
Journal of Instruction-Level Parallelism Vol. 3 Submitted 11/2001; Published 2002

The Design of DEETM: a Framework for Dynamic Energy Efficiency and

Temperature Management
�

Michael Huang MICHAELHUANG@IEEE.ORG
Jose Renau RENAU@CS.UIUC.EDU
Seung-Moon Yoo SMYOO@US.IBM.COM
Josep Torrellas TORRELLAS@CS.UIUC.EDU
http://iacoma.cs.uiuc.edu
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Ave.,
Urbana, IL 61801 USA

ABSTRACT

While technology is delivering increasingly sophisticated and powerful chip designs, it is also im-

posing alarmingly high energy requirements on the chips. One way to address this problem is to manage

the energy dynamically. Unfortunately, current dynamic schemes for energy management are relatively

limited. In addition, they manage energy either for energy efficiency or for temperature control, but not

for both simultaneously.

In this paper, we design and evaluate for the first time an energy-management framework that tack-

les both energy efficiency and temperature control in a unified manner. We call this general approach

Dynamic Energy Efficiency and Temperature Management (DEETM). Our framework combines several

energy-management techniques and can activate them individually or in groups in a fine-grained manner

according to a given policy. The goal of the framework is two-fold: maximize energy savings without

extending application execution time beyond a given tolerable limit, and guarantee that the temperature

remains below a given limit while minimizing any resulting slowdown. The framework successfully

meets these goals. For example, it delivers a 40% energy reduction with a 10% application slowdown.

1 INTRODUCTION

Continuous technical advances are fueling the trend toward more sophisticated and powerful chip designs.

Such designs, including high-end microprocessors, chip multiprocessors, systems on a chip, and other ad-
�

This work was supported in part by the National Science Foundation under grants NSF Young Investigator Award MIP-

9457436, MIP-9619351, and CCR-9970488, DARPA Contract DABT63-95-C-0097, and gifts from IBM and Intel.

1



HUANG, RENAU, YOO, & TORRELLAS

vanced embedded systems are quickly increasing their functionality and clock rates. Unfortunately, they are

also increasing their energy consumption requirements alarmingly.

One way to address this problem is to explicitly manage the energy consumed in the chips. There are

two main aims of energy management: to ensure that the energy is used efficiently and to guarantee that

power consumption is never so high that the chip reaches dangerous temperature levels.

Efficient energy use is desirable in all systems. However, it is critical in portable devices, where battery

energy is limited. It is also an important way to reduce cost in systems that have periods of idle time,

also called slack [1]. Slack appears not only in interactive and real-time systems; it also occurs in general-

purpose environments like web servers or routers with high-end processors where the performance is often

bottlenecked by the network.

Likewise, curbing high power consumption to limit high temperatures is useful in all systems. It enables

lower-cost packaging and cooling systems for the chips. It also makes the chip more reliable. Finally, it may

enable a more aggressive design or a higher clock speed.

To address these two issues, namely energy efficiency and temperature control, many low-power archi-

tectural techniques have been proposed and implemented. For example, they include putting the system in

sleep mode [2]; scaling the voltage and/or frequency [1, 3, 4]; switching contexts to a job that consumes

less power [5]; reconfiguring hardware structures [6]; gating pipeline signals, for example to control spec-

ulation [7, 8]; throttling the instruction cache [2]; clock optimizations, including multiple clocks and clock

gating [9]; better signal encoding [9]; low power memory design techniques [10] like bank partitioning or

divided word line; low power cache design techniques like cache block buffering [11], sub-banking [12, 13],

or filter caches [14]; and TLB optimizations [15].

While most of these techniques are likely to be useful for the upcoming, high-energy consuming chips,

we feel that their effectiveness can be enhanced. To start with, while some of these techniques have been

used adaptively [1, 5, 6, 7, 8, 16], many others have been designed to be always active. In reality, for many

of the latter, it would be advantageous to turn them on and off dynamically, based on the requirements of

the application and the environmental conditions. They could enable useful energy-performance tradeoffs.

In addition, most of these techniques were proposed to work independently of each other. If we com-

bined many of them in a single framework that can activate and deactivate them individually or in groups

according to a given policy, the resulting system could be both more powerful and more flexible.

Finally, proposed dynamic approaches have targeted either energy efficiency [1, 6, 8, 16] or temperature

control [5, 7] but not both simultaneously. If a multi-technique framework can combine support for both

aspects, it can become a fairly complete approach to energy management.

2



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

The general approach of dynamically managing energy for both energy efficiency and temperature con-

trol we call Dynamic Energy Efficiency and Temperature Management (DEETM). The contribution of this

paper is the design and evaluation for the first time of one such DEETM framework. Our framework sup-

ports a combination of energy-management techniques. The framework has two goals: (i) maximize the

savings of energy in the chip without extending the execution time of the application beyond a given toler-

able limit, and (ii) guarantee that the temperature of the chip remains below a given limit while minimizing

any resulting slowdown. In our evaluation, we show that the framework satisfies these goals. For example,

it delivers a 40% energy reduction with a 10% application slowdown.

This paper is organized as follows: Section 2 presents the design and implementation of our framework

for DEETM; Section 3 discusses how we evaluate it; Section 4 evaluates the framework; and Section 5

presents related work.

2 A FRAMEWORK FOR DEETM

In this section, we describe our framework for DEETM: its main ideas (Section 2.1), the algorithm used

(Section 2.2), the software interface (Section 2.3), some related issues (Section 2.4), and the techniques

included in the framework (Section 2.5).

2.1 Main Ideas

Advanced chips can benefit from a dynamic framework that manages energy in a fine-grained manner to

accomplish two goals. The first one is temperature control: guaranteeing that the temperature of the chip

remains below a given limit while minimizing any slowdown. The second goal is energy efficiency control:

maximizing the savings of energy in the chip without extending the execution of the application beyond a

tolerable limit.

For the framework to be versatile, it should include multiple techniques for energy management. Differ-

ent techniques may target the energy consumption in different components of the chip, for example processor

cores, I-caches, D-caches, or DRAM arrays. They may, instead, target the same component but do so with

a different energy-performance tradeoff. In such an environment, the framework can dynamically activate

the techniques individually, concurrently, gradually with a priority order, or even in a mutually exclusive

manner.

As initial support for the framework, we assume that the chip contains a distributed thermal sensor along

the lines of a PowerPC [2] and a counter with the number of instructions executed. In addition, it contains

two registers, MaxTemp and MaxSlowdn, which are set in software with the maximum temperature allowed

3



HUANG, RENAU, YOO, & TORRELLAS

and the maximum job slowdown that can be tolerated, respectively.

2.2 Algorithm Description

Our framework includes two algorithms: a temperature-limiting one called Thermal and an energy-saving

one called Slack. They try to satisfy the first and second goals discussed above, respectively. These algo-

rithms control the activation of a set of energy-management techniques.

At any given time, the set of techniques that are active is called the Current Set. These techniques may

have been selected by the Thermal or by the Slack algorithm. The set of techniques that are selected by the

Thermal algorithm is called the Thermal Set.

The two algorithms work as follows. When the Thermal algorithm runs, it compares the current temper-

ature to the temperature limit. Depending on the result, it may add or subtract one technique to or from the

Thermal Set. When the Slack algorithm runs, it first deactivates the Current Set to measure the baseline IPC

value of the application. Then, it activates the Thermal Set and possibly additional techniques until the new

IPC shows that the tolerable slack is used up.

To adapt to changing conditions, these algorithms run periodically. The period between runs we call

Macrocycle. Since the two algorithms do not need to have the same period, we define a thermal macrocycle

and a slack macrocycle (Figure 1-(a)).

The thermal macrocycle should be set roughly to the time taken by the thermal sensor to detect a change

in temperature after a technique is activated. Since heat transfer occurs at the ms level [17], the thermal

macrocycle has to be of the order of a few ms, possibly 1-15 ms. If the macrocycle is too short, the Thermal

algorithm will overreact, since there is not enough time to feel the effect of any newly activated technique.

However, if it is too long, we risk damaging the chip with a temperature that is over the limit for too long.

The appropriate length of the macrocycle is different in each system. It depends on the heat dissipation

characteristics of the chip and the sophistication of the distributed thermal sensor.

