
EVAL: Utilizing Processors with Variation-Induced Timing Errors ∗

Smruti Sarangi, Brian Greskamp, Abhishek Tiwari , andJosep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

Abstract
Parameter variation in integrated circuits causes sections of

a chip to be slower than others. If, to prevent any resulting tim-
ing errors, we design processors for worst-case parameter values,
we may lose substantial performance. An alternate approach ex-
plored in this paper is to design for closer to nominal values, and
provide some transistor budget to tolerate unavoidable variation-
induced errors.

To assess this approach, this paper first presents a novel frame-
work that shows how microarchitecture techniques can trade
off variation-induced errors for power and processor frequency.
Then, the paper introduces an effective technique to maximize
performance and minimize power in the presence of variation-
induced errors, namelyHigh-Dimensionaldynamic adaptation.
For efficiency, the technique is implemented using a machine-
learning algorithm. The results show that our best configuration
increases processor frequency by 56% on average, allowing the
processor to cycle 21% faster than without variation. Processor
performance increases by 40% on average, resulting in a per-
formance that is 14% higher than without variation — at only a
10.6% area cost.

1 Introduction
As integrated circuit technology continues to scale, the next

major challenge faced by high-performance processor designers
is parameter variation [30]: the fact that Process, Voltage, and
Temperature (PVT) values change from their nominal specifica-
tions. Designing processors under variation is harder because they
have to work under a wide range of conditions.

One of the most harmful effects of variation is that some sec-
tions of the chip are slower than others — either because their
transistors are intrinsically slower or because temperature or sup-
ply voltage conditions render them so. Logic paths in these sec-
tions may take too long to propagate signals and, as a result, in-
duce timing errors. On current trends, designers in upcoming
technology generations may have to create overly conservative
designs to avoid risking these errors. It has been suggested that
parameter variation may wipe out a sizable fraction of the poten-
tial gains of future technology generations [2].

An alternative scenario, which this paper explores, is that in
a high-variability environment, cost-effective processors may be
designed to tolerate errors due to parameter variation. In this case,

∗This work was supported by the National Science Foundation under
grant CPA-0702501 and by SRC GRC under grant 2007-HJ-1592. Smruti
Sarangi is now with IBM India Software Laboratories, in Bangalore (sr-
sarangi@in.ibm.com). Abhishek Tiwari is now with Goldman Sachs, in
New York City (abhishek.tiwari@gs.com).

processors may be designed not for worst-case parameter values
but for closer to nominal-case parameter values — and provide
some transistor budget to tolerate the resulting variation-induced
errors. The result may be a higher-performing processor and/or a
cheaper manufacturing process — in short, a more cost-effective
design.

To explore this scenario, it is first necessary to consider how pa-
rameter variation induces timing errors in high-performance pro-
cessors. Second, while we could reuse existing fault-tolerant ar-
chitectures to handle these errors, it is important to understand
how the rate of these errors can be traded-off for other quanti-
ties, such as processor power or frequency. Finally, we need to
identify microarchitecture techniques that minimize such errors,
possibly also affecting the power and frequency of the processor.
This paper addresses the last two challenges and makes two con-
tributions.

First, it introduces a novel framework called EVAL (Environ-
ment for Variation-Afflicted Logic) to understand how processors
can tolerate and mitigate variation-induced errors. In EVAL, mi-
croarchitecture techniques can trade off error rate for power and
processor frequency.

Second, this paper presentsHigh-Dimensionaldynamic adap-
tation, an effective microarchitecture technique to maximize pro-
cessor performance and minimize power in the presence of
variation-induced timing errors. The parameters adapted include
the processor frequency, multiple voltages, and two processor
structures. To efficiently support this technique, we propose an
implementation based on machine learning.

Our results show that, under variation-induced timing errors,
high-dimensional dynamic adaptation is feasible and effective.
With no support for handling variation, a processor can only cy-
cle at 78% of its no-variation frequency. However, by dynami-
cally adapting processor frequency, per-subsystem voltages, issue
queue size, and functional-unit structure, the processor increases
its frequency by 56% on average — effectively cycling 21% faster
than under no variation. Processor performance increases by 40%
on average (or 14% over the no-variation scenario), always within
error-rate, power, and temperature constraints. The area overhead
of this technique is only 10.6% of the processor area.

This paper is organized as follows. Section 2 gives a back-
ground; Section 3 presents the EVAL framework; Section 4 de-
scribes high-dimensional dynamic adaptation and its implemen-
tation; Sections 5–6 evaluate it; and Section 7 discusses related
work.

of

 D
yn

 P
at

hs

 var

T nom T var E
E

rr
or

 R
at

e
(P

) E

E
rr

or
 R

at
e

(P

)

f nom

(c)

Delay

 nomT

(a) (b)

Delay

ft

1

(d)

Frequency

Frequency

Stage 1
Stage 2

Processor

of

 D
yn

 P
at

hs
f

Figure 1:Impact of variation on processor frequency.

2 Background
2.1 Modeling Process Variation

While process variation exists at several levels, we focus on
Within-Die (WID) variation, which is caused by bothsystematic
effects due to lithographic irregularities andrandomeffects, pri-
marily due to varying dopant concentrations [30]. Two important
process parameters affected by variation are the threshold volt-
age (Vt) and the effective channel length (Leff). Variation of
these two parameters directly affects a gate’s delay (Tg) [25] and
a gate’s static power from subthreshold leakage (Psta). These two
measures plus a gate’s dynamic power (Pdyn) are given by:

Tg ∝ VddLeff

µ(Vdd − Vt)α
(1)

Psta ∝ VddT 2e−qVt/kT (2)

Pdyn ∝ CV 2
ddf (3)

whereVdd, T, C, and f are the supply voltage, temperature, ca-
pacitance, and frequency, respectively, whileµ andα are process
parameters andq andk are physical constants.

To model process variation, we use the model in [26]. In this
model, the systematic component ofVt’s variation is modeled
with two parameters:σsys andφ. A chip is divided into a grid.
Each grid cell takes on a single value ofVt’s systematic compo-
nent as given by a multivariate normal distribution with parame-
tersµ=0 andσsys. Along with this, the systematic component of
Vt is spatially correlated using a function that only depends on the
distance between two points — not on their position in the chip
or on the direction of the line that connects them. Such a func-
tion decreases to zero for a distanceφ calledrange. Intuitively,
this means that at distanceφ, there is no correlation between the
systematic components ofVt for two transistors.Leff is mod-
eled similarly with a differentσsys but the sameφ. Overall, with
this model, we can generate per-chip personalized maps of the
systematic components ofVt andLeff .

Random variation occurs at the much smaller granularity of
individual transistors. Random variation is added analytically, as
random values from a normal distribution withµ=0 andσran.

By combining the systematic and random components of vari-
ation, we get the total variation. From here, using Equations 2
and 1, we compute the variation in the static power and delay of
gates. Then, integration of the static power over the whole pro-
cessor provides an estimate of the processor’s static power. To
estimate the processor’s frequency, we take the variation in gate
delay and, ideally, would apply it to the design files of a state-
of-the-art processor. Since we do not have such files, we apply
the gate delay variation to the models of critical path distributions
in pipeline stages with logic and with memory structures found
in [26]. From the resulting slowest critical paths, we estimate the
processor frequency.

2.2 Modeling Variation-Induced Timing Errors
Process variation slows down some critical paths in a proces-

sor. As a result, the maximum frequency attainable by the proces-
sor decreases. If we do not operate the processor at the resulting
low, safe frequency, the processor will suffer timing errors. To es-
timate the rate of these timing errors as a function of the processor
frequency, we use the VATS model [26].

VATS considers the dynamic distribution of the delays of all the
exercised paths in a pipeline stage. Without variation, such distri-
bution may look like that in Figure 1(a). All paths take less than
the nominal clock period (Tnom). Parameter variation changes
gate delay (as per Equation 1), making some paths faster while
others slower. The result is a more spread-out dynamic path de-
lay distribution as in Figure 1(b). The processor now requires a
longer clock period (Tvar) to operate without timing errors.

If a processor is clocked with a periodt < Tvar (Figure 1(b)),
when the paths to the right oft are exercised, they may cause tim-
ing errors. An alternate way to see this is by plotting the error
rate (or probability of errorPE) of the pipeline stage as we in-
crease the pipeline frequency (Figure 1(c)). Forf > fvar, where
fvar=1/Tvar, there are errors.

