
The Need for Fast Communiation inHardware-Based Speulative Chip Multiproessors1Venkata Krishnan2 and Josep TorrellasUniversity of Illinois at Urbana-Champaign, IL 61801Venkata.Krishnan�ompaq.om torrellas�s.uiu.eduhttp://iaoma.s.uiu.edu
AbstratChip-multiproessor (CMP) arhitetures are a promising de-sign alternative to exploit the ever-inreasing number of tran-sistors that an be put on a die. To deliver high performaneon appliations that annot be easily parallelized, CMPs anuse additional support for speulatively exeuting the possi-bly data-dependent threads of an appliation. While some ofthe ross-thread dependenes in appliations must be handleddynamially, others an be fully determined by the ompiler.For the latter dependenes, the threads an be made to syn-hronize and ommuniate either at the register level or atthe memory level. In the past, it has been unlear whetherthe higher hardware ost of register-level ommuniation isost-e�etive.In this paper, we show that the wide-issue dynami proes-sors that will soon populate CMPs, make fast ommuniationa requirement for high performane. Consequently, we pro-pose an e�etive hardware mehanism to support ommunia-tion and synhronization of registers between on-hip proes-sors. Our sheme adds enough support to enable register-levelommuniation without speializing the arhiteture so muhtoward speulation that it leads to muh unutilized hardwareunder workloads that do not need speulative parallelization.Finally, the sheme allows the system to ahieve near idealperformane.1 IntrodutionAdvanes in VLSI tehnology now allow over 100 million tran-sistors to be on�gured on a single proessor die [14℄ anda billion-transistor proessor hip is in the oÆng. Unfortu-nately, on-hip interonnets are likely to beome a signi�antbottlenek in future proessors, where a signal is expetedto take multiple lok yles to traverse the entire hip [17℄.Thus, rather than implementing just one high-issue super-salar proessor on the hip, many researhers have proposeddeentralized arhitetures wherein multiple simpler proess-ing units are on�gured on a single hip.Indeed, the hip-multiproessor (CMP) arhiteture hasdrawn great attention, with arhitets proposing various re-lated designs [5, 10, 12, 16, 20, 22, 23, 24℄. Though the CMPis an ideal platform to run multiple sequential appliations ora fully-parallel appliation, if it is to be fully aepted, it mustalso be able to give good performane when running a singlesequential appliation or one that annot be parallelized bythe ompiler e�etively. CMPs handle these appliations by1This work was supported in part by the National Siene Foun-dation under grants NSF Young Investigator Award MIP-9457436,ASC-9612099, and MIP-9619351, DARPA Contrat DABT63-95-C-0097, and gifts from Intel and IBM.2Now at Compaq Computer Corporation, 334 South Street,Shrewsbury, MA 01545.

resorting to a speulative mode of exeution. In this mode, thethreads that exeute on the on-hip proessors do not need tobe fully independent; they may have data dependenes witheah other. Suh speulative threads may be identi�ed ei-ther at ompile time [4, 10, 12, 22, 23, 24℄ or ompletely atrun-time with hardware support [16, 19℄.In these speulative CMPs, additional hardware support isneeded to enfore inter-thread dependenes and ensure thatsequential semantis are not violated. As a result, threadsmay be squashed and restarted when a dependene violationis identi�ed. For example, this ours when a thread generatesa datum that a speulative thread has already prematurelyonsumed. The onsumer thread must then be squashed.Not all of the dependenes need to be handled in this spe-ulative manner. Some of the ross-thread dependenes an befully determined by the ompiler from the stati ode. In theseases, speulation an be avoided. The hardware an sim-ply synhronize the data transfer between proessors, therebypreventing a suessor thread from using a stale value. Thesynhronizing data transfer an our at the memory level(typially a shared L2 ahe) or at the register level with theaid of a fast interonnet to ommuniate the values.1.1 Current StatusThe performane of these speulative CMPs is the subjet ofintense urrent study. It has been shown that there is on-siderable performane potential for even integer appliationsusing this speulative approah [23℄.Some designs are largely speialized towards speulation,like the Multisalar [22℄ and Trae [20℄ proessors. Theyadd signi�ant hardware, suh as dupliate registers for eahproessor along with a bu�ered ring network for ommunia-tion [3℄, or a entralized global register set in addition to theper-proessor register sets [20℄.The other designs have less hardware support for speula-tion [10, 12, 23, 24℄. The philosophy of these \speulative-light" systems is to augment the CMP with just enough sup-port to allow speulative exeution, while still maintainingthe generi CMP arhiteture to some degree. Within thesedesigns, there are many di�erenes. While some designs relyheavily on software for speulative thread initiation, ommitand squash [10, 23℄, others rely on hardware [12, 24℄.Hammond et al [10℄ have shown that large software over-heads in thread initiation and ommit are responsible for onlymodest speedups, and in a few ases slowdowns, of a speu-lative CMP over using just one proessor in the CMP. Theauthors further state that the grain size of the thread playsan important role in speulative exeution. When it is toolarge, the probability of a dependene violation ourring in-reases leading to muh wasted work. On the other hand,when the grain size is small (< 100 instrutions), softwareoverheads beome signi�ant enough that they warrant hard-ware support for thread initiation and ommit.Another fator that a�ets performane is the ommunia-tion of ompiler-identi�able ross-thread dependent values be-

tween proessors. Currently, an important di�erene betweenspeulative CMP arhitetures is whether they support fastommuniation [12, 16, 20, 22℄ or not [10, 23℄. It is possiblethat register-alloating frequently-shared variables along withadding extra hardware for ommuniating the values quiklymay prove bene�ial. Without suh hardware support, a spe-ulative proessor has to perform additional load and store op-erations to use the memory system to ommuniate values.A study of the performane impat of ommuniation la-teny in speulative CMPs [23℄ argues that a fast ommuni-ation sheme may not be required and that ommuniationthrough the memory subsystem is suÆient. However, suh astudy was performed assuming CMPs made of stati single-issue proessors. In addition, it assumed threads of large grainsize, where the instrutions were aggressively hand-sheduledto minimize the waiting time for the onsumer thread.However, future speulative CMPs are likely to be popu-lated with wide-issue dynami supersalars. In these systems,a faster mode of ommuniation, possibly at the register level,may be required. Moreover, in the absene of the aggressiveinstrution sheduling tehniques assumed in [23℄, CMPs mustbe able to exploit �ner-grain parallelism better if they are tomath the performane of a onventional supersalar usingthe same die area [10℄.1.2 Our ContributionOur ontribution is to study the impat of inter-proessorommuniation latenies in speulative CMPs with wide-issuedynami supersalars. Our design point is a \speulative-light" CMP (in the sense disussed above), but one in whihthread initiation, ommit and squash are done with low over-head in hardware to allow better exploitation of threads withsmall grain size. Furthermore, our appliations are sequentialexeutable �les, from whih we automatially extrat threadswithout reompiling the soure.We show that wide-issue dynami supersalars make fastommuniation a requirement for high performane. Con-sequently, we propose a hardware mehanism to supportommuniation and synhronization of registers between on-hip proessors. The sheme adds enough support to enableregister-level ommuniation without speializing the CMParhiteture so muh towards a speulative mode of exeutionthat it leads to muh unutilized hardware under fully-parallel,ompiler-analyzable appliations or multiprogrammed loadsof sequential programs. Finally, the sheme allows the systemto ahieve near ideal performane.This paper is organized as follows: Setion 2 motivates theproblem; Setion 3 desribes the basi support for speulation;Setion 4 desribes the evaluation environment used; Setion 5looks at the impat of ommuniation lateny; and Setion 6desribes and evaluates our hardware support for register-levelommuniation.2 MotivationProposed CMP arhitetures inlude hardware support to en-fore data dependenes, enabling onsumer threads to aquirethe appropriate value from the produer thread. In addi-tion, these arhitetures also inlude hardware to detet de-pendene violations when they our, so that threads an besquashed and restarted. Dependene enforement and vio-lation detetion an be done with entralized shemes likethe ARB [7℄ or with distributed shemes that use a mod-i�ed ahe-oherene protool among the proessors in theCMP [8, 10, 12, 23℄.Frequently, however, the variable ausing the dependene