Selecting the slack macrocycle is not as delicate. However, since the Slack algorithm decides what

fraction of the time to activate each technique for, based solely on the IPC at the beginning of the macrocycle,

we need to pay attention to two issues. First, the macrocycle should be short enough not to miss significant

changes in application behavior. Otherwise, the resulting slowdown may be very different than initially

expected. In practice, a macrocycle of the order of a few ms, possibly 1-15 ms, is appropriate.

The second issue is that slack macrocycles should all have the same duration and not be cut off short.

The reason is that, when the Slack algorithm runs, its calculations use the expected duration of the macro-

4



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

Thermal Macrocycle O(ms)

Time

Thermal Algorithm

Slack Algorithm

Slack Macrocycle O(ms)

(a) Timing Diagram

µMicrocycles O(  s)

Sleep while Temp 
>
 EndCrisisTemp


Temp 
>
 
CrisisTemp 
?


Yes


MaxSlowdn 
=
 0 
?


CurrentSet 
= 
0


Measure Stable

Baseline IPC


CurrentSet 
=
 ThermalSet


Effective IPC is Higher 
?


Measure Stable

Effective IPC


Slowdown 
>
 MaxSlowdn 
?
 CurrentSet 
+=
 Technique

CurrentSet 
-=
 %LastTechnique


if not in ThermalSet

Yes
 No


No


Yes


No


Yes


CurrentSet 
=
 ThermalSet


(d) Slack Algorithm
(c) Thermal Crisis Support


Temp 
>
 
MaxTemp 
?


Temp 
<
 
MinTemp 
?


ThermalSe
t 
+=
 
Te
chnique


ThermalSet 
-=
 Technique


No


Yes


No


Yes


CurrentSet 
=
 Max(CurrentSet,ThermalSet)


(b) Thermal Algorithm


No


Figure 1: Algorithms used in our framework.

cycle to decide the length of time to activate each technique for. Cutting the macrocycle short makes such

calculations inaccurate. We will see later how we address this issue.

In the following, we describe the two algorithms in detail. Note that in both algorithms we strive to

deliver large energy reductions without excessive slowdowns. Consequently, we prefer techniques that

minimize the product of the energy consumed by the application times the execution time (energy-delay

product [9]). As a result, both algorithms pick the techniques to activate in the same order. Such order

follows a ranking set up by the OS or application based on the expected energy-delay product impact of

each technique.

Thermal Algorithm

The Thermal algorithm is typically implemented as an interrupt handler in the OS. Alternatively, it

could be implemented in hardware. The algorithm is shown in Figure 1-(b). If the thermal sensor indicates

a temperature higher than MaxTemp, the next highest-priority technique not yet in the Thermal Set is added

to it. Otherwise, if it indicates a temperature lower than a low-threshold value MinTemp, the lowest-priority

5



HUANG, RENAU, YOO, & TORRELLAS

technique in the Thermal Set is removed.

If we have added a new technique to the Thermal Set, before leaving the algorithm, we set the Current Set

to the maximum of Current and Thermal Sets. This is done to ensure that the new technique is immediately

active. If a technique was removed from the Thermal Set, however, it cannot be removed from the Current

Set until the Slack algorithm runs.

MinTemp is set to minimize instability. A sophisticated design can keep a different MinTemp for each

of the techniques. To choose the appropriate MinTemp for a given technique, we can use past profiles to

estimate the temperature reduction that the technique delivers under usual conditions. Then, we set MinTemp

to slightly less than MaxTemp minus the average value of such a temperature reduction. With this approach,

we minimize the chances that the deactivation of a technique brings us back to over MaxTemp.

Some techniques like putting the system in sleeping mode have a relatively predictable effect on energy

consumption. In this case, the Thermal algorithm may decide to apply these techniques for only a fraction

of the upcoming Thermal macrocycle. Also, if the Thermal algorithm is implemented in software, a fairly

sophisticated decision-making algorithm can be used. For example, when the temperature reaches the limit,

the operating system may initiate a context switch to an application that consumes less power [5].

Note that, in some cases, we may not be able to prevent the temperature from rising over the limit. For

example, such a situation may be caused by a virus. For this reason, the chip must include support for a

thermal crisis. One possible such support is shown in Figure 1-(c): if the temperature reaches a CrisisTemp

temperature, the hardware unconditionally sets the system to sleep until the temperature is safely lower than

CrisisTemp.

Slack Algorithm

The Slack algorithm is implemented in hardware instead of as an OS routine. The reason is that, every

time that it runs, it needs to repeatedly measure the number of instructions executed by the application at
� s-level intervals. After several such measurements in the background, the algorithm makes the decision.

These intervals we call Microcycles (Figure 1-(a)). We will see that, for higher accuracy, a microcycle is of

the order of a few � s.

The Slack algorithm is shown in Figure 1-(d). If no slowdown can be tolerated, the Current Set is simply

set to the Thermal Set. Otherwise, the Current Set is deactivated so that the hardware can measure the stable

baseline IPC of the application. To compute the IPC, the hardware reads at microcycle intervals the counter

of instructions executed. It may take several readings until a reasonably stable IPC is obtained. Note that by

deactivating all techniques for several � s we do not risk a dangerous temperature surge because the time is

6



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

too short.

We then set the Current Set to the Thermal Set and, to find out the resulting slowdown, calculate the

new effective IPC. The new effective IPC is the new measured IPC plus a correction if the Thermal Set

includes techniques that change the clock frequency. Note that, if the Thermal Set includes only techniques

whose effect on the IPC are predictable, there is no need to de-activate the techniques: the measured IPC

can simply be corrected. One example of a predictable technique is voltage-frequency scaling.

With this new effective IPC, we can compare the slowdown caused by setting the Current Set to the

Thermal one, to the maximum tolerable slowdown (MaxSlowdn). If MaxSlowdn is higher, we augment the

Current Set with the next highest-priority technique not yet in it and again measure the effective IPC. This

process is repeated until the application slowdown is equal to or higher than MaxSlowdn. If the slowdown is

higher than MaxSlowdn, the last technique that has been added to the Current Set is marked as active for only

a fraction of the Slack macrocycle, such that the final slowdown ends up being no higher than MaxSlowdn.

The only exception is when this last technique added belongs to the Thermal Set, in which case, it cannot

be deactivated. Finally, when we reach this point, the algorithm exits.

Every time that we go through the loop of adding a new technique to the Current Set, the hardware

may need to take several measurements spaced one microcycle apart, until a stable IPC is obtained. Un-

fortunately, it is possible that, at the same time, the application also goes through a change in its regime

that induces a change in IPC. In this case, to avoid confusing our algorithm, we proceed as follows. If the

effective IPC suddenly becomes higher after activating a technique, it is clear that the regime changed. If

we pressed on with more techniques until we reached the original target IPC, we would be slowing down

the application beyond the tolerable limit. Consequently, as shown in Figure 1-(d), we stop the algorithm

and restart it from the beginning.

If, instead, the regime change is in the opposite direction, our algorithm will not notice it: we will

assume that the technique just activated is solely responsible for the large IPC reduction. However, this is

fine. Our algorithm will end up producing a conservative solution: in the final system, the true slowdown

relative to the baseline execution will be less than it could be tolerated. Consequently, the end user is not

negatively affected.

Note that some of the techniques used may have non-trivial activation delays. Such is the case, for

example, for voltage-frequency scaling, which takes 10-20 � s to activate or deactivate [3]. Such delays,

however, are negligible compared to the duration of a macrocycle. For example, if a slack macrocycle

takes 2 ms, activating and deactivating voltage-frequency scaling takes only about 2% of the macrocycle.

Furthermore, because the impact of voltage-frequency scaling on the IPC is fairly predictable, we do not

7



HUANG, RENAU, YOO, & TORRELLAS

need to deactivate it at every beginning of a macrocycle to estimate the baseline IPC. This fact further

reduces overhead.

Finally, since both the Thermal and the Slack algorithms may update the Current Set, we need to prevent

inconsistencies. To this end, and also to ensure that slack macrocycles are not cut off short, we propose the

following timing (Figure 1-(a)). We choose the slack macrocycle so that a thermal one contains several

slack macrocycles plus a few � s. After the OS has executed the Thermal algorithm and is about to return

execution to user mode, it sets the hardware to trigger the next run of the Slack algorithm in a few � s. We set

this delay so that, when the Slack algorithm finally runs, it finds the user application in a warmed-up state.

