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Abstract—Cloud computing has begun a transformation from
using virtual machines to containers. Containers are attractive
because multiple of them can share a single kernel, and add
minimal performance overhead. Cloud providers leverage the
lean nature of containers to run hundreds of them on a few
cores. Furthermore, containers enable the serverless paradigm,
which leads to the creation of short-lived processes.

In this work, we identify that containerized environments
create page translations that are extensively replicated across
containers in the TLB and in page tables. The result is high
TLB pressure and redundant kernel work during page table
management. To remedy this situation, this paper proposes
BabelFish, a novel architecture to share page translations across
containers in the TLB and in page tables. We evaluate BabelFish
with simulations of an 8-core processor running a set of Docker
containers in an environment with conservative container co-
location. On average, under BabelFish, 53% of the translations in
containerized workloads and 93% of the translations in serverless
workloads are shared. As a result, BabelFish reduces the mean
and tail latency of containerized data-serving workloads by 11%
and 18%, respectively. It also lowers the execution time of
containerized compute workloads by 11%. Finally, it reduces
serverless function bring-up time by 8% and execution time by
10%–55%.

Index Terms—Virtual Memory, Containers, Address Transla-
tion, TLB, Page Tables.

I. INTRODUCTION

Cloud computing is ubiquitous. Thanks to its ability to
provide scalable, pay-as-you-go computing, many companies
choose cloud services instead of using private infrastructure. In
cloud computing, a fundamental technology is virtualization.
Virtual Machines (VMs) allow users to share resources, while
providing an isolated environment to each user.

Recently, cloud computing has been undergoing a radical
transformation with the emergence of Containers. Like a VM,
a container packages an application and all of its dependencies,
libraries, and configurations, and isolates it from the system it
runs on. However, while each VM requires a guest Operating
System (OS), multiple containers share a single kernel. As a
result, containers require significantly fewer memory resources
and have lower overheads than VMs. For these reasons, cloud
providers such as Google’s Compute Engine [27], Amazon’s
ECS [3], IBM’s Cloud [31], and Microsoft’s Azure [52] now
provide container-based solutions.

Container environments are typically oversubscribed, with
many more containers running than cores [56]. Moreover,
container technology has laid the foundation for Serverless
computing [65], a new cloud computing paradigm provided by

services like Amazon’s Lambda [2], Microsoft’s Azure Func-
tions [53], Google’s Cloud Functions [26], and IBM’s Cloud
Functions [32]. The most popular use of serverless computing
is known as Function-as-a-Service (FaaS). In this environment,
the user runs small code snippets called functions, which are
triggered by specified events. The cloud provider automatically
scales the number and type of functions executed based on
demand, and users are charged only for the amount of time a
function spends computing [39, 66].

Our detailed analysis of containerized environments reveals
that, very often, the same Virtual Page Number (VPN) to
Physical Page Number (PPN) translations, with the same
permission bit values, are extensively replicated in the TLB
and in page tables. One reason for this is that containerized
applications are encouraged to create many containers, as
doing so simplifies scale-out management, load balancing, and
reliability [12, 33]. In such environments, applications scale
with additional containers, which run the same application on
different sections of a common data set. While each container
serves different requests and accesses different data, a large
number of the pages accessed is the same across containers.

Another reason for the replication is that containers are
created with forks, which replicate translations. Further, since
containers are stateless, data is usually accessed through the
mounting of directories and the memory mapping of files. The
result is that container instances of the same application share
most of the application code and data pages. Also, both within
and across applications, containers often share middleware.
Finally, the lightweight nature of containers encourages cloud
providers to deploy many containers in a single host [30]. All
this leads to numerous replicated page translations.

Unfortunately, state-of-the-art TLB and page table hardware
and software are designed for an environment with few and
diverse application processes. This has resulted in per-process
tagged TLB entries, separate per-process page tables, and lazy
page table management — where, rather than updating the
page translations at process creation time, they are updated
later on demand. In containerized environments, this approach
causes high TLB pressure, redundant kernel work during page
table management and, generally, substantial overheads.

To remedy this problem, we propose BabelFish, a novel
architecture to share translations across containers in the TLB
and page tables — without sacrificing the isolation provided
by the virtual memory abstractions. BabelFish eliminates the
replication of translations in two ways. First, it modifies the



TLB to dynamically share identical {VPN, PPN} pairs and
permission bits across containers. Second, it merges page table
entries of different processes with the same {VPN, PPN}
translations and permission bits. As a result, BabelFish reduces
the pressure on the TLB, reduces the cache space taken by
translations, and eliminates redundant minor page faults. In
addition, it effectively prefetches shared translations into the
TLB and caches. The end result is higher performance of
containerized applications and functions, and faster container
bring-up.

We evaluate BabelFish with simulations of an 8-core pro-
cessor running a set of Docker containers in an environment
with conservative container co-location. On average, under
BabelFish, 53% of the translations in containerized workloads
and 93% of the translations in FaaS workloads are shared.
As a result, BabelFish reduces the mean and tail latency
of containerized data-serving workloads by 11% and 18%,
respectively. It also lowers the execution time of containerized
compute workloads by 11%. Finally, it reduces FaaS function
bring-up time by 8% and execution time by 10%–55%.

