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Abstract
Many important applications exhibit poor temporal and
spatial locality and perform poorly on current commod-
ity processors, due to high cache miss rates. In addition,
they sometimes need to perform expensive bit manip-
ulation operations that are not efficiently supported by
commodity instruction sets.

To address this problem, this paper proposes the use
of a heterogeneous architecture that couples on one
chip a commodity microprocessor together with a co-
processor that is designed to run well applications
that have poor locality or that require bit manipula-
tions. The coprocessor supports vector, streaming, and
bit-manipulation computation. The coprocessor is a
blocked-multithreaded narrow in-order core. It has no
caches but has exposed, explicitly addressed fast stor-
age. A common set of primitives supports the use of this
storage both for stream buffers and for vector registers.

We simulated this coprocessor using a set of 10 bench-
marks and kernels that are representative of the applica-
tions we expect it to be used for. These codes run much
faster, with speedups of up to 18 over a commodity mi-
croprocessor , and with a geometric mean of 5.8.

1. Introduction
Many applications, including several key ones from the
defense domain, are not supported efficiently by current
commodity processors. These applications often exhibit
access patterns that, rather than reusing data, stream over
large data structures. As a result, they make poor use of
caches and place high-bandwidth demands on the main
memory system, which is one of the most expensive
components of high-end systems.

In addition, these applications often perform sophisti-
cated bit manipulation operations. For example, bit per-
mutations are used in cryptographic applications [23].
Since commodity processors do not have direct sup-
port for these operations, they are performed in software
through libraries, which are typically slow.

Chip densities continue to increase, while our ability to
use more gates in order to improve the performance of
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a single thread seems to have reached its limits; instead
microprocessor vendors are moving to multicore chips.
While current designs are of symmetric processors, as
the number of cores per chip continue to increase, it is
reasonable to explore heterogeneous systems with dis-
tinct cores that are optimized for different applications.
(A recent example of such a design is the CELL proces-
sor [10]; due to the limited public information on CELL,
we could not compare our design to it.)

The advantage of a heterogeneous design is that one
need not modify most of the software, as application
and system code can continue running on the commodity
core; code with limited parallelism can continue running
on a conventional, heavily pipelined core, while code
with significant data or stream parallelism can run on
the new core. Each of the cores is simpler to design: the
design of the new core is not constrained by compatibil-
ity requirements and good performance can be achieved
with less aggressive pipelining; the design of the com-
modity core is not burdened by the need to handle wide
vectors or other forms of parallelism. Thus, a hetero-
geneous system may be preferable even if, theoretically,
one could design an architecture that combines both.

Three main mechanisms have been used to handle com-
putations with poor locality: vector processing, multi-
threading and streaming. We show in this paper that
these three mechanisms are not interchangeable: all
three are needed to achieve good performance. There-
fore, we study an architecture that combines all three.

Both streaming and vector processing require a large
amount of exposed fast storage – explicitly addressed
stream buffers and vector registers, respectively. The
two approaches however manage exposed storage dif-
ferently. We develop an architecture that provides one
unified mechanism to manage exposed storage that can
be used both for storing vectors and for providing stream
buffers.

Streaming and vector provide a model where compilers
are responsible for the scheduling of arithmetic units and
the management of concurrency. While vector compila-
tion is mature, efficient compilation for streaming archi-
tectures is still a research topic; streaming architectures
cannot handle well variability in the execution time of



code kernels, due to data dependent execution paths or
to variability of communication time in large systems.
The problem can be alleviated by using multithreading,
where computational resources are scheduled “on de-
mand” by the hardware. We show in this paper how
to combine blocked multithreading with streaming and
vector processing with low hardware overhead and show
that a modest amount of multithreading can be effective
to achieve high performance. The NMP also enables a
simpler underlying streaming compiler.

Our coprocessor is a blocked-multithreaded, narrow in-
order core with hardware support for vectors, streams,
and bit manipulation. It is closely coupled with the on
chip memory controller. It has no caches, and a high
bandwidth to main memory. For this reason, rather
than for its actual physical location, we call itNear-
Memory Processor (NMP). A key feature of the NMP is
theScratchpad, a large local-memory directly managed
by the NMP.

To assess the potential of the NMP, we simulate a state-
of-art high-end machine with an NMP in its memory
controller. We use a set of 10 benchmark and kernel
codes that are representative of applications we expect
to use the NMP for. The focus in this initial evaluation
is on multimedia streaming applications, encryption and
bit processing. We find that these codes run much faster
on the NMP than on an aggressive conventional proces-
sor. Specifically, the speedups obtained reach 18, with a
geometric mean of 5.8.

