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Abstract

Data prefetching is a popular technique for tolerating long
memory access latencies. In this paper, we introduce a novel
type of prefetching: memory-side correlation prefetching im-
plemented in a user-level thread. The prefetching thread runs
on a general-purpose processor embedded in the main mem-
ory. By allocating the correlation table in main memory, we
can afford the large space required by the table. In addition,
the scheme can be supported with few modifications to the
L2 cache and no modification to the main processor core. We
introduce a new organization of the correlation table and a
new prefetching algorithm that enable fast and accurate far-
ahead prefetching with high coverage. Overall, our evalua-
tion shows that the algorithm effectively prefetches irregular
applications, speeding up three applications by an average of
1.28. Furthermore, our scheme can work synergistically with
a conventional processor-side prefetcher to deliver an average
speedup of 1.36.

1 Introduction
Data prefetching is a popular technique to tolerate long mem-
ory access latencies. There have been many proposals using
a helper thread to help prefetching for the main thread, such
as [12, 15]. These proposals have focused on either SMT
or CMP platforms. In this paper, we propose a prefetching
thread scheme that is suitable for implementation in an In-
telligent Memory Architecture (IMA). In IMA, the memory
system is augmented with one or more memory processors.
The nature of the problems in IMA is quite different than in
SMT or CMP platforms. First, in SMT/CMP, Processor-Side
prefetching is used, while in IMA, Memory-Side prefetching
is used, because prefetch requests are generated by the pro-
cessor in the main memory. Secondly, communication be-
tween the threads is cheap in SMT/CMP, while it is expen-
sive in IMA. Thus, a suitable prefetching scheme is one that
operates autonomously and that can be effective with coarse-
grain communication between the prefetching and the main
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threads. In this work, we implement the prefetcher as a user-
level thread that can prefetch irregular applications effectively
using correlation prefetching algorithms. The only commu-
nication needed by the prefetching thread is the miss address
stream of the main thread.

Memory-side prefetching is attractive for several reasons.
First, it eliminates the overheads that prefetch requests and
state bookkeeping introduce in the paths between the main
processor and its caches. Secondly, it can be supported with
very few modifications to the L2 cache and no modification
to the main processor core. Thirdly, the prefetcher can exploit
its proximity to the memory to its advantage. Memory-side
prefetching has the additional attraction of riding the tech-
nology trend of increased chip integration. Indeed, popular
platforms like PCs are being equipped with graphics engines
in the memory system [16]. Some chipsets, like NVIDIA’s
nForce [13] even integrate a powerful processor in the North
Bridge chip. Similar engines can be provided for prefetching,
or existing graphics processors can be reused for prefetching
when under-utilized. Moreover, there are proposals to inte-
grate processing logic in DRAM chips, such as IRAM [8].

Using an engine for memory-side prefetching has been
proposed elsewhere [1, 2, 4, 13, 14, 16, 18]. However, in
most cases, these engines perform either very simple opera-
tions or highly-specific operations, such as prefetching linked
data structures [4, 18]. Instead, what we would like, is a very
flexible, general-purpose prefetcher.

While a memory-side prefetcher can support a variety of
prefetching algorithms, one type that is particularly suitable
is Correlation Prefetching [1, 3, 5, 11]. Correlation prefetch-
ing relies on correlation of miss addresses to predict and
prefetch future misses based on the current state. Because
the only information the prefetch thread needs is the miss ad-
dress stream, correlation prefetching is suitable for an IMA
platform.

In the past, general correlation prefetching has been sup-
ported by hardware controllers that require a large dedicated
hardware table structure [1, 3, 5, 11]. In all but one case, these
controllers have been placed between the L1 and L2 caches
or between the L1 and the processor. While effective, the ap-
proach has a very high hardware cost. Furthermore, it does
not prefetch far enough and tends to have a low coverage.