From then on, the Slack algorithm runs periodically, always in the background. Finally, when an interrupt

triggers the Thermal algorithm again, the first action of the OS is to temporarily disable the hardware that

triggers the Slack algorithm. If it so happens that the Slack algorithm was running at the time, this action

stops it and automatically sets the Current Set to the Thermal Set.

2.3 Software Interface

The MaxTemp and MaxSlowdn registers presented above are part of our framework’s software interface. In

addition, for each energy-management technique, the interface contains a register with the relative priority

of activation of the technique (Figure 2). All registers are set by the OS, although MaxSlowdn can also be

set by the application. With this support, our algorithms can decide what techniques to include at any time

in the Current Set.

IN

IN / OUT

MaxTemp

MaxSlowdn

Priority

Technique 1

Technique 2

Technique 3

Technique n

% of Slack
Macrocycle Time

Figure 2: Software interface of our framework.

However, the OS should also have a means to directly overwrite the decisions taken by our default

algorithms. This capability can be useful when the OS has specific information on the performance or

energy characteristics of the application that is running. Such information may be available from a profile

of the application.

One way to extend the interface is to allow the OS to overwrite the decisions of the algorithms as shown

8



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

in Figure 2. We add one input/output register for each technique in the framework. For a given technique,

the register indicates the fraction of the slack macrocycle for which the technique is activated. While these

registers are automatically set by the Slack algorithm as it adds techniques to the Current Set, they can also

be overwritten by the OS.

2.4 Related Issues

Two important related issues are whether to implement the algorithms in hardware or in software, and

whether to make the decisions in a centralized or distributed manner in the chip. We consider these issues

next.

2.4.1 Hardware vs Software Implementation

The Thermal algorithm is implemented as an OS interrupt handler. While the Slack algorithm could also be

implemented in software, we choose to implement it in hardware. This is in contrast to related algorithms

proposed in the literature that exploit system idleness in software [1, 18].

A software implementation of the Slack algorithm would certainly be sufficient if we restricted our

work to a certain class of energy-management techniques or to a certain class of applications. Specifically,

suppose that we restricted our techniques to those that induce predictable slowdowns like voltage-frequency

scaling. In this case, the OS can simply activate the technique for the time duration that will induce the

desired slowdown.

Likewise, software might be enough if we restricted the applications to those that, by repeating certain

high-level operations, easily tell how fast they are executing. For example, consider video streaming appli-

cations. Their speed can be easily monitored by recording the number of frames per unit of time that are

being processed. It is easy for the OS to know what is the slowdown caused by a certain energy-management

technique by simply checking the new frame rate. There is no need to measure the IPC.

However, we want our Slack algorithm to deliver accurate solutions for all classes of techniques and

applications. To see why it requires a hardware implementation, recall that the Slack algorithm repeatedly

measures the IPC of the application. While software can support measurements at ms-level intervals, only a

hardware solution can support measurements at � s-level intervals. In practice, we need a hardware solution

only if the behavior of the application changes significantly at ms-level intervals while staying relatively

uniform at � s-level intervals.

We have evidence that � s-level measurements are beneficial in our applications. To understand why,

consider a loop. In general, IPC measurements at � s-level intervals will yield fairly uniform values, irre-

9



HUANG, RENAU, YOO, & TORRELLAS

spective of the duration of the loop, as long as 1 � s includes a few iterations. However, IPC measurements

at ms-level intervals will yield uniform values only if the loop lasts for many ms. In our applications, much

of the code appears to exhibit more uniformity at � s-level intervals than at ms-level intervals. Consequently,

we set the interval between measurements (microcycle) to a few � s and, therefore, implement the Slack

algorithm in hardware.

2.4.2 Distribution vs Centralization

We now consider how to apply our framework to chips with multiple processor cores. Ideally, we would

like to run the framework in a distributed manner. Each processor would have its own framework, running

algorithms that read local sensors and make decisions on what techniques to activate locally. This approach

is appealing because, potentially, each processor may be running a very different application.

In practice, while some energy-management techniques like those that modify the cache hierarchy can

be easily controlled on a per-processor basis, other techniques are best controlled for the whole chip. Con-

sider, for example, voltage-frequency scaling. Using a different voltage and frequency in each processor

neighborhood introduces complexity and makes communication between the processors trickier.

One possible alternative is to use per-processor frameworks to run the algorithms and then, after a

global synchronization step, make a global decision. However, such an approach is likely to suffer from

synchronization overhead.

The approach that we take is to run the algorithm in a centralized manner. Signals from the different

processor neighborhoods bring information from the distributed sensors to a central framework module. The

module feeds the highest temperature and the sum of all the instructions executed to a centralized algorithm.

While this approach requires a more careful timing design, it simplifies the decision-making process.

2.5 Energy Management Techniques

The different energy-management techniques in the framework will target different components of the chip

and impact the energy, execution time (delay), and energy-delay product of applications differently. In

this section, we select a few, representative techniques to include in the prototype framework that will be

evaluated in Section 4.

All the techniques that we select reduce the average power consumption at the expense of slowing down

the application. However, while some techniques reduce the total energy consumed in the application run,

others do not. Consequently, the techniques in the first group may or may not decrease the energy-delay

product, while those in the second group always increase it.

10



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

Among the techniques in the first group, we include: sub-banked data caches [12, 13], filter instruction

caches [14], voltage-frequency scaling [3, 4], and reduced memory voltage [19]. In each of these cases,

when the technique is activated, the system goes from a default configuration to a lower-energy, lower-

performance one. These techniques can be used for both the Thermal and Slack algorithms.

Among the techniques in the second group, we include slowing down data cache hits and putting the

processor to light sleep. These techniques simply introduce extra delay to reduce the average power. Due to

their energy inefficiency, we will try to keep them out of our Thermal and Slack algorithms. However, they

may contribute to the thermal crisis support.

We now briefly describe these techniques, while a more detailed description can be found in [20]. The

values used for their parameters are listed in Section 3.1. Our framework can be easily extended to include

other techniques.

Sub-Banked Data Cache

With cache sub-banking, a cache access activates only part of the cache line selected instead of the

whole line [12, 13]. To support sub-banking, the cache is augmented with additional decoding logic and

transmission gates. When sub-banking is not activated, this logic adds negligible delay to the cache access

time.

When sub-banking is activated, a cache access consumes less energy. This is because the number of

activated bit lines and sense amplifiers is reduced. However, the presence of the extra decoding logic and

transmission gates tends to increase the cache access time. Consequently, cache hits consume less energy

but are slower. The energy consumption and speed of cache misses are unaffected.

Filter Instruction Cache

The on-chip I-memories that supply instructions to the processors in an embedded chip are often de-

signed with high-performance SRAM to ensure that their latency is minimal. They are also large, to hold

the whole program. As a result, each access to them, while fast, consumes significant energy.

To address this problem, a small I-cache can be placed between the I-memory and the processor. Ac-

cesses to this cache are not faster in number of cycles than accesses to the already fast I-memory. However,

they consume much less energy. As a result, this cache works somewhat like a filter cache [14].

If this filter cache is deactivated, all fetches go directly to memory, enabling a fast yet energy-consuming

system. If, instead, the cache is activated, hits in the cache take the same time but consume much less energy.

Misses, however, force the fetch to go to memory, adding up additional latency and energy consumption.

Overall, with the cache activated, the system is likely to be slower but consume less energy.

11



HUANG, RENAU, YOO, & TORRELLAS

An alternative design could be to eliminate the filter cache and add sub-banking to the I-memory. In

such a design, however, accesses to an I-memory sub-bank could suffer one extra cycle of latency. The

result is likely to be a slower system than the one with the filter cache.

Voltage-Frequency Scaling

Reducing both the voltage and the frequency of the chip is a well-known technique [3, 4]. Dynamic

energy is proportional to the square of the supply voltage, while dynamic power is proportional to the

frequency and to the square of the voltage. To apply this technique, we simply reduce linearly the voltage

and frequency of the whole chip to ����� ����� and 	
����� . This change works for the linear section of the scaling

curve.