VATS generates aPE(f) curve like the one in Figure 1(c) for
a given pipeline stage. VATS then models ann-stage pipeline as
a series failure system, where each stage can fail independently.
Each stagei has an activity factorρi, which is the number of
times that the average instruction exercises the stage. Finally, the
processor error rate per instruction as a function of the frequency
f is given by Equation 4, and is shown in Figure 1(d) for a 2-stage
pipeline.

PE(f) =

n∑
i=1

(ρi × PEi(f)) (4)

2.3 Fine-Grain ABB and ASV Application
Two techniques that modify the properties of gates are Adap-

tive Body Biasing (ABB) and Adaptive Supply Voltage (ASV).
ABB [21, 35, 36] applies a body-bias voltageVbb between the
substrate and the source (or drain) of transistors to either decrease
Vt (Forward BB or FBB), or increaseVt (Reverse BB or RBB).
As per Equations 1 and 2, decreasingVt reducesTg but increases
Psta; increasingVt causes the opposite behavior. ABB requires
some extra fabrication steps.

ASV changes theVdd applied to gates [5]. As per Equations 1,
2 and 3, increasingVdd reducesTg but increasesPsta and, espe-
cially, Pdyn; decreasingVdd causes the opposite behavior. ASV
is simpler to implement than ABB.

A chip can have multiple ABB or ASV domains — an envi-
ronment referred to as fine-grained. Tschanzet al. [35] built a
chip with 21 ABB domains. Narendraet al. [21] built a chip with
a single ABB domain, although the chip includes 24 local bias
generators with separate local bias networks — just as would be
required in an implementation with domains. Both sets of authors
estimate that the area overhead of their ABB support is≈2%.

2f

(e)(d)

f ff optf var
f var f var f var f var f f

(b) (c)

After After

Perf

Pe
rf

or
m

an
ce

 (
Pe

rf
)

(a)

Frequency

EEE
E

rr
or

 R
at

e
(P

)

E
rr

or
 R

at
e

(P

)

E
rr

or
 R

at
e

(P

)

E
E

rr
or

 R
at

e
(P

)

Before

E
E

rr
or

 R
at

e
(P

) ReshapeTilt Shift Adapt

Frequency

Before Before

Frequency Frequency Frequencyf

After
PE

1
 nom

Figure 2:Tolerating (a) and mitigating (b)-(e) variation-induced errors in the EVAL framework.

If we assume that ASV supplies are chip-external, the area
overhead of multiple ASV domains is small. Existing power sup-
ply pins are repurposed to deliver customizedVdd levels to each
domain. Then, level converters may need to be added to cross
voltage domains.

In this paper, we will initially assume that we can support over
10 ABB and ASV domains in a processor pipeline. While this
is a stretch with current technology, current research (e.g., [15])
points to promising directions to make it feasible. We will then
see that we do not need as much support.

3 The EVAL Framework
We assume that, in a high-variability environment, cost-

effective processors will not be slowed down to operate at worst-
case parameter values — their performance atTvar is low. In-
stead, we assume that they will be clocked with a periodt < Tvar

(Figure 1(b)) and suffer timing errors during normal execution.
To design cost-effective processors in this challenging environ-

ment, we propose the EVAL framework to tolerate and mitigate
variation-induced errors. In EVAL, microarchitecture techniques
can trade-off error rate for power and processor frequency.

3.1 Tolerating Errors
If we augment the processor with support for error detection

and correction, it is possible to cycle the processor atf > fvar

while still ensuring correct execution. For instance, we can add a
checker unit like Diva [40] to verify results from the main pipeline
at instruction retirement. To ensure that the checker is error-free,
it can be clocked at a safe, lower frequency than the main core,
while the speed of its transistors is enhanced with ABB or ASV
(Section 2.3) — according to [40], it is feasible to design a wide-
issue checker thanks to its architectural simplicity. Alternately,
we can add a checker processor like in Paceline [9], or augment
the pipeline stages or functional units with error checking hard-
ware like in a variety of schemes (e.g., [8, 37, 38]). With any of
these architectures, the performance in instructions per second of
the processor cycling atf is:

Perf(f) =
f

CPI
=

f

CPIcomp + CPImem + CPIrec

=
f

CPIcomp + mr ×mp(f) + PE(f)× rp
(5)

where, for the average instruction,CPIcomp are the computation
cycles (including L1 misses that hit in the on-chip L2);CPImem

are stall cycles due to L2 misses; andCPIrec are cycles lost to
recovery from timing errors. In addition,mr is the L2 miss rate
in misses per instruction,mp is the observed L2 miss penalty in
cycles non-overlapped with computation,PE is the error rate per
instruction, andrp is the error recovery penalty in cycles.

To a first approximation,CPIcomp, mr, and rp remain con-
stant as we changef. If we use a Diva-like scheme,rp is equal to

the branch misprediction penalty, since recovery involves taking
the result from the checker, flushing the pipeline, and restarting
it from the instruction that follows the faulty one. On the other
hand, bothmpandPE increase withf.

For smallf, PE is small (Figure 1(c)), which makesPE × rp
small. Consequently, asf increases,Perf goes up because the nu-
merator grows while the denominator increases only slowly —
driven by the second and third terms. Eventually, asf keeps in-
creasing,PE reaches a point of fast growth, as shown in Fig-
ure 1(c). At this point,PE × rp swells, andPerf levels off and
quickly dips down. The result is shown in Figure 2(a), which
shows thePerf(f) curve with a solid line and thePE(f) curve in
dashes. We callfopt the f at the peakPerf. With this approach,
we reach frequencies higher thanfvar by tolerating errors.

3.2 Mitigating Errors: Taxonomy of Techniques
We can reduce the number of variation-induced errors with mi-

croarchitectural techniques. We group such techniques into four
classes, depending on how they affect thePE vs f curve. In this
section, we describe the four classes — shown in Figures 2(b)-(e)
— while in Section 3.3, we present one example of each class.

Tilt: This class of techniques speeds-up many paths that are al-
most critical in a pipeline stage, but does not speed-up the slowest
paths in the stage. As a result, the slope of thePE vs f curve
decreases, but the point where the curve meets thef axis (fvar)
remains unchanged (Figure 2(b)). Overall, for anf moderately
higher thanfvar, PE has decreased.

Shift: This class speeds-up all the paths in a stage by a similar
amount. As a result, the curve largely shifts to the right (Fig-
ure 2(c)), therefore reducingPE for a givenf .

Reshape: There is typically anenergy costin tilting or shift-
ing the curve as just described. Consequently, another class of
techniques speeds-up the slow paths in the stage (thus consuming
energy) and then saves energy by slowing down the fast paths.
The first action shifts the bottom of thePE vs f curve to the right
and/or reduces the curve’s initial slope; the second action shifts
the top of the curve to the left and/or increases the curve’s final
slope (Figure 2(d)). For thef considered, the result is a lowerPE

with potentially little energy cost. In reality, it may be easier to
obtain this behavior at the processor level by speeding-up slow
pipeline stages and slowing down the fast stages.

Adapt: As an application executes, it changes the types of op-
erations it performs. As a result, itsPE vs f curve also changes,
as shown in Figure 2(e). A final class of techniques adapts thef
of the processor dynamically, to keep it as high as possible while
maintainingPE low at all times (Figure 2(e)).

3.3 Example of Error-Mitigation Techniques
We now list one example of each of the four classes of tech-

niques to mitigate variation-induced errors.

3.3.1 Tilt: FU Replica without Critical-Path Wall
Design tools often design pipeline stages or Functional Units

(FUs) with many near-critical paths. This is because, to save area
and power, the non-critical paths are not subjected to high opti-
mization — as long as they are shorter than the critical path, they
are considered good enough. This creates a critical-path wall. The
typical Tilt technique consists of taking a design and optimizing
the near-critical paths to be shorter, so that the distribution of path
delays and, therefore, thePE vs f curve, become less steep. One
possible way to do so is by increasing the width (W) of the tran-
sistors in the non-critical paths. This decreases their delay, which
is proportional toK1 + K2/W. However, it also increases their
power and area, since they are proportional toW [22].

Consequently, we propose to have two implementations of an
FU side-by-side. Both contain the same logic circuit, but one is
the original design (Normal) and the other has the transistors in
the non-critical paths optimized (LowSlope). LowSlopeis less
power-efficient, but it has a lower-slopedPE vs f curve. Con-
sequently, if the pair of FUs falls on a chip area with fast transis-
tors, since the FUs will not limit the processor frequency, we en-
ableNormaland disableLowSlope— the processor will be more
power efficient. If the pair falls on an area with slow transistors
and limits the frequency of the processor, we enableLowSlope
and disableNormal — the processor will cycle at a higherf for
the samePE .