This paper introduces a novel prefetching scheme where
memory-side correlation prefetching algorithms are imple-
mented in software by using a user-level thread. The algo-
rithms run on a general-purpose processor in the main mem-
ory system. The scheme allows prefetching algorithms to
evolve with the applications, even after the computer system
is shipped. In addition, the system can be supported with few
modifications to the L2 cache, and no modifications to the
main processor core.

We introduce a new organization of the correlation table
and a new correlation prefetching algorithm that enable fast
and far-ahead prefetching, with high coverage and accuracy.
By allocating the correlation table in main memory, we can
afford the large space required by the table. We demonstrate
that the software algorithm can effectively prefetch data for
irregular applications. Indeed, our scheme speeds up three
SPECInt2000 applications by an average of 1.28. We also
show that our scheme can work synergistically with a conven-
tional processor-side prefetcher to deliver an average speedup
of 1.36.

The rest of the paper is organized as follows: Section 2 dis-
cusses memory-side prefetching and correlation prefetching;
Section 3 presents our design; Section 4 discusses our eval-
uation setup; Section 5 evaluates our design; and Section 6
concludes.

2 Related Issues

2.1 Memory-Side Prefetching
Memory-Side prefetching occurs when prefetching is initi-
ated by one or a set of engines that reside in or beside the main
memory (definitely beyond any memory bus). Chip man-
ufacturers have integrated hardwired controllers that prob-
ably recognize very simple sequences like strides, such as
NVIDIA’s DASP engine in the North Bridge chip [13] and
Intel’s prefetch cache in its i860 chipset.

In this paper, we propose to use a simple general-purpose
memory processor for memory-side prefetching. Although
this idea is applicable to a generic memory system, we will
illustrate it on a PC-like memory system depicted in Figure 1-
(a). The memory processor can be placed in several places,
such as in the North Bridge (Memory Controller) chip (1), or
in the DRAM chips (2). The advantages of the first case are
that it is simple to support, because the DRAM interface is not
modified, and that the memory processor can be employed
for other uses, such as a graphics engine. The second case,
although more complicated to support, has the advantage of
lower memory access latency and higher memory bandwidth
due to higher integration. In this paper, we study the perfor-
mance potential of the DRAM case.

Memory- and processor-side prefetching are not the same
as Push and Pull (or on-demand) prefetching [18], respec-
tively. Push prefetch occurs when prefetched data is sent
to a cache or processor that has not requested it, while pull
prefetch is the opposite. Clearly, a memory prefetcher can act
as a pull prefetcher, by simply storing the prefetched data in
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a local buffer and supplying it to the processor on demand.
In general, however, memory-side prefetching is most inter-
esting when it performs push prefetching to the caches of the
processor, because it can hide a larger fraction of memory
access latency.

In our system, the memory processor observes the requests
from the main processor that reach main memory. Based on
them, and after examining some internal state, the memory
processor prefetches other lines that it expects the main pro-
cessor to need in the future (Figure 1-(b)).

In this paper, we concentrate on push prefetching into the
L2 cache. Since the memory processor only sees L2 cache
miss streams, it aims to eliminate L2 cache misses by pushing
the prefetched data into the L2 cache. L2 cache miss penalty
is the largest component of memory access latency, and it is
the hardest to hide, even by an out-of-order processor.

Our scheme is inexpensive to support. The main processor
core does not need to be modified at all. The L2 cache needs
to have the following supports. First, as in many other sys-
tems [4, 7], the L2 cache controller has to be able to accept
lines from the memory system that it has not requested. To
do so, the L2 has to assign unused Miss Status Handling Reg-
isters (MSHRs) [10] to such lines. Secondly, if the L2 has
a pending request for the same line when a prefetch arrives,
the prefetch simply steals the MSHR and updates the cache
as if it were the reply. Finally, a prefetched line arriving at
L2 is dropped in the following cases: the L2 cache already
has a copy of the line, the write back queue has a copy of the
line because the L2 is trying to write it back to memory, all
MSHRs are full, or all the lines in the set where the prefetch
line wants to go are in pending state.