Reduced Memory Voltage

We lower the voltage of only the DRAM array to ��
���
 ����� . This can be done by changing the reference

voltage used in an on-chip voltage converter according to the outputs of a detector [19]. Voltage changes

have to be managed carefully because they induce non-linear changes to transistor characteristics. In this

technique, to scale down other parameters as we scale down the voltage, we use circuit simulations. In

addition, during the low-power mode, we also change the DRAM refresh intervals. The procedure that we

use is outlined in [20].

Slowing Down Data Cache Hits

This technique progressively reduces the number of outstanding data loads and stores that a processor

can have and, later, increases the latency of cache hits. More specifically, the number of allowed outstanding

accesses is progressively halved. Once we reach 1 load and 1 store, we progressively increase the cache hit

latency one cycle at a time. When this technique is to be deactivated, we undo these changes in reverse

order.

Light Sleep Mode

In this technique, we put the processor in a light sleep mode for a period of time. We do not turn off the

PLL, clock distribution, or DLLs to minimize any wake-up penalty. We simply gate the clock at the output

of the DLLs. Since, by default, we were already clock-gating all the units not used, this technique cannot

save much energy. In fact, because we are keeping the PLL, DLLs, and clock distribution lines on while

slowing down the application, this technique ends up increasing the energy consumed. However, it reduces

the average power consumed in the system.

12



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

3 EVALUATION ENVIRONMENT

We evaluate an implementation of our adaptive framework on top of an advanced chip with multiple su-

perscalar cores and DRAM banks. We use detailed software simulations at the architectural level. The

simulations are performed using a MINT-based [21] execution-driven simulation system [22] that models

all the components of the chip, including the superscalar processors. The simulator includes energy con-

sumption models. In the following, we describe the architecture modeled, how we estimate the energy

consumed, the applications executed, and the metrics used. Finally, we perform an initial assessment of the

energy management techniques.

3.1 Architecture Modeled

As an example of an advanced chip, we model a processor-in-memory chip with 64 simple processors

cycling at 800 MHz and 64 Mbytes of DRAM. The target technology is IBM’s 0.18 ��� Blue Logic SA-27E

ASIC [23] with some expected improvements in DRAM density [20]. The default voltage is 1.8 V.

The chip is modeled after a FlexRAM chip [24]. Processors are 2-issue wide and statically scheduled.

Each processor is associated with a 1-Mbyte DRAM bank. A processor can directly access its own DRAM

bank as well as the DRAM of its left and right neighbors. Such support allows communication between

the processors, effectively connecting them in a ring. In addition, as in FlexRAM, the chip contains an on-

chip controller that executes the serial sections of the application, including initialization, broadcast, and

reduction operations [24]. The controller’s contribution to the execution of our applications constitutes on

average only 8% of the time, and is mostly limited to the initialization and ending parts of the application.

For these reasons and because most chip resources are very underutilized when the controller runs, we do

not include the controller’s contribution in our evaluation.

SRAM
I-Mem

Row Dec Row Dec Row Dec Row Dec

D
-C

ache

Sub-
Bank

Sub-
Bank

����������
���������� ������������ ����������

���������� 	�		�	
�

�


���������� 
�
�
����� ������������ D-CacheI-Cache

��������
(c)(b)

DB

Processor

Bank
DRAM

RBRBRBRBRB

DB

Data Bus

(a)

DRAM Bank

Processor+Cache Hierarchy

Figure 3: Chip architecture modeled: overview of the chip (a), per-processor memory hierarchy (b), and

per-processor DRAM bank organization (c). In the charts, RB, DB, and Row Dec stand for row buffer, data

buffer, and row decoder, respectively.

13



HUANG, RENAU, YOO, & TORRELLAS

Figure 3 shows the architecture of the chip. In the figure, Chart (a) gives an overview of the chip, while

Chart (b) shows the memory hierarchy of each processor in the chip and Chart (c) shows the organization

of each DRAM bank into sub-banks. Table 1 shows the most important architectural parameters for a single

memory bank and processor pair.

Processor D-Cache I-Cache I-Memory Data Buffer Row Buffer DRAM Sub-Bank

2-issue in-order at 800 MHz Size: 8 KB Size: 128 inst. Size: 8 KB Number: 1 Number: 5 Number: 4

BR Penalty: 2 cycles Assoc: 2 Assoc: 1 Line: 4 inst. Size: 256 b Size: 1 KB Num Cols: 4096

Int,Ld/St,FP Units: 2,1,0 Line: 32 B Line: 4 inst. RTrip: 1.25 ns Bus: 256 b Bus: 256 b Num Rows: 512

Pending Ld,St: 2,2 RTrip: 1.25 ns RTrip: 1.25 ns RTrip: 3.75 ns RTrip: 7.5 ns RTrip: 15 ns

Table 1: Parameters for a single memory bank and processor pair. In the table, BR and RTrip stand for branch

and contention-free round-trip latency from the processor, respectively.

Table 2 shows the values for the parameters of the energy-management techniques included in our frame-

work. The energy values used will be justified in the next section. The values of some other framework

parameters are as follows. Changing the memory voltage with MemVolt is assumed to have negligible over-

heard. Both the thermal and the slack macrocycles are set to 1 ms, while the microcycle is set to 1 ��� .
To avoid instability in the Thermal algorithm, we set a different MinTemp for each technique, as shown in

Section 3.4. Finally, every time that we execute the Thermal algorithm, we charge 200 cycles to account for

the overhead of the execution in the OS.

Technique Label Parameter Value

Sub-banked SubBank Cache hit if no sub-banking: RTrip = 1.25 ns, E = 222.8 pJ

data cache Cache hit if sub-banking: RTrip = 2.50 ns, E = 69.1 pJ

Filter IFilter I-mem access: RTrip = 1.25 ns, E/inst = 51.6 pJ

instruction I-cache hit: RTrip = 1.25 ns, E/inst = 15.4 pJ

cache I-cache miss + I-mem access: RTrip = 2.5 ns, E/inst = 67.0 pJ

Voltage-freq. scaling VoltFreq ����� ���
	 = 1.44 V, �����
	 = 640 MHz, overhead of any scaling = 10 ���
Reduced memory MemVolt ����� = 1.8 V: RB access (RTrip = 7.5 ns, E = 500.1 pJ),

voltage DRAM access (RTrip = 15 ns, E = 3702.2 pJ)

����� = 1.2 V: RB access (RTrip = 7.5 ns, E = 500.1 pJ),

DRAM access (RTrip = 21.25 ns, E = 2634.6 pJ)

Slowing D-cache hits SloHit –

Light sleep mode Sleep –

Table 2: Values of the parameters used in our energy-management techniques. In the table, E, RB, and RTrip

stand for energy, row buffer, and contention-free round-trip latency from the processor, respectively.

14



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

3.2 Estimating the Energy Consumed

To estimate the energy consumed in the chip, we have applied scaling-down theory to data on existing

devices reported in the literature, as well as used several techniques and formulas reported in the litera-

ture [25, 26, 27, 13, 28, 29]. A detailed discussion of the methods that we have followed can be found

in [20]. In this section, we give an overview of how we estimate the energy consumed in the processor

cores, memory hierarchies, and clocks. We also discuss how we validated the models.

Processor Cores

Each core is a 32-bit 2-issue processor with a DLX-like pipeline. It supports a simplified version of

the MIPS ISA with only 28 16-bit instructions [24]. We take the data from [29] and, by applying general

scaling theory and considering technology trends, we estimate the average energy consumed in the register

file, branch unit, ALU, and the other modules of the processor. Then, we can estimate the energy consumed

by each type of instruction by adding up the energy of all the modules used by that particular instruction

type. We assume perfect clock gating inside the processor code. With this approach, for example, we

estimate that an add, a branch, and a multiply instruction consume an average of 56.1, 34.8, and 251.2 pJ,

respectively.

Memory Hierarchies

To compute the energy consumed in the memory hierarchy, we use popular models [13, 26]. We classify

memory hierarchy accesses based on what level of the hierarchy they reach, and depending on whether they

are reads, writes, or dirty line displacements. Then, we compute the average energy consumed by one access

of each class. This is done by dividing the access into simple operations. For example, a read that hits in the

row buffer is divided into a cache tag check, a read hit in the row buffer, and a line fill into the cache. Finally,

to compute the overall energy in the memory hierarchy, we multiply the number of accesses of each class

times the corresponding energy per access in the class, and then accumulate the contribution of all classes.