II. BACKGROUND

A. Containers

Containers are a lightweight software virtualization solution
that aims to ease the deployment of applications [44]. A
container is defined by an image that specifies all of the re-
quirements of an application, including the application binary,
libraries, and kernel packages required for deployment. The
container environment is more light-weight than a traditional
VM, as it eliminates the guest operating system. All of the
containers share the same kernel and, consequently, many
pages can be automatically shared among containers. As a
result, containers typically exhibit better performance and
consume less memory than VMs [67]. Docker containers [21]
is the most prominent container solution. In addition, there are
management frameworks, such as Google’s Kubernetes [28]
and Docker’s Swarm [20], which automate the deployment,
scaling, and maintenance of containerized applications.

The lightweight nature of containers has led to the Function-
as-a-Service (FaaS) paradigm [32, 24, 26, 2, 53]. In FaaS,
the user provides small code snippets, called Functions, and
providers charge users only for the amount of time a function
spends computing. In FaaS environments, many functions can
be running concurrently, which leads to high consolidation
rates.

Containers rely on OS virtualization and, hence, use the
process abstraction, rather than the thread one, to provide
resource isolation and usage limits. Typically, a containerized
application scales out by creating multiple replicated contain-
ers, as this simplifies load balancing and reliability [12, 33].
The resulting containers usually include one process each [22],
and run the same application but use different sections of
data. For example, a graph application exploits parallelism
by creating multiple containers, each one with one process.
Each process performs different traversals on the shared graph.
As another example, a data-serving workload such as Apache

HTTPD, creates many containers, each one with one process.
Each process serves a different incoming request. In both
examples, the containers share many pages.

B. Address Translation in x86 Linux

Figure 1 shows a conventional TLB organization. Each entry
includes a Valid bit (V), a Virtual Page Number (VPN), a
Physical Page Number (PPN), flags, and a Process Context
Identifier (PCID). The PCID identifies the process, and is
shorter than the pid that the OS assigned to the process. For an
access to hit in the TLB, both VPN and PCID have to match.
In modern processors, a core typically has an L1 instruction
TLB, an L1 data TLB, and a unified L2 TLB.

Valid VPN PPN Flags PCID

Virtual Page Number Offset PCID

=

Fig. 1: Conventional TLB organization.

When an access misses in both L1 and L2 TLBs, a page
table walk begins. This is a multistep process performed in
hardware. Figure 2 shows the page walk for an address in
the x86-64 architecture. The hardware reads the CR3 control
register, which contains the physical address of the Page
Global Directory (PGD) of the currently-running process. The
hardware adds the 40-bit CR3 register to bits 47-39 of the
virtual address. The result is the physical address of an entry in
the PGD. The hardware reads such address from the memory
hierarchy — accessing first the data caches and, if they declare
a miss, the main memory. The data in that address contains the
physical address of the Page Upper Directory (PUD), which
is the next level of the translation. Such physical address is
then added to bits 38-30 of the virtual address. The contents
of the resulting address is the physical address of the next-
level table, the Page Middle Directory (PMD). The process is
repeated using bits 29-21 of the virtual address to reach the
next table, the Page Table (PTE). In this table, using bits 20-12
of the virtual address, the hardware obtains the target physical
table entry (pte t). The pte t provides the PPN and additional
flags that the hardware uploads into the L1 TLB to proceed
with the translation of the virtual address.

pmd_t
pte_t

PGD
PUD

PMD
PTE

CR3

47 … 39 38 … 30 29 … 21 20 … 12 11 … 0
9-bits 9-bits 9-bits 9-bits 12-bits
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Fig. 2: Page table walk.



In theory, a page walk involves four cache hierarchy ac-
cesses. In practice, each core has a translation cache called the
Page Walk Cache (PWC) that stores a few recently-accessed
entries of the first three tables (PGD, PUD, and PMD). The
hardware checks the PWC before going to the cache hierarchy.
If it hits there, it avoids a cache hierarchy access.

When this translation process fails, a page fault occurs and
the OS is invoked. There are two relevant types of page faults:
major and minor. A major one occurs when the page for one
of these physical addresses requested during the walk is not
in memory. In this case, the OS fetches the page from disk
into memory and resumes the translation. A minor page fault
occurs when the page is in memory, but the corresponding
entry in the tables says that the page is not present in memory.
In this case, the OS simply marks the entry as present, and
resumes the translation. This happens, for example, when
multiple processes share the same physical page. Even though
the physical page is present in memory, a new process incurs
a minor page fault on its first access to the page.

C. Replicated Translations

The Linux kernel avoids having multiple copies of the same
physical page in memory. For example, when a library is
shared among applications, only a single copy of the library is
brought into physical memory. As a result, multiple processes
may point to the same PPN. The VPNs of the different
processes may be the same, and have identical permission bits.
Furthermore, on a fork operation, pages are only copied lazily
and, therefore, potentially many VPNs in the parent and child
are the same and point to the same PPNs. Finally, file-backed
mappings created through mmap lead to further sharing of
physical pages. In all of these cases, there are multiple copies
of the same {VPN, PPN} translation with the same permission
bits, in the TLB (tagged with different PCIDs) and across the
page tables of different processes.