is known to the ompiler. This is illustrated in Figure 1,whih shows one of the most frequently exeuted loops fromSPEC95's li appliation. Eah iteration of the loop reads vari-able prev and may later update it. In that ase, we an usemore advaned mehanisms than the ones desribed above.Spei�ally, depending on the hardware support available, twoalternatives are possible.while (TRUE) {if (prev == NIL)(1) return;if (prev->n_flags & LEFT) {if (livedr(prev)) {(2) prev->n_flags &= ~LEFT;tmp = ar(prev)rplaa(prev,this);this = dr(prev);rplad(prev,tmp);break;} else {tmp = prev;prev = ar(tmp);(3) rplaa(tmp,this);this = tmp;}} else {tmp = prev;prev = dr(tmp);(4) rplad(tmp,this);this = tmp;}}Figure 1: Code segment from li.One approah is for the ompiler to insert a synhronizationstep between the produer and the onsumer threads throughthe memory hierarhy. This approah requires an eÆientsynhronization mehanism, like a hardware-based full-emptybit mehanism [21℄. For example, given an iteration, we knowthat it will not update prev any more when it is about toexeute any of the statements (1), (2), (3), or (4) in the �gure.At any of these points, an iteration an synhronize with thenext thread through, for example, a shared L2 ahe. If, inaddition, the produer has just updated prev, the new valuean be forwarded to the L2 ahe in the same synhronizationstep.The seond approah is to provide muh faster inter-proessor ommuniation. Spei�ally, we an register-alloate prev and use an on-hip network [5, 12, 20, 22℄ toommuniate its value between proessors. This approah al-lows very fast ommuniation.In a CMP with wide-issue dynami supersalar proessors,performing synhronization through memory is slow. Con-sider, for example, a CMP with four 4-issue proessors wherethe L2 ahe has advaned hardware support for full-emptybit synhronization. The minimum time that it takes to trans-fer a datum between two threads is a round-trip aess to theL2 ahe. This may easily be 6 yles, even for on-hip ahes.Eah thread an exeute many instrutions in this time.If, instead, a fast interonnet is used to ommuniate thesevalues, the latenies an be made muh smaller. Depending onthe distane between the two threads on the hip, the latenymay vary. If we assume a 0.18�m tehnology, the entire diean be overed in 2 lok yles, while for 0.13�m tehnology,this will inrease to 4 yles [17℄.It ould be argued that CMPs ould be based on single-issueproessors, thereby allowing more proessors to be on�guredon-hip. In that ase, the inter-proessor ommuniation la-teny is not as ruial. However, exploiting both thread- andinstrution-level parallelism is ritial for the performane ofmultithreaded appliations [15℄. Thus CMPs are likely to bebased on wide-issue dynami supersalar proessors.Note that a fast interonnetion may be used to ommuni-ate values without supporting register-level ommuniation.

An example is the Superthreaded arhiteture [24℄. Here, anon-hip memory bu�er holds the dependent values from/towhih a proessor loads/stores the value. Fast ommunia-tion of these values between proessors is failitated using aring network.Supporting register-level ommuniation, however, hasthe advantage that fewer instrutions need to be exeuted.Memory-level ommuniation needs instrutions to expliitlystore and load the ommuniated values to and from memory.In addition, unless speial hardware support is provided, italso needs instrutions to synhronize the two ommuniatingthreads. In the example of Figure 1, prev must be expliitlystored to memory right before points (3) and (4). In addi-tion, extra instrutions for synhronization may need to beadded at points (1)-(4). All these instrutions may degradeperformane [10℄.3 Support for SpeulationTo run an appliation on a speulative CMP arhiteture,we �rst need to identify threads. This may be ahieved insoftware by performing a ompilation step [4, 10, 22, 23, 24℄ orin hardware by using speial hardware support that identi�esthreads at run-time [16, 19℄. We use a software approah.However, we perform the ompilation step on the sequentialexeutable �le. As a result, we do not need to reompile theprogram and an operate on legay odes.We have developed a binary annotator that identi�es unitsof work for eah thread and the register-level dependenes be-tween these threads. Currently, we limit the threads to innerloop iterations. In our analysis, we mark the entry and exitpoints of eah loop. During the ourse of exeution, when aloop entry point is reahed, multiple threads are spawned tobegin exeution of suessive iterations speulatively. How-ever, we follow sequential semantis for thread ompletion.The binary annotator is disussed in Appendix A.Unlike register dependenes, memory dependenes annotbe easily identi�ed from the binary. Therefore, we assign thefull responsibility of deteting memory dependenes to thehardware. We designed a modi�ed ahe-oherene protoolto enfore data dependenes as well as to detet their violationin a distributed manner [12℄. When a data dependene viola-tion ours | for example when a thread generates a datumthat a speulative suessor thread has already prematurelyonsumed | threads are squashed and then restarted. Wesquash the thread that violated the dependene and all itssuessors. Overall, our ahe oherene protool is similarto others [8, 10, 23℄. We do not detail it here beause itplays no role in evaluating the importane of ommuniationlateny for ompiler-identi�able dependene values. Finally,threads an also be squashed for ontrol dependene viola-tions. Spei�ally, as soon as we identify the last iteration ofthe loop, any iterations that were speulatively spawned afterit are squashed.4 Evaluation Environment4.1 Arhitetures ModeledWe model CMPs with 4 proessors, where the proessors anbe 1-, 2-, or 4-issue dynami supersalars. The supersalarore is modeled on the lines of the MIPS R10000 [18℄. Thisore has a large fully-assoiative instrution window alongwith integer and oating-point registers for renaming. Someof its harateristis are shown in Table 1. A 2K-entry diret-mapped 2-level branh predition table allows multiple branhpreditions to be performed even when there are pending un-