As an example, Table 3 shows the average energy consumed by a read and a write access to different levels

of the hierarchy.

Level of the Hierarchy Rd Energy (pJ) Wr Energy (pJ)

D-cache 222.8 246.3

I-mem (per instr) 51.6 56.8

Row buffer 500.1 2740.6

DRAM bank 3702.2 3286.2

Table 3: Average energy consumption per access.

15



HUANG, RENAU, YOO, & TORRELLAS

Clocks & Other

The clocking system includes 1 main PLL and 16 distributed local DLLs [30]. The clock network is laid

out in the chip using an H-tree structure to minimize skew. To estimate the overall energy of the clocking

system, we estimate and add the contributions of several components, namely PLL, DLLs, buffers, and

distribution lines. Such contributions are estimated based on [25] and on capacitance models. Overall, the

estimated average energy per cycle is 957.5 pJ. This figure does not include the energy for the clock inside

the processor cores. The latter is included in the computation for the cores. Further details can be found

in [20].

Validation

We validate our energy estimates with several experiments. We report on two of them here. In the first

validation, we examine our cache model. We compare our energy estimates to those generated with the

CACTI v2 models [28]. Since CACTI uses a relatively old sense amplifier model, we change it to a more

aggressive one. The comparison shows that our estimates of energy consumption in the data cache and

CACTI’s are only 9% different [20].

In a second validation, we focus on the relative energy consumption of the I-cache, D-cache, clock, and

processor core. Such a relative breakdown of energy for the Strong ARM processor is available from [27].

We compute the corresponding estimates for one of our processors plus its associated caches and share of

the clock. While there are some differences between the two architectures, getting a similar breakdown is

reassuring. The comparison shows that the contribution of each of the components does not differ by more

than an absolute 6% between the two systems [20].

3.3 Applications Executed

For the experiments, we use 6 applications that are suitable to the integer-based processor-in-memory chip

considered: they access a large memory size, are very parallel, and are integer based. They come from

several industrial sources. We have parallelized each application into 64 threads by hand.

Table 4 lists the applications and their characteristics. They include the domains of data mining, neural

networks, protein matching, multimedia, and image compression. Each application runs for several billions

of instructions. Appendix A gives more information on each application.

16



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

Appl. What It Does Problem Size
D-Cache Average

Hit Rate Power (W)

GTree Data mining: tree generation 5 MB database, 77.9 K records, 0.507 10.2

29 attributes/record

DTree Data mining: tree deployment 1.5 MB database, 17.4 K records, 0.986 10.8

29 attributes/record

BSOM BSOM neural network 2 K entries, 104 dimensions, 2 iterations, 0.947 15.5

16-node network, total of 832 KB database

BLAST BLAST protein matching 12.3 K sequences, 4.1 MB total, 0.969 8.7

1 query of 317 bytes

Mpeg MPEG-2 motion estimation 1 1024x256-pixel frame plus 0.999 11.3

one reference frame. Total 512KB.

FIC Fractal image compressor one 512x512-pixel image, four 512x512- 0.978 6.1

pixel internal data structure. Total 2 MB

Table 4: Applications executed.

3.4 Metrics Used

We characterize an application run with four metrics: performance (measured with total execution time,

also called delay), average power consumption, total energy consumption, and product of energy times

execution time (energy-delay product [9]). We will strive for a low energy-delay product, since it implies a

good balance between high speed and low energy consumption.

In some experiments, we need to estimate chip temperature. However, our models only use energy and

power metrics. We currently do not have a thermal model that, taking into account the chip package and

cooling support, translates sustained power dissipation into chip temperature.

It is known, however, that heat transfers occur at the ms level [17]. As a result, it has been suggested to

use the average power dissipated over many cycles as a proxy for temperature [7]. We follow this approach

and use a metric called ���������
	 as a proxy for chip temperature. At a given time, ����������	 is 0.75 times

the average power consumed by the chip in the last millisecond plus 0.25 times the value of ����������	 a

millisecond ago. While clearly not perfect, this recursive definition tries to approximate the behavior of

temperature. Using this metric, the proxy for MinTemp for VoltFreq, SubBank, and IFilter is set to 45%,

75%, and 78%, respectively of the proxy for MaxTemp.

3.5 Initial Assessment of the Techniques

To assess the effectiveness of the proposed energy management techniques, we examine the variation of the

power consumed by the chip modeled as it runs an application. Figure 4 shows the results for a section

17



HUANG, RENAU, YOO, & TORRELLAS

of BSOM. The figure has four charts, corresponding to a chip with no energy management technique acti-

vated (Original), and with one of three energy management techniques: sub-banked data cache (SubBank),

voltage-frequency scaling (VoltFreq), and filter instruction cache (IFilter). Reduced memory voltage (Mem-

Volt) is not shown due to its limited effectiveness on BSOM.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

P
ow

er
 (

W
)

(a) Original

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

P
ow

er
 (

W
)

(b) SubBank

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

P
ow

er
 (

W
)

(c) VoltFreq

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

P
ow

er
 (

W
)

(d) IFilter

Figure 4: Power dissipated in a section of BSOM for different environments. The unit in the X-axes is ���������
cycles or ������	�

� .

Each chart has a horizontal dotted straight line that marks the sustained power limit allowed ( �������������
�����

). In addition, each chart has three lines which, from top to bottom, correspond to the total power

consumption in the chip, the power consumption in the memory hierarchy (data and instruction), and the

power consumption in the instruction memory hierarchy alone, respectively. The unit in the X-axes is 1,000

cycles or
�����! #"%$

.

Figure 4-(a) (Original) shows that, without any energy management technique, the chip induces thick,

frequent spikes of power consumption. Furthermore, a large fraction of this consumption occurs in the

memory subsystem.

Looking at the other charts, we see that all the techniques shown can limit the power consumption

significantly. They are, therefore, useful for our experiments in Section 4. In addition, we see that each

of the techniques has a very different behavior. Indeed, IFilter reduces the power largely in the instruction

memory hierarchy (Figure 4-(d)), while SubBank reduces the power mostly in the data memory hierarchy

18



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

(Figure 4-(b)). Finally, VoltFreq reduces the power consumed in all the components (Figure 4-(c)). Such a

different behavior makes our analysis of Section 4 more interesting. MemVolt, which is not shown in the

figure, has only a modest impact.

Although not shown in the charts, the three energy management techniques can be effectively applied

concurrently. The combination of the three techniques reduces the average power consumption in BSOM

from more than 13W to less than 4W, while at the same time, accumulating the slowdown associated with

all the techniques.

4 EVALUATING THE FRAMEWORK

To assess our DEETM framework, we evaluate three issues: the management of multiple energy-

management techniques (Section 4.1), the Thermal algorithm (Section 4.2), and the Slack algorithm (Sec-

tion 4.3).

4.1 Technique Analysis & Comparison

Given a DEETM framework with multiple techniques, the first question to ask is what combination of

techniques should it apply and in what order. We now answer this question for our framework.

Comparing Individual Techniques

We start by comparing the individual techniques with the following experiment for each application. We

execute the application without activating any technique and record the average power dissipated � ������� (last

column of Table 4). Then, for each technique, we perform four runs dynamically activating the technique

with different intensities. The intensity is regulated with a power threshold: if the power in the last microcy-

cle was over the threshold, the technique gets activated; the technique is deactivated when the power in the

last microcycle was such that the technique could be deactivated without going over the threshold again. We

set the thresholds to
���
	�� � ������� ,

����
�� � ������� ,

��
��� � ������� , and


��
��� � ������� . Finally, we perform an experiment

activating the technique for the whole run.

Figure 5 shows the results. The results of each run have been normalized to the run with no active tech-

nique for the same application, and then averaged out across all applications. The figure shows the resulting

average power consumed in the run (X axes) against the total energy consumed (Chart (a)), execution time

(Chart (b), where execution time is labeled Delay), and energy-delay product (Chart (c)). Since SloHit has

a behavior very similar to Sleep, we do not show SloHit to simplify the charts.

The figure shows that the behavior of Sleep is different from the others as the average power decreases.