III. BABELFISH DESIGN

BabelFish has two parts. One enables TLB entry sharing,
and the other page table entry sharing. In the following, we
describe each part in turn, and then present a simple example.

A. Enabling TLB Entry Sharing

Current TLBs may contain multiple entries with the same
{VPN, PPN} pair, the same permission bits, and tagged with
different PCIDs. Such replication is common in containerized
environments, and can lead to TLB thrashing. To solve this
problem, BabelFish combines these entries into a single one
with the use of a new identifier called Container Context
Identifier (CCID). All of the containers created by a user for
the same application are given the same CCID. It is expected
that the processes within the same CCID group will want to
share many TLB entries and page table entries.

BabelFish adds a CCID field to each entry in the TLB.
Further, when the OS schedules a process, the OS loads the
process’ CCID into a register — like it currently does for the
process’ PCID. Later, when the TLB is accessed, the hardware

will look for an entry with a matching VPN tag and a matching
CCID. If such an entry is found, the translation succeeds, and
the corresponding PPN is read. Figure 3 shows an example
for a two-way set-associative TLB. This support allows all
the processes in the same CCID group to share entries.

V CCID PCID VPN PPN Flags O-PC

VPN Tag VPN Index Offset PCID

=

CCID

V CCID PCID VPN PPN Flags O-PC

=

=

VPN Tag

PCID

CCID

=
=

=

Fig. 3: Two-way set-associative BabelFish TLB.

The processes of a CCID group may not want to share some
pages. In this case, a given VPN should translate to different
PPNs for different processes. To support this case, we retain
the PCID in the TLB, and add an Ownership (O) bit in the
TLB. If O is set, it indicates that this page is owned rather
than shared, and a TLB hit also requires a PCID match.

We also want to support the more advanced case where
many of the processes of the CCID group want to share the
same {VPN0, PPN0} translation, but a few other processes
do not, and have made their own private copies. For example,
one process created {VPN0, PPN1} and another one created
{VPN0, PPN2}. This situation occurs when a few of the
processes in the CCID group have written to a Copy-on-Write
(CoW) page and have their own private copy of the page, while
most of the other processes still share the original clean page.
To support this case, we integrate the Ownership bit into a new
TLB field called Ownership-PrivateCopy (O-PC) (Figure 3).

Ownership-PrivateCopy Field.
The O-PC field is expanded in Figure 4. It contains a 32-bit

PrivateCopy (PC) bitmask, one bit that is the logic OR of all
the bits in the PC bitmask (ORPC), and the Ownership (O)
bit. The PC bitmask has a bit set for each process in the CCID
group that has its own private copy of this page. The rest of
the processes in the CCID group, which can be an unlimited
number, still share the clean shared page. We limit the number
of private copies to 32 to keep the storage modest. Before we
describe how BabelFish assigns bits to processes, we describe
how the complete TLB translation in BabelFish works.

The BabelFish TLB is indexed as a regular TLB, using the
VPN Tag. The hardware looks for a match in the VPN and
in the CCID. All of the potentially-matching TLB entries will
be in the same TLB set, and more than one match may occur.
On a match, the O-PC and PCID fields are checked, and two
cases are possible. First, if the O bit is set, this is a private
entry. Hence, the entry can be used only if the process’ PCID
matches the TLB entry’s PCID field.
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Fig. 4: Ownership-PrivateCopy (O-PC) field. The PrivateCopy
(PC) bitmask has a bit set for each process in the CCID group
that has its own private copy of the page. The ORPC bit is
the logic OR of all the bits in the PC bitmask.

Alternately, if O is clear, this is a shared entry. In this
case, before the process can use it, the process needs to check
whether the process itself has its own private copy of the page.
To do so, the process checks its own bit in the PC bitmask. If
the bit is set, the process cannot use this translation because the
process already has its own private copy of the page. An entry
for such page may or may not exist in the TLB. Otherwise,
since the process’ bit in the PC bitmask is clear, the process
can use this translation.

The O-PC information of a page is part of a TLB entry,
but only the O and ORPC bits are stored in the page table
entry. The PC bitmask is not stored in the page table entry to
avoid changing the data layout of the page tables. Instead, it
is stored in an OS software structure called the MaskPage that
is described in the Appendix. Each MaskPage also includes
an ordered list (pid list) of up to 32 pids of processes from
the CCID group. The order of the pids in this list encodes the
mapping of PC bitmask bits to processes. For example, the
second pid in the pid list is the process that is assigned the
second bit in the PC bitmask.

In BabelFish, a MaskPage contains the PC bitmasks and
pid list for all the pages of a CCID group mapped by a set
of PMD tables (details in the Appendix).

Actions on a Write to a Copy-on-Write (CoW) Page.
To understand the operation of the pid list, consider what

happens when a process writes to a CoW page. The OS checks
whether the process is already in the pid list in the MaskPage
for this PMD table set. If it is not, this is the process’ first CoW
event in this MaskPage. In this case, the OS performs a set of
actions. Specifically, it adds the process’ pid to the end of the
pid list in the MaskPage, effectively assigning the next bit in
the corresponding PC bitmask to the process. This assignment
will be used by the process in the future, to know which bit in
the PC bitmask to check when it accesses the TLB. In addition,
the OS sets that PC bitmask bit in the MaskPage to 1. Then,
the OS makes a copy of a page of 512 pte t translations for
the process, sets the Ownership (O) bit for each translation,
allocates a physical page for the single page updated by the
process, and changes the translation for that single page to
point to the allocated physical page. The other 511 pages will
be allocated later on demand as needed. We choose to copy
a page of 512 translations rather than only one translation to
reduce the bookkeeping overhead.