resolved branhes. All instrutions take 1 yle to omplete.The only exeptions are multiply and divide operations. In-teger multiplies and divides take 2 and 8 yles respetively.Floating-point multiplies take 2 yles, while oating-point di-vides take 4 yles for single preision and 7 yles for doublepreision.Issue Number of Entries in Number ofWidth Funt. Units Instrution Renaming Regs.(int/ld-st/fp) Window (int/fp)1 1/1/1 16 16/162 2/1/1 32 32/324 4/2/2 64 64/64Table 1: Charateristis of the dynami supersalarore.We model the memory subsystem in detail. Cahes are nonbloking and support full load bypassing. We assume a perfetI-ahe for all our experiments and model only the D-ahehierarhy. The 4-, 2-, and 1-issue proessors an have up to 32,16, and 8 outstanding memory aesses respetively, of whih16, 8, and 4 an be loads respetively. Eah proessor in theCMP has a relatively small private L1 ahe of 16 Kbytes. Allproessors share a larger on-hip L2 ahe. The harateristisof the memory hierarhy are shown in Table 2.Parameter Value[L1 / L2℄ Cahe Size (Kbytes) [16x4 / 1024℄[L1 / L2℄ Cahe Line Size (Bytes) [32 / 64℄[L1 / L2℄ Cahe Assoiativity [2 / 4℄L1 Banks 3L1 Lateny (Cyles) 1L2 Lateny (Cyles) VariableMemory Lateny (Cyles) 26Table 2: Charateristis of the CMP memory hier-arhy. All latenies orrespond to a ontention-freeround trip from the proessor.4.2 Simulation ApproahWe evaluate the arhitetures using an exeution-driven sim-ulation environment [11℄. Our environment inludes MINT asa front-end [25℄. The environment aptures both appliationand library ode and generates events by instrumenting bina-ries. The bak-end simulator is very detailed and performs ayle-aurate simulation of the di�erent CMP arhitetures.As appliations, we use highly-optimized sequential bina-ries generated by the MIPS ompiler. The appliations in-lude four programs from the SPEC95 suite (hydro2d, wave5,li, and ijpeg), two programs from the MediaBenh suite [13℄(adpm and epi), and two programs from the Perfet Clubsuite [1℄ (trfd and oean). Table 3 lists the appliations. Weuse the train set as input for the SPEC95 appliations and thedefault input for the rest of the appliations. We hose theseappliations beause they are good andidates for speulativeexeution. The integer appliations have many ross-iterationdependenes. The oating-point appliations, exept for hy-dro2d, annot be parallelized e�etively even with advanedparallelizing ompiler tehniques [2, 9℄.Table 3 gives additional loop-level details for eah applia-tion. The data is olleted while exeuting the appliationsin sequential mode. The third olumn (A) gives the totalnumber of loops that are identi�ed and annotated by our bi-nary annotation pass. These are the inner loops of the ode.The fourth olumn gives the perentage of time that is spentin these loops relative to overall exeution time. From theperentage of time spent in these loops, we see that the fourproessors in the CMP will be ative over 94% of the serial

Integ. Number Perent. Number of Loops w/ Perent. Weighted WeightedAppliation or of Inner of Serial Compiler-Identi�able of Serial Iteration Number ofFloat. Loops Time Cross-Iteration Time Grain Size Cross-Iteration(A) in (A) Dependenes (B) in (B) (Instrut.) Dependeneshydro2d Float 128 100 23 34 46 1.53wave5 Float 86 86 25 53 50 1.50oean Float 58 98 16 69 31 1.91trfd Float 20 65 13 64 35 3.37li Integ 18 50 7 27 31 2.98ijpeg Integ 112 79 43 26 70 2.46adpm Integ 1 100 1 100 71 6.00epi Integ 25 94 12 35 53 1.50Harmoni Mean 80 42 44 2.15Table 3: Loop-level pro�le of the appliations used.time in four appliations, namely hydro2d , oean, adpm, andepi. They will be ative over 79% of the serial time in wave5and ijpeg . For li and trfd , there is a large portion of the odethat is run serially on one proessor. On average, for all theappliations, we are able to perform speulative paralleliza-tion on over 80% of the serial exeution time using our binaryanalysis.The �fth olumn in the table shows how many of the anno-tated loops have ompiler-identi�able ross-iteration depen-denes. For this ategory, we ignored dependenes aused byindution variables. It must be mentioned that, even thoughhydro2d an be fully parallelized by Polaris [2℄ or SUIF [9℄, theoptimized sequential binary generated by the MIPS ompilerintrodues some dependenes by assigning to registers thosememory loations that are repeatedly loaded in suessive it-erations. This strategy avoids redundant loads to be issuedto the L1 ahe, although it fores arti�ial ross-iteration de-pendenes to appear. This e�et ours to a ertain extent inthe other oating-point appliations, even though these otherappliations also have true dependenes. The sixth olumngives the perentage of serial time that is spent in these loopswith identi�able dependenes. It is this part of the exeu-tion time that an be a�eted by using a fast inter-proessorommuniation sheme as disussed before.Finally, the last two olumns give the iteration grain sizeand the number of ross-iteration dependenes on a weightedbasis. Rather than giving a simple average value of all therelevant loops, we give a weighted average: we assign a weightto eah relevant loop based on the fration of serial time spentin that loop. Hene a loop that dominates the exeution timewill tend to ontribute more to the grain size and number ofross-iteration dependenes. The �ne grain sizes shown in thetable highlight the need to use a hardware-based approah tothread initiation and termination as opposed to a software-based one. Furthermore, the last olumn tells us that, mostoften, an iteration only needs to ommuniate a ouple ofvariables to suessor iterations.4.3 Statistis ColletionWe gather detailed statistis on an issue-slot basis. For eahproessor in the CMP, we san the entire instrution windowevery yle and reord the type of hazard faed by eah in-strution that is unable to issue. At the end of the program,the total wasted slots are divided proportionally among thedi�erent types of hazards reorded. The di�erent types ofhazards that we onsider are: waiting on a datum transferredfrom a predeessor thread (syn), data dependenes (data),waiting on a memory aess (memory), waiting due to a se-rial setion (serial), and instrutions squashed on branh mis-preditions or when a thread is squashed (squashed). Thereis also an other ategory, whih inludes slots wasted due tostrutural hazards, ontrol hazards (restarting the pipelineafter a branh mispredition), and due to lak of renaming

registers. Finally, the issued instrution slots are grouped un-der issued .5 Impat of Communiation La-teny in a Speulative CMPTo evaluate the performane impat of memory-level ommu-niation, we simulate CMPs where all the ross-thread depen-denes that ould use register ommuniation are ommuni-ated through the L2 ahe. The threads are synhronizedusing a full-empty bit mehanism [21℄. We assume speialstorage beside the shared L2 ahe where the synhronizationvariables are kept. For our experiments, we do not onsiderindution variables, nor do we model the extra instrutionsthat are needed to evaluate those variables independently ineah proessor of the CMP. We onsider three types of CMPsthat di�er in the issue width of their four proessors: 1, 2, and4-issue (Setion 4.1). We neglet any port ontention to a-ess the ommuniated variables in the L2 ahe. We onsiderthree environments by varying the lateny of the L2 ahe. Inthese environments, the one-way trip lateny from the pro-essor to the L2 ahe is 5, 3, and 0 yles respetively. Inthe latter environment, alled Ideal, there is no ommunia-tion lateny: any produer update is visible to the onsumerinstantaneously.Figure 2 shows the exeution time of the eight appliationson a CMP with four 1-issue dynami proessors. The exeu-tion time is divided into the di�erent ategories desribed inSetion 4.3. For eah appliation, the bars are normalized tothe Ideal environment. The IPC for eah appliation and L2ahe lateny is given at the top of the �gure.From the �gure, we an see that the added L2 ahe latenytranslates diretly into a large synhronization time, therebyresulting in an inreased exeution time. Note that, in oursetup, a proessor in the CMP does not blok if the aess tothe full-empty bit does not immediately sueed. Instead, theaess remains outstanding and the proessor an ontinueissuing instrutions not dependent on that aess. In the �g-ure, the syn time in Ideal shows the time when the onsumerarrives at the synhronization point before the produer. Ap-pliations suh as wave5 , oean and trfd have little or no syntime in Ideal. This denotes that the value is always availableto the onsumer. However, with an inrease in ommunia-tion lateny, syn time beomes signi�ant enough to ause aperformane degradation of 19% to 35%.Adpm belongs to the other extreme ase, where even Idealhas syn time. Though this appliation has pratially noserial setions and fully exploits the speulative mode, theperformane is severely a�eted by the presene of severalross-iteration dependenes. This invariably results in manyinstrutions being unable to issue, eventually leading up toan exeution stall. An inrease in the ommuniation lateny

