather than giving a simple average value of all the
relevant loops, we give a weighted average: we assign a weight
to each relevant loop based on the fraction of serial time spent
in that loop. Hence a loop that dominates the execution time
will tend to contribute more to the grain size and number of
cross-iteration dependences. The fine grain sizes shown in the
table highlight the need to use a hardware-based approach to
thread initiation and termination as opposed to a software-
based one. Furthermore, the last column tells us that, most
often, an iteration only needs to communicate a couple of
variables to successor iterations.

4.3 Statistics Collection

We gather detailed statistics on an issue-slot basis. For each
processor in the CMP, we scan the entire instruction window
every cycle and record the type of hazard faced by each in-
struction that is unable to issue. At the end of the program,
the total wasted slots are divided proportionally among the
different types of hazards recorded. The different types of
hazards that we consider are: waiting on a datum transferred
from a predecessor thread (sync), data dependences (data),
waiting on a memory access (memory), waiting due to a se-
rial section (serial), and instructions squashed on branch mis-
predictions or when a thread is squashed (squashed). There
is also an other category, which includes slots wasted due to
structural hazards, control hazards (restarting the pipeline
after a branch misprediction), and due to lack of renaming

registers. Finally, the issued instruction slots are grouped un-
der issued.

5 Impact of Communication La-
tency in a Speculative CMP

To evaluate the performance impact of memory-level commu-
nication, we simulate CMPs where all the cross-thread depen-
dences that could use register communication are communi-
cated through the L2 cache. The threads are synchronized
using a full-empty bit mechanism [21]. We assume special
storage beside the shared L2 cache where the synchronization
variables are kept. For our experiments, we do not consider
induction variables, nor do we model the extra instructions
that are needed to evaluate those variables independently in
each processor of the CMP. We consider three types of CMPs
that differ in the issue width of their four processors: 1, 2, and
4-issue (Section 4.1). We neglect any port contention to ac-
cess the communicated variables in the L2 cache. We consider
three environments by varying the latency of the L2 cache. In
these environments, the one-way trip latency from the pro-
cessor to the L2 cache is 5, 3, and 0 cycles respectively. In
the latter environment, called Ideal, there is no communica-
tion latency: any producer update is visible to the consumer
instantaneously.

Figure 2 shows the execution time of the eight applications
on a CMP with four 1-issue dynamic processors. The execu-
tion time is divided into the different categories described in
Section 4.3. For each application, the bars are normalized to
the Ideal environment. The IPC for each application and L2
cache latency is given at the top of the figure.

From the figure, we can see that the added L2 cache latency
translates directly into a large synchronization time, thereby
resulting in an increased execution time. Note that, in our
setup, a processor in the CMP does not block if the access to
the full-empty bit does not immediately succeed. Instead, the
access remains outstanding and the processor can continue
issuing instructions not dependent on that access. In the fig-
ure, the sync time in Ideal shows the time when the consumer
arrives at the synchronization point before the producer. Ap-
plications such as waves, ocean and trfd have little or no sync
time in Ideal. This denotes that the value is always available
to the consumer. However, with an increase in communica-
tion latency, sync time becomes significant enough to cause a
performance degradation of 19% to 35%.

Adpem belongs to the other extreme case, where even Ideal
has sync time. Though this application has practically no
serial sections and fully exploits the speculative mode, the
performance is severely affected by the presence of several
cross-iteration dependences. This invariably results in many
instructions being unable to issue, eventually leading up to
an execution stall. An increase in the communication latency
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Figure 3: Impact of the L2 cache latency on the execution time and IPC for a CMP based on four 2-issue

dynamic superscalar processors.

only exacerbates the problems, resulting in a 50% slowdown
relative to Ideal. The remaining applications also perform
poorly as communication latency increases. Overall, we ob-
serve performance losses of 6-31% with a 3-cycle L2 cache
access latency and 8-52% with a 5-cycle latency.

Since CMPs will likely be built out of superscalar proces-
sors, Figures 3 and 4 show the results of the previous exper-
iments for CMPs with 2- and 4-issue dynamic superscalars
respectively. Comparing this data to that in Figure 2, we
see that, for nearly all applications, the performance differ-
ence between Ideal and the rest has widened. For example,
while for the 1-issue processors the average difference in per-
formance between Ideal and 5-cycles is 23%, the difference
jumps to 34% for the 2-issue processors (Figure 3) and, fi-
nally, to 45% for the 4-issue processors (Figure 4). These
results show that there is a need for a fast communication
mechanism for these variables in speculative CMPs, and that
it becomes more important when higher-issue processors are
used as building blocks.