In addition, irrespective of whether this was the process’

first CoW event in this MaskPage, the OS has to ensure that
the TLB is consistent. Hence, similar to a conventional CoW,
the OS invalidates from the local and remote TLBs, the TLB
entry for this VPN that has the O bit equal to zero. The reason
is that this entry has a stale PC bitmask. Note that only this
single entry needs to be invalidated, while the remaining (up to
511) translations in the same PTE table can still safely remain
in the TLBs. Finally, when the OS gives control back to the
writing process, the latter will re-issue the request, which will
miss in the TLB and bring its new pte t entry into the TLB,
with the O bit set and the updated PC bitmask.

Writable pages (e.g., data set) and read-only pages (e.g., li-
brary code) can have an unlimited number of sharers. However,
CoW pages, which can be read-shared by an unlimited number
of sharers, cannot have more than 32 unique writing processes
— since the PC bitmask runs out of space. We discuss the case
when the number of writers goes past 32 in the Appendix.

Overall, with this support, BabelFish allows multiple pro-
cesses in the same CCID group to share the TLB entry for a
page — even after other processes in the group have created
their own private copies of the page. This capability reduces
TLB pressure. This mechanism works for both regular pages
and huge pages.

Role of the ORPC Bit in the O-PC Field.
Checking the PC bitmask bits on a TLB hit adds overhead.

The same is true for loading the PC bitmask bits into the TLB
on a TLB miss. To reduce these overheads, BabelFish uses
the ORPC bit (Figure 4), which is the logic OR of all the PC
bitmask bits. This bit is present in the O-PC field of a TLB
entry. It is also present, together with the O bit, in each pmd t
entry of the PMD table. Specifically, bits O and ORPC use
the currently-unused bits 10 and 9 of pmd t in the x86 Linux
implementation [34, 45] (Figure 5(a)).

PMD Entry (pmd_t)

63 - 11 10 9 8 - 0

O ORPC

OR of PC Bitmask

Ownership (O) bit

O 
bit

ORPC
bit

Check
PC bitmask
on TLB hit?

Fetch
PC bitmask
on TLB miss?

0 0 No No

0 1 Yes Yes

1 X No No

(a) (b)

Fig. 5: ORPC bit: position in the pmd t (a) and impact (b).

The ORPC bit is used to selectively avoid reading the PC
bitmask on a TLB hit, and to avoid loading the PC bitmask to
the TLB on a TLB miss. The logic is shown in Figure 5(b).
Specifically, consider the case when the O bit is clear. Then,
if the ORPC bit is clear, the two operations above can be
safely skipped; if ORPC is set, they need to be performed.
Consider now the case when the O bit is set. In this case,
the two operations can also be skipped. The reason is that an
access to a TLB entry with the O bit set relies only on the
PCID field to decide on whether there is a match. In all cases,
when the PC bitmask bits are not loaded into the TLB, the
hardware clears the corresponding TLB storage. Overall, with
ORPC , the two operations are skipped most of the time.



Rationale for Supporting CoW Sharing
Supporting CoW sharing within a CCID group, where a

page is read-shared by a potentially unlimited number of
processes, and a few other processes have private copies of the
page adds complexity to the design. However, it is important to
support this feature because it assists in accelerating container
bring-up — and fast bring-up is a critical requirement for FaaS
environments. Specifically, during bring-up, containers first
read several pages shared by other containers. Then, they write
to some of them. This process occurs gradually. At any point,
there are some containers in the group that share the page read-
only, and others that have created their own copy. Different
containers may end-up writing different sets of pages. Hence,
not all containers end-up with a private copy of the page.

B. Enabling Page Table Entry Sharing

In current systems, two processes that have the same {VPN,
PPN} mapping and permission bits still need to keep separate
page table entries. This situation is common in containerized
environments, where the processes in a CCID group may share
many pages (e.g., a large library) using the same {VPN, PPN}
mappings. Keeping separate page table entries has two costs.
First, the many pte t requested from memory could thrash the
cache hierarchy [50]. Second, every single process in the group
that accesses the page may suffer a minor page fault, rather
than only one process suffering a fault. Page fault latency has
been shown to add significant overhead [15].

To solve this problem, BabelFish changes the page table
structures so that processes with the same CCID can share
one or more levels of the page tables. In the most common
case, multiple processes will share the table in the last level of
the translation. This is shown in Figure 6. The figure shows
the translation of an address for two processes in the same
CCID group that map it to the same physical address. The two
processes (one with CR30 and the other with CR31) use the
same last level page (PTE). They place in the corresponding
entries of their previous tables (PMD) the base address of the
same PTE table. Now, both processes together suffer only one
minor page fault (rather than two), and reuse the cache line
that contains the target pte t.

pmd_t
pte_t

PGD
PUD

PMD
PTE

CR30

47 … 39 38 … 30 29 … 21 20 … 12 11 … 0
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Fig. 6: Page table sharing in BabelFish.