We implement this technique in the most critical (typically, the
hottest) FUs: we replicate the integer ALU unit and, inside the
FP unit, replicate the adder and multiplier. Due to the area im-
plications discussed in Section 5, we conservatively add one ex-
tra pipeline stage between the register file read and the execute
stages.

3.3.2 Shift: Resizable SRAM Structures
A technique that has been proposed for SRAMs such as caches

or queues is to dynamically disable sections of them to reduce
power, access time or cycle time (e.g., [4]) — since smaller struc-
tures are faster. In these schemes, transmission gates separate
sections of the structure; disabling transmission gates reduces the
structure size. According to [4], SPICE simulations show that the
impact of properly-designed transmission gates on the cycle time
is negligible.

This is a possibleShift technique. On chips where the RAM
structure falls on a fast region, the whole structure is kept (Large
design). On chips where it falls on a slow region and limits the
chip’s f, we disable a fraction of the structure (Smalldesign). With
shorter buses to charge, most of the paths in the structure speed up,
shifting thePE curve to the right. Consequently, at anyf, Small’s
PE is lower thanLarge’s. A shortcoming is that downsizing may
decrease IPC. However, we now have room to trade morePE for
higherf and still come out ahead in performance.

We implement this technique in the integer and FP issue
queues, since they are often critical. We enable them to operate at
either full or3/4capacity.

3.3.3 Reshape: Fine-Grain ABB or ASV
ABB and ASV have been used to speed up slow sections of a

chip and reduce the power of fast sections of the chip (e.g., [31,
36]). Using them in our framework reshapes thePE curve as
in Figure 2(d): speeding-up the slow pipeline stages pushes the
lower part of the curve to the right and reduces its initial slope;
slowing down and saving power on the fast pipeline stages pushes

the upper part of the curve to the left and increases its final slope.

3.3.4 Dynamic Adaptation
Many algorithms have been proposed to dynamically change

parameters such as voltage, frequency, or cache size to adapt to
application demands (e.g., [6, 7, 10]). In the context of mitigating
WID parameter variation, the key difference is that the problem
has a veryhigh dimensionality. The reason is that, to be effective,
we need to sense from and actuate on many chip localities — as
many as regions with different parameter values — and then opti-
mize globally. Due to the complexity of the problem, we propose
an implementation using machine learning algorithms; they en-
able rapid adaptation in multiple dimensions with minimal com-
putation cost.

High-dimensional dynamic adaptation is the key technique in
EVAL, and the one that agglutinates all the other techniques. We
describe it next.

4 High-Dimensional Dynamic
Adaptation for Variation Errors

We proposeHigh-Dimensionaldynamic adaptation as a novel
technique to effectively mitigate WID parameter variation in up-
coming processor chips. The goal is to boost the processor fre-
quency when there is room in the tolerablePE , power, andT.
This technique involves (i) sensing from the several variation lo-
calities, (ii) relying on local techniques totilt , shift, or reshapethe
PE vs f curve in each locality, and (iii) finally optimizing glob-
ally. Given the complexity of the problem, we propose an im-
plementation with asoftware-based fuzzycontroller. Every time
that a phase change is detected in the application, the processor
is interrupted and runs the controller algorithm. The algorithm
uses software data structures that contain fuzzy rules built by the
manufacturer in a learning phase. In this section, we describe the
problem statement, the algorithm, and its implementation. As an
example, we adapt using all the example techniques described in
Section 3.3, namely different ABB and ASV for each ofn pro-
cessor subsystems, FU replication, and issue-queue resizing.

4.1 Optimization Problem Statement
Every optimization problem has a set of outputs subject to con-

straints, a final goal, and a set of inputs.
Outputs. There are2n+3 outputs: (i) the core frequency, (ii) the
Vdd andVbb for each of then subsystems in the processor, (iii)
the size of the issue queue (full or 3/4), and (iv) which FU to use
(normal or low sloped). The last two outputs apply to integer or
FP units depending on the type of application running.
Constraints. There are three: (i) no point can be atT higher than
TMAX , (ii) the processor power cannot be higher thanPMAX ,
and (iii) the total processorPE cannot be higher thanPEMAX .
The reason for the latter is justified next.
Goal. Our goal is to find the processorf that maximizes perfor-
mance. However, taking Equation 5 and finding the point where
its derivative is zero is expensive. Instead, we can find a very
similar f with little effort if our goal is to maximizef subject to
the processor’sPE being no higher thanPEMAX — assuming we
choose an appropriatePEMAX . Specifically, thePE(f) curve in
Figure 2(a) is so steep that the range off betweenPE = 10−4 and
PE = 10−1 errors/instruction is minuscule (only 2–3%). More-
over, for typical values ofCPIcomp, CPImem, andrp in Equa-
tion 5,PE = 10−4 makesCPIrec negligible, whilePE = 10−1

makesCPIrec so high thatPerf has already dropped. Conse-

MIN

f

fmax
1

α1Vt0
1

th
R1 ,,,K

sta
1,K

dyn
1

{ }f th
Rn Vt0

n αn,,,K
sta
n,K

dyn
n

{ f }

TH core
f

α1Vt0
1

th
R1 ,,,K

sta
1,K

dyn
1

{ }f th
Rn Vt0

n αn,,,K
sta
n,K

dyn
n

{ f }

Vbb
TH VbbV

dd
V

dd
n1 n1

(a): Freq algorithm (b): Power algorithm

AlgorithmPowerPowerFreqFreq Algorithm Algorithm Algorithm

fmax
n

core

Figure 3:Overview of the optimization algorithm.

fnormal Min(f)rest

fnormalMin(f)rest flowslope

flowslope

fnormal flowslope Min(f)rest

(i)

(ii)

(iii)

f0

f0

f0
Figure 4: Possible frequency out-
comes for the replicated FU.

quently, if we set our goal to maximizef subject toPE being no
higher thanPE = 10−4 errors/instruction, we will obtain anf and
aPerf that are both very close to the optimal ones.
Inputs. We need inputs that enable us to compute theT, Psta,
andPdyn of each subsystem. Such values are given by:

T = TH + Rth × (Pdyn + Psta) (6)

Pdyn = KdynαfCV 2
ddf (7)

Psta = KstaVddT 2e−qVt/kT (8)

Vt = Vt0 + k1(T − T0) + k2Vdd + k3Vbb (9)

Equation 6 gives the steady-stateT as function of the temper-
ature of the common heat sink (TH) and the thermal resistance
of the subsystem (Rth). In Equation 7,Kdyn is a constant for
the subsystem andαf is the activity factor of the subsystem in
accesses per cycle. In Equation 8,Ksta is a constant for the sub-
system. Finally, in Equation 9, to computeVt at T, we need to
know its valueVt0 at a reference temperatureT0. The effect ofT,
Vdd andVbb onVt is captured by constantsk1, k2, andk3 [19].

These equations form a feedback system and need to be solved
iteratively. In these equations, the inputs to our control algorithm
areTH , Rth, Kdyn, αf , Ksta, Vt0, andf — the rest are either out-
puts (Vdd andVbb), constants, or intermediate parameters. Among
these inputs,Rth, Kdyn, Ksta, andVt0 are per-subsystem con-
stants that the manufacturer can measure and store on chip. This
is done as follows. First,Rth, Kdyn, andKsta are unaffected by
variation, and are either a function of the subsystem area (Rth)
or are estimated by the CAD tools based on the number and type
of devices in the subsystem (Kdyn and Ksta). Second,Vt0 is
variation-dependent, and is measured on a tester at a knownT by
suspending the clocks and individually powering on each of the
subsystems. The current flowing in is the leakage of that subsys-
tem, from whichVt0 can be computed according to Equation 8.

On the other hand,TH and the per-subsystemαf must be
sensed dynamically.TH can be measured with a singleT sensor
on the heat sink. Since the thermal time constant of the heat sink
is of the order of tens of seconds [29], it only needs to be mea-
sured every few seconds. Finally, within a program phase,αf in a
given subsystem does not change much [28]. We can measure its
average value at the beginning of every phase with performance
counters similar to those already available. Adding up all inputs,
we get5n + 2 inputs, of which onlyn + 1 need to be sensed (the
per-subsystemαf and theTH).