2.2 Correlation Prefetching
Correlation Prefetching uses the current state of the refer-
ence or miss stream to predict and prefetch future misses.
Two popular correlation schemes are the Stride-Based and
Pair-Based schemes. The former tries to find a stride pattern
in the miss stream and prefetch all the locations that would
be accessed if the pattern continues in the future. The lat-



ter tries to identify a correlation between pairs of misses, for
example between a miss and its immediate successor. It ba-
sically records a sequence of miss addresses in a table, and
later when it encounters the head of the sequence, it looks
up the table and prefetches the rest of the sequence. What
makes pair-based schemes attractive is their general applica-
bility, i.e. they work for any miss sequences that repeat. This
is true for regular applications and for a wide range of irregu-
lar applications such as those that operate on sparse matrices
and linked data structures. Furthermore, the schemes can be
employed without any compiler support or changes in the ap-
plication binaries.

Pair-based correlation prefetching has only been studied
using a hardware implementation of prefetch engines [1, 3, 5,
11, 17], usually by placing the engine between the L1 and L2
cache [3, 5, 11, 17]. These studies have demonstrated the ap-
plicability of pair-based correlation prefetching on a wide va-
riety of applications. However, they also reveal shortcomings
of the approach. One critical problem is that to be effective, it
needs large storage space to match the footprints of the appli-
cations. One and two Megabytes of dedicated on-chip SRAM
tables have been proposed [5, 11], while some applications
with larger footprints even need a 7.6 MB off-chip SRAM
table [11]. Furthermore, it does not prefetch far enough and
has low coverage (unless it is tightly coupled to the main pro-
cessor and uses more fine grain information [11]). For exam-
ple, for each miss, Joseph and Grunwald only store immedi-
ate successors [5]. The coverage is low because it needs one
miss to trigger the prefetcher to prefetch the successor of the
miss. At best only half of the misses can be eliminated. This
scheme uses a wide table that stores many successors per miss
and continuously rebuilds the table to increase the coverage.
However, it causes excessive useless prefetches.

3 Proposed Scheme
Pair-based correlation prefetching is suitable for our memory-
side prefetching system to support because it has general ap-
plicability and can be supported inexpensively. We show that
shortcomings of the current correlation prefetching schemes
can be eliminated by improving the correlation algorithms
and implementing them in software. The algorithms de-
scribed are implemented in a prefetching thread running on
the memory processor. The code for the prefetching thread
is written in C and hand-optimized for minimal prefetch re-
sponse and occupancy time.

In the following sections, we discuss the concepts (Sec-
tion 3.1), the architecture (Section 3.2), pair-based correla-
tion prefetching algorithms (Section 3.3), and conventional
processor-side prefetching (Section 3.4).

3.1 Concepts
Prefetching algorithms are implemented as a user-level helper
thread that we call prefetching thread. The actions of the
memory processor are determined by the behavior of the
prefetching thread that we implement. The operation of

the prefetching thread can be conceptually divided into two
phases: learning and prefetching. In the learning phase, the
prefetching thread records the L2 read and write miss patterns
that it observes in a correlation table, one miss at a time. In
the prefetching phase, every time that the prefetching thread
sees a miss, it looks up the correlation table and prefetches
several memory lines to the L2 cache of the main proces-
sor. No action is taken on a write-back memory access. In
practice, as in [5], we found that combining the learning and
prefetching phases enables the correlation table to quickly
learn new patterns and provides the best performance in most
cases (Figure 2).

Prefetch addresses

Occupancy Time

Prefetching phase

Miss address
available available processing

Handler finishes

Response Time

Learning phase

Figure 2: Timing of the prefetching thread.

The prefetching algorithm can be characterized by its re-
sponse time and occupancy time (Figure 2). The response
time is defined as the time beginning when the prefetching
thread obtains a miss address until the prefetching thread pro-
duces the prefetch addresses. The occupancy time is the time
the prefetching thread is busy and cannot process another
miss address. As can be seen in the figure, the prefetching
phase is always executed before the learning phase to mini-
mize the response time. For the software implementation to
be viable, the occupancy time has to be smaller than the av-
erage time between two consecutive L2 cache misses. Also,
for best performance, the response time needs to be as small
as possible.