The main contribution of this paper is in detailing an ar-
chitecture that integrates vector, streaming and blocked
multithreading with common mechanisms that man-
age exposed on-chip storage to support both vectors
and stream buffers. The architecture provides dynamic
scheduling of stream kernels via hardware supported
fine-grain synchronization and multithreading, which
eases a streaming compiler’s job. To the best of our
knowledge, the design is novel. The evaluation focuses
on important benchmarks and kernels. The evaluation
shows that all the mechanisms that are integrated in the
NMP are necessary to achieve high performance.

This paper is organized as follows: Section 2 briefs the
background on the architectural techniques considered;
Section 3 presents the design of the NMP; Section 4 in-
troduces its programming environment; Section 5 evalu-
ates the design; and Section 6 surveys related work.

The results in this paper are preliminary; additional work
is needed to fully validate the design.

2. Background
High memory latency is a major performance impedi-
ment for many applications in current architectures. In

order to hide this latency, one needs to support a large
number of concurrent memory accesses, and to reuse
data as much as possible once brought from memory.

Vector processing is a traditional mechanism used for la-
tency hiding. Vector loads and stores effect a large num-
ber of concurrent memory accesses, possibly bypassing
the cache. With scatter/gather, the locations accessed
can be at random locations in memory. Vector regis-
ters provide the large amount of buffering needed for
these many concurrent memory accesses. In addition,
vector operations can use efficiently a large number of
arithmetic units, while requiring only a small number of
instruction issues, a simpler resource allocator, less de-
pendency tracking and a simpler communication pattern
from registers to arithmetic units.

The vector programming paradigm is well understood
and well supported by compilers. It works well in ap-
plications with a regular control flow that fits the data
parallel model [22].

A more general method to hide memory latency is to
use multithreading, supporting the execution of multi-
ple threads in the same processor core, so that when one
thread stalls waiting for memory, another one can make
progress [24]. One very simple implementation is the
use ofblocked multithreading that involves running a
single thread at a time, and only preempting the thread
when it encounters a long-latency operation, such as an
L2 cache miss or a busy lock. This approach was im-
plemented in the Alewife [3] and the IBM RS64IV [11].
It has been shown that blocked multithreading can run
efficiently with only a few threads or contexts [25].

When multithreading is used, it is very desirable to pro-
vide efficient inter-thread communication and synchro-
nization mechanisms between the threads. Producer-
consumer primitives are particularly powerful. With
these, one can very efficiently support a streaming pro-
gramming model [14, 13, 9]. A stream program consists
of a set of computation kernels that communicate with
each other, producing and consuming elements from
streams of data. This model suits data intensive appli-
cations with regular communication patterns, like many
of the applications considered in this paper.

When the stream model is used, one obtains additional
locality by ensuring that data produced by one kernel
and consumed by another is not stored back to memory.
Stream architectures such as the Merrimac [14] do so
by having on-chip addressable stream buffers, and man-
aging the allocation of space in these buffers and the
scheduling of producers and consumers in software. The
compiler needs to interleave the execution of the vari-
ous kernels, a task that is not done efficiently by present
compilers [15]. Alternatively, one can use blocked mul-



tithreading and suitable hardware supported synchro-
nization to ensure that the producer is automatically de-
scheduled and the consumer is scheduled when data has
been produced and is ready to be consumed. This leads
to a simpler target model for compilers, as they com-
pile sequential threads and synchronization operations
between threads. This design also handles better tasks
with nondeterministic execution time.

3. Proposed Architecture
3.1. Rationale
As discussed in the previous section, vector process-
ing is a well understood, easy to implement mechanism
for hiding memory latency, with good software support.
Streaming architectures provide a more general latency
hiding mechanism, at the expense of a more complex
programming model, more complex hardware and the
requirement for more advanced compiler technology.
However, the streaming model fits well streaming ap-
plications where a sequence of kernels are pipelined.
Support for the streaming model can be simplified if
one uses multithreading, since software does not need
to handle the interleaved execution of multiple kernels.
Multithreading also handles kernels with variable execu-
tion time better.

It turns out that a set of common mechanisms can be
used to exploit on chip storage both for vector registers
and for stream buffers. With such addressable common
storage, it is possible to keep a relatively small amount
of state for each executing thread, so that context switch-
ing is not expensive; blocked multithreading can be im-
plemented at a relatively low cost and can be used effi-
ciently. Thus, we choose to implement the NMP as an
engine that combines vector processing, streaming and
blocked multithreading. Finally, we added bit manipu-
lation logic to support bit-oriented applications. As it
turns out, all these mechanisms are needed to achieve
performance on the applications we consider.