19



HUANG, RENAU, YOO, & TORRELLAS

Sleep does not reduce the energy (Chart (a)), substantially slows down the applications (Chart (b)) and, as a

result, increases the energy-delay product significantly (Chart (c)). Consequently, due to its inefficiency, we

only use it as the last resort in a thermal crisis.

The other four techniques (IFilter, SubBank, VoltFreq, and MemVolt) decrease the energy consumed

by the chip (Chart (a)) and, while they still slow down the application (Chart (b)), they manage to reduce

the energy-delay product or keep it roughly constant (Chart (c)). They differ significantly, however, in the

slope of their curves and in the maximum power reduction that they can deliver. The maximum reduction is

delivered when they are applied statically. This situation corresponds to the leftmost point of each curve.

To compare these four techniques to each other, we examine Chart (c). Recall that we want to minimize

the energy-delay products. Under this requirement, the chart tells us what is the best technique to apply

individually, and how to rank the techniques in case we want to apply them in a combined manner.

0.6

0.7

0.8

0.9

1.0

1.1

0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(a)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0.50 0.60 0.70 0.80 0.90 1.00

N
or

m
al

iz
ed

 D
el

ay

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(b)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(c)

Figure 5: Impact of dynamically applying each individual energy-management technique: total energy con-

sumed by the applications (a), their execution time (b), and their energy-delay product (c). The data is

normalized to a run with no active technique and then averaged out across all applications.

20



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

If we want to apply a single technique, we should choose the one that, for the desired average power

reduction, delivers the lowest energy-delay product. For example, for power reductions that are less than

20%, IFilter is the best. SubBank is the best if we want reductions between 20 and 25%, while VoltFreq is

the best for reductions larger than 25%. From this data, we can see that IFilter and SubBank are good but

limited. Since their scope is only memory system accesses, they deliver modest power reductions.

If, instead, we want to rank the techniques for a possible combined application of them, what matters is

not the absolute power reduction but the slope of the curves. Specifically, we approximate each curve with

a straight line (a linear function) and record the slope of the line. The techniques with the highest positive

slopes should be given the highest priority. Consequently, in our framework, the order of application of the

techniques, irrespective of the power reduction desired, should be IFilter, then SubBank, then VoltFreq, and

so on.

Note that, for our techniques, the shape of the curves makes it possible to reasonably approximate each

curve with a single straight line. This may not be true, however, in other scenarios, where we would need

different straight lines in different segments of a given curve. In this case, the ranking of techniques would

not be as straightforward: it would depend on the power reduction desired.

Another complication occurs if the slope of a curve changes when the technique is combined with

other techniques. While we have observed this effect in our framework, it does not change the ranking of

techniques listed above.

Finally, we note that MemVolt reduces neither the average power much nor the energy-delay product. It

is, therefore, unattractive. Its scope for impact is limited to applications with many cache misses. Unfor-

tunately, even in this case, we find that it works poorly because the slower DRAM becomes a contention

bottleneck that slows down the application (Chart (b)).

Applying Combined Schemes

To see the potential of our framework, we combine the three most effective techniques, namely IFilter,

SubBank, and VoltFreq, into a single scheme. We consider two different schemes: Comb activates and

deactivates the three techniques simultaneously, while Grad activates and deactivates them gradually. Grad

uses the ranking selected before: it activates IFilter first; if more power or energy reduction is needed, it

activates SubBank; if more is needed, it activates VoltFreq. When the techniques must be deactivated, it

follows the reverse order.

Figure 6 shows the results of repeating the experiments of Figure 5 for Comb and Grad. For reference

purposes, the figure also includes the curves for VoltFreq and IFilter from Figure 5. Note, however, that the

axes have been expanded relative to Figure 5.

21



HUANG, RENAU, YOO, & TORRELLAS

We can see from Figure 6 that, for modest power reductions, the effectiveness of Comb is between

that of VoltFreq and IFilter. Specifically, Chart (c) shows that, for a given power reduction, the energy-delay

product of Comb is between that of VoltFreq and IFilter. Consequently, Comb works well. In addition, Comb

can deliver much higher power reductions than the individual techniques: if Comb is statically applied, it

can reduce the average power by up to 70%. As a result, the final energy-delay product obtained in Chart

(c) is also much lower than for the individual techniques.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(a)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
N

or
m

al
iz

ed
 D

el
ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(b)

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(c)

Figure 6: Impact of dynamically applying a combination of energy-management techniques: total energy

consumed by the applications (a), their execution time (b), and their energy-delay product (c). The data is

organized as in Figure 5.

As can be seen in the figure, however, Grad is better. Chart (c) shows that, for modest power reductions,

this scheme delivers energy-delay products that are nearly as low as IFilter, the best of the three techniques.

This is because, for this range of reductions, Grad is largely IFilter. When larger reductions are desired,

Grad starts using the less optimal techniques. Finally, as we approach large reductions, it gets closer to

Comb. In all cases except static application, however, Grad has a lower energy-delay product than Comb

(Chart (c)).

22



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

These results form the rationale behind our choice of Thermal and Slack algorithms in Section 2.2: a

gradual, priority-ordered application of techniques that reduce the energy-delay product. Consequently, we

implement the Slack and Thermal algorithms with Grad. In addition, as part of the Thermal algorithm, we

keep one additional technique ready for activation in case of a thermal crisis. Such a technique, which must

be able to reduce the average power consumed as much as needed, is chosen to be Sleep.

Variation Across Applications

Finally, we note that, although different applications behave differently, the algorithms chosen for our

adaptive framework work quite well across all applications. As an example, Figure 7 repeats the energy-

delay product chart of Figure 6-(c) for two individual applications: GTree and DTree. These are the two

applications that diverge the most from the average.

GTree has a low data cache hit rate (Table 4), which causes SubBank to have relatively less impact.

As a result, the SubBank curve (not shown in Figure 7-(a)) would show a higher energy-delay product

than the VoltFreq curve in Figure 7-(a). This is the reason why the Comb curve in the figure shows higher

energy-delay products than VoltFreq for a range of average power. Overall, however, for high average power

reductions, both Comb and Grad still perform well.

DTree has relatively more I-cache misses, which causes IFilter to be less effective. This is shown in

Figure 7-(b), where the IFilter curve has high energy-delay products. As a result, Figure 7-(b) shows that

both Comb and Grad deliver poor energy-delay products for small average power reduction. However, for

high average power reductions, both Comb and Grad still perform well.

Overall, therefore, we conclude that our Grad algorithm is effective: it reduces the energy-delay product

significantly, while enabling large reductions in average power in the process.

4.2 Evaluating the Thermal Algorithm

The goal of the Thermal algorithm is to keep the temperature of the chip lower than MaxTemp, while

minimizing any resulting application slowdown. In addition, under no condition should the temperature

surpass CrisisTemp. As indicated before, we use Grad and, if CrisisTemp is reached, we activate Sleep. We

call the resulting scheme Grad+Sleep.

To show that Grad+Sleep is effective, we demonstrate that, given different MaxTemp temperature limits,

it effectively keeps the chip temperature below MaxTemp practically all the time, while slowing down the

execution only modestly. Recall that, as stated in Section 3.4, we use ����������	 as a proxy for temperature.

In Figure 8, we show the results of applying Grad+Sleep under different � � ����� 	 limits. These limits

23



HUANG, RENAU, YOO, & TORRELLAS

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(a)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(b)

Figure 7: Impact of dynamically applying a combination of energy-management techniques to the GTree (a)

and DTree (b) applications.

are proxies for MaxTemp. For each application, the limits considered are
��� 	 � � ������� ,

���

 � � ������� , 
 �
� � � ������� ,

and

��
� � � ������� , where � ������� is the original average power of the application (last column of Table 4). To get

an idea of the absolute values of these limits, if we average them out across all the applications, we get 12.5,

10.4, 8.3, and 6.3W, respectively. The crisis ��������� 	 is set sufficiently high such that it is never reached. As

usual, the data is normalized to the original conditions of the application and then averaged out across all

applications.

0

10

20

30

40

50

60

70

80

90

0.6 0.7 0.8 0.9 1 1.1 1.2

M
ac

ro
cy

cl
es

 O
ve

r 
Li

m
it 

(%
)

Normalized Power* Limit

Original
Grad+Sleep

(a)

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.6 0.7 0.8 0.9 1 1.1 1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Normalized Power* Limit

SleepOnly
Comb+Sleep
Grad+Sleep

(b)

Figure 8: Impact of enforcing different
�������	��


limits in the chip: fraction of thermal macrocycles over the
�������	��


limit (a) and resulting execution time of the applications (b).