By using a prefetching thread that stores the correlation
table in the main memory, we eliminate the high hardware
cost required by the table in the traditional implementation.
We further address the inadequacies of traditional correla-
tion prefetching, namely low prefetching coverage, and not
prefetching far enough, by improving the correlation algo-
rithms (Section 3.3).

3.2 Architecture of the System
When we integrate the memory processor in the DRAM
chips, the DRAM chips and possibly the DRAM interface
need to be modified. Extra complexities in handling multi-
ple DRAM chips must also be addressed. Our goal in this
paper is to study the performance potential of this case. Con-
sequently, we abstract away the implementation complexity
of integrating the processor in the DRAM by assuming a sin-
gle chip main memory with a single memory processor in it
(Figure 3).

The key communication occurs through queues 1, 2, and
3. Miss requests from the main processor are deposited in
queues 1 and then in 2. In the learning phase, the memory
processor uses the entries in queue 2 to build its state. In the
prefetching phase, the memory processor uses the entries in
queue 2 and its state to generate addresses to prefetch. The
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lines prefetched are deposited in queue 3. If the memory pro-
cessor suffers a cache miss on its correlation table structure, it
accesses the DRAM directly. Queue 4 is in the replying path
from memory to the main processor.

3.3 Pair-Based Correlation Algorithms
We now discuss the pair-based correlation prefetching algo-
rithms. We consider two different organizations for the cor-
relation table: a basic one that does not allow data replication
and a more advanced one that allows replication. Their use
gives rise to different algorithms. We consider them in turn.
Pair-Based Algorithms with Basic Table Organization
Each row in this table stores the tag of the miss address, and
the addresses of a set of immediate successor misses stored in
MRU order. We consider two algorithms that use this basic
organization: Base and Chain.

Base follows the scheme proposed by Joseph and Grun-
wald [5]. For any given miss, Base is only interested in
prefetching immediate successor misses. The parameters of
the algorithm are the number of immediate successors pre-
dicted (NumSucc), the number of misses that the correlation
table can store predictions for (NumRows), and the associa-
tivity of the correlation table (Assoc).

Base is illustrated in Figure 4-(a). It shows two snapshots
of the correlation table at the point that the corresponding
miss trace has been consumed (i and ii). In the example,
NumSucc is 2, NumRows is 4, and Assoc is 1. Within a row,
successors are replaced using LRU replacement policy. As in
Joseph and Grunwald’s study [5], we find that LRU replace-
ment policy for the successors in each row works best. The
figures show the successors in MRU order from left to right.
In the learning phase, the processor keeps a pointer to the row
of the last miss observed. When a miss occurs, its address is
placed as one of the immediate successors of the last miss,
and a new row is allocated for the new miss unless an en-
try for the address already exists. In the prefetching phase
(iii), when a miss is observed, the processor finds the cor-
responding row and prefetches all the NumSucc immediate
successors, starting from the MRU one.

Since Base only prefetches immediate successors, its cov-
erage and latency hiding capabilities are limited. To improve

this, we propose the Chain algorithm, which for every miss
prefetches multiple levels of successors. The algorithm takes
one extra parameter called NumLevels, which is the number
of levels of successors prefetched. The algorithm is illustrated
in Figure 4-(b).

In the learning phase, Chain is identical to Base (i and ii).
However, Chain does more work in the prefetching phase
(iii). After prefetching the row of immediate successors, it
takes the most recently-used successor among them and in-
dexes the correlation table with its address. If the entry is
found, it prefetches all NumSucc successors there. Then, it
takes the most recently used successor in that row and repeats
the process for NumLevels-1 times. As an example, suppose
that a miss on line a occurs (iii). The memory processor first
prefetches d and b. Then, it takes the MRU entry d, looks-up
the table, and prefetches d’s successor, c.