The combination of the vector/streaming models and
blocked multithreading is attractive, as modest levels
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Figure 1: NMPs in a system like the IBM Power 5.

of multithreading are sufficient to address the limita-
tions of these models. Specifically, for vector work-
loads, processor stalls caused by short vectors or by
highly-variable memory access latencies can often be
hidden by preempting the current thread and running
another one. Similarly, for streaming workloads, pro-
cessor stalls caused by the imbalance of computation or
memory bandwidth between a producer and a consumer
stream kernel can usually be hidden by preempting the
fast kernel, and running the slow one.

To be able to exploit data locality, the NMP has a large,
high-bandwidth, multi-bank local memory area that it
directly manages. We call it theScratchpad. To support
streaming efficiently, the NMP supports very low over-
head producer-consumer synchronization between con-
current threads, using full/empty bits in the scratchpad.
The design is similar to the one used by the HEP [6] and
MTA machines[4].

Since the scratchpad is large, it is impractical to save
and restore it upon context switch. Thus, the scratch-
pad is not part of a thread context — the thread context
includes only a small number of scalar and control regis-
ters. Since threads running on the same NMP can belong
to distinct processes, we need to provide address protec-
tion in the scratchpad. We do so by using virtual address-
ing. Although using virtual addresses slightly increases
scratchpad access time, the overhead is modest if data
is processed using long vectors, as address translation is
performed only once per vector access in the scratchpad.
Such virtualization has the added benefit that scratch-
pad storage associated with threads that are inactive for
a long period of time can be lazily paged out (into main
memory) and brought back on demand when accessed.

The NMP also includes instructions for bit processing
like those of the Cray machines [22, 1]. In particular, it
has a64 × 64 bit matrix register that is used to compute
a 64 bit boolean vector-matrix product. Such a product
can be used, in particular, to compute an arbitrary 64 bit
vector permutation, transpose a64 × 64 bit matrix, etc.
The bit matrix register is also virtualized, so that it does
not have to be saved and restored on context switch.

Overall, the resulting architecture is fairly general and
can speed-up many classes of applications. Our initial
evaluation is focused on vector, streaming and bit ma-
nipulation applications, as these are most challenging for
a conventional processor.

In the following sections, we overview the design (Sec-
tion 3.2), describe the scratchpad (Section 3.3) and give
some details on the instruction set (Section 3.4).

3.2. Overview of the Design
Figure 1 shows the NMP in a system like the IBM Power
5. Each memory controller is associated with an NMP.
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Figure 2 shows the organization of the NMP. The dashed
box encloses the NMP. In the figure, the NMP Interface
provides an interface for the NMP to communicate with
the rest of the system. The main processor(s) communi-
cate with the NMP via the Invocation Register Sets (Sec-
tion 3.5.1). As soon as a request from a main processor
arrives, the Thread Management Unit creates a thread
and inserts it into the NMP’s job queue.

Figure 3 shows the organization of the NMP core. For
simplicity, the core is a low-issue in-order processor.
It does not have data caches but, as indicated before,
it uses the explicitly-managed fast Scratchpad memory
(Section 3.3). It includes scalar functional units, vec-
tor functional units, a set of general-purpose and control
registers, and a single Bit Matrix Register (BMR) to per-
mute the bits within a word [1].

To save space, there is only a single BMR. The BMR is
tagged with the owner thread ID and is not saved upon
context switch. If the hardware detects that a thread is
going to access the BMR with an inconsistent thread
ID tag, an exception occurs. The operating system then
saves the BMR contents and loads the BMR for the cur-
rent thread.

All threads running on the NMP share the scratchpad. In
addition, they can access any main memory location in
the machine. To access memory, an NMP thread uses the
same 64 bit virtual addresses as if it runned in the main
processor. Accesses of the NMP to the main memory are
handled the same way as accesses by the main processor
are handled: they are broadcast on the coherence fabric
and snooped by caches in the system. The NMP has
a TLB to cache address translation entries that are kept
coherent with other TLBs in the system.