6 Hardware Support for Register-
Level Communication

The fast communication needed in speculative CMPs may or
may not support register-level communication. However, as
mentioned in Section 2, supporting register-level transfers has
added benefits. Consequently, we propose to support flexible
inter-thread register communication by augmenting a conven-
tional scoreboard to what we call a Synchronizing Scoreboard

(SS).
For our hardware to work, each thread maintains its status

in the form of a bit mask (called ThreadMask) in a spe-
cial register. The status of a thread can be any of the four
values shown in Table 4. Inside a loop, the non-speculative
thread executes the current iteration. Speculative successors
1, 2, and 3 execute the successor iterations, which we call the
first, second, and third speculative iteration respectively. As
threads complete, the non-speculative ThreadMask will move
from one thread to its immediate successor. In the follow-
ing, we describe the SS, assess its complexity, and evaluate its
performance.

Thread Status ThreadMask
Non-Speculative 0001
Speculative Successor 1 0011
Speculative Successor 2 0111
Speculative Successor 3 1111

Table 4: Possible status of a thread.

6.1 The Synchronizing Scoreboard (SS)

We propose a fully-decentralized structure, where each proces-
sor has its own SS. The SS is a scoreboard augmented with
additional bits. It is used by a thread to synchronize and
communicate register values with other threads. The SSs in
the different processors are connected with a broadcast bus,
on which register values are transferred. This bus, which we
call the SS Bus, has a limited bandwidth of 1 register per
cycle and one read and one write port to the register file of
each processor. For a 4-processor CMP, a value written by
a processor onto the bus takes between 1 to 3 cycles without
contention to get to the destination processor, depending on
the physical distance between the producer and the receiver
processors. The latency assumes a 0.13pum chip technology,
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dynamic superscalar processors.

where a signal takes up to 4 clock cycles to traverse the entire
die [17]. After each cycle, the values are latched before being
driven to the next stage in the following cycle. Thus, arbitra-
tion for the bus is performed one stage at a time. Depending
on the direction of the message, the value is stored in one
of two directional latches at each stage. A processor cannot
write a new value onto the bus when a value is pending in its
corresponding staging latches. The overall hardware setup is
shown in Figure 5.
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Figure 5: Hardware for register communication.

6.1.1 Data Structures

As in a conventional scoreboard, each SS has one entry per
register. Figure 5 shows the different fields for one entry.
The fields are grouped into local and global fields. The local
fields are private to each processor. To avoid centralization,
the global fields are replicated but easily kept coherent across
the SSs in the different processors. This is described later in
the section. The global fields include the Sync (S) and the
StartSync (F) fields. Each of these fields has one bit for each
of the processors on chip. Table 5 shows an example of the
global fields of a SS.

RegID | StartSync Sync
FOF1F2F3 50515253

13 0100 0100

14 1010 1000

Table 5: Example of the global fields of a SS.

For a given register, the S; bit, if set, implies that the thread
running on processor ¢ has not made the register available to
successor threads yet. When a thread starts on processor ¢,
it sets the S; bit for all the looplive registers (see Appendix
A) that the thread may create. The S; bit for a register is
cleared when the thread executes either a safe definition or
the release instruction for that register (Appendix A). When

this occurs, the thread also writes the register value on the
bus, thereby allowing other processors to update their values
if needed. At that point, the register is safe to be used by
successor threads.

The F; and S; bits for all the registers are automatically
initialized with dedicated hardware. They are set in the SS
of all processors when a thread starts on processor i. The
F bit simply keeps the value that S was given to when the
thread was initiated in the processor. From then on, the F' bit
remains unchanged throughout the execution of the thread.
The F; bits are used to indicate the looplive registers that may
be generated at any time during the iteration by the thread
running on processor i.

The private fields include the Valid (V) and Sent (X) fields.
We will consider the X field later. The V bit for each register
tells whether the processor has a valid copy of the register.
When a parallel section of the code is reached, the processors
that were idle in the preceding serial section start with their V
bits set to zero. The V bit for a register is set when the register
value is generated by the local thread or is communicated from
another processor.

Within a given parallel section, a processor can reuse regis-
ters across threads. When a processor initiates a new thread
(the latest speculative thread), it sets the V bit for each of its
registers as: V =V — UF},.q. This invalidates any registers
that are written by any of the three predecessor threads.