While improving the coverage and far-ahead prefetching
capability over Base, Chain has two limitations. One limita-
tion is that the response time of the algorithm is high. To issue
prefetches in response to a miss, it needs to make NumLevels
accesses to different rows in the table, each possibly involv-
ing a low-associative search and potentially causing a cache
miss. The second limitation is that it does not prefetch the
correct MRU successors of each level of successors. Instead,
it only prefetches successors found along the MRU path.
Pair-Based Algorithms with Replicated Table Organiza-
tion
Each row in this table stores the tag of the miss address, and
NumLevels levels of successors. Each level contains Num-
Succ addresses, which are MRU-ordered.

We propose a a new algorithm called Replicated that ex-
ploits this table organization. Replicated takes the same pa-
rameters as Chain. In the learning phase, NumLevels pointers
to the table are kept for efficient access, pointing to the rows
for the address of the last miss, second last, and so on. When
a miss occurs, its address is recorded in the correct position of
MRU successors of the last few misses by using these point-
ers. Figures 4-(c) illustrates the algorithm. In the example,
NumSucc is 2, NumRows is 4, Assoc is 1, and NumLevels is
2. The figure shows two snapshots of the correlation table in
the learning phase at the point where the corresponding miss
trace has been consumed (i and ii). The figure also shows the
position of the two pointers, and the algorithm in prefetching
phase (iii).

Note that this organization solves the two problems of
Chain. First, the response time is much shorter. We can
prefetch several levels of successors with a single row access,
possibly with only one cache miss. In fact, we shift some
computation from the prefetching phase, which is the critical
phase, to the learning phase. Now the learning phase needs
to update several rows in the table. However, the rows are
most likely still in the cache and, since we keep the point-
ers to the entries of last few miss addresses, the associative
search is avoided. Secondly, by grouping together all the suc-
cessors from a given level, we can identify the correct MRU
successors from that level, yielding higher accuracy.



a

c

b c

bd

a

cd

a,b,c,a,d,c,...

a

c

b

b c

a

c

b c

bd

a

cd

NumSucc=2

Correlation Table
Software

NumRows=4

  (i)

(ii)

on miss a prefetch d, b
(iii)

(trace of misses)
a,b,c,a,d,c,...

current miss

current miss

(a)

a

c

b c

bd

a

cd

a,b,c,a,d,c,...

a

c

b

b c

a

c

b c

bd

a

cd

NumSucc=2

Correlation Table
Software

NumRows=4

  (i)

(ii)

on miss a prefetch d, b
(iii)

prefetch c

follow link

(trace of misses)
a,b,c,a,d,c,...

current miss

current miss

NumLevels=2

(b)

a

c

b

b c

c

Last

a,b,c,a,d,c,...

d c

a

a

a

c

b c

cb

d

d

Last

 SecondLast

d c

a

a

a

c

b c

cb

d

d

Last

NumSucc=2

NumLevels=2

 SecondLast
a,b,c,a,d,c,...

current miss

current miss

 SecondLast

   on miss a    prefetch d,b,c

(iii)

(ii)

(i)

(c)
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Characteristics Base Chain Replicated

Levels of successors prefetched 1 ���������
	����� ���������
	�����
Full MRU ordering for each level? Yes No Yes
Num. row accesses in the prefetching phase (SEARCH) 1 ���������
	����� 1
Num. row accesses in the learning phase (NO SEARCH) 1 1 ���������
	�����
Response Time Low High Low
Space requirement (for constant number of prefetches) � � ���������
	���������

Table 1: Comparing the different pair-based algorithms.

Algorithm Comparison
Table 1 compares the three pair-based schemes. From the
table, we see that Replicated algorithm tries to solve prob-
lems in current correlation prefetching algorithms: it looks far
ahead by prefetching several levels of successors, thereby im-
proving coverage, while keeping high accuracy by prefetch-
ing the correct MRU successors in each level. Its only short-
coming is its high space requirements for the correlation ta-
ble. Fortunately, this is a minor issue, since the table is allo-
cated in the main memory.