E
xe

cu
ti

on
 T

im
e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

2.
36

2.
17

2.
04

Id
ea

l

100

3
cy

cl
es

109

5
cy

cl
es

116

wave5

2.
30

2.
07

1.
90

Id
ea

l

100

3
cy

cl
es

110

5
cy

cl
es

119

ocean

2.
94

2.
76

2.
42

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

121

trfd

1.
76

1.
54

1.
29

Id
ea

l

100

3
cy

cl
es

114

5
cy

cl
es

135

li

1.
13

1.
03

0.
95

Id
ea

l

100

3
cy

cl
es

110

5
cy

cl
es

118

ijpeg

1.
93

1.
82

1.
75

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

111

adpcm

1.
35

1.
03

0.
89

Id
ea

l

100

3
cy

cl
es

131

5
cy

cl
es

152

epic

2.
23

2.
05

2.
05

Id
ea

l

100

3
cy

cl
es

108

5
cy

cl
es

108

|
|

|
|

|
|

|

0

20

40

60

80

100

120

140

Figure 2: Impat of the L2 ahe lateny on the exeution time and IPC for a CMP based on four 1-issuedynami proessors.
E

xe
cu

ti
on

 T
im

e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

3.
56

3.
33

2.
98

Id
ea

l

100

3
cy

cl
es

107

5
cy

cl
es

119

wave5

3.
59

3.
00

2.
79

Id
ea

l

100

3
cy

cl
es

120

5
cy

cl
es

128

ocean

3.
95

3.
37

2.
75

Id
ea

l

100

3
cy

cl
es

117
5

cy
cl

es

144

trfd

2.
76

2.
07

1.
69

Id
ea

l
100

3
cy

cl
es

133

5
cy

cl
es

162

li

1.
64

1.
44

1.
32

Id
ea

l

100

3
cy

cl
es

114

5
cy

cl
es

124

ijpeg

3.
33

3.
09

2.
91

Id
ea

l

100

3
cy

cl
es

108

5
cy

cl
es

114

adpcm
2.

02
1.

46
1.

20

Id
ea

l

100

3
cy

cl
es

138

5
cy

cl
es

168

epic

3.
07

2.
89

2.
76

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

111

|
|

|
|

|
|

|
|

0

20

40

60

80

100

120

140

160

Figure 3: Impat of the L2 ahe lateny on the exeution time and IPC for a CMP based on four 2-issuedynami supersalar proessors.only exaerbates the problems, resulting in a 50% slowdownrelative to Ideal. The remaining appliations also performpoorly as ommuniation lateny inreases. Overall, we ob-serve performane losses of 6-31% with a 3-yle L2 aheaess lateny and 8-52% with a 5-yle lateny.Sine CMPs will likely be built out of supersalar proes-sors, Figures 3 and 4 show the results of the previous exper-iments for CMPs with 2- and 4-issue dynami supersalarsrespetively. Comparing this data to that in Figure 2, wesee that, for nearly all appliations, the performane di�er-ene between Ideal and the rest has widened. For example,while for the 1-issue proessors the average di�erene in per-formane between Ideal and 5-yles is 23%, the di�erenejumps to 34% for the 2-issue proessors (Figure 3) and, �-nally, to 45% for the 4-issue proessors (Figure 4). Theseresults show that there is a need for a fast ommuniationmehanism for these variables in speulative CMPs, and thatit beomes more important when higher-issue proessors areused as building bloks.6 Hardware Support for Register-Level CommuniationThe fast ommuniation needed in speulative CMPs may ormay not support register-level ommuniation. However, asmentioned in Setion 2, supporting register-level transfers hasadded bene�ts. Consequently, we propose to support exibleinter-thread register ommuniation by augmenting a onven-tional soreboard to what we all a Synhronizing Soreboard(SS).For our hardware to work, eah thread maintains its status

in the form of a bit mask (alled ThreadMask) in a spe-ial register. The status of a thread an be any of the fourvalues shown in Table 4. Inside a loop, the non-speulativethread exeutes the urrent iteration. Speulative suessors1, 2, and 3 exeute the suessor iterations, whih we all the�rst, seond, and third speulative iteration respetively. Asthreads omplete, the non-speulative ThreadMask will movefrom one thread to its immediate suessor. In the follow-ing, we desribe the SS, assess its omplexity, and evaluate itsperformane.Thread Status ThreadMaskNon-Speulative 0001Speulative Suessor 1 0011Speulative Suessor 2 0111Speulative Suessor 3 1111Table 4: Possible status of a thread.6.1 The Synhronizing Soreboard (SS)We propose a fully-deentralized struture, where eah proes-sor has its own SS. The SS is a soreboard augmented withadditional bits. It is used by a thread to synhronize andommuniate register values with other threads. The SSs inthe di�erent proessors are onneted with a broadast bus,on whih register values are transferred. This bus, whih weall the SS Bus, has a limited bandwidth of 1 register peryle and one read and one write port to the register �le ofeah proessor. For a 4-proessor CMP, a value written bya proessor onto the bus takes between 1 to 3 yles withoutontention to get to the destination proessor, depending onthe physial distane between the produer and the reeiverproessors. The lateny assumes a 0.13�m hip tehnology,

E
xe

cu
ti

on
 T

im
e

Other

Squashed

Serial

Memory

Data

Sync

Issued

IPC

hydro2d

4.
38

4.
12

3.
68

Id
ea

l

100

3
cy

cl
es

106

5
cy

cl
es

120

wave5

4.
98

3.
87

3.
54

Id
ea

l

100

3
cy

cl
es

127

5
cy

cl
es

139

ocean

4.
95

4.
05

3.
02

Id
ea

l

100

3
cy

cl
es

122

5
cy

cl
es

164

trfd

4.
00

2.
68

2.
10

Id
ea

l

100

3
cy

cl
es

149

5
cy

cl
es

190

li

2.
21

1.
91

1.
77

Id
ea

l

100

3
cy

cl
es

116

5
cy

cl
es

125

ijpeg

4.
86

4.
30

3.
96

Id
ea

l

100

3
cy

cl
es

113

5
cy

cl
es

123

adpcm

2.
42

1.
68

1.
31

Id
ea

l

100

3
cy

cl
es

144

5
cy

cl
es

184

epic

3.
62

3.
36

3.
17

Id
ea

l

100

3
cy

cl
es

107

5
cy

cl
es

113

|
|

|
|

|
|

|
|

|

0

20

40

60

80

100

120

140

160

180

Figure 4: Impat of the L2 ahe lateny on the exeution time and IPC for a CMP based on four 4-issuedynami supersalar proessors.where a signal takes up to 4 lok yles to traverse the entiredie [17℄. After eah yle, the values are lathed before beingdriven to the next stage in the following yle. Thus, arbitra-tion for the bus is performed one stage at a time. Dependingon the diretion of the message, the value is stored in oneof two diretional lathes at eah stage. A proessor annotwrite a new value onto the bus when a value is pending in itsorresponding staging lathes. The overall hardware setup isshown in Figure 5.