Note that the startup overhead for speculative task initi-
ation involves just setting a register bit-mask for the corre-
sponding thread ID in the SS and initializing the program
counter to start execution at a specific location. This can be
achieved with modest hardware in a single cycle.

6.1.2 Communication

Register communication between threads can be producer-
initiated or consumer-initiated. The producer-initiated ap-
proach has already been outlined. When a thread performs a
safe definition for a register or executes a release instruction
for a register, it clears the S bit for the register and writes
the register on the SS bus. At that point, in hardware, each
of the successor threads checks its own V bit for the register
and also the F' bits for all the threads between the producer
(non-inclusive) and itself (inclusive) for the same register. If
all these bits are zero, the hardware in the successor thread
automatically loads the register and sets the V bit of the cor-
responding register to 1. At the same time, the hardware also
clears the S bit corresponding to the producer thread in all
the SSs. The F bits, however, remain unchanged.

It is possible that the consumer thread is not yet running
when the producer generates the register. We could allow



the values to be stored by using a buffered communication
mechanism, rather than using a simple broadcast bus. The
buffer would have to potentially hold all the live registers after
the last speculative thread until a new thread is initiated on
the successor. In addition, this approach would require fur-
ther hardware support in the form of duplicate register sets
in each processor to enable recovery from squashes [3]. Al-
ternatively, a global register set may be maintained to store
these values [20], but at the cost of maintaining an additional
centralized structure.

Instead, in our scheme, we add minimal hardware to also
support a consumer-initiated approach, where communication
occurs when the consumer needs the register. To support it,
the SS has logic that allows a consumer thread to identify
the corresponding producer and get the register value from
it. The logic works as follows. The consumer thread first
checks the V bit for the register. If it is set, the register is
locally available. Otherwise, the £ bit of the immediately pre-
ceding thread is checked. If it is set, the predecessor thread
is the producer. If the predecessor’s S bit is set, it means
that the register has not been produced yet and the consumer
blocks. Otherwise, the consumer gets the register value from
the predecessor. However, if the thread immediately preced-
ing the consumer has F'equal to zero, that thread cannot be
the producer. In that case, the bit checks are repeated on
the next previous thread. This process is repeated until the
non-speculative thread is reached. For example, assume that
thread 0 is the non-speculative thread, that threads 1, 2, and
3 are speculative, and that thread 3 tries to read a register.
In that case, the register will be available to thread 3 if:

Vs + So(Fa 4+ S1(F1 + So)) (1)

Suppose now, instead, that thread 1 is the non-speculative
thread, that threads 2, 3, and 0 are speculative threads, and
that the access came from the highest speculative thread,
namely 0. In that case, the register will be available to thread
0 using a similar equation:

Vo + S3(Fs 4 Sa(Fy + S1)) (2)

The accesses to these bits are always masked out with the
ThreadMask of Table 4. In examples (1) and (2), the request
came from speculative successor 3. Therefore, we have used
mask 1111, thereby enabling all bits and computing the whole
expression (1) or (2). Consider a scenario like in (2), where
thread 1 is non-speculative, except that the access came from
thread 3 (speculative successor thread 2). Consequently, we
would use ThreadMask 0111 from Table 4. This means that
we are examining only 2 predecessors. The function is:

Vs +§2(F2 +§1)

Overall, the complete logic to determine whether a reg-
ister is available is shown in Figure 6. This logic is added
for each register in the processor. If the register is available,
the reader thread gets the value from the closest predecessor
whose F bit is set (the thread should generate the register)
and S bit is clear (the thread has already generated it). If
all the bits are clear, the non-speculative thread provides the
value. The transfer of the value is initiated by the consumer
thread putting a request on the SS bus to read the regis-
ter from the appropriate thread. The request and the reply
messages can take 1-3 cycles each, depending on the distance
between producer and consumer, plus the contention for the
SS bus.

Since the S and F bits are decentralized, it is the responsi-
bility of the hardware in each of the processors to automati-
cally update the bits. Since there is a delay in the SS bus, for
a short period of time, the bits may be inconsistent across pro-
cessors. However, the protocol has been designed such that
there is no effect on the correctness of the overall mechanism.
For example, when a producer processor writes a register on

the SS bus, the S bit for the producer will be reset. During a
short period of time, the bit will be 0 in the processors closer
to the producer while it is still 1 in the processors far away
from it. However, when the register value from the producer
reaches the end processor, the S bit for the producer processor
in the end processor is zeroed out.