The response time is better with the Replicated algorithm
than with the Chain algorithm. The handler in Replicated
runs very efficiently because cache lines are well utilized.
Note that all the correlation algorithms could be implemented
in hardware. However, Replicated is very suitable for a soft-
ware implementation because it has a low response time, far-
ahead prefetching capability, and uses cache lines well.

3.4 Conventional Prefetching
Previous studies found that placing a stride-based prefetcher
as a front end of a pair-based prefetcher makes pair-based
prefetching more effective [3, 17]. We exploit this finding by
including processor-side prefetching in the form of a hard-
ware multi-stream sequential prefetcher at the L1 cache. The
prefetcher has similar capabilities to stream buffers [6], ex-

cept that the prefetch lines are put directly in the L1 cache.
In our system, we assume that the memory controller

can distinguish the prefetches issued by the processor-side
prefetcher from regular misses. The memory controller
chooses not to pass such prefetches to the memory processor.
As a result, in general, the processor-side prefetcher targets
the regular misses while the memory-side prefetcher targets
the irregular ones.

4 Evaluation Environment
Applications. To evaluate our prefetching scheme, we use
three mostly irregular memory-intensive applications from
the SPECInt2000 suite. Irregular applications are hardly
amenable to compiler-based prefetching. Consequently, they
are the obvious target for the type of prefetching that we pro-
pose. We choose Gap, Mcf, and Parser. Gap uses a subset of
the test input set, Mcf uses the test input set, and Parser uses
a subset of the train input set.
Simulation Environment. The evaluation is performed us-
ing execution-driven simulation. Our environment is based
on an extension to MINT that supports dynamic superscalar
processor models with register renaming, branch prediction,
and non-blocking memory operations [9].

The architecture modeled is that of a high-end PC with a



Main Proc 6-issue dynamic, 1.6 GHz. Int, fp, ld/st FU: 4,4,2.
Pending ld/st: 8/16. Branch penalty: 12 cycles. L1
data: write-back, 16 KB, 2 way, 32-B line, 3-cycle
hit RT. L2 data: write-back, 512 KB, 4 way, 64-B
line, 19-cycle hit RT. RT memory latency: 243 cy-
cles (row miss), 208 cycles (row hit). Main mem-
ory bus: split-transaction, 8-B wide, 400 MHz, 3.2
GB/sec peak.

Mem Proc in DRAM 2-issue dynamic, 800 MHz. Int, fp, ld/st FU: 2,2,1.
Pending ld/st: 4/4. Branch penalty: 6 cycles. L1
data: write-back, 32 KB, 2 way, 32-B line, 4-cycle
hit RT. RT memory latency: 56 cycles (row miss),
21 cycles (row hit). Internal DRAM data bus: 32-B
wide, 800 MHz, 25.6 GB/sec.

DRAM parameters Dual channel; each channel 2-B wide, 800 MHz;
total 3.2 GB/sec peak. Random access time (tRAC)
45 ns; from Mem Controller (tSystem) 60 ns.

Other Depth of queues 1 through 4: 16.

Table 2: Parameters of the simulated architecture. Laten-
cies correspond to contention-free conditions. RT stands for
round-trip from the processor. All cycles are 1.6 GHz cycles.
512-KB L2 cache is chosen for the main processor because
we run small inputs for the applications.

memory processor that is integrated in the DRAM, follow-
ing the microarchitecture of Figure 3. Table 2 shows the pa-
rameters used for each component of the architecture. The
architecture is modeled cycle by cycle, including contention
effects.