F F F F S S S S

Synchronizing
Scoreboard

Processor 3Processor 2Processor 0

FU

X X X

Local

1 2 3 0 1 2 3

Global

StartSync SyncSent

Processor 1

(1R, 1W port) SS Bus (Bandwidth: 1 word/cycle)

VRegID

Valid

Registers

(Replicated)

0 1 2 3Figure 5: Hardware for register ommuniation.6.1.1 Data StruturesAs in a onventional soreboard, eah SS has one entry perregister. Figure 5 shows the di�erent �elds for one entry.The �elds are grouped into loal and global �elds. The loal�elds are private to eah proessor. To avoid entralization,the global �elds are repliated but easily kept oherent arossthe SSs in the di�erent proessors. This is desribed later inthe setion. The global �elds inlude the Syn (S) and theStartSyn (F) �elds. Eah of these �elds has one bit for eahof the proessors on hip. Table 5 shows an example of theglobal �elds of a SS.RegID StartSyn SynF0F1F2F3 S0S1S2S3...13 0 1 0 0 0 1 0 014 1 0 1 0 1 0 0 0...Table 5: Example of the global �elds of a SS.For a given register, the Si bit, if set, implies that the threadrunning on proessor i has not made the register available tosuessor threads yet. When a thread starts on proessor i,it sets the Si bit for all the looplive registers (see AppendixA) that the thread may reate. The Si bit for a register isleared when the thread exeutes either a safe de�nition orthe release instrution for that register (Appendix A). When

this ours, the thread also writes the register value on thebus, thereby allowing other proessors to update their valuesif needed. At that point, the register is safe to be used bysuessor threads.The Fi and Si bits for all the registers are automatiallyinitialized with dediated hardware. They are set in the SSof all proessors when a thread starts on proessor i. TheF bit simply keeps the value that S was given to when thethread was initiated in the proessor. From then on, the F bitremains unhanged throughout the exeution of the thread.The Fi bits are used to indiate the looplive registers that maybe generated at any time during the iteration by the threadrunning on proessor i.The private �elds inlude the Valid (V) and Sent (X) �elds.We will onsider the X �eld later. The V bit for eah registertells whether the proessor has a valid opy of the register.When a parallel setion of the ode is reahed, the proessorsthat were idle in the preeding serial setion start with their Vbits set to zero. The V bit for a register is set when the registervalue is generated by the loal thread or is ommuniated fromanother proessor.Within a given parallel setion, a proessor an reuse regis-ters aross threads. When a proessor initiates a new thread(the latest speulative thread), it sets the V bit for eah of itsregisters as: V = V � [Fpred. This invalidates any registersthat are written by any of the three predeessor threads.Note that the startup overhead for speulative task initi-ation involves just setting a register bit-mask for the orre-sponding thread ID in the SS and initializing the programounter to start exeution at a spei� loation. This an beahieved with modest hardware in a single yle.6.1.2 CommuniationRegister ommuniation between threads an be produer-initiated or onsumer-initiated. The produer-initiated ap-proah has already been outlined. When a thread performs asafe de�nition for a register or exeutes a release instrutionfor a register, it lears the S bit for the register and writesthe register on the SS bus. At that point, in hardware, eahof the suessor threads heks its own V bit for the registerand also the F bits for all the threads between the produer(non-inlusive) and itself (inlusive) for the same register. Ifall these bits are zero, the hardware in the suessor threadautomatially loads the register and sets the V bit of the or-responding register to 1. At the same time, the hardware alsolears the S bit orresponding to the produer thread in allthe SSs. The F bits, however, remain unhanged.It is possible that the onsumer thread is not yet runningwhen the produer generates the register. We ould allow

the values to be stored by using a bu�ered ommuniationmehanism, rather than using a simple broadast bus. Thebu�er would have to potentially hold all the live registers afterthe last speulative thread until a new thread is initiated onthe suessor. In addition, this approah would require fur-ther hardware support in the form of dupliate register setsin eah proessor to enable reovery from squashes [3℄. Al-ternatively, a global register set may be maintained to storethese values [20℄, but at the ost of maintaining an additionalentralized struture.Instead, in our sheme, we add minimal hardware to alsosupport a onsumer-initiated approah, where ommuniationours when the onsumer needs the register. To support it,the SS has logi that allows a onsumer thread to identifythe orresponding produer and get the register value fromit. The logi works as follows. The onsumer thread �rstheks the V bit for the register. If it is set, the register isloally available. Otherwise, the F bit of the immediately pre-eding thread is heked. If it is set, the predeessor threadis the produer. If the predeessor's S bit is set, it meansthat the register has not been produed yet and the onsumerbloks. Otherwise, the onsumer gets the register value fromthe predeessor. However, if the thread immediately preed-ing the onsumer has F equal to zero, that thread annot bethe produer. In that ase, the bit heks are repeated onthe next previous thread. This proess is repeated until thenon-speulative thread is reahed. For example, assume thatthread 0 is the non-speulative thread, that threads 1, 2, and3 are speulative, and that thread 3 tries to read a register.In that ase, the register will be available to thread 3 if:V3 + S2(F2 + S1(F1 + S0)) (1)Suppose now, instead, that thread 1 is the non-speulativethread, that threads 2, 3, and 0 are speulative threads, andthat the aess ame from the highest speulative thread,namely 0. In that ase, the register will be available to thread0 using a similar equation:V0 + S3(F3 + S2(F2 + S1)) (2)The aesses to these bits are always masked out with theThreadMask of Table 4. In examples (1) and (2), the requestame from speulative suessor 3. Therefore, we have usedmask 1111, thereby enabling all bits and omputing the wholeexpression (1) or (2). Consider a senario like in (2), wherethread 1 is non-speulative, exept that the aess ame fromthread 3 (speulative suessor thread 2). Consequently, wewould use ThreadMask 0111 from Table 4. This means thatwe are examining only 2 predeessors. The funtion is:V3 + S2(F2 + S1)Overall, the omplete logi to determine whether a reg-ister is available is shown in Figure 6. This logi is addedfor eah register in the proessor. If the register is available,the reader thread gets the value from the losest predeessorwhose F bit is set (the thread should generate the register)and S bit is lear (the thread has already generated it). Ifall the bits are lear, the non-speulative thread provides thevalue. The transfer of the value is initiated by the onsumerthread putting a request on the SS bus to read the regis-ter from the appropriate thread. The request and the replymessages an take 1-3 yles eah, depending on the distanebetween produer and onsumer, plus the ontention for theSS bus.Sine the S and F bits are deentralized, it is the responsi-bility of the hardware in eah of the proessors to automati-ally update the bits. Sine there is a delay in the SS bus, fora short period of time, the bits may be inonsistent aross pro-essors. However, the protool has been designed suh thatthere is no e�et on the orretness of the overall mehanism.For example, when a produer proessor writes a register on