4.2 Optimization Algorithm
To make the problem tractable, we propose to solve it by se-

lecting a good solution in each of then subsystems independently,

and then modifying the solutions slightly to make them compat-
ible. We proceed in two steps, namely theFreq andPoweralgo-
rithms.

In theFreqalgorithm, each subsystemi independently finds the
maximum frequencyf i

max at which it can cycle using any value
of ABB or ASV, and without violating the temperature constraint
(TMAX) or error rate constraint (which we conservatively set to
PEMAX /n). Then, we take the minimum of allf i

max, which
becomes the core frequencyfcore. Next, in thePoweralgorithm,
each subsystemi takesfcore and independently recomputes its
V i

dd andV i
bb that minimize the power consumed by the subsystem

without violatingTMAX or PEMAX /n. Finally, a check is made
that the overall processor power is lower thanPMAX .

An overview of the overall process is shown in Figure 3. In the
two algorithms, each subsystemi takes the 6 inputs described in
Section 4.1, which we represent with superscripti.
FU Replication. This technique is representative of those that
provide the choice of one of two configurations in a subsys-
tem. In this case, we need to run theFreq algorithm for each of
the two configurations, and generate twof i

max, namelyfnormal

for the normal FU andflowslope for the low-sloped one, where
fnormal < flowslope. To decide which of the two FUs to en-
able, we comparefnormal andflowslope to the minimum value
of f i

max for all the other subsystems in the processor, which we
call Min(f)rest. The possible relative values of these three fre-
quencies create three cases, as shown in Figure 4. Iffnormal <
Min(f)rest like cases (i) and (ii), the FU is critical and, there-
fore, we enable the low-sloped implementation to maximize fre-
quency. Otherwise, like case (iii), we enable the normal one to
save power.
Issue Queue Resizing.This technique is representative of those
that provide two configurations which, at the samef, induce a dif-
ferent processor CPI. This is what occurs with the two different
queue sizes: at the samef, they result in different processor CPIs.
In this case, at the beginning of each phase, we need to take sev-
eralµs to estimate with counters the CPIcomp with either queue
size, namely CPIcomp1.00 and CPIcomp0.75 . We then run theFreq
algorithm for each queue size and, together with thef i

max of all
the other subsystems, compute the frequency we would select
for the core, namelyfcore1.00 andfcore0.75 . Finally, we com-
pare the estimated performance given in Equation 5 with either
CPIcomp1.00 and fcore1.00 , or with CPIcomp0.75 and fcore0.75 .
Finally, we enable the queue size that delivers the higher perfor-
mance of the two.

σ

µ σ ij y
i

σ µfilled ,
1

x xx j m

1j

(a)

rules i

#input variables #input variables

n
m

µ y

Controller
matrices

and y vector

input vector output value

x

input
Controller

xm estimated
output

(b) Training Phase

(c) Deployment Phase

ij

Figure 5:Operation of a Fuzzy Controller (FC).

4.3 Implementation
4.3.1 Freq and Power Algorithms

The Freq and Power algorithms are non-linear, multidimen-
sional problems that have no analytic or simple algorithmic so-
lution. In this section, we outline an exhaustive solution and then
our proposed solution based on a fuzzy controller.
Exhaustive Algorithm. In this algorithm, we start from a finite
set of values for each off, Vdd, andVbb in a subsystem, and ex-
haustively try all possible combinations to select the best one for
the subsystem subject to constraints. Specifically, in theFreq al-
gorithm for subsystemi, we compute, for eachf, Vdd, andVbb

value combination, the resulting subsystemT and PE . We se-
lect asf i

max the maximumf that does not violate theTMAX or
PEMAX /n constraints. In thePower algorithm, we takefcore

and compute, for eachVdd and Vbb value combination, the re-
sulting subsystemT, PE , and power. We select theVdd andVbb

combination that, while not violating theTMAX or PEMAX /n
constraints, consumes the lowest power. Unfortunately,Exhaus-
tive is too expensive to execute on-the-fly.
Fuzzy Controller Algorithm. Fuzzy Controllers (FC) are used
when we know that there is a relationship between a multidimen-
sional input and an output but we do not know the form of the
function [39] — and therefore non-linear regression cannot be
used. An FC learns a set of rules during a training phase, stores
them, and uses them later-on in deployment to provide accurate
answers to queries. The advantages of using an FC for each sub-
system’sFreq andPoweralgorithms (each box in Figure 3) are
FC’s good accuracy and very low response time. In our scheme,
we use a software FC implementation.

An FC operates on two matrices calledµ andσ, and a column
vector of the same number of rows (Figure 5(a)). Each row of
the matrices is a fuzzy rule, and its output is an element of the
column vector. The number of columns in each matrix is equal
to the number of variables per input vector. In the training phase
(Figure 5(b)), we train the FC with thousands of training exam-
ples to fill in the matrices and vector (Appendix A). A training
example is an input vector along with its correct output. We gen-
erate each training example by runningExhaustiveoffline. In the
deployment phase (Figure 5(c)), the FC takes an input vector and
produces an estimated output (Appendix A).

In the Freq algorithm, the 6 inputs shown in Figure 3 are fed
to a per-subsystem FC whose output isf i

max; in thePoweralgo-
rithm, there are two FCs per subsystem — one for outputV i

dd and
one for outputV i

bb. Their inputs are shown in Figure 3.
We do not expect that training the FCs will increase the chip

test time excessively. First, of all the constants needed in Sec-
tion 4.1, only the per-subsystemVt0 must be measured by the

manufacturer on the chip hardware. Moreover, we discussed in
Section 4.1 thatVt0 can be measured quickly. The second step in-
volves populating the FCs. This is done by running many inputs
on a software model of the chip that implementsExhaustive.

4.3.2 Controller System Interface
The controller system consists of a set of privileged-mode soft-

ware routines and data structures that implement FCs for each
subsystem. The FCs access a sensor attached to the heat sink that
providesTH , and a set of performance counters that provideαi

f

for each subsystem. In addition, there are per-subsystem ther-
mal sensors [29] to detect overheating, a core-wide power sen-
sor to detect power overruns, and a core-widePE counter from
the checker hardware (Section 3.1) to detect error-rate overruns.
When a hardware-based application phase predictor like the one
by Sherwoodet al. [28] detects a new phase, it interrupts the pro-
cessor, which then runs the controller routines.

4.3.3 Timeline
Figure 6 shows the timeline of the whole system. The phase

detector detects a new phase on average every≈ 120ms, and in-
terrupts the processor. If this phase has been seen before, a saved
configuration is reused; otherwise, the controller attempts to find
a good configuration. For that, it first lets the application run for
≈ 20µs, while counters estimate each subsystem’s new activity
factor αf . During this period, counters also estimateCPIcomp

with the full-sized issue queue (for the first half of the period) and
the 0.75 configuration (for the second half)1. As per Section 4.2,
these CPIs will be used to resize the integer or FP issue queue —
depending on the type of application running.

Subsequently, the fuzzy controller routines take over the CPU
and execute. Based on the number of instructions executed in
these routines, we estimate that a 4GHz processor takes about
6µs to run them. This is the only time when the application is not
running. After the new configuration is chosen, the application
runs again and the system transitions to the selectedfcore and
per-subsystemVdd andVbb. While the transition latency depends
on the magnitude of the change required, we estimate it is at most
10µs — a figure slightly more aggressive than the one for Intel’s
XScale technology.

Due to inaccurate estimation when using fuzzy control, the fi-
nal configuration may not be optimal or may not meet constraints.
If it is too aggressive, a sensor may log a constraint violation — a
thermal/power violation within a thermal time constant (≈ 2ms)
or an error constraint violation sooner. In this case, the system
performs a minor readjustment, which involves decreasingf ex-

1If these two tests end up testing very different code sections, we may
make a suboptimal decision. Correctness is never in question.