In the simulation, both the application thread and the
prefetching thread are run simultaneously. We model the
contention between the two threads on memory subsystems
that are shared (memory controller, DRAM channels, DRAM
banks, etc.). The simulation includes all overheads incurred
by running the two threads on different processors.
Algorithm Parameters. Table 3 shows the default param-
eter values that we use for the algorithms described in Sec-
tion 3.2. For the Base algorithm, we use the values similar to
what Joseph and Grunwald use for their system [5] to make
the comparison easier. For all the algorithms, we use Num-
Rows = 64K, which results in a table of size 1.3 MBytes, 0.66
MBytes, and 1.8 MBytes for Base, Chain, and Repl, respec-
tively. These sizes are very tolerable, since the table is a plain
software data structure that is stored in main memory, is dy-
namically allocated, and is cached by the memory processor.

The conventional prefetching discussed in Section 3.4
takes two parameters: the number of streams it is able
to prefetch simultaneously (NumSeq) and the number of
prefetches that it issues per miss in a sequence observed
(NumPref). We implement this algorithm in hardware in
the L1 cache (Conven4) and also in software running on the
memory processor (Seq1 and Seq4).

Algorithm Label Parameter Values

Base Base NumSucc = 4, Assoc = 4
Chain Chain NumSucc = 2, Assoc = 2, NumLevels = 3
Replicated Repl NumSucc = 2, Assoc = 2, NumLevels = 3
Conventional 1-Stream Seq1 NumSeq = 1, NumPref = 6
Conventional 4-Stream Seq4 NumSeq = 4, NumPref = 6
Conventional 4-Stream Conven4 NumSeq = 4, NumPref = 6

Table 3: Parameter values used in the algorithms.
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5 Evaluation
To evaluate our prefetching scheme, we first characterize the
behavior of applications (Section 5.1) and then compare the
performance of different algorithms (Section 5.2).

5.1 Characterizing Application Behavior
For memory-side correlation prefetching to be effective, the
miss address streams have to be predictable. In this experi-
ment, we record the fraction of L2 cache misses that are cor-
rectly predicted. For a sequential scheme, this means that the
upcoming address exactly matches the one predicted, while
for a pair-based scheme, the upcoming address matches one
of the predicted successors. The thread does not perform
prefetching here and it only observes the addresses of all L2
cache misses.

In our experiments, shown in Figure 5, we record the frac-
tion of L2 cache misses that are correctly predicted. We try
stride-based schemes that detect up to one stream (Seq1) and
four streams (Seq4), the Base algorithm, and the combination.

The figure shows that the miss stream is largely pre-
dictable, with Seq4, Base, and Seq4+Base correctly predict-
ing roughly 40%, 70%, and 80% of the misses on average,
respectively. However, the predictability of each applica-
tion differs. For example, Mcf does not have sequential pat-
terns, while Parser has mostly sequential patterns, and Gap
is mixed.
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Figure 6: Characterizing the time between consecutive
misses.

Seq4 always outperform Seq1, indicating that multiple
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Figure 7: Execution time of the different algorithms.

stream support is necessary for a sequential scheme. The fig-
ure shows that in all applications, Base is almost as good as
the combination Seq4+Base. This is because a correlation ta-
ble is able to detect both sequential and irregular patterns, as
long as the patterns repeat. Once the table learns a pattern, it
can predict it effectively. However, it is still beneficial to have
a multi-stream sequential prefetcher at the processor-side for
several reasons: it does not need learning, it can be cheaply
implemented, and it can hide the full memory latency if in-
tegrated with the L1 cache. Furthermore, it splits the misses
into regular and irregular streams, and by tackling the regular
one, it removes some load from the memory prefetcher.

We now consider the time between misses. Figure 6 classi-
fies the misses according to the number of cycles between two
consecutive misses arriving at the memory. The misses are
grouped in bins corresponding to [0,80) 1.6 GHz processor
cycles, [80,200), etc. The most significant bins in the figure
are [200,280), [280, � ), and [0,80), which contribute on aver-
age to 54%, 28%, and 18% of all miss distances. The misses
with distances between 200 and 280 are critical as they are
both frequent and hard to hide even with out-of-order pro-
cessors. Furthermore, since the round-trip memory latency
is between 208 and 243 cycles, dependent misses are likely
to fall in this bin. This characterization suggests that, to be
on the safe side, occupancy time of the prefetching algorithm
should be less than 200 cycles.