the SS bus, the S bit for the produer will be reset. During ashort period of time, the bit will be 0 in the proessors loserto the produer while it is still 1 in the proessors far awayfrom it. However, when the register value from the produerreahes the end proessor, the S bit for the produer proessorin the end proessor is zeroed out.6.1.3 ExampleIn this setion, we give an example of how the SS entrieshange. Let threads t, t+ 1, t+ 2, and t+ 3 exeute on pro-essors 0, 1, 2, and 3 respetively. Assume that all threads,exept t, have r3 marked invalid and that thread t + 1 pro-dues a live-out value. The SS entry appears as follows. Notethat eah V bit is loal to a proessor and is denoted by thesubsript, while the F and S bits are global and repliated.Proessor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe spe1 spe2 spe3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 0 0 0 0 1 0 0 0 1 0 0When thread t+1 updates r3, it lears its S bit and writesthe register for its suessors to read. This is a produer-driven approah. The SS entry looks as follows:Proessor 0 1 2 3Thread t t+ 1 t+ 2 t+ 3Status non-spe spe1 spe2 spe3V0 V1 V2 V3 F0F1F2F3 S0S1S2S31 1 1 1 0 1 0 0 0 0 0 0Now, assume that t ompletes and a new thread t + 4 isinitiated on proessor 0. Note that r3 in proessor 0 is stale.At this point, V for proessor 0 (V0) is set aording to V0 =V0 � [Fpred. Sine F1 = 1, V0 is set to 0. The soreboardentry looks as follows:Proessor 0 1 2 3Thread t+ 4 t+ 1 t+ 2 t+ 3Status spe3 non-spe spe1 spe2V0 V1 V2 V3 F0F1F2F3 S0S1S2S30 1 1 1 0 1 0 0 0 0 0 0Now, when t + 4 tries to read r3, it heks the registeravailability logi, V0 + S3(F3 + S2(F2 + S1)), whih evaluatesto TRUE, and determines that the value is available from thenon-speulative thread t+ 1. At that point, it puts a requeston the SS bus. This is a onsumer-driven approah. Finally,when proessor 1 supplies the value to the bus, proessor 0reads register r3.6.1.4 The Last Copy ProblemWhen the last speulative thread updates a looplive register,it has no suessors to whih it an send the value. As a result,any future onsumer threads will have to expliitly request it.Also, reall that when a new thread is initiated, it invalidatesany loal register that a predeessor may produe. Underthese onditions, a situation may our where all the opiesof a given register on hip are about to beome invalid. Weall this the last opy problem.The last opy problem is illustrated in Figure 7. In theexample, register r3 is live aross all threads. Eah threadreads r3 before writing it. Therefore, any thread will inval-idate its loal opy of r3 on initiation. In Figure 7-(a), thelast speulative thread (thread 3) updates r3 and no otherthread onsumes it. Some time later, threads 0, 1, and 2 have�nished; threads 4, 5, and 6 have started in their plae; and

StartSync/Sync
Logic

Register # Valid StartSync Sync

Available?
Register

ThreadMask

Figure 6: Logi to hek register availability.

r3 =

= r3

r3 =

= r3

r3 =

= r3

r3 =

= r3

Non−
Speculative

Speculative
Successor 1

Speculative
Successor 2

Speculative
Successor 3

(a)

Thread 0 Thread 1 Thread 2 Thread 3

Speculative
Successor 1

Speculative
Successor 3

(b)

r3 =

= r3

r3 =

= r3

r3 =

= r3

r3 =

= r3

Speculative
Successor 2

Non−
Speculative

Thread 3Thread 4 Thread 5 Thread 6

Figure 7: The last opy problem. The arrow pointsto the urrently-exeuting instrutions.thread 3 has aquired non-speulative status and is about to�nish (Figure 7-(b)). If we now spawn thread 7 on the right-most proessor, we fae the last opy problem: r3 will be lost.This is beause thread 4 has not read r3 yet, while thread 7will lear its valid bit for r3 upon initialization.The last opy problem will not our if we use a ommuni-ation mehanism that bu�ers live-out values to perolate tothe new threads, or when there is a entralized global registerset that maintains live-out values. For instane, the Multi-salar proessor [22℄ uses the �rst approah. A ring stru-ture is used to forward register values. All values move fromone thread to another in the ring and are bu�ered after thelast speulative thread until they an be forwarded further.The forwarding an proeed one the non-speulative threadis ompleted and a new thread initiated on it. Sine this is afully produer-driven approah, registers must be baked upin ase the onsumer thread is squashed. Thus, eah proes-sor maintains two opies of the register �le: one to maintainthe past values and the other to store the present values. For-warded opies from predeessors are held by the past registerset, while the new ones reated by the thread are held in thepresent set. In addition, to restore the state, up to 6 di�erentregister masks are maintained in eah proessor [3℄. This isin ontrast to our sheme, whih supports both a produer-and a onsumer-driven approah, thereby simplifying reov-ery from squashes. Squashed threads that are restarted simplyre-request the register values from the appropriate produer.The Trae proessor [20℄ avoids the last-opy problem bykeeping a entralized global register set that is visible to allproessors. This is in addition to the loal register set in