3.3. The Scratchpad
The scratchpad is an explicitly-managed storage area for
frequently-accessed scalars, vectors and stream buffers.
The vectors and streams in the scratchpad are stored se-
quentially. Data can be moved between memory and
scratchpad using vector load and store instructions, in-
cluding strided access and scatter/gather. The vector
units process vectors that are contiguous in the screatch-
pad. One can use masks to selectively perform opera-
tions over elements in a vector. (This is similar to the

model provided by a vector register). Thus, one can im-
plement the scratchpad using a multi-banked memory
with separate lanes from the banks to the vector units,
and a barrel shifter to align vectors.

The NMP supports fine grain, cross-thread synchroniza-
tion. Each addressable location (byte) is associated with
three one-bit flags: a full/empty bit[6], an error flag bit,
and a mask bit. The first one is for fine-grain synchro-
nization: a synchronized read that consumes the data
stalls until the bit is on, while a synchronized write stalls
until the bit is off. The error flag bit is used for recording
what locations suffered exceptions during the execution
of a vector operation. Finally, the mask bit is used to
mark the elements of a vector that need to be masked
off in a vector operation. (Vector architectures store the
mask bits in separate registers, so that the same data can
be controlled by different mask vectors; we have not
found the need for this extra flexibility in the kernels that
we have studied so far.)

For reasons explained in section 3.1, the scratchpad is
accessed using virtual addresses: the storage is divided
into pages (these need be of the same size as main stor-
age pages). Threads running on the NMP address the
local scratchpad using a short virtual address, currently
set at 20 bits (8 bit page number and 12 bit displace-
ment). The NMP has a TLB that holds entries for all the
pages present in the scratchpad. A TLB miss causes an
exception that blocks a thread and is handled by a main
processor.

Threads also access the main memory using regular (64
bit) addresses. TLB entries are also required for main
memory addresses. We can use a common TLB or two
separate TLBs.

Accesses to the main memory are snooped by the caches
of the regular processors, hence are coherent. No snoop-
ing occurs when the NMP accesses the local scratchpad.

The main processors can access the scratchpad data (in-
cluding the additional bit flags), but these accesses are
not coherent, and the mapping (e.g., of the extra bits) is
not straighforward, so that these accesses normally oc-
cur only in supervisory mode (e.g., for paging a scratch-
pad page to memory). The normal mode of operation is
that the NMP pulls data from memory (or caches) to the
scratchpad and pushes it back.



3.4. Instruction Set
In this section, we give some details on the NMP instruc-
tion set. The full description can be found in [26].

NMP instructions are 32 bits. For our simulations, we
use an augmented MIPS instruction set [21]. New ad-
dressing modes are added to handle streams and vectors.

Storage in the scratchpad can be interpreted to hold
scalars, vectors, or stream buffers, i.e., circular buffers
holding queues. The interpretation results from the se-
mantics of the instructions used to access the scratchpad
and from information stored in registers.

Instructions specify an opcode, the operands size (byte,
half-word, word, etc.), the addressing mode (Figure 4),
and up to three registers. When direct addressing is used,
the register contains a scalar operand. When indirect
addressing is used, the register contains a specifier for
an operand in the scratchpad. Specifically, it can have
a scalar specifier, a vector specifier, or a stream buffer
specifier. Bits are included in the register to distinguish
different specifiers.

Thus, an instructionADD size mode R1 R2 R3
will add two operands specified byR1 andR2 and will
store the result in a location specified byR3. size spec-
ifies whether the additions are performed on bytes, half-
words, words or double-words;mode specifies whether
each operand is a scalar contained in the specified reg-
ister (direct addressing) or a scalar, vector or streaming
buffer stored in the scratchpad (indirect addressing); not
all possible combinations are supported.

A few extra bits are needed in the opcodes to encode
operand size (currently 5 choices) and the mode (2
choices, direct or indirect). The extra bits required for
these fields are obtained by sacrificing some bits from
existing fields, e.g., the shift amount and immediate
field.

A scalar specifier is a scratchpad address. The specifier
may also specify that the access is conditional on the
full/empty bit value in the scratchpad (see below). This
can be used for thread synchronization.

A vector specifier consists of a vector start address and
a vector length (number of operands).

(1)

Operand Scalar SP addr. Vector specifier Stm. buf. spec.

Operand (scalar)

Operand (vector)

Operand (stream buffer)

Scratchpad

R1 R1 R1 R1(4)(3)(2)

Figure 4:Addressing modes for NMP instructions: (1) direct
mode, (2) scalar indirect mode, (3) vector indirect mode and
(4) stream indirect mode.