The default sharing level in BabelFish is a PTE table, which
maps 512 4KB pages in x86-64. Sharing can also occur at
other levels. For example, it can occur at the PMD level—
i.e., entries in multiple PUD tables point to the base of the
same PMD table. In this case, multiple processes can share
the mapping of 512×512 4KB pages or 512 2MB huge pages.
Further, processes can share a PUD table, in which case they
can share even more mappings. We always keep the first level
of the tables (PGD) private to the process.

Examples of large chunks of shared pages are libraries,
and data accessed through mounting directories or memory
mapping of files. Note that Figure 6 does not imply that all
the pages in the shared region are present in memory at the
time of sharing; some may be missing. However, it is not
possible for two processes to share a table and want to keep
private some of pages mapped by the table.

C. Example of BabelFish Operation

To understand the impact of BabelFish, we describe an
example. Consider three containers (A, B, and C) that have the
same {VPN0, PPN0} translation. First, A runs on Core 0, then
B runs on Core 1, and then C runs on Core 0. Figure 7 shows
the timeline of the translation process, as each container, in
order, accesses VPN0 for the first time. The top three rows of
the figure correspond to a conventional architecture, and the
lower three to BabelFish. To save space, we show the timelines
of the three containers on top of each other; in reality, they
take place in sequence.

We assume that PPN0 is in memory but not yet marked as
present in memory in any of the A, B, or C pte ts. We also
assume that none of these translations is currently cached in
the page walk cache (PWC) of any core.

Conventional Architecture. The top three rows of Figure 7
show the conventional process. As container A accesses VPN0,
the translation misses in the L1 and L2 TLBs, and in the PWC.
Then, the page walk requires a memory access for each level
of the page table (we assume that, once the PWC has missed,
it will not be accessed again in this page walk). First, as the
entry in the PGD is accessed, the page walker issues a cache
hierarchy request. The request misses in the L2 and L3 caches
and hits in main memory. The location is read from memory.
Then, the entry in the PUD is accessed. The process repeats
for every level, until the entry in the PTE is accessed. Since we
assume that PPN0 is in memory but not marked as present,
A suffers a minor page fault as it completes the translation
(Figure 7). Finally, A’s page table is updated and a {VPN0,
PPN0} translation is loaded into the TLB.

After that, container B running on another core accesses
VPN0. The hardware and OS follow exactly the same process
as for A. At the end, B’s page table is updated and a {VPN0,
PPN0} translation is loaded into the TLB.

Finally, container C running on the same core as A accesses
VPN0. Again, the hardware and OS follow exactly the same
process. C’s page table is updated, and another {VPN0, PPN0}
translation is loaded into the TLB. The system does not take
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Fig. 7: Timeline of the translation process in a conventional (top) and BabelFish (bottom) architecture. In the figure, container
A runs on Core 0, then container B on Core 1, and then container C on Core 0.

advantage of the state that A loaded into the TLB, PWC, or
caches because the state was for a different process.

BabelFish Architecture. The lower three rows of Figure 7
show the behavior of BabelFish. Container A’s access follows
the same translation steps as in the conventional architecture.
After that, container B running on another core is able to
perform the translation substantially faster. Specifically, its
access still misses in the TLBs and in the PWC; this is because
these are per-core structures. However, during the page walk,
the multiple requests issued to the cache hierarchy miss in the
local L2 but hit in the shared L3 (except for the PGD access).
This is because BabelFish enables container B to reuse the
page-table entries of container A — at any level except at the
PGD level. Also, container B does not suffer any page fault.

Finally, as C runs on the same core as A, it performs
a very fast translation. It hits in the TLB because it can
reuse the TLB translation that container A brought into the
TLB. Recall that, in the x86 architecture, writes to CR3 do
not flush the TLB. This example highlights the benefits in a
scenario where multiple containers are co-scheduled on the
same physical core, either in SMT mode, or due to an over-
subscribed system.

IV. IMPLEMENTATION

We now discuss the implementation of BabelFish.

A. Resolving a TLB Access

Figure 8 shows the algorithm that the hardware uses in a
TLB access. For simplicity, the figure shows the flowchart
assuming a single TLB level; in practice, the checks are
performed sequentially in the L1 and L2 TLBs.

As the TLB is accessed, each way of the TLB checks for a
VPN and CCID match ( 1 ). If none of the ways matches,
a page walk is initiated ( 11 ). Otherwise, for each of the
matching ways, the following process occurs. The hardware
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Fig. 8: Flowchart of a TLB access.

first checks if the Ownership bit is set ( 2 ). If it is, the
hardware checks for a PCID match ( 9 ). If the PCID matches
(and assuming that all the permissions checks pass) we declare
a TLB hit ( 8 ) and provide the PPN ( 7 ). Otherwise, it is a
TLB miss ( 10 ).

If the Ownership bit is clear, the hardware checks if the
requesting process already has a private copy of the page.
It does so by checking first the ORPC bit and, if it is set,
checking the bit of the process in the PC bitmask ( 3 ). If both
are set, it means that the process has a private copy, and a miss
is declared ( 10 ). Otherwise, a hit is declared ( 4 ). In this case,
the hardware checks whether this is a write to a CoW page



( 5 ). If it is, a CoW page fault is declared ( 6 ). Otherwise,
assuming that all the permissions checks pass, the PPN is
provided ( 7 ). After all the TLB ways terminate their checks,
if no hit has been declared ( 10 ), a page walk is initiated ( 11 ).