eah proessor. Live-out register values are sent to the globalregisters, from where any proessor an read them.In both of the above approahes, the arhiteture mustprovide signi�ant hardware support for speulation. Unfor-tunately, all these resoures remain unutilized when runningappliations that do not need speulative parallelization.Our SS design an be enhaned with simple hardware sup-port to overome the last-opy problem. The idea is for eahthread to remember whih of the other 3 threads it has for-warded the register to. This inludes both produer- andonsumer-initiated transations. Consequently, eah proes-sor has 3 private bits per register alled the Sent (X) bits.They are set if the register has been sent to the orrespond-ing thread. These bits are used as follows. Before we retirea non-speulative thread, we will use the Sent bits to ensurethat no last-opies of registers are going to be lost. For anysuh last-opy, the thread will simply write it on the SS bus,so that speulative threads read it.The logi used by the non-speulative thread to identifylast opies is as follows. Assume that proessor 0 performsthe hek. For eah of the looplive registers (those with theF0 bit set) that it produes, the register needs to be writtenon the SS bus if X1(F1 +X2(F2 +X3)) evaluates to FALSE.The idea is to hek if the looplive value has reahed up tothe thread that kills the value. If Fi is set, then that threadkills the value. The logi is repliated for eah register asin the ase of register availability. At thread retire time, eahregister an be heked in parallel for last-opy status. Finally,when a new thread is initiated on a proessor, the remainingproessors lear the orresponding X bit, thereby noting thatthe value is yet to be sent to the new thread.6.2 Complexity of the SSTo understand the ost of the SS mehanism, we examine itsarea and its potential impat on the proessor's yle time. Toestimate the area, we need to onsider �rst the logi to hekfor register availability and last-opy status (Setions 6.1.2and 6.1.4). The AND-OR logi, whih is traditionally imple-mented as a arry-propagate-kill funtion, and the extra gatesto seletively mask out some of the S, F, and X bits requireonly a few gates. Repliating this logi for eah register im-plies an extra overhead of only a few hundreds of gates evenfor a proessor with a large number of registers.In addition, the register �le in eah proessor needs someextra spae to store the V, X, F, and S bits. The numberof extra bits per register is 3n, where n is the number ofproessors on hip (Figure 5). For a 4-proessor CMP with64-bit registers, this works to around 12% storage overhead.Finally, we need to inlude a SS bus in the hip. Overall,however, we feel that these are modest hardware requirementswhen ompared to repliating the register sets in eah proes-sor [3℄ or using a entralized global register �le [20℄.As for the impat on yle time, if we refer to equation (1)in Setion 6.1.2, it may seem that, in the worst-ase senariowhere all the bits have to be onsidered, the delay inurred bythe SS logi inreases quikly with the number of proessors inthe CMP. However, by using a binary-tree approah, the logian be implemented using only log2 n levels of gates, where nis the number of proessors in the CMP. Consequently, thisiruitry is shallow and unlikely to a�et the yle time. Fur-thermore, the SS bus is implemented with staging bu�ers.By pipelining the bus in this manner, we likely eliminate anyadverse impat on the proessor yle time.Finally, we note that the omplexity that we add to theregister �les is modest: we add only one read and one writeport to eah register �le.

6.3 Evaluating the SS PerformaneWe now evaluate a CMP augmented with our SS and om-pare its performane to the Ideal environment of Setion 5.Reall that, in Ideal, there is no ommuniation lateny: anyproduer update is visible to the onsumer instantaneously.Figure 8 shows the exeution time of the eight appliations ona CMP with four 4-issue proessors under our SS hardwareand under Ideal. The exeution time is normalized to Ideal.In our simulations, we assume a SS bus with a high band-width (5 words per yle), so that we an fator out the e�etof ontention. We will redue the bandwidth later. Registersare 1-word wide. Reall that the request and reply messagesin the SS an take 1-3 yles eah.

E
xe

cu
ti

on
 T

im
e

Other
Squashed
Serial
Memory
Data
Sync
Issued

IPC

hydro2d

4.
38

4.
38

Id
ea

l

100

SS

100

wave5

4.
98

4.
92

Id
ea

l

100

SS

101

ocean

4.
95

4.
95

Id
ea

l

100

SS

100

trfd

4.
00

3.
98

Id
ea

l

100

SS

100

li

2.
21

2.
16

Id
ea

l

100

SS

103

ijpeg

4.
86

4.
81

Id
ea

l

100

SS

101

adpcm

2.
42

2.
29

Id
ea

l

100
SS

105

epic

3.
62

3.
55

Id
ea

l

100

SS

102

|
|

|
|

|

0

20

40

60

80

100

Figure 8: Performane of a CMP with four 4-issueproessors under our SS hardware and under Ideal.The �gure shows that, for all the appliations, the perfor-mane of SS is very lose to that of Ideal. The SS introduesvery little overhead. This �gure should be ompared to Fig-ure 4, whih ompared Ideal to CMPs where all ommuni-ation ourred via the L2 ahe. That �gure showed thatommuniation via the L2 ahe slows down the appliationsby an average of 23% (for a 3-yle one-way aess to the L2ahe) and 45% (for a 5-yle aess). These results, therefore,indiate that fast ommuniation is very bene�ial.The fat that there is a 3-yle lateny between proessorsthat are loated far apart does not seem to a�et the per-formane muh. This may suggest that, most of the time,the produer and onsumer threads are in adjaent proes-sors of the CMP. This would be onsistent with [6℄, whihindiated that, in 70-80% of the ases, the register valuesare onsumed by the immediate suessor thread. Anotherfator that helps redue the e�et of lateny is the supportfor produer-initiated ommuniation. It avoids unneessarydelay when the onsumer �nally needs the value. Finally,register ommuniation is also faster beause it needs fewerinstrutions than memory ommuniation.We now hange the bandwidth of the SS bus to determineits impat on performane. Figure 9 shows the exeution timeof the appliations for values of bus bandwidth ranging from1 word per yle to in�nite bandwidth. For eah appliation,the exeution time is normalized to the time taken when thebandwidth is 1 word per yle. From the �gure, we an seethat there is little performane gain in inreasing the band-width of the SS bus beyond one word per yle. In fat, anenvironment with in�nite bandwidth is less than 5% faster.Consequently, we suggest a bus bandwidth no higher than 1register per yle.Overall, we onlude that support for fast ommuniationis quite bene�ial for CMPs with wide-issue dynami super-salars. In addition, we have shown that this support an beprovided at the register level with modest hardware require-

E
xe

cu
ti

on
 T

im
e

Bandwidth of the SS bus (words)
1 2 3 4 5 INF

hydro2d
ocean
wave5

1 2 3 4 5 INF1 2 3 4 5 INF1 2 3 4 5 INF

trfd

1 2 3 4 5 INF1 2 3 4 5 INF

ijpeg

1 2 3 4 5 INF1 2 3 4 5 INF

adpcm
epic
li

|
|

|
|

|

90

92

94

96

98

100

Figure 9: Impat of hanging the bandwidth of theSS bus on the exeution time.ments.7 ConlusionsChip-multiproessor arhitetures (CMP) are a promising de-sign alternative to exploit the ever-inreasing number of tran-sistors that an be put on a die. Sine CMPs must also han-dle appliations that are diÆult to parallelize, muh e�orthas gone into providing support for speulative paralleliza-tion. For speulative CMPs that are based on high-issue dy-nami supersalar proessors, ommuniation lateny is oneritial fator in deiding performane. We have shown thatrelying only on a plain memory subsystem for ommuniationbetween proessors degrades the performane and that hard-ware support for fast ommuniation is required. We alsoproposed a hardware sheme that enables a CMP to performommuniation and synhronization at the register level. Thehardware support is modest, yet e�etive enough to allow theappliations to deliver near ideal performane.Referenes[1℄ M. Berry et al. The Perfet Club Benhmarks. InternationalJournal of Superomputer Appliations, 3(3):5{40, 1989.[2℄ W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-inger, T. Lawrene, J. Lee, D. Padua, Y. Paek, B. Pottenger,L. Rauhwerger, and P. Tu. Parallel Programming with Po-laris. IEEE Computer, 29(12):78{82, Deember 1996.[3℄ S. Breah, T. N. Vijaykumar, and G. Sohi. The Anatomy ofthe Register File in a Multisalar Proessor. In 27th Interna-tional Symposium on Miroarhiteture (MICRO-27), pages181{190, Deember 1994.[4℄ P. Dubey, K. O'Brien, K. O'Brien, and C. Barton. Single-Program Speulative Multithreading (SPSM) Arhiteture:Compiler-Assisted Fine-Grained Multithreading. In Proeed-ings of the IFIP WG 10.3 Working Conferene on ParallelArhitetures and Compilation Tehniques, PACT '95, pages109{121, June 1995.[5℄ M. Fillo, S. Kekler, W. Dally, N. Carter, A. Chang, Y. Gure-vih, and W. Lee. The M-Mahine Multiomputer. In28th International Symposium on Computer Miroarhite-ture (MICRO-28), pages 146{156, November 1995.[6℄ M. Franklin and G. Sohi. Register TraÆ Analysis for Stream-lining Inter-Operation Communiation in Fine-Grain ParallelProessors. In 25th International Symposium on Miroarhi-teture (MICRO-25), pages 236{245, Deember 1992.