A stream buffer specifier consists of a buffer start ad-
dress, the buffer length, number of elements to operate in
one operation and a pointer to the head of the buffer (for
input operands) or to the tail (for output operands). An
input operand is dequeued from the head of the buffer
and the head pointer in the register is updated; the thread
blocks if the queue is empty. An output operand is en-
queued at the tail of the buffer and the tail pointer in the
register is updated; the thread blocks if the queue is full.
The pointers wrap around at the boundaries of the buffer.

All the specifiers fit in a 64 bit register (remember that
addresses have 20 bits).

The three operands of an instructions can be all scalars
(from a register, or from the scratchpad accessed via
a scalar specifier); they can all be vectors of the same
length (accessed via a vector or stream buffer specifier).
One can also mix scalars and vectors as input operands,
in which case the scalar is expanded to the vector length.

If the operands are vectors then the operation uses the
mask bits associated with its input operands in the
scratchpad storage, and may set the error bits and mask
bits associated with its output operand in the scratchpad.

The full/empty bits in the scratchpad are used to avoid
underflow and overflow in stream buffers: a consumer
marks the element as empty and a producer marks the el-
ement as full. Note that the head (resp. tail) of the queue
is stored in a register of the consumer (resp. producer),
and is not shared; the full/empty bits are in the scratch-
pad and are shared (a stream buffer is stored in a page
that is accessible both by producer and consumer). The
current design does not directly support multiple pro-
ducers or multiple consumers; an additional multiplex-
ing thread is needed to support such. This limitation has
not proven a problem with the kernels considered so far.

The scrachpad supports six access types: load, load-if-
full, load-if-full-and-mark-empty, store, store-if-empty
and store-if-empty-and-mark- full. These access types
can be specified explicitly by a scalar specifier; buffer
specifiers implicitly require the use of load-if- full-and-
mark-empty (for inputs) or store-if-empty-and-mark-full
(for outputs). The logic to update the head or the tail of
a stream buffers, use mask bits or set error bits is in the
functional units.

New instructions are added to move data between mem-
ory and scratchpad using strided or indirect vector loads
and stores (scatter/gather), as these require more than
one register argument. If the destination is a stream
buffer, the load becomes a stream load. Also, new in-
structions are added for bit manipulation; these are sum-
marized in Table 1. TheSshift instruction can be used to
shift vectors.



Instruction Remarks

Leadz Count the leading zeros of a scalar.
Popcnt Count the number of ones in a scalar.
Bmm load Load the 64×64-bit matrix from the scratchpad into the BMR. It is a special vector load

instruction (A regular vector load instruction transfers data between the scratchpad and the
main memory.).

Bmm Bit multiply the source operand with the matrix in the BMR.
Sshift Logic left- or right-shift a block of data, e.g., 128 bytes. The shift can be rotational or not

rotational. In the latter case, zeros are shifted into the block.
Mix Bit-interleave higher(lower) half of two words.

Table 1:Bit manipulation instructions.
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Figure 5: Architecture modeled. The box
with the thick boundary is the processor chip.

3.5. Other Issues
3.5.1. Coprocessor Interface

The NMP works coupled with the main processor, using
a mode where the main processor is the master and the
NMP is the slave. The main processor triggers an NMP
computation by storing an Invocation Packet into one of
the Invocation Register Sets of of Figure 2, which are
memory mapped in the main processor’s address space.
The mapping into user space is done in superviser mode,
while the storing Invocation Packet operation is done in
user mode, without a system call. The packet is moved
immediatly into a queue, clearing the register for a new
invocation from the same process(an exception occurs
if the queue is full). The invocation packet includes a
pointer to the function to invoke, a pointer to its argu-
ments (including a pointer to a completion flag currently
initialized to zero). The main processor can then regu-
larly poll the completion flag. The NMP signals com-
pletion by setting the completion flag. We expect this
interface to have very low overhead.

3.5.2. Protection and Virtualization

An NMP may be executing threads on behalf of more
than one process running on the main processor(s).
These threads need to be protected from each other.
Some NMP threads may even belong to processes that
are not running in the main processor(s) but are still
alive. In order to use NMP resources efficiently, such
threads need to be descheduled.

To do so, we manage NMP contexts as memory, piggy-
backing on the virtual memory management infrastruc-
ture. Specifically, scratchpad space is allocated in swap-
pable pages; each NMP thread is associated with some
“low core” scratchpad space that is used to save the
thread context. The scratchpad pages are paged to main
memory by an external pager when physical scratch-
pad space needs to be allocated to a newly-invoked
thread. The paging mechanism ensures that a thread
cannot overwrite scratchpad space or memory used by
other threads. However, partial sharing of the scratch-
pad space, via stream buffers, is also possible.