B. Implementing Shared Page Table Entries
The page walker of current systems uses the contents of a

control register to initiate the walk. In x86, it is the CR3 regis-
ter. CR3 points to the beginning of the PGD table (Figure 6),
and is unique per process. To minimize OS changes, BabelFish
does not change CR3 and, therefore, does not support sharing
PGD tables. This is not a practical limitation because processes
rarely share the whole range of mapped pages.

BabelFish adds counters to record the number of processes
currently sharing pages. One counter is assigned to each table
at the translation level where sharing occurs. For example, if
sharing occurs at the PTE level like in Figure 6, then there is
one counter logically associated with each PTE table. When
the last sharer of the table terminates or removes its pointer
to the table, the counter reaches zero, and the OS can unmap
the table. Such counters do not take much space or overhead
to update, and are part of the virtual memory metadata.

C. Comparing BabelFish and Huge Pages
Both BabelFish and huge pages attempt to reduce TLB

pressure, and they use orthogonal means. Huge pages merge
the translations of multiple pages belonging to the same pro-
cess to create a huge page; BabelFish merges the translations
of different processes to eliminate unnecessary replication.
As a result, BabelFish and huge pages are complementary
techniques that can be used together.

If an application uses huge pages, BabelFish automatically
tries to combine huge-page translations that have identical
{VPN, PPN} pairs and permission bits. Specifically, if the
application uses 2MB huge pages, BabelFish automatically
tries to merge PMD tables; if the application uses 1GB huge
pages, BabelFish automatically tries to merge PUD tables.

D. Supporting ASLR in BabelFish
Address Space Layout Randomization (ASLR) is a security

mechanism that randomizes the positions of the segments of
a process in virtual memory [47, 58, 48]. When a process is
created, the kernel generates a random virtual address (VA)
offset for each segment of the process, and adds it to the
base address of the corresponding segment. Hence, the process
obtains a unique segment layout, which remains fixed for the
process lifetime. This strategy thwarts attackers that attempt
to learn a program’s segment layout. In Linux, a process has
7 segments, including code, data, stack, heap, and libraries.

BabelFish supports ASLR, even while sharing translations
between processes. We envision two alternative configurations
for ASLR, a software-only solution called ASLR-SW that re-
quires minimal OS changes, and a hardware-software solution
called ASLR-HW, that provides stronger security guarantees.

In the ASLR-SW configuration, each CCID group has a
private ASLR seed and, therefore, gets its own layout random-
ization. All processes in the same CCID group get the same

layout and, therefore, can share TLB and page table entries
among themselves. In all cases, different CCID groups have
different ASLR seeds.

This configuration is easy to support in Linux. Specifically,
the first container in a CCID gets the offsets for its segments,
and subsequent containers in the group reuse them. This con-
figuration is likely sufficient for most deployments, especially
in serverless environments where groups of containers are
spawned and destroyed quickly.

In the ASLR-HW configuration, each process has a private
ASLR seed and, therefore, its own layout randomization. In
this configuration, when a CCID group is created, the kernel
generates a randomized VA offset for each of its segments,
as indicated above. We call this set of offsets CCID offset[].
Every time that a process i is spawned and joins the CCID
group, in addition to getting its own set of random VA offsets
for its segments (i offset[]), it also stores the set of differences
between the CCID group’s offsets and its own offsets (i.e.,
diff i offset[] = CCID offset[] - i offset[]).

With this support, when a process is about to access the
TLB, its VA goes through a logic module with comparators
and one adder. This logic module determines which segment
is being accessed, and then adds the corresponding entry in
diff i offset[] to the VA being accessed. The result is the
corresponding VA shared by the CCID group. The TLB is
accessed with this address, enabling the sharing of translations
between same-CCID processes while retaining per-process
ASLR. Similarly, software page walks follow the same steps.

The hardware required by this configuration may affect the
critical path of an L1 TLB access. Consequently, BabelFish
places the logic module in between the L1 TLB and L2
TLB. The result is that BabelFish’s translation sharing is only
supported from the L2 TLB down; the L1 TLB does not
support TLB entry sharing.

In practice, eliminating translation sharing from the L1 TLB
only has a minor performance impact. The reason is that the
vast majority of the translations are cached in the L2 TLB
and, therefore, page walks are still eliminated. The L1 TLB
performs well as long are there is locality of accesses within
a process, which ASLR-HW does not alter.

To be conservative, in our evaluation of Section VII, we
model BabelFish with ASLR-HW by default.

V. SECURITY CONSIDERATIONS

To minimize vulnerabilities, cloud providers limit page
sharing to occur only within a single user security domain.
For example, VMware only allows page deduplication within
a single guest VM [72]. In Kubernetes, the security domain
is called a Pod [29], and only containers or processes within
a Pod share pages by default. In the recently-proposed X-
Containers [68], the security domain is the shared LibOS,
within which all processes share pages.

In this paper, we consider a more conservative container
environment, where a security domain contains only the con-
tainers of a single user that are running the same application. It
is on top of this baseline environment that BabelFish proposes



that the containers in the security domain additionally share
address translations.