The [0,80) bin contains misses that may not give enough
time for our prefetching thread to respond. Fortunately, these
misses are not frequent and are likely to be overlapped with
each other or with computation. Thus, they harm the perfor-
mance much less than the bin size implies.

5.2 Comparing the Different Algorithms
Figure 7 compares the execution time of the applications in
different cases: no prefetching (NoPref), hardware processor-
side L1 prefetching as shown in Table 3 (Conven4), different
software memory-side prefetching schemes as shown in Ta-
ble 3 (Base, Chain, and Repl), and the combination of Con-

ven4 and Repl (Conven4+Repl). For each application and the
average, the bars are normalized to NoPref. They are broken
down into miss stall time past the L2 cache (PastL2), miss
stall time between the L1 and L2 caches (L1toL2), and the
remaining time (Busy) that represents processor computation
plus various pipeline stalls.

On average, the PastL2 time is the most significant com-
ponent of the execution time, contributing about 40%, while
Busy and L1toL2 follow with 35% and 25%, respectively.
Thus, although our software scheme can only target L2 cache
misses, we are targeting the main performance bottleneck.

The conventional scheme (Conven4) performs well on ap-
plications with some sequential patterns, such as Gap and
Parser, but is ineffective in the application that has purely
irregular patterns (Mcf). On average, Conven4 reduces the
execution time by 10%.

The pair-based schemes show mixed performance. The
Base scheme, modeled after Joseph and Grunwald’s, shows
limited speedups because it does not prefetch far enough.
Chain performs slightly better than Base, but is limited by
inaccuracy and high response time. Repl is able to reduce the
execution time significantly. It outperforms both Base and
Chain in all applications. Its impact comes from the nice
properties of the Replicated algorithm, as discussed in Sec-
tion 3.

The combined scheme (Conven4+Repl) performs the best.
Its impact is significant: it removes on average 60% of PastL2
stall time, providing an average speedup of 1.36. Compared
to processor-side prefetching only (Conven4) with an average
speedup of 1.11, and memory-side prefetching only (Repl)
with an average speedup of 1.28, there is a clear synergis-
tic effect in the combined scheme. Memory-side prefetching
helps processor-side prefetching in irregular patterns, while
processor-side prefetching helps in regular patterns.

Workload of the Prefetching Thread
We can gain further insight by examining the work load of
the prefetching thread. Figure 8 shows the average response



time and occupancy of the prefetching thread for each of the
memory-side prefetching algorithm. The latencies are shown
in 1.6 GHz cycles and correspond to the average of all ap-
plications. Each bar is broken down into computation time
(Busy) and memory stall time (Mem). The numbers on top of
each bar show the average IPC of the prefetching thread. The
IPC is calculated as the number of instructions divided by the
number of memory processor cycles.

The figure shows that for all the algorithms, the occupancy
time is less than 200 cycles, showing the viability of the soft-
ware implementation. Chain and Repl have the lowest occu-
pancy time. Due to the fewer associative searches and the bet-
ter cache use, Repl has only slightly higher occupancy time
compared to Chain, despite performing more table updates.

The response time is very important for prefetching effec-
tiveness. The figure shows that Repl has the lowest response
time. its value is around 30 cycles.
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Figure 8: Response and occupancy time of the prefetching
thread for each of the prefetching algorithm.

6 Conclusions
This paper introduced memory-side correlation-based
prefetching implemented in a user-level thread. The scheme
runs on a general-purpose processor in the main memory.
The scheme can be supported with few modifications to the
L2 cache and no modification to the main processor. We
introduced a new organization of the correlation table and a
new correlation prefetching algorithm that enable fast and
accurate far-ahead prefetching with high coverage. Overall,
our scheme effectively prefetched irregular applications,
speeding up three SPECInt2000 applications by an average
of 1.28. Furthermore, our scheme can work synergistically
with a conventional processor-side prefetcher to deliver an
average speedup of 1.36.
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