3.5.3. Exceptions and Context Switching
A thread may get blocked in the middle of executing a
vector computation. The NMP is designed to be able to
continue a vector operation from the point where it was
stopped. This is the same approach as used in [17]. The
same logic is used to handle virtual memory exceptions
that happen during the execution of vector loads/stores
that move data between memory and the scratchpad.

The handling of vector arithmetic exceptions is post-
poned until the completion of the vector instruction [5].
The faulting elements are marked in the error flag bits of
the destination vector.

4. Programming Model
4.1. Processor-NMP Communication
Threads are created by processes running on a main pro-
cessor using a system call that returns a handle – effec-
tively a pointer to an Invocation Register Set; the call
fails if no Invocation Register Set is available. Another
system call can be used to kill the thread and free the
handle.

The communication model between processor and co-
processor is that of an asynchronous procedure call:
code running on the main processor can invoke a func-
tion on the coprocessor; the invocation specifies the
thread to run this function, a pointer to the function, and
arguments. Normally, one of the argument will be a lo-
cation of a flag to be set by the invoked function upon
completion. Thus, the main processor can poll for invo-
cation completion or block until completion.
4.2. Thread Scheduling
A thread executes only one function at a time, picking
from its queue a new invocation to execute when the pre-
vious one has completed. The NMP hardware schedules
runnable threads round-robin. A running thread executes
until it exits, blocks on a synchronization, or idles on
a high latency memory access, at which point it is de-
scheduled.

The hardware does not prevent livelock or deadlock; this
is the programmer’s responsibility. The hardware how-
ever maintains sufficient state so as to allow livelock or



deadlock detection by the system, e.g., the time of the
last execution by a thread and the last instruction exe-
cuted.

4.3. Compilation and Run-Time
Our current programming model uses library calls for
thread creation, thread termination and thread synchro-
nization and a compiler to generate thread code. The
run-time supports the allocation and deallocation of
thread structures and scratchpad space, while thread syn-
chronization is directly supported by hardware. We
have not yet developed a compiler for the NMP new
instructions and addressing mode; currently, we insert
additional instructions and vector code manually in the
source code. The compilation of thread code from high
level language requires added support for vectorization
and for the generation of bit manipulation instructions;
this does not require new compiler technology as such
capability has been available in commercial compilers
for a long time.

5. Evaluation
5.1. Evaluation Methodology
To evaluate the NMP concept, we use an execution-
driven simulator [2] with a detailed model of the main
processor, the coprocessor and the memory system. We
model the architecture shown in Figure 5, which con-
tains a single main processor and a single NMP. The
main processor is a 4-issue out-of-order superscalar with
two levels of caches, while the NMP is a 2-issue in-
order blocked-multithreaded processor. Main proces-
sor, memory controller, and NMP share the same pro-
cessor chip. The parameters of the architecture mod-
eled are shown in Table 2. Note that the main processor
has an aggressive 16-stream hardware stride prefetcher.
The prefetcher is similar to the one in [20], with sup-
port for 16 streams and non-unit stride. The prefetcher
brings data into a buffer that sits between the L2 and
main memory.

For the evaluation, we select a number of small applica-
tions that we list in Table 3. On average, the applications
have 730 lines of C code. The table shows if the appli-
cations can be vectorized, use streams, or use bit manip-
ulation instructions. The table also shows the number of
concurrent NMP threads used for each application.

The simulated NMP has a MIPS-like instruction set,
augmented with vector, streaming, and bit manipulation
instructions. Since we do not have a compiler that gen-
erates vector or stream codes, we hand-coded the vector,
streaming, and bit manipulation instructions. These new
instructions are captured and simulated by the simulator.
All programs are compiled using GCC compiler version
3.2.1. Details of the applications can be found in [26].

5.2. Main Results
Figure 6 shows the speedups of the applications running
on the NMP over the same applications running on the
main processor. Recall that the main processor has an
aggressive hardware prefetcher (Section 5.1). In the fig-
ure, theCopy, Scale, Add andTriad bars correspond to
the four components of theStream application [18]. The
rightmost set of bars are the geometric mean of all the
applications.