Figure 8-(a) shows the fraction of thermal macrocycles where � � ����� 	 is above the limit before we

activate our framework (Original) and after (Grad+Sleep). The chart shows that, irrespective of how low

we set the limit to, our framework keeps ��������� 	 below it for practically all the time. This is true even after

setting the limit to 0.6 times the average power in the chip before activating the framework, which is the

24



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

leftmost point of the chart. Such a limit places 85% of the Original macrocycles over the limit.

Figure 8-(b) shows the resulting execution time of the applications after activating the framework. If we

focus on the Grad+Sleep curve, we see that, for modest limits, the scheme induces minimal slowdowns. For

example, after setting the limit to 1.2 times the original average power, our framework only slows down the

applications, on average, by 8%.

Overall, from the previous two discussions, we see that the goal of the Thermal algorithm is realized.

For comparison purposes, however, Figure 8-(b) also shows the impact of using less efficient schemes.

Comb+Sleep uses Comb instead of Grad. SleepOnly simply uses the Sleep technique when ����������	 sur-

passes the limit. More specifically, when a thermal macrocycle records a � � ����� 	 higher than the limit, the

fraction of non-sleeping cycles in the next macrocycle is decreased proportionally to how much ��������� 	
was over the limit. This scheme is, therefore, self-regulating. From the figure, we see that such schemes

induce higher slowdowns than Grad+Sleep. SleepOnly is especially inefficient for relatively low ��������� 	
limits. However, it works well for the highest limit because it is being applied in a fine-grained manner.

4.3 Evaluating the Slack Algorithm

The goal of the Slack algorithm is to save as much energy as possible without extending the execution of the

application beyond a given tolerable slack. As indicated before, we implement the algorithm with Grad. To

show that our framework is effective, we demonstrate that, given different slack sizes, Grad delivers large

energy savings without slowing down the job noticeably more than tolerable.

In Figure 9, the framework is tested with different slack sizes, specified as a percentage of the orig-

inal execution time of the application. As usual, the data is normalized to the original conditions of the

application and then averaged out across all applications.

Figure 9-(a) shows the resulting energy consumed by the applications for different slack sizes. The

chart shows that Grad delivers large energy savings by exploiting even small slacks. For example, if the

applications are allowed to exploit a 10% slack, they consume only 60% of the original energy; if they are

given a 30% slack, they consume only 40%.

To put the effectiveness of Grad in perspective, the chart also shows the curves for � ������� ��� �
	�� � 	

and � �
������� ��� �
	�� � 	 . As a reference, the voltage-frequency scaling technique [3, 4] often falls in

between the � ���
and � �����

curves. Indeed, if the scaling of voltage and frequency is linear, since

energy is proportional to the square of the voltage and delay is inversely proportional to the frequency,

� �����
remains constant. In practice, the scaling deviates from linear behavior and we move toward the

� ���
curve. Overall, from the distance between these curves and Grad, we can see that our framework is

25



HUANG, RENAU, YOO, & TORRELLAS

very effective, especially with small slacks.

Figure 9-(b) shows the fraction of the tolerable slack that is used up by our framework. We see that, for

modest-sized slacks, Grad tends to deviate little from using the maximum tolerable slack. Any under- or

over-utilization is limited to about 2% of the slack. As the slack increases over 35% of the execution time,

the applications cannot use it all, even when all the techniques in Grad are in full operation. As a result, part

of the slack is wasted. Overall, we see that the goal of the Slack algorithm is realized: Grad delivers large

energy reductions by exploiting even small slacks.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 E
ne

rg
y

Slack (% Original Execution Time)

E*D=const
E*D*D=const

Grad
Oracle

(a)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 5 10 15 20 25 30 35 40 45 50

U
se

d 
S

la
ck

/S
la

ck

Slack (% Original Execution Time)

Grad
Oracle

(b)

Figure 9: Effect of exploiting different execution slacks: resulting energy consumed by the applications (a)

and fraction of the slack that is used up (b).

To gain insight into any possible improvements over Grad, Figures 9-(a) and 9-(b) also show the be-

havior of an ideal scheme that we call Oracle. At any given microcycle in the execution, Oracle applies

the combination of IFilter, SubBank, and VoltFreq that best furthers the goal of the Slack algorithm. Since

Oracle is based on perfect knowledge of the future, it should have, for a given slack, the lowest energy

curve in Chart (a). In some cases, however, Grad reduces the energy slightly more than Oracle. This is

because Grad sometimes goes slightly over the tolerable slack (in Chart (b)) due to imperfect prediction of

the future. Overall, however, the charts show that there is not much difference between the Oracle and Grad

curves, which suggests that Grad is very competitive.

5 RELATED WORK

Of all the techniques and systems listed in Section 1, the work most related to ours is the one on dynamic

systems for chip-level energy management. These systems can be classified into three groups. The first one

targets temperature control, for example through context switching to jobs that consume less power [5] or

through speculation control [7]. The second group targets energy efficiency without compromising perfor-

26



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

mance, for instance through speculation control [8] or through reconfigurability [6]. A final group targets

energy efficiency by exploiting slack and, therefore, slowing down the system. This is done, for example,

through voltage and frequency scaling [1] or through switching to less aggressive instruction issue and spec-

ulation support [16]. Our work is different in two ways: we target both energy efficiency and temperature

control, and we combine many techniques in a unified dynamic framework.

Recently, dynamic application of voltage and frequency scaling or various sleep modes have become

popular among microprocessors [3, 4].

A related approach is that of ACPI (Advanced Configuration and Power Interface), an open industry

specification that defines an interface for the OS to activate low-power modes [31]. Our work differs from

ACPI in two ways. First, in ACPI, any decision and control of power modes is done by the OS. In our

framework, the decision and control is best done with a combination of software and hardware, which

enables finer-grained energy management. Second, current ACPI releases are only concerned with various

sleeping modes, while we combine techniques that trade energy for performance.

ACPI and other OS-driven approaches have been used at the system level to save energy dynamically.

For example, it is feasible to save energy by dynamically shutting down unused modules of the system like

hard disks or the LAN [18]. Alternatively, the savings can come from dynamically reducing the quality of

service to the application [32].

6 CONCLUSIONS AND FUTURE WORK

To address the problem of high energy consumption in current and upcoming chips, several schemes for dy-

namic energy management have recently been proposed. However, such schemes are still relatively limited

and, in addition, tend to tackle only one of the two aspects of energy management: either energy efficiency

or temperature control. To address these limitations, this paper has proposed a framework for Dynamic

Energy Efficiency and Temperature Management (DEETM). The framework addresses the two aspects of

energy management in a unified form. In addition, it combines a suite of energy-management techniques

that can be activated individually or in groups according to a given policy.

The evaluation has shown that our framework is very effective, especially when the tolerable slowdowns

are modest and the temperature limits are not too low. In these scenarios, dynamic application of the most

fitting techniques in the suite is most cost-effective: temperature limits are enforced with small slowdowns

and large energy savings are delivered by exploiting small slacks. For example, the framework delivers a

40% energy reduction with a 10% application slowdown. Overall, we feel that it makes sense for future

advanced chips to include a DEETM framework like ours that combines multiple techniques.

27



HUANG, RENAU, YOO, & TORRELLAS

As part of our ongoing work, we are trying to improve our DEETM framework by adding more tech-

niques to it. We can then quantify the complementarity of and the overlap between different techniques.

Another approach that we are exploring is the potential of profiling. We can profile an application and,

depending on what are its main energy and performance bottlenecks, tailor the activation of the techniques.

Finally, we are examining how to tailor the framework for different classes of chips, namely high-end

microprocessors, chip multiprocessors, and different types of systems on a chip.

REFERENCES

[1] T. Pering, T. Burd, and R. Brodersen, “The Simulation and Evaluation of Dynamic Voltage Scaling Algorithms,”

in International Symposium on Low Power Electronics and Design, pp. 76–81, August 1998.

[2] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip, and J. Alvarez, “Thermal Management

System for High Performance PowerPC Microprocessors,” in IEEE Computer Society International Conference,

pp. 325–330, February 1997.