6.1.3 Example

In this section, we give an example of how the SS entries
change. Let threads ¢, ¢t + 1, t + 2, and ¢ + 3 execute on pro-
cessors 0, 1, 2, and 3 respectively. Assume that all threads,
except t, have r3 marked invalid and that thread ¢t + 1 pro-
duces a live-out value. The SS entry appears as follows. Note
that each V bit is local to a processor and is denoted by the
subscript, while the F' and S bits are global and replicated.

[ Processor || 0 [ 1T 1 2 1T 3 1]
Thread t t+1 t+2 t+3
Status non-spec | specl | spec2 | spec3

| Vo || i || Vo || Vs || FoF1FoF3 | S0515253 |
[T O] OJ O] 0100 | 0100 |
When thread t+ 1 updates r3, it clears its S bit and writes

the register for its successors to read. This is a producer-
driven approach. The SS entry looks as follows:

[ Processor || 0 [ 1 [ 2 T 3 7]
Thread t t+1 t+ 2 t+ 3
Status non-spec | specl | spec2 | spec3

[Vo [ Vi [ Va [[ Va ]| FoFAiF2F3 | 50515253 |
[T Q1T 1] 0100 [ 0000 |

Now, assume that ¢ completes and a new thread t + 4 is
initiated on processor 0. Note that 73 in processor 0 is stale.
At this point, V for processor 0 (Vo) is set according to Vo =
Vo — UFpreq. Since Fi = 1, Vp is set to 0. The scoreboard
entry looks as follows:

[ Processor [ 0 ] 1 [ 2 [ 3 7]
Thread t+4 t+1 t+ 2 t+ 3
Status spec3 | non-spec | specl | spec2

[Vo I Vi [ Vo [ V3 [[ FoF1F2F3 | S0515253 |
[0 [ T [ T[T 0100 [ 0000 |

Now, when t 4 4 tries to read r3, it checks the register
availability logic, Vo + S3(F5 + S2(F> + S1)), which evaluates
to TRUE, and determines that the value is available from the
non-speculative thread ¢t 4+ 1. At that point, it puts a request
on the SS bus. This is a consumer-driven approach. Finally,
when processor 1 supplies the value to the bus, processor 0
reads register r3.

6.1.4 The Last Copy Problem

When the last speculative thread updates a looplive register,
it has no successors to which it can send the value. As a result,
any future consumer threads will have to explicitly request it.
Also, recall that when a new thread is initiated, it invalidates
any local register that a predecessor may produce. Under
these conditions, a situation may occur where all the copies
of a given register on chip are about to become invalid. We
call this the last copy problem.

The last copy problem is illustrated in Figure 7. In the
example, register r3 is live across all threads. Each thread
reads 73 before writing it. Therefore, any thread will inval-
idate its local copy of r3 on initiation. In Figure 7-(a), the
last speculative thread (thread 3) updates 73 and no other
thread consumes it. Some time later, threads 0, 1, and 2 have
finished; threads 4, 5, and 6 have started in their place; and
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Figure 7: The last copy problem. The arrow points
to the currently-executing instructions.

thread 3 has acquired non-speculative status and is about to
finish (Figure 7-(b)). If we now spawn thread 7 on the right-
most processor, we face the last copy problem: r3 will be lost.
This is because thread 4 has not read r3 yet, while thread 7
will clear its valid bit for 3 upon initialization.

The last copy problem will not occur if we use a communi-
cation mechanism that buffers live-out values to percolate to
the new threads, or when there is a centralized global register
set that maintains live-out values. For instance, the Multi-
scalar processor [22] uses the first approach. A ring struc-
ture is used to forward register values. All values move from
one thread to another in the ring and are buffered after the
last speculative thread until they can be forwarded further.
The forwarding can proceed once the non-speculative thread
is completed and a new thread initiated on it. Since this is a
fully producer-driven approach, registers must be backed up
in case the consumer thread is squashed. Thus, each proces-
sor maintains two copies of the register file: one to maintain
the past values and the other to store the present values. For-
warded copies from predecessors are held by the past register
set, while the new ones created by the thread are held in the
present set. In addition, to restore the state, up to 6 different
register masks are maintained in each processor [3]. This is
in contrast to our scheme, which supports both a producer-
and a consumer-driven approach, thereby simplifying recov-
ery from squashes. Squashed threads that are restarted simply
re-request the register values from the appropriate producer.