DTLB

FPQ

FPReg

LdStQ

Subsystem

Dcache

FPUnit

memory

memory

mixed

logic

memory

mixed

FPMap memory

IntALU logic

Type

ABB:
From 2.4GHz to over 4GHz in 100MHz steps
From −500mV to 500mV in 50mV steps

From 800mV to 1200mV in 50mV stepsASV:

f:

MAX MAX H_MAX E_MAX

−4
P =30W/proc, T =85C, T =70C, P =10 err/inst

IntReg

IntQ

IntMap

ITLB

memory

mixed

memory

memory
Icache memory

BranchPred mixed

Decode logic

(a): Some parameter values

(b): Subsystems used

(c): Logical organization of the checker

Checker 7.0

IntALU Repl

FPAdd/Mul Repl

I−Queue Resize 0.0

Phase Detector 0.3

Sensors 0.1

Total

Cache
L1 I

Cache
L1 D

Checker

Instr. Queue
Processor

Lower, Error−Free
Frequency

Core

L0 CachesParameter changes

Round trip latency in cycles from processor to:
L1: 2; L2: 8; Memory: 208

IntALU subsystem (3 add/shift + 1 mult): 0.55% proc area
1 FPadd + 1 FPmult: 1.90% proc area

Fuzzy controller system:
Each FC: 25 rules; 10,000 training examples
Phase detector: 32 buckets; 6 bits/bucket

Process parameters:

Number of chips per experiment: 100

0.7

2.5

10.6

(d): Additional area

Area (% Proc)Source

0.0ASV

µ σ/µ φ
Leff: : 0.5 x Vt’sσ/µ
Vt: : 150mV at 100C; : 0.09; : 0.5

σ/µ; :0.5φ

4−core CMP; Tech: 45nm; Vdd: 1V; f (no variation): 4GHz

Area measured from die photo:

Full−sized issue queues:
Integer: 68 entries
FP: 32 entries

Figure 7:Characteristics of the system modeled.

10 µs

t

Heat sink cycle

Phase Phase

6 µs

0.5 µsNew
Move 1 step

Bring to chosen working point

Measure

Retuning cycles

2−3 s

20 µs 2 ms 2 ms

Run fuzzy controller algorithm

compTest CPI for the 2 queue configurations

120 ms

αf for each subsystem

phase
detected

Figure 6:Timeline of the adaptation algorithm.

ponentially — first by 1 100MHz step, then by 2 steps, 4, and
8 without running the controller — until the configuration causes
no violation, and then gradually ramping upf in constant 100MHz
steps up until right below af that causes violations.

These smallf changes to prevent violations are calledRetun-
ing Cycles(Figure 6). They donot involve re-running the fuzzy
controller. Finally, every 2–3s, theTH sensor is refreshed.

4.3.4 Summary of Complexity
We believe that the complexity of this technique is modest. The

key part of the technique, namely the controller, is implemented
in software, which reduces design complexity. The hardware as-
pects include sensors, FU replication, issue-queue resizing, Diva
checker, and fine-grain ABB/ASV. Note that this is not an “all-or-
nothing” system — different subsets of techniques can be used.
Finally, fuzzy control has been shown to be a simple, effective
way to handle complicated control systems [39].

5 Evaluation Environment
We model a Chip Multiprocessor (CMP) at 45nm technology

with four 3-issue cores similar to the AMD Athlon 64. Each core
has two 64KB L1 caches, a private 1MB L2, and hyper-transport

links to the other cores. We estimate a nominal (i.e., without
variation) frequency of 4GHz with a supply voltage of 1V. Fig-
ure 7(a) shows some characteristics of the architecture. In this
evaluation, we choose to have 15 subsystems per core, as shown
in Figure 7(b).

The frequency changes like in Intel XScale, and all changes
can be effected in 10µs. Vbb andVdd can be adjusted on a per-
subsystem basis, as in [36]. Figure 7(a) shows the ranges and step
sizes of the changes. Based on [21, 35], we estimate that the area
overhead of ABB is≈ 2%. However, we will not include ABB
in our preferred configuration. As indicated in Section 2.3, we
optimistically assume that the area overhead of ASV is largely
negligible [5], given chip-external ASV supplies. We will include
ASV in our preferred configuration.

Each core has a checker like Diva [40] to detect and tolerate
core errors (Figure 7(c)). The checker is sped up with ASV so that
it runs at 3.5GHz without any errors. It has a 4KB L0 D-cache,
a 512B L0 I-cache, and a 32-entry queue to buffer instructions
retiring in the processor. To ensure that the checker reads the L1
reliably, the L1 is augmented with the SRAM Razor scheme [14],
which adds duplicate sense amplifiers to L1. L1 reads are per-
formed with speculative timing for the core, and then a fraction of
a cycle later with safe timing for the checker. Since checker de-
sign is not our contribution, we do not elaborate further, although
we include its area and power cost in our overall computations.
FU Replication Technique. We replicate the integer ALU unit
and, inside the FP unit, replicate the set composed of adder and
multiplier. To estimate the area, power, and timing of low-sloped
FUs, we use the data in [1]. Although their circuit is a small
sequential circuit rather than an ALU, we consider that their mea-
surements are an acceptable estimation of this optimization’s im-
pact. On average, the low-sloped unit consumes 30% more area
and power, and its path delay distribution changes such that the
mean decreases by 25% and the variance doubles [1]. From this,
and the FU area shown in Figure 7(a), it follows that integer and
FP FU replication adds 0.7% and 2.5% of processor area (Fig-
ure 7(d)).

Since replication lengthens the wires that connect the regis-
ter file to the FUs, we conservatively add one additional pipeline
stage between the register file read and the execute stages. While

Environment Explanation Environment Explanation

1: Baseline Plain processor with variation effects 5: TS+ASV+Q TS + ASV + issue-queue resizing (Sec 3.3.2)
2: TS Baseline + Diva checker for timing speculation 6: TS+ASV+Q+FU TS + ASV + Q + FU replication (Sec 3.3.1)
3: TS+ASV TS + adaptive supply voltage (Sec 3.3.3) 7: ALL TS + ASV + Q + FU + ABB
4: TS+ASV+ABB TS + techniques of Sec 3.3.3 8: NoVar Plain processor with no variation effects

Table 1:Key environments considered.

this increases the load-misspeculation and branch-misprediction
loops by one cycle, it does not affect the execution of back-to-
back ALU instructions. As a result, the overall performance im-
pact is modest and the scheduler complexity is largely unaffected.
SRAM Resizing Technique.We resize the integer and FP issue
queues (Figure 7(a)), so that each can operate at either full or3/4
capacity [4]. This technique adds no extra area (Figure 7(d)).
Dynamic Adaptation Technique. The fuzzy controller routines
have≈120 Kbytes of data footprint. For each Fuzzy Controller
(FC), we choose to have 25 rules and train them with 10,000
randomly-selected examples generated withExhaustive— these
settings give good results. This data is stored in a reserved mem-
ory area. When the controller runs, it pollutes the data cache, but
since it runs only once per phase, its performance impact is neg-
ligible. The code footprint is tiny because the code is only a few
tight loops.

The hardware-based application phase detector uses basic-
block execution frequencies to detect phases. It is the one de-
scribed by Sherwoodet al. [28]. Its parameters are shown in Fig-
ure 7(a). Using CACTI [32], we estimate that it adds≈0.3% of
processor area (Figure 7(d)). The detector is designed to detect
T and power phases as in [13]. It uses similar stability criteria
as [13], and obtains similar phases. The average length of a stable
phase in SPEC applications is≈120ms, so adapting at every phase
boundary has minimal overhead. Such stable phases account for
90-95% of the execution time.

Finally, there is a set of sensors as described in Section 4.3.2.
We estimate their area overhead to be≈0.1% (Figure 7(d)). Con-
sequently, the total area overhead of our EVAL system is 10.6%.
Process Variation. We model Vt and Leff variation using
the model in [26]. Using the parameters recommended in the
model, we setVt’s σ/µ to 0.09 and use equal contributions of the
systematic and random components. Consequently,σsys/µ =
σran/µ =

√
σ2/2/µ = 0.064. Moreover, we setφ to 0.5,

andLeff ’s σ/µ to 0.5 ofVt’s σ/µ. Consequently, forLeff , we
useσ/µ = 0.045 andσsys/µ = σran/µ = 0.032 (Figure 7(a)).
Each individual experiment isrepeated 100 times, using 100 chips
that have different systematicVt andLeff maps generated with
the sameσ andφ. We find that using more than these 100 samples
changes our results insignificantly.

5.1 Performance, Power, and Temperature
We use the SESC [23] cycle-level execution-driven simulator

to model the performance of the chip running the SPECint and
SPECfp 2000 codes. Each application is run on each of the 4
cores of each of 100 chips. The resulting average performance is
combined with that of the other applications.