[3] T. Halfhill, “Transmeta Breaks x86 Low-Power Barrier,” Microprocessor Report, vol. 14, pp. 1,9–18, February

2000.

[4] Intel, Pentium III Processor Mobile Module: Mobile Module Connector 2 (MMC-2) Featuring Intel SpeedStep

Technology, 2000.

[5] E. Rohou and M. Smith, “Dynamically Managing Processor Temperature and Power,” in 2nd Workshop on

Feedback-Directed Optimization, November 1999.

[6] D. Albonesi, “Dynamic IPC/Clock Rate Optimization,” in International Symposium on Computer Architecture,

pp. 282–292, July 1998.

[7] D. Brooks and M. Martonosi, “Adaptive Thermal Management for High-Performance Microprocessors,” in

Workshop on Complexity Effective Design, June 2000.

[8] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating: Speculation Control for Energy Reduction,” in

International Symposium on Computer Architecture, pp. 132–141, July 1998.

[9] R. Gonzalez and M. Horowitz, “Energy Dissipation In General Purpose Microprocessors,” IEEE Journal on

Solid-State Circuits, vol. 31, pp. 1277–1284, September 1996.

[10] K. Itoh, “Low Power Memory Design,” in Low Power Design Methodologies, pp. 201–251, Kluwer Academic

Publisher, 1996.

[11] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, “Energy-Driven Integrated Hardware-

Software Optimizations Using SimplePower,” in International Symposium on Computer Architecture, pp. 95–

106, June 2000.

28



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

[12] K. Ghose and M. Kamble, “Reducing Power in Superscalar Processor Caches Using Subbanking, Multiple Line

Buffers and Bit-Line Segmentation,” in International Symposium on Low Power Electronics and Design, pp. 70–

75, August 1999.

[13] C.-L. Su and A. Despain, “Cache Design Trade-offs for Power and Performance Optimization: A Case Study,”

in International Symposium on Low Power Electronics and Design, pp. 63–68, April 1995.

[14] J. Kin, M. Gupta, and W. Mangione-Smith, “The Filter Cache: An Energy Efficient Memory Structure,” Inter-

national Symposium on Microarchitecture, pp. 184–193, December 1997.

[15] T. Juan, T. Lang, and J. Navarro, “Reducing TLB Power Requirements,” in International Symposium on Low

Power Electronics and Design, pp. 196–201, August 1997.

[16] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC Variation in Workloads with Externally Specified Rates to

Reduce Power Consumption,” in Workshop on Complexity-Effective Design, June 2000.

[17] C.-H. Tsai, Temperature-Aware VLSI Design and Analysis. PhD thesis, Department of Electrical and Computer

Engineering, University of Illinois at Urbana-Champaign, May 2000.

[18] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring System Activity for OS-Directed Dynamic

Power Management,” in International Symposium on Low Power Electronics and Design, pp. 185–190, August

1998.

[19] K. Itoh, “An Experimental 1Mb DRAM with On-Chip Voltage Limiter,” in ISSCC Digest of Technical Papers,

pp. 84–85, February 1981.

[20] S.-M. Yoo, J. Renau, M. Huang, and J. Torrellas, “FlexRAM Architecture Design Parameters,” Tech. Rep.

CSRD-1584, Department of Computer Science, University of Illinois at Urbana-Champaign, October 2000.

http://iacoma.cs.uiuc.edu/flexram/publications.html.

[21] J. Veenstra and R. Fowler, “MINT: A Front End for Efficient Simulation of Shared-Memory Multiprocessors,”

in Second International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, pp. 201–207, January 1994.

[22] V. Krishnan and J. Torrellas, “An Execution-Driven Framework for Fast and Accurate Simulation of Superscalar

Processors,” in International Conference on Parallel Architectures and Compilation Techniques, pp. 286–293,

October 1998.

[23] IBM Microelectronics, “Blue Logic SA-27E ASIC.” http://www.chips.ibm.com/news/1999/sa27e, February

1999.

[24] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas, “FlexRAM: Toward an

Advanced Intelligent Memory System,” in International Conference on Computer Design, pp. 192–201, October

1999.

[25] J. Alvarez, H. Sanchez, G. Gerosa, and R. Countryman, “A Wide-Bandwidth Low-Voltage PLL for PowerPC

Microprocessors,” IEEE Journal on Solid-State Circuits, vol. 30, pp. 383–391, April 1995.

29



HUANG, RENAU, YOO, & TORRELLAS

[26] M. Kamble and K. Ghose, “Analytical Energy Dissipation Models for Low Power Caches,” in International

Symposium on Low Power Electronics and Design, pp. 143–148, August 1997.

[27] J. Montanaro, R. Witek, K. Anne, A. Black, E. Cooper, D. Dobberpuhl, P. Donahue, J. Eno, W. Hoeppner,

D. Kruckemyer, T. Lee, P. Lin, L. Madden, D. Murray, M. Pearce, S. Santhanam, K. Snyder, R. Stehpany,

and S. Thierauf, “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,” IEEE Journal Solid State Circuits,

vol. 31, pp. 1703–1714, November 1996.

[28] S. Wilton and N. Jouppi, “CACTI: An Enhanced Cache Access and Cycle Time Model,” IEEE Journal on Solid-

State Circuits, vol. 31, pp. 677–688, May 1996.

[29] N. Yeung, Y. Sutu, T. Su, E. Pak, C. Chao, S. Akki, D. Yau, and R. Lodenquai, “The Design of a 55SPECint92

RISC Processor under 2W,” ISSCC Digest of Technical Papers, pp. 206–207, February 1994.

[30] S. Sidiropoulos and M. Horowitz, “A Semidigital Dual Delay-Locked Loop,” IEEE Journal on Solid-state Cir-

cuits, vol. 32, pp. 1683–1692, November 1997.

[31] Intel, Microsoft and Toshiba, Advanced Configuration and Power Interface Specification, 1999.

[32] J. Flinn and M. Satyanarayanan, “Energy-Aware Adaptation for Mobile Applications,” in Symposium on Oper-

ating Systems Principles, pp. 48–63, December 1999.

[33] J. Quinlan, C4.5 - Programs for Machine Learning. Morgan Kaufmann, 1993.

[34] R. Lawrence, G. Almasi, and H. Rushmeier, “A Scalable Parallel Algorithm for Self-Organizing Maps with

Applications to Sparse Data Mining Problems,” tech. rep., IBM, January 1998.

[35] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic Local Alignment Search Tool,” Journal of

Molecular Biology, vol. 215, pp. 403–410, October 1990.

[36] Y. Fisher, Fractal Image Compression: Theory and Application. Springer Verlag, 1995.

APPENDIX A: APPLICATIONS USED

This appendix describes the applications used. In the following, we use P.Mem to refer to the on-chip controller in the

FlexRAM chip that executes the serial sections of the applications. More information on the applications can be found

in [24].

GTree is a data mining application that generates a decision tree given a collection of records that we want to

classify [33]. The records are distributed across the processors. The P.Mem decides what attributes to use to split the

tree and tells the processors what branch they should examine. The processors process their records.

DTree uses the tree generated in GTree to classify a database of records [33]. Each processor has a copy of the

decision tree and a portion of the database. Each processor processes its local records sequentially. At the end of the

execution, the results are accumulated by P.Mem.

30



THE DESIGN OF DEETM: A FRAMEWORK FOR DYNAMIC ENERGY EFFICIENCY

BSOM is a neural network that classifies data [34]. Each processor processes a portion of the input. Then, all

processors synchronize, a summary of the partial results is combined and re-distributed, and the process begins again.

While the original application used floating point, we have converted the application into fixed point to run on our

simulated chip.

BLAST is a protein matching application [35]. The goal is to match an amino acid sequence sample against a large

database of proteins. Each processor keeps a portion of the database and tries to match the sample against it. Finally,

P.Mem gathers the results.

Mpeg performs MPEG-2 motion estimation. The reference image and the working image are distributed across

the processors. Each 8x8 block in the working image is compared against the reference image.

FIC is a fractal image compression application that encodes an image using a scheme with a quad tree par-

tition [36]. Each processor has a portion of the image and some calculated characteristics, and performs a local

transformation to its portion of the image. The application may have significant load imbalance.

31