The Trace processor [20] avoids the last-copy problem by
keeping a centralized global register set that is visible to all
processors. This is in addition to the local register set in

each processor. Live-out register values are sent to the global
registers, from where any processor can read them.

In both of the above approaches, the architecture must
provide significant hardware support for speculation. Unfor-
tunately, all these resources remain unutilized when running
applications that do not need speculative parallelization.

Our SS design can be enhanced with simple hardware sup-
port to overcome the last-copy problem. The idea is for each
thread to remember which of the other 3 threads it has for-
warded the register to. This includes both producer- and
consumer-initiated transactions. Consequently, each proces-
sor has 3 private bits per register called the Sent (X) bits.
They are set if the register has been sent to the correspond-
ing thread. These bits are used as follows. Before we retire
a non-speculative thread, we will use the Sent bits to ensure
that no last-copies of registers are going to be lost. For any
such last-copy, the thread will simply write it on the SS bus,
so that speculative threads read it.

The logic used by the non-speculative thread to identify
last copies is as follows. Assume that processor 0 performs
the check. For each of the looplive registers (those with the
Fy bit set) that it produces, the register needs to be written
on the SS bus if X;(F1 + Xa2(F2 + X3)) evaluates to FALSE.
The idea is to check if the looplive value has reached up to
the thread that kills the value. If Fj is set, then that thread
kills the value. The logic is replicated for each register as
in the case of register availability. At thread retire time, each
register can be checked in parallel for last-copy status. Finally,
when a new thread is initiated on a processor, the remaining
processors clear the corresponding X bit, thereby noting that
the value is yet to be sent to the new thread.

6.2 Complexity of the SS

To understand the cost of the SS mechanism, we examine its
area and its potential impact on the processor’s cycle time. To
estimate the area, we need to consider first the logic to check
for register availability and last-copy status (Sections 6.1.2
and 6.1.4). The AND-OR logic, which is traditionally imple-
mented as a carry-propagate-kill function, and the extra gates
to selectively mask out some of the S, F, and X bits require
only a few gates. Replicating this logic for each register im-
plies an extra overhead of only a few hundreds of gates even
for a processor with a large number of registers.

In addition, the register file in each processor needs some
extra space to store the V, X, F, and S bits. The number
of extra bits per register is 3n, where n is the number of
processors on chip (Figure 5). For a 4-processor CMP with
64-bit registers, this works to around 12% storage overhead.

Finally, we need to include a SS bus in the chip. Overall,
however, we feel that these are modest hardware requirements
when compared to replicating the register sets in each proces-
sor [3] or using a centralized global register file [20].

As for the impact on cycle time, if we refer to equation (1)
in Section 6.1.2, it may seem that, in the worst-case scenario
where all the bits have to be considered, the delay incurred by
the SS logic increases quickly with the number of processors in
the CMP. However, by using a binary-tree approach, the logic
can be implemented using only log, n levels of gates, where n
is the number of processors in the CMP. Consequently, this
circuitry is shallow and unlikely to affect the cycle time. Fur-
thermore, the SS bus is implemented with staging buffers.
By pipelining the bus in this manner, we likely eliminate any
adverse impact on the processor cycle time.

Finally, we note that the complexity that we add to the
register files is modest: we add only one read and one write
port to each register file.



6.3 Evaluating the SS Performance

We now evaluate a CMP augmented with our SS and com-
pare its performance to the Ideal environment of Section 5.
Recall that, in Ideal, there is no communication latency: any
producer update is visible to the consumer instantaneously.
Figure 8 shows the execution time of the eight applications on
a CMP with four 4-issue processors under our SS hardware
and under Ideal. The execution time is normalized to Ideal.
In our simulations, we assume a SS bus with a high band-
width (5 words per cycle), so that we can factor out the effect
of contention. We will reduce the bandwidth later. Registers
are 1-word wide. Recall that the request and reply messages
in the SS can take 1-3 cycles each.
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Figure 8: Performance of a CMP with four 4-issue
processors under our SS hardware and under Ideal.

The figure shows that, for all the applications, the perfor-
mance of SS is very close to that of Ideal. The SS introduces
very little overhead. This figure should be compared to Fig-
ure 4, which compared Ideal to CMPs where all communi-
cation occurred via the L2 cache. That figure showed that
communication via the L2 cache slows down the applications
by an average of 23% (for a 3-cycle one-way access to the L2
cache) and 45% (for a 5-cycle access). These results, therefore,
indicate that fast communication is very beneficial.