The simulator is augmented with dynamic power (Pdyn) mod-
els from Wattch [3] and CACTI [32] to estimatePdyn at a refer-
ence technology and frequency. In addition, we use HotLeak-
age [41] to estimate static power (Psta) at the same reference
technology. Then, we obtain ITRS scaling projections for the per-
transistor dynamic power-delay product, and for the per-transistor
static power [12]. With these two factors, we can estimatePdyn

andPsta for the scaled technology and frequency relative to the

reference values. For each of the four cores in the CMP, we set
PMAX for the core to 30W.

We use HotSpot [29] to estimateRth for each of the subsys-
tems. Once we have all the parameters in Equations 6–9, we solve
the equations for any (Vdd, Vbb, f) operating point. Solution is by
iterating until convergence. We setTMAX=85°C,THMAX =70°C,
and as per Section 4.1,PEMAX = 10−4 err/inst.

With this setup, we model the environments of Table 1, without
and with the high-dimensional dynamic adaptation technique.

6 Evaluation
We first show thatPE , power, andf (or performance) are trade-

able quantities. Next, we evaluate the relative performance and
power consumption of the environments in Table 1, without and
with dynamic adaptation. Finally, we characterize the dynamic
adaptation technique in detail.

6.1 Error Rate, Power, and Frequency (or
Performance) Are Tradeable

In our processor,PE , power, andf (or performance) are trade-
able quantities. To show it, we experiment with one application
(swim) running on one sample chip. For theTSenvironment, Fig-
ure 8(a) shows thePE vs frequency curves of all the processor’s
subsystems. ThePE curves are labeled based on the type of sub-
system (logic, memory, or mixed), while the frequency (fR) is
shown relative to theNoVarenvironment (Table 1). In the figure,
the slope of thePE curves depends primarily on the subsystem
type. Memory subsystems, with their homogeneous paths, have a
rapid error onset. Logic subsystems have a wide variety of paths
and, therefore, produce a more gradual error onset. Mixed sub-
systems fall between the two extremes.

Figure 8(b) shows the processor performance relative toNoVar
(PerfR) as a function of frequency. As indicated in Section 3.1, as
frequency increases, performance improves as long asPE (Fig-
ure 8(a)) is not prohibitively high. AsPE increases past a critical
point,PerfR falls off sharply. From Figure 8(b), we see that, with
TS, the processor runs optimally atfR ≈ 0.91 (that is, slower
thanNoVar) and delivers aPerfR ≈ 0.92 (again, lower thanNo-
Var). This is much better than underBaseline, which cannot tol-
erate any error. Indeed,Baselinecan only run at thefR where
the leftmostPE curve in Figure 8(a) intersects thex-axis (fR ≈
0.84).

To improvePerfR, we need to delay the exponentialPE onset.
To this end, Figures 8(c) and (d) repeat thePE andPerfR curves
for an environment that has per-subsystem ASV and ABB — set
by theExhaustivealgorithm of Section 4.3.1. For eachfR, this
algorithm finds a configuration where the sum of allPE curves
is ≈ 10−4 errs/inst, which isPEMAX . This is accomplished by
speeding up slow subsystems and saving power on fast ones. This
is why Figure 8(c) shows a convergence of lines atPE ≈ 10−4.
However, for highfR, it becomes increasingly power-costly to
keepPE ≤ PEMAX . Eventually, the power constraint is reached,
and no further ASV/ABB can be applied to speed up subsystems
and keepPE ≤ PEMAX . Then, as can be seen in Figure 8(c),
somePE curves escape up and, as shown in Figure 8(d),PerfR

(a) Subsystem error
rates underTS

(b) Processor perfor-
mance underTS

(c) Subsystem
error rates under
TS+ASV+ABB

A

(d) Performance
of processor under
TS+ASV+ABB

Figure 8: Subsystem error ratesvs frequency, and processor performancevs frequency underTS (a and b) and under
TS+ASV+ABB(c and d).

plunges. However, by keepingPE under control, as we went from
Figure 8(b) to Figure 8(d), we moved the peak of thePerfR curve
to the right and up (PointA); the optimalfR is ≈ 1.03 and the
optimalPerfR is≈ 1.00 — as high asNoVar’s.

We gain further insight by focusing on one subsystem and ex-
tending itsPE vs fR graph with power (P) as a third axis. Fig-
ure 9(a) shows this for the integer ALU in the presence of per-
subsystem ASV/ABB. The surface in the figure is constructed us-
ing theExhaustivealgorithm of Section 4.3.1 to find the minimum
realizablePE for eachP andfR. PointA in the figure shows the
conditions at the optimalfR in Figures 8(c) and (d).

(a)

(b)

Figure 9:Three-dimensional views of the powervserror
ratevs frequency surface (a) and of the powervserror rate
vsperformance surface (b) for the ALU in Figure 8(c).

In Figure 9(a), if we draw Line(1) at constantP throughA,
we obtain the familiarPE vs fR curve: AsfR grows,PE first
remains at zero and then suddenly increases very steeply to reach
one. Moreover, if we are willing to spend moreP in this sub-
system via ASV/ABB (Line(2)), the subsystem supports a higher
fR beforePE reaches a given level. We see, therefore, that power
and error rate are tradeable quantities. If the goal is to increase
fR, we can either pay with a higherP consumption for a given
PE , or with a higherPE for a constantP.

Figure 9(b) replacesfR with the PerfR of the processor and
shows the same Line(1) and pointA. AsPE increases along Line
(1), we obtain a familiar curve:PerfR first increases slowly and
then drops abruptly. At the maximum point,PerfR can further
increase only at the cost of consuming moreP.

6.2 Frequency, Performance and Power
Figure 10 shows the processor frequency for each of the en-

vironments in Table 1 normalized toNoVar. The two horizontal
lines are the frequencies ofBaselineandNoVar. Due to process
variation,Baselineonly reaches 78% of the frequency of an ideal-
ized no-variation processor (NoVar). To counter this variation, we
add error tolerance and mitigation techniques one at a time. For
each set of techniques, we consider three cases: no dynamic adap-
tation (Static), dynamic adaptation using our proposed fuzzy con-
troller (Fuzzy-Dyn), and dynamic adaptation using ourExhaustive
search algorithm (Exh-Dyn).

The leftmost set of three bars shows the frequency impact of
Timing Speculation (TS), which is a prerequisite for all subse-
quent schemes.TS increases frequency by≈12%. Since there
are no techniques to reshape the subsystem error curves, dynamic
adaptation does not offer much improvement overStatic.

The next set of bars (TS+ASV) adds per-subsystem ASV. With-
out dynamic adaptation, the frequency reaches 97% ofNoVar.
However, because the maximum ASV level that a subsystem can
tolerate before exceeding constraints is application-dependent,
Staticmust be conservative. The dynamic environments are not
so restricted and apply ASV more aggressively. As a result, they
end up delivering a frequency 5–6% higher thanNoVar.

Continuing to the right (TS+ASV+ABB), adding ABB to
TS+ASVproduces only modest gains under the dynamic schemes,
as it provides some additional flexibility in reshapingPE curves.
Overall, however, it does not offer much improvement over
TS+ASVfor its added complexity. Therefore, we initially exclude
ABB as we begin to add microarchitecture techniques.

The next two sets of bars show the effect of adding microar-
chitecture techniques for error mitigation: issue queue resizing

TS TS+ASV TS+ASV+ABB TS+ASV+Q TS+ASV+Q+FU ALL

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

0
.0

0
.4

0
.8

1
.2

Baseline

Static Fuzzy!Dyn Exh!Dyn

NoVar

Figure 10:Processor frequency for each environment normalized toNoVar.

(TS+ASV+Q) and FU replication (TS+ASV+Q+FU). Although
not shown in the figure, if we add them without any ABB or ASV
capability, they deliver a disappointing 2% frequency increase.
This is because temperatures stay low enough that optimizing the
two subsystems does not deliver, on average, a substantial fre-
quency boost. However, applying ASV to aggressively re-shape
the PE curves pushes the subsystem temperatures and powers
higher. Under these conditions, the FUs and issue queues rou-
tinely form hotspots and become frequency-limiters. By speeding
up these critical subsystems, the microarchitectural techniques de-
liver good frequency gains.

The TS+ASV+Q and TS+ASV+Q+FU environments show
that, to take full advantage of the microarchitecture techniques,
dynamic adaptation is required. Not all applications or phases ex-
ercise the issue queue or the FUs enough to make them critical.
In these cases, statically enabling these techniques costs perfor-
mance or power. Consequently, it makes sense to enable these op-
timizations dynamically. With both microarchitecture techniques
andFuzzy-Dyn, we reach a frequency that is 21% higher thanNo-
Var (or 56% higher thanBaseline).