For each application, we show five different bars, to
see the impact of the different architectural supports in
the NMP. Thenmp bars correspond to the full fledged
NMP architecture.novec is the NMP without the vec-
tor hardware support.nobit is the NMP without the bit-
manipulation hardware support.nomt is the NMP run-
ning with a single thread. Finally,none is the NMP with-
out vector, bit manipulation, and streaming support. We
did not try to run without streaming support and with all
other features on: with no streaming support, threads
would need to communicate and synchronize through
memory, resulting in very poor performance.

Focusing first on thenmp bars, we see that these appli-
cations typically run much faster on the NMP than on
an aggressive conventional processor with a hardware
prefetcher. Specifically, the speedups obtained reach 18,
with a geometric mean of 5.8 for the 10 bars. Since the
NMP is approximately at the same distance from mem-
ory as the main processor (Table 2), the speedups of the
NMP do not come from shorter memory latencies. In-
stead, they come from a better ability to hide the mem-
ory latency (and, therefore, reduce stall time) and from
architectural support for several operations common in
these applications.

To better understand this effect, Figure 7 breaks down
the execution time of the applications into time that the
processor is busy executing instructions (Busy) and time
that it is stalled, mostly waiting on the memory system
(Idle). The figure shows two bars for each application;
the leftmost one is for the execution on the main pro-
cessor, while the rightmost one is for the execution on
the full-fledged NMP. For each application, the bars are
normalized to the execution time on the main processor.

From the figure, we see that most of the execution time
reduction of the NMP bars comes from a large reduction
in the application’s stall time. This is largely due to the
better architectural support in the NMP to hide memory
latency. The support includes both vector instructions
with long vectors and blocked multithreading. This is
consistent with the work of Espasa and Valero [7] that
has shown that multithreading is necessary (in addition
to decoupling) to improve the resource utilization of vec-
tor processors.

In addition, the busy time also typically goes down in



NMP Parameters
Parameter Value

Frequency 4GHz in-order
Issue Width 2
# Scalar FUs 1Int FU, 1FP FU
# Vector FUs 1Int FU, 1FP FU
# Lanes 16
# Pending Memory
Ops (Ld, St).

128, 128

# Contexts 4
Time to Context
Switch

4 cycles

Policy for Context
Switch

Switch after 20 idle
cycles

Memory Parameters
Parameter Value

L1, L2, Scratchpad
size

32KB, 1MB, 64KB

L1, L2 associativity 2-way, 4-way
L1, L2 line size 64B, 64B
Main proc. to L1,
L2, memory round-
trip latency

2, 10, 500 cycles

NMP to Scratchpad,
memory latency

6, 470 cycles

Bandwidth b.t. vec.
units and Scratch-
pad, Scratchpad and
memory

256GB/s, 32GB/s

Main Processor Parameters
Parameter Value

Frequency 4GHz out-of-order
Fetch Width 8
Issue Width 4
Retire Width 8
ROB size 152
I-window size 80
Int FUs 3
FP FUs 3
Mem FUs 3
Pending Ld/St 16, 16
Branch Pred. Like Alpha 21464
Branch Penalty 14 cycles
Hardware Prefetcher 16-stream stride
Prefetch Buffer 16KB
Pref. Buf. Hit Delay 8 cycles

Table 2:Parameters of the architecture modeled.

Application Vector? Stream? Bit Manip? # Threads Remarks

Rgb2yuv X 4 Convert the RGB presentation to YUV
ConvEnc X X X 3 Convolutional encoder
BMT X 4 Bit matrix transposition
BSM X X 3 Bit stream manipulation
3DES X X 4 3DES encryption
PartRadio X X 3 Partial radio station
Stream X 4 Simple vector operations

Table 3:Applications evaluated.

the NMP. This is despite the fact that the NMP is a nar-
rower issue processor, and it should take longer than the
main processor to execute the same number of instruc-
tions. In reality, the reason why the busy time goes down
for the NMP is the better support in the NMP for some
of the operations required by these applications. One in-
teresting exception is3DES, where the busy time goes
up. The reason is that this application does not need the
bit manipulation instructions introduced by the NMP.

Going back to Figure 6, we now focus on thenovec bars.
They show that vector support is critical to several of
these applications. In particular,Rgb2yuv, 3DES, and
PartRadio require the vector support in the NMP to de-
liver any speedup at all.

The nobit bars show the importance of the support for
bit manipulation. We can see thatBMT andBSM heav-
ily rely on this support. InConvEnc, both vector and
bit manipulation support are necessary to obtain good
speedups — if any one is eliminated, the speedup drops
substantially.

Thenomt bars show that the four components ofStream
(Copy, Scale, Add and Triad) need the streaming and
multithreading support. If such support is eliminated,
performance drops due to the limited number of in-flight
memory operations (short load/store queue).