The baseline environment, where all the containers of a
single user running the same application share pages is likely
vulnerable to side channel attacks. Adding page translation
sharing with BabelFish does not significantly change the
security considerations over the baseline environment. This
is because the attacker could leverage the sharing of pages to
attack, without needing to leverage the sharing of translations.
Addressing the issue of securing the baseline environment is
beyond the scope of this paper.

VI. EVALUATION METHODOLOGY

Modeled Architecture. We use cycle-level simulations to
model a server architecture with 8 cores and 32GB of main
memory. The architecture parameters are shown in Table I.
Each core is out-of-order and has private L1 I+D caches, a
private unified L2 cache, and a shared L3 cache. Each core
has L1 I+D TLBs, a unified L2 TLB, and a page walk cache
with a page walker. The table shows that the TLBs can hold
pages of different sizes at the same time. With BabelFish,
the access times of the L1 TLBs do not change. However,
on an L1 TLB miss, BabelFish performs a two-cycle address
transformation for ASLR (Section IV-D). Moreover, the L2
TLB has two access times: 10 and 12 cycles. The short one
occurs when the O and ORPC bits preempt an access to the
PC bitmask (Figure 5(b)); the long one occurs when the PC
bitmask is accessed. Section VII-D provides details. We use
Ubuntu Server 16.04 [13] and Docker 17.06 [18].

Processor Parameters
Multicore chip 8 2-issue OoO cores, 128 ROB; 2GHz
L1 (D, I) cache 32KB, 8 way, WB, 2 cycle AT,

16 MSHRs, 64B line
L2 cache 256KB, 8 way, WB, 8 cycle AT,

16 MSHRs, 64B line
L3 cache 8MB, 16 way, WB, shared,

32 cycle AT, 128 MSHRs, 64B line
Per Core MMU Parameters

L1 (D, I)TLB (4KB pages) 64 entries, 4 way, 1 cycle AT
L1 (D)TLB (2MB pages) 32 entries, 4 way, 1 cycle AT
L1 (D)TLB (1GB pages) 4 entries, FA, 1 cycle AT
ASLR Transformation 2 cycles on L1 TLB miss
L2 TLB (4KB pages) 1536 entries, 12 way, 10 or 12 cyc AT
L2 TLB (2MB pages) 1536 entries, 12 way, 10 or 12 cyc AT
L2 TLB (1GB pages) 16 entries, 4 way, 10 or 12 cycle AT
Page walk cache 16 entries/level, 4 way, 1 cycle AT

Main Memory Parameters
Capacity; Channels 32GB; 2
Ranks/Channel; Banks/Rank 8; 8
Frequency; Data rate 1GHz; DDR

Host and Docker Parameters
Scheduling quantum 10ms
PC bitmask; PCID; CCID 32 bits; 12 bits; 12 bits

TABLE I: Architectural parameters. AT is Access Time.

Modeling Infrastructure. We integrate the Simics [49] full-
system simulator with the SST framework [62, 9] and the
DRAMSim2 [63] memory simulator. Additionally, we utilize
Intel SAE [14] on Simics for OS instrumentation. We use

CACTI [10] for energy and access time evaluation. For the
address translation, each hardware page walker is connected to
the cache hierarchy and issues memory requests following the
page walk semantics of x86-64 [34]. The Simics infrastructure
provides the actual memory and control register contents for
each memory access of the page walk. We use the page tables
maintained by the Linux kernel during full-system simulation.
To evaluate the hardware structures of BabelFish, we model
them in detail in SST. To evaluate the software structures, we
modify the Linux kernel and instrument the page fault handler.

Workloads. We use three types of workloads: three Data
Serving applications, two Compute applications, and three
Functions representing Function-as-a-Service (FaaS).

The Data Serving applications are the containerized
ArangoDB [7], MongoDB [55], and HTTPd [5]. ArangoDB
represents a key-value store NoSQL database with RocksDB
as the storage engine. MongoDB is a scalable document-model
NoSQL database with a memory mapped engine, useful as a
backend for data analytics. HTTPd is an efficient open source
HTTP server with multiprocess scaling, used for websites and
online services. Each application is driven by the Yahoo Cloud
Serving Benchmark [16] with a 500MB dataset.

The Compute applications are the containerized GraphChi
[42] and FIO [36]. GraphChi is a graph processing framework
with memory caching. We use the PageRank algorithm which
traverses a 500MB graph from SNAP [43]. FIO is a flexible
I/O benchmarking application that performs in-memory oper-
ations on a randomly generated 500MB dataset.

We developed three C/C++ containerized Functions: Parse,
which parses an input string into tokens, a Hash function
based on the djb2 algorithm [35], and a Marshal function
that transforms an input string to an integer. All functions
are based on OpenFaaS [24] and use the GCC image from
Docker Hub [19]. Each function operates on an input dataset
similar to [2]. For these functions, we explore dense and sparse
inputs. In both cases, a function performs the same work; we
only change the distance between one accessed element and
the next. In dense, we access all the data in a page before
moving to the next page; in sparse, we access about 10% of
a page before moving to the next one.