The difference between the two rightmost environments
TS+ASV+Q+FUandALL is small. This suggests that it is reason-
able to forgo the added complexity of ABB in an EVAL system.
Similarly, the difference between using a fuzzy adaptation scheme
(Fuzzy-Dyn) instead of exhaustive search (Exh-Dyn) is practically
negligible in all environments.

Figure 11 shows the performance of all these environments
normalized toNoVar. The figure is organized as Figure 10. We
see that performance follows the same trends as frequency, ex-
cept that the magnitude of the changes is smaller. The pre-
ferred scheme (TS+ASV+Q+FUwith Fuzzy-Dyn) realizes a per-
formance gain of 14% overNoVaror, equivalently, 40% over the
Baselineprocessor.

TS TS+ASV TS+ASV+ABB TS+ASV+Q TS+ASV+Q+FU ALL

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

0
.0

0
.4

0
.8

1
.2

Baseline

Static Fuzzy!Dyn Exh!Dyn

NoVar

Figure 11:Performance of different environments.

Figure 12 shows the average power consumed, including both
Pdyn andPsta, in a core and its L1 and L2 caches. Recall that,
for each processor, we setPMAX to 30W. We see that the average
power forNoVar is 25W — although some processors reach 30W
at certain points of high activity and temperature — whileBase-
line consumes 17W. The latter runs at lower frequency. As we add
mitigation techniques, the power tends to increase, although its

actual value depends on many variables. WithTS+ASV+Q+FU
and Fuzzy-Dyn, the average processor power is almost exactly
30W. This shows that theFuzzy-Dyncontroller is making use of
the available power to maximize performance without violating
constraints. We also see thatExh-Dynconsumes about the same
power asFuzzy-Dyn.

TS TS+ASV TS+ASV+ABB TS+ASV+Q TS+ASV+Q+FU ALL

P
ow

er
 (

W
)

0
10

20
30

Baseline

NoVar

Static Fuzzy−Dyn Exh−Dyn

Figure 12:Power per processor (core+L1+L2) for differ-
ent environments.

6.3 Characterizing Dynamic Adaptation
Finally, we compare the output of the fuzzy controller to

Exhaustiveto show why fuzzy control provides nearly optimal
power and performance results. Table 2 shows the mean error in
the frequency,Vdd, andVbb values generated by the fuzzy con-
troller compared to the output ofExhaustive. We show results
for memory, mixed, and logic subsystems separately. The errors
are shown in absolute units and as a percentage of the nominal
value (except forVbb, where the nominal value is zero). The table
shows that, in practically all cases, the fuzzy controller predicts
frequency,Vdd and, to a lesser extent,Vbb, quite accurately.

Param. Environment | Fuzzy Controller - Exhaustive| (% of Nom.)
Memory Mixed Logic

TS 168 (4.1%) 146 (3.6%) 170 (4.2%)
Freq. TS+ABB 170 (4.2%) 135 (3.3%) 149 (3.6%)
(MHz) TS+ASV 450 (11.0%) 410 (10.0%) 160 (3.9%)

TS+ABB+ASV 176 (4.3%) 162 (4.0%) 146 (3.6%)
Vdd TS+ASV 17 (1.7%) 24 (2.4%) 14 (1.4%)
(mV) TS+ABB+ASV 16 (1.6%) 22 (2.2%) 22 (2.2%)
Vbb TS+ABB 72 (–) 69 (–) 76 (–)
(mV) TS+ABB+ASV 115 (–) 129 (–) 124 (–)

Table 2: Difference between the selections of the fuzzy
controller andExhaustivein absolute and relative terms.

An important reason why the performance and power ofFuzzy-
Dyn and Exh-Dyn are largely the same despite any inaccura-
cies shown in Table 2 is the presence ofRetuning Cycles(Sec-
tion 4.3.3). Specifically, when the fuzzy controller algorithm se-
lects a configuration, any of the five outcomes shown in Figure 13
is possible.NoChangeis the best case. Here, no constraint is vio-
lated and the first attempt at increasingf fails, signifying that the
fuzzy controller’s output was near optimal. InLowFreq, no con-
straint is violated, but retuning cycles are able to further increase
f . The third case (Error) occurs when the configuration violates

PEMAX , and as a result, retuning cycles must reducef . Simi-
larly, theTempandPowercases occur whenTMAX or PMAX is
exceeded, again causing a reduction inf .

A B C D A B C D A B C D A B C D

O
ut

co
m

es
(%

)
0

20
40

60
80

10
0

No opt FU opt Queue opt FU+Queue opt

NoChange LowFreq. Error Temp Power

A: TS B: TS+ABB C: TS+ASV D: TS+ABB+ASV

Figure 13:Outcomes of the fuzzy controller system.

Figure 13 shows the fraction of times when each outcome oc-
curs in an environment with no microarchitecture technique (No
opt), a single technique (FU opt andQueue opt), or both tech-
niques (FU+Queue opt). We see thatNoChangedominates for
TSand, together withLowFreq, accounts for about 50% or more
in all the bars.Tempcases are infrequent.Fuzzy-Dyndoes so well
thanks to the correcting retuning cycles in four of the five cases.

7 Related Work
Process Variation Modeling and Mitigation. There are several
models of WID process variation that can be used for microarchi-
tecture research (e.g., [11, 16, 18, 24, 26]). The EVAL framework
can be used with any of them.

A related approach to mitigate process variation is dynamic re-
timing of pipelines [16, 33, 34]. The EVAL framework is a more
powerful way to handle process (and parameter) variation for
three reasons. First, EVAL is designed for a challenging environ-
ment with timing errors, where it trades-off error-rate for perfor-
mance and power; Dynamic retiming always clocks the processor
at a safe frequency. Second, EVAL controls the delay and power
of each pipeline stage through fine-grain ASV/ABB; Dynamic re-
timing mostly redistributes slack among pipeline stages. Finally,
EVAL manages multiple techniques (ABB/ASV, FU replication,
and issue-queue resizing) to get a better working point. As a
result, the performance gains from EVAL (40%) are larger than
from dynamic retiming (10–20%).
Error Tolerance and Mitigation. There are many architectures
for timing speculation (e.g., [8, 9, 17, 20, 27, 37, 38, 40]). Some of
these works [9, 38] have been suggested for an environment with
parameter variation. Our EVAL framework is more powerful than
these architectures. Timing speculation is just one technique that
EVAL uses; it manages multiple techniques. Therefore, EVAL
can deliver a better power/performance point.
Dynamic Optimization. Many schemes for dynamic adaptation
of parameters such as voltage, frequency, cache size, etc. have
been proposed (e.g., [4, 6, 7, 10]). This includes the application
of whole-chip ABB and DVFS [19], as well as fine-grain ABB in
conjunction with whole-chip DVFS [31]. However, compared to
EVAL, these proposals did not try to optimize globally so many
variables concurrently.

8 Conclusions
This paper explored the environment where processors are not

designed for worst-case parameter values and, therefore, need to

tolerate variation-induced errors during normal operation. In this
environment, the paper made two main contributions. First, it in-
troduced a framework called EVAL that gives insight into how
microarchitecture techniques can mitigate variation-induced er-
rors and trade-off error rate for power and processor frequency. It
showed how they can tilt, shift, and reshape the error ratevs fre-
quency curve. Second, it presentedHigh-Dimensionaldynamic
adaptation, an effective microarchitecture technique to maximize
processor performance and minimize power in the presence of
variation-induced timing errors. It also showed an efficient im-
plementation of this technique based on a machine-learning algo-
rithm.

Our results showed that, under variation-induced timing er-
rors, high-dimensional dynamic adaptation is a feasible and ef-
fective technique. With no support for handling variation, a pro-
cessor could only cycle at 78% of its no-variation frequency.
However, by dynamically adapting processor frequency, per-
subsystem ASV, and two modest-cost microarchitecture schemes
(issue-queue resizing and FU replication), the processor increased
its frequency by 56% on average — effectively cycling 21% faster
than under no variation. Processor performance increased by 40%
on average (or 14% over the no-variation scenario), always within
error-rate, power, and temperature constraints. The area overhead
of this technique was estimated to be only 10.6% of the processor
area.