[7℄ M. Franklin and G. Sohi. ARB: A Hardware Mehanism forDynami Memory Disambiguation. IEEE Transations onComputers, 45(5):552{571, May 1996.[8℄ S. Gopal, T. N. Vijaykumar, J. Smith, and G. Sohi. Spe-ulative Versioning Cahe. In 4th International Symposiumon High-Performane Computer Arhiteture, pages 195{205,February 1998.[9℄ M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao,E. Bugnion, and M. Lam. Maximizing Multiproessor Perfor-mane with the SUIF Compiler. IEEE Computer, 29(12):84{89, Deember 1996.[10℄ L. Hammond, M. Willey, and K. Olukotun. Data SpeulationSupport for a Chip Multiproessor. In 8th International Con-ferene on Arhitetural Support for Programming Languagesand Operating Systems (ASPLOS), Otober 1998.[11℄ V. Krishnan and J. Torrellas. A Diret-Exeution Frameworkfor Fast and Aurate Simulation of Supersalar Proessors.In PACT '98, pages 286{293, Otober 1998.[12℄ V. Krishnan and J. Torrellas. A Chip-Multiproessor Arhite-ture with Speulative Multithreading. Speial Issue on Multi-threaded Arhiteture, IEEE Transations on Computers, De-ember 1999.[13℄ C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-Benh: A Tool for Evaluating and Synthesizing Multimediaand Communiations Systems . In 30th International Sympo-sium on Miroarhiteture (MICRO-30), pages 330{335, De-ember 1997.[14℄ G. Lesartre and D. Hunt. PA-8500: The Continuing Evolutionof the PA-8000 Family. In COMPCON, 1997.[15℄ J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen.Converting Thread-Level Parallelism Into Instrution-LevelParallelism via Simultaneous Multithreading. ACM Trans-ations on Computer Systems, 15(3):322{354, August 1997.[16℄ P. Maruello and A. Gonzalez. Clustered Speulative Mul-tithreaded Proessors. In 13th International Conferene onSuperomputing (ICS), June 1999.[17℄ D. Matzke. Will Physial Salability Sabotage PerformaneGains? IEEE Computer, 30(9):37{39, September 1997.[18℄ MIPS Tehnologies, In. R10000 Miroproessor Chipset,Produt Overview, 1994.[19℄ E. Rotenberg, S. Bennett, and J. Smith. Trae Cahe: ALow Lateny Approah to High Bandwidth Instrution Feth-ing. In 29th International Symposium on Miroarhiteture(MICRO-29), pages 24{34, Deember 1996.[20℄ E. Rotenberg, Q. Jaobson, Y. Sazeides, and J. Smith. TraeProessors. In 30th International Symposium on Miroarhi-teture (MICRO-30), pages 138{148, Deember 1997.[21℄ B. Smith. Arhiteture and appliations of the HEP multipro-essor omputer system. SPIE (Real-Time Signal ProessingIV), 298:241{248, 1984.[22℄ G. Sohi, S. Breah, and T. N. Vijaykumar. Multisalar Pro-essors. In 22nd International Symposium on Computer Ar-hiteture, pages 414{425, June 1995.[23℄ J. Ste�an and T. Mowry. The Potential for Using Thread-LevelData Speulation to Failitate Automati Parallelization. In4th International Symposium on High-Performane ComputerArhiteture, pages 2{13, February 1998.[24℄ J. Tsai and P. Yew. The Superthreaded Arhiteture: ThreadPipelining with Run-Time Data Dependene Cheking andControl Speulation. In PACT '96, pages 35{46, Otober 1996.[25℄ J. Veenstra and R. Fowler. MINT: A Front End for EÆ-ient Simulation of Shared-Memory Multiproessors. In MAS-COTS'94, pages 201{207, January 1994.[26℄ T. N. Vijaykumar and G. Sohi. Task Seletion for a MultisalarProessor. In 31st International Symposium on Miroarhi-teture (MICRO-31), Deember 1998.

Appendix A: Binary AnnotationThe steps involved in the annotation of the binary are illustratedin Figure 10. The approah that we use is similar to that of Mul-tisalar [22℄, exept that we operate on the binary ode instead ofon the intermediate ode. First, we identify loop iterations andannotate their initiation and termination points. Then, we identifythe register-level dependenes between these threads. This involvesidentifying looplive registers, whih are those that are live at loopentry and exits and may also be rede�ned in the loop. We thenidentify the reahing de�nitions at loop exits of all the loopliveregisters. From these looplive reahing de�nitions, we identify safede�nitions, whih are de�nitions that may our but whose valuewill never be overwritten later in the loop body.

registers (i.e. registers live at looplooplive

Perform live variable and

Generate control flow graph

defintions & release points for all

Identify induction variables & move the induction

reaching definition analysis

Annotate task initiation and

termination points

 Annotate safe/release points

entry/exits & also redefined in loop)

and back-edge information

looplive reaching definitions

updates that dominate all exits closer to entry point

safe

Identify basic blocks

Executable

Identify loops using dominator

looplive reaching definitions at all exitsAnnotated

Executable

Identify

Identify

Get

Figure 10: Binary annotation proess.

release r3

entry

..=r3

(unsafe)r3=..

looplive: r3

entry

entry

(safe)r3=..

Figure 11: Safe de�nitions and release points.Similarly, we identify the release points for the remaining def-initions whose value may be overwritten by another de�nition.Figure 11 illustrates the safe de�nitions and release points for alooplive register r3. These points are identi�ed by �rst perform-ing a bakward reahing de�nition analysis. This is followed by adepth-�rst searh, starting at the loop entry point, for eah andevery looplive reahing de�nition. Finally, indution variables areidenti�ed and their updates are perolated loser to the threadentry point provided the updating instrutions dominate the exitpoints of the loop. This redues the waiting time for the sueed-ing iteration before it an use the indution variable. However, toevaluate the e�et of ommuniation lateny, we do not onsiderindution variables. Instead, we onsider only true ross-iterationdependene variables.Inorporating these additions in a binary is quite simple andrequires only minor extensions to the ISA. Additional instrutionsare needed only to identify thread entry, exit, and register valuerelease points.At present, our urrent approah of analyzing sequential binariesis restrited to inner loop iterations. Consequently, we an onlyexamine appliations whih are largely loop-based. However, webelieve that the approah an be easily expanded to inlude othersetions of the ode by using heuristis similar to those used fortask seletion in the Multisalar proessor [26℄.