The fact that there is a 3-cycle latency between processors
that are located far apart does not seem to affect the per-
formance much. This may suggest that, most of the time,
the producer and consumer threads are in adjacent proces-
sors of the CMP. This would be consistent with [6], which
indicated that, in 70-80% of the cases, the register values
are consumed by the immediate successor thread. Another
factor that helps reduce the effect of latency is the support
for producer-initiated communication. It avoids unnecessary
delay when the consumer finally needs the value. Finally,
register communication is also faster because it needs fewer
instructions than memory communication.

We now change the bandwidth of the SS bus to determine
its impact on performance. Figure 9 shows the execution time
of the applications for values of bus bandwidth ranging from
1 word per cycle to infinite bandwidth. For each application,
the execution time is normalized to the time taken when the
bandwidth is 1 word per cycle. From the figure, we can see
that there is little performance gain in increasing the band-
width of the SS bus beyond one word per cycle. In fact, an
environment with infinite bandwidth is less than 5% faster.
Consequently, we suggest a bus bandwidth no higher than 1
register per cycle.

Overall, we conclude that support for fast communication
is quite beneficial for CMPs with wide-issue dynamic super-
scalars. In addition, we have shown that this support can be
provided at the register level with modest hardware require-
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Figure 9: Impact of changing the bandwidth of the
SS bus on the execution time.

ments.

7 Conclusions

Chip-multiprocessor architectures (CMP) are a promising de-
sign alternative to exploit the ever-increasing number of tran-
sistors that can be put on a die. Since CMPs must also han-
dle applications that are difficult to parallelize, much effort
has gone into providing support for speculative paralleliza-
tion. For speculative CMPs that are based on high-issue dy-
namic superscalar processors, communication latency is one
critical factor in deciding performance. We have shown that
relying only on a plain memory subsystem for communication
between processors degrades the performance and that hard-
ware support for fast communication is required. We also
proposed a hardware scheme that enables a CMP to perform
communication and synchronization at the register level. The
hardware support is modest, yet effective enough to allow the
applications to deliver near ideal performance.
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Appendix A: Binary Annotation

The steps involved in the annotation of the binary are illustrated
in Figure 10. The approach that we use is similar to that of Mul-
tiscalar [22], except that we operate on the binary code instead of
on the intermediate code. First, we identify loop iterations and
annotate their initiation and termination points. Then, we identify
the register-level dependences between these threads. This involves
identifying looplive registers, which are those that are live at loop
entry and exits and may also be redefined in the loop. We then
identify the reaching definitions at loop exits of all the looplive
registers. From these looplive reaching definitions, we identify safe
definitions, which are definitions that may occur but whose value
will never be overwritten later in the loop body.

Identify basic blocks Identify loops using dominator

Executable Generate control flow graph. | and back-edge information

Perform live variable and Annotate task initiation and

reaching definition analysis | termination points

Get looplive registers (i.e. registers live at loop

entry/exits & also redefined in loop)

e Identify looplivereaching definitions at all exits
Executable Identify safe defintions & release points for all

looplivereaching definitions

Identify induction variables & move the induction

updates that dominate all exits closer to entry point
Annotate safe/release points

Figure 10: Binary annotation process.

(unsafe)r3=.

release r3

Figure 11: Safe definitions and release points.

Similarly, we identify the release points for the remaining def-
initions whose value may be overwritten by another definition.
Figure 11 illustrates the safe definitions and release points for a
looplive register r3. These points are identified by first perform-
ing a backward reaching definition analysis. This is followed by a
depth-first search, starting at the loop entry point, for each and
every looplive reaching definition. Finally, induction variables are
identified and their updates are percolated closer to the thread
entry point provided the updating instructions dominate the exit
points of the loop. This reduces the waiting time for the succeed-
ing iteration before it can use the induction variable. However, to
evaluate the effect of communication latency, we do not consider
induction variables. Instead, we consider only true cross-iteration
dependence variables.

Incorporating these additions in a binary is quite simple and
requires only minor extensions to the ISA. Additional instructions
are needed only to identify thread entry, exit, and register value
release points.

At present, our current approach of analyzing sequential binaries
is restricted to inner loop iterations. Consequently, we can only
examine applications which are largely loop-based. However, we
believe that the approach can be easily expanded to include other
sections of the code by using heuristics similar to those used for
task selection in the Multiscalar processor [26].