We believe that our high-dimensional dynamic adaptation
scheme using fuzzy control techniques has wide applicability. It
is applicable to situations requiring dynamic adaptation of a large
number of inter-related variables. This includes many problems
beyond WID variation or timing speculation.

References
[1] S. Augsburger and B. Nikolic. Combining dual-supply, dual-

threshold and transistor sizing for power reduction. InInternational
Conference on Computer Design, September 2002.

[2] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration.IEEE Journal of Solid State
Circuits, 37(2):183–190, February 2002.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. InInterna-
tional Symposium on Computer Architecture, June 2000.

[4] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and
D. Albonesi. An adaptive issue queue for reduced power at high
performance. Lecture Notes in Computer Science: Power Aware
Computer Systems, 2008:25–37, May 2001.

[5] T. Chen and S. Naffziger. Comparison of adaptive body bias (ABB)
and adaptive supply voltage (ASV) for improving delay and leakage
under the presence of process variation.IEEE Transactions on VLSI
Systems, 11(5):888–899, October 2003.

[6] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. InInternational Sym-
posium on Computer Architecture, May 2002.

[7] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, G. Semeraro, G. Magklis, and M. Scott. Integrating
adaptive on-chip storage structures for reduced dynamic power. In
International Conference on Parallel Architectures and Compilation
Techniques, September 2002.

[8] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Zeisler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-
power pipeline based on circuit-level timing speculation. InInter-
national Symposium on Microarchitecture, December 2003.

[9] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale CMPs through core overclocking. InIn-
ternational Conference on Parallel Architectures and Compilation
Techniques, September 2007.

[10] M. Huang, J. Renau, and J. Torrellas. Positional Adaptation of Pro-
cessors: Application to Energy Reduction. InInternational Sympo-
sium on Computer Architecture, June 2003.

[11] E. Humenay, D. Tarjan, and K. Skadron. Impact of process varia-
tions on multicore performance symmetry. InConference on Design,
Automation and Test in Europe, April 2007.

[12] International Technology Roadmap for Semiconductors (ITRS).
Process integration, devices, and structures. 2007.

[13] C. Isci, A. Buyuktosunoglu, and M. Martonosi. Long-term work-
load phases: Duration predictions and applications to DVFS.IEEE
Micro, 25(5):39–51, September 2005.

[14] E. Karl, D. Sylvester, and D. Blaauw. Timing error correction tech-
niques for voltage-scalable on-chip memories. InInternational Sym-
posium on Circuits and Systems, May 2005.

[15] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. InInter-
national Symposium on High-Performance Computer Architecture,
February 2008.

[16] X. Liang and D. Brooks. Mitigating the impact of process variations
on CPU register file and execution units. InInternational Sympo-
sium on Microarchitecture, December 2006.

[17] T. Liu and S. Lu. Performance improvement with circuit-level spec-
ulation. InInternational Symposium on Computer Architecture, De-
cember 2000.

[18] D. Marculescu and E. Talpes. Variability and energy awareness: A
microarchitecture-level perspective. InDesign Automation Confer-
ence, June 2005.

[19] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dy-
namic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads. InInternational Con-
ference of Computer Aided Design, November 2002.

[20] F. Mesa-Martinez and J. Renau. Effective optimistic-checker tan-
dem core design through architectural pruning. InInternational
Symposium on Microarchitecture, December 2007.

[21] S. Narendra et al. 1.1V 1GHz communications router with on-chip
body bias in 150 nm CMOS. InInternational Solid-State Circuits
Conference, February 2002.

[22] J. Rabaey.Digital Integrated Circuits: A Design Perspective. Pren-
tice Hall, 1996.

[23] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. R. Sarangi, P. Sack, and P. Montesinos. SESC Simu-
lator, January 2005. http://sesc.sourceforge.net.

[24] B. F. Romanescu, S. Ozev, and D. J. Sorin. Quantifying the impact
of process variability on microprocessor behavior. InWorkshop on
Architectural Reliability (WAR-2), 2006.

[25] T. Sakurai and R. Newton. Alpha-power law MOSFET model and
its applications to CMOS inverter delay and other formulas.IEEE
Journal of Solid State Circuits, 25(2):584–594, April 1990.

[26] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas. VARIUS: A model of process variation and re-
sulting timing errors for microarchitects. InIEEE Transactions on
Semiconductor Manufacturing, February 2008.

[27] T. Sato and I. Arita. Constructive timing violation for improving
energy efficiency. In L. Benini and M. Kandemir, editors,Compilers
and Operating Systems for Low Power, 2003.

[28] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In International Symposium on Computer Architecture, June 2003.

[29] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitecture. In
International Symposium on Computer Architecture, June 2003.

[30] A. Srivastava, D. Sylvester, and D. Blaauw.Statistical Analysis and
Optimization for VLSI: Timing and Power. Springer, 2005.

[31] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. Mitigating
parameter variation with dynamic fine-grain body biasing. InInter-
national Symposium on Microarchitecture, December 2007.

[32] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi. CACTI
5.1. Technical Report HPL-2008-20, Hewlett Packard Labs, April
2008.

[33] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adap-
tation to tolerate process variation. InInternational Symposium on
Computer Architecture, June 2007.

[34] A. Tiwari and J. Torrellas. An updated evaluation of ReCycle. In
Workshop on Duplicating, Deconstructing, and Debunking, June
2008.

[35] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De. Adaptive body bias for reducing impacts
of die-to-die and within-die parameter variations on microproces-
sor frequency and leakage.IEEE Journal of Solid State Circuits,
37(11):1396–1402, February 2002.

[36] J. Tschanz, S. Narendra, A. Keshavarzi, and V. De. Adaptive circuit
techniques to minimize variation impact on microprocessor perfor-
mance and power. InInternational Symposium on Circuits and Sys-
tems, May 2005.

[37] A. Uht. Achieving typical delays in synchronous systems via tim-
ing error toleration. Technical Report 032000-0100, University of
Rhode Island Department of Electrical and Computer Engineering,
March 2000.

[38] X. Vera, J. Abella, O. Unsal, A. Gonzalez, and O. Ergin. Checker
backend for soft and timing error recovery. InWorkshop on Silicon
Errors in Logic — System Effects, April 2006.

[39] L. Wang.Adaptive Fuzzy Systems and Control Design and Stability
Analysis. Prentice Hall, 1994.

[40] C. Weaver and T. M. Austin. A fault tolerant approach to micropro-
cessor design. InInternational Conference on Dependable Systems
and Networks, July 2001.

[41] Y. Zhang, D. Parikh, K. Sankaranarayanan, and K. Skadron.
HotLeakage: A temperature-aware model of subthreshold and gate
leakage for architects. Technical Report CS-2003-05, University of
Virginia, March 2003.

A Fuzzy Controller Basics
Fuzzy controllers have advantages over other machine-learning tech-

niques such as decision trees, perceptrons, and neural networks. First, a
fuzzy rule has a physical interpretation, which can be manually extended
with expert information. Moreover, unlike perceptrons, they support out-
puts that are not a linear function of the inputs. Finally, they typically need
fewer states and memory than decision trees, and fewer training inputs and
memory than neural networks.
Deployment Phase.Given an input vectorX, the estimated outputz is
generated using the structures of Figure 5 in three steps: (i) for a given
input xj in the vector and ruleFi, find the membership function (Equa-
tion 10); (ii) compute the output of the whole ruleFi (Equation 11); and
(iii) combine the outputs of all the rules to get the final output (Equa-
tion 12).

Wij = exp

[
−

(
xj − µij

σij

)2
]

(10)

Wi =
m∏

j=1

Wij (11)

z =

n∑
i=1

(Wi × yi)

/ n∑
i=1

Wi (12)

Training Phase. The manufacturer-site training uses a large number of
input vectors to generate then rules in an FC. With the firstn vectors, we
setµij to xij , which is the value of thejth input in theith vector. We
setσij to random values smaller than 0.1 andyi to the output of theith

vector. Each of the remaining input vectors is used to train all the rules
as follows. In thekth step, an input vector will update rulei’s µij , σij ,
andyi. Let η(k) represent the value of any of these parameters before
the update. Letdk be the output estimated by the fuzzy controller for this
input vector using the deployment algorithm, ande the error calculated as
e = (yi − dk)2. Let α be a small constant representing the learning rate
(0.04 in our experiments). As shown in [39], the update rule is:

η(k + 1) = η(k)− α×
∂e

∂η

∣∣∣∣
k

(13)