Overall, each of the three supports presented in our pro-
posed NMP is important to speed up at least some of the
applications considered. Finally, if we eliminate all the
three supports (none bars), the NMP is much slower than
the main processor for all the applications. It is because
the NMP has a low-issue in-order core.

6. Related Work
We briefly consider three related areas, namely process-
ing in memory, stream architectures, and multithreaded
vector architectures.

6.1. Processing in Memory
Processing in Memory (PIM) or Intelligent Memory ar-
chitectures integrate logic and DRAM in the same chip.
Some of the PIM approaches [12, 16, 19] suggest to re-
place main memory by PIM chips. Since the in-memory
processor directly connects to the memory banks, it has
a high bandwidth and low latency to main memory. Re-
sults show a significant improvement for a variety of ap-
plications. However, PIM chips require merged DRAM
logic that has high production cost.

Our NMP is different from PIM in that it does not require
modifications to the DRAM chips. The NMP can be
placed on the processor chip or closer to main memory.

6.2. Stream Architectures
A stream program is organized as streams of data pro-
cessed by computation kernels. A stream processor
is optimized to exploit the locality and concurrency of
stream programs. Imagine [9] and Merrimac [14] are
two examples of the stream architecture.

Impulse[27] expands the traditional memory hierarchy
by adding address translation hardware to the memory
controller. Data items whose physical DRAM addresses
are not contiguous can be mapped to contiguous shadow
addresses, which are the unused physical addresses. The
memory controller can compact sparse data into dense
cache lines and feed the processor with a stream of data.



Figure 6: Speedup of the applications running on the NMP over running on the main processor with an aggressive hardware
prefetcher. Copy, Scale, Add and Triad are the four components of theStream application. The rightmost set of bars are the
geometric mean of all the applications.

Figure 7:Breakdown of the execution time of the applications on the main processor (leftmost bars) and on the full-fledged NMP
(rightmost bars). For each application, the bars are normalized to the execution time on the main processor.

The NMP architecture has some of the support of a
streaming architecture, but it can be argued it enables
a simpler streaming compiler. The use of blocked mul-
tithreading, in particular, avoids the need for explicitly
scheduling and multiplexing the kernels on the same
processor, facilitates resource (processor and register)
allocation, and helps better overcome variance in the ex-
ecution time of different tasks. The NMP can perform
functions similar to the ones implemented in Impulse.

6.3. Multithreaded Vector Architecture
Espasa and Valero [7, 8] showed that multithreading can
be applied to a vector processor to greatly improve the
resource utilization. In their design, vector registers are
part of the context of a thread. Consequently, they are
saved and restored when the thread is preempted and
rescheduled.

In the NMP, we have explored a different design, where
the vector storage is not part of a thread’s saved con-
text. Vectors are stored in the scratchpad, which is an
area shared by all threads. Not saving the registers in a
context switch reduces the overhead.

7. Conclusion
We proposed in this paper a design for an engine that can
support efficiently both vector and streaming applica-
tions, while providing a simpler interface than a stream-
ing engine where all instruction scheduling is under soft-
ware control. We believe this combination to be novel.
We showed that this engine supports efficiently vector
benchmarks, streaming benchmarks and applications re-
quiring bit manipulations. While not demonstrated ex-
plicitly in the paper, it is also the case that the streaming
compilers for the NMP would be simpler. There was no
need for a sophisticated compiler to fuse the kernels.

We expect that increases in chip density will lead to
the development of heterogeneous architectures, where
functions now provided by external engines, such as
GPUs, will be be integrated on chip. CELL is an early
example of this trend. Our work shows the potential per-
formance advantage of such an approach in an important
domain. The initial evaluation presented in this paper in-
dicates that a chip that contains an NMP in addition to
a regular processor can perform significantly better than
a regular processor on its own. Of course, future chips
could contain multiple NMPs and multiple commodity



processors. While we did not compare explicitly to a
commodity processor augmented with a SIMD unit, we
believe that the comparison would not be very different
since the main performance bottleneck is the exposed
memory latency, not the ALU speed.

The initial evaluation used simple kernels because of the
lack of a compiler and the need to hand code vector and
streaming operations. We hope to follow up in the fu-
ture with evaluations of more complete applications, in-
cluding applications and kernels commonly used in high
performance scientific computing. This would require a
more developed software environment. Also, we hope to
study additional variations in the NMP design, including
systems with a smaller number of vector lanes.
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