Configurations Evaluated. We model widely-used container
environments that exploit replication of the applications for
better load balancing and fault tolerance. We conservatively
keep the number of containers per core low. Specifically, in
Data Serving and Compute workloads, each core is multi-
plexed between two containers, which run the same application
on different input data. Each Data Serving container is driven
by a distinct YCSB client and, therefore, serves different
requests. Similarly, each Compute container accesses different
random locations. As a result, in both types of workloads, each
container accesses different data, but there is partial overlap
in the data pages accessed by the two containers.

In the Function workloads, each core is multiplexed between
three containers, each running a different function. The three
containers access different data, but there is partial overlap in



the data pages accessed by the three containers.
In each case, we compare two configurations: a conventional

server (Baseline), and one augmented with the proposed hard-
ware and software (BabelFish). We enable transparent huge
pages (THP) for both the Baseline and BabelFish.

Simulation Methodology. BabelFish proposes software and
hardware changes. To model a realistic system, we need to
warm-up both the OS and the architecture state. We use two
phases. In the first phase, we warm-up the OS by running the
containers for Data Serving and Compute for a minute, and
all the functions to completion, as they are short.

In the second phase, we bring the applications to steady
state, warm-up the architectural state, and measure. Specif-
ically, for Data Serving and Compute, we instrument the
applications to track entry to steady state and then execute
for 10 seconds. We then warm-up the architectural state by
running 500 million instructions, and finally evaluate for four
billion instructions. For Functions, there is no warm-up. We
run all the three functions from the beginning to completion
and measure their execution time.

We also measure container bring-up, as the time to start a
Function container from a pre-created image (docker start).
We perform full system simulation of all the above steps.

VII. EVALUATION

The BabelFish performance improvements come from two
sources: page table entry sharing and L2 TLB entry sharing.
In this section, we first characterize these two sources, and
then discuss the overall performance improvements. Finally,
we examine the resources that BabelFish needs.

A. Characterizing Page Table Entry Sharing

Figure 9 shows the shareability of PTE entries (pte ts) when
running two containers of the same Data Serving and Compute
application, or three containers of the functions. The figure
includes the steady-state mappings of all pages, including
container infrastructure, and program code and data. The data
is obtained by native measurements on a server using Linux
Pagemap [46], while running each application for 5 minutes.
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Fig. 9: Page table sharing characterization.

For each application, there are three bars, which are normal-
ized to the leftmost one. The leftmost one is the total number

of pte ts mapped by the containers. The central bar is the
number of Active pte ts, namely those that are placed by the
kernel in the active LRU list. They are a proxy for the pages
that are recently touched. The rightmost bar is the number of
Active pte ts after enabling BabelFish.

Each bar is broken down into pte ts that are shareable,
pte ts that are unshareable, and pte ts that correspond to the
huge pages created by THP. The latter are also unshareable.
A shareable pte ts has an identical {VPN, PPN} pair and
permission bits as another. Unshareable pte ts are either
exclusive to a process or not shareable.
Data Serving and Compute Applications. If we consider the
average bars, we see that 53% of the total baseline pte ts are
shareable. Further, most of them are active. BabelFish reduces
the number of shareable active pte ts by about half. Since
this plot corresponds to only two containers, the reduction in
shareable active pte ts is at most half. Sharing pte ts across
more containers would linearly increase savings, as only one
copy is required for all the sharers. Overall, the average
reduction in total active pte ts attained by BabelFish is 30%.

The variation of shareability across applications is primarily
due to the differences in usage of shared data versus internal
buffering. For example, GraphChi operates on shared vertices,
but uses internal buffering for the edges. As a result, most
of the active pte ts are unshareable, and we see little gains.
In contrast, MongoDB and FIO operate mostly on shared data
and see substantial pte ts savings. The other applications have
a more balanced mixture of shareable and unshareable pte ts.
Impact of Huge Pages. As shown in Figure 9, THP pte ts are
on average 8% of the total pte ts, and are in the unshareable
portion. Moreover, only a negligible number of these entries
are active during execution. To understand this data, note
that MongoDB and ArangoDB recommend disabling huge
pages [6, 54]. Further, THP supports only anonymous map-
pings, and not file-backed memory mapping. The anonymous
mappings are commonly used for internal buffering, which are
unshareable. Therefore, huge pages are rarely active.
Functions. Functions have a very high percentage of shareable
pte ts. Combining them reduces the total active pte ts by 57%.
The unshareable pte ts correspond to the function code and
internal buffering, which are unique for each function. They
account for only ≈6% of pte ts.

One can subdivide the shareable category in the bars into
application shared data and infrastructure pages. The latter
contain the common libraries that are required by all the
functions. It can be shown that they are 90% of the total
shareable pte ts, and can be shared across functions. Data
pte ts are few, but also shareable across functions.

B. Characterizing TLB Entry Sharing

Figure 10a shows the reduction in L2 TLB Misses Per Kilo
Instructions (MPKI) attained by BabelFish. Note that in our
evaluation, we conservatively do not share translations at the
L1 TLB (Section IV-D). The figure is organized based on
workload, and shows data and instruction entries separately.
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Fig. 10: (a) L2 TLB MPKI reduction attained by BabelFish. (b) Hits on L2 TLB entries that were brought into the TLB by
processes other than the one issuing the accesses. We call them Shared Hits and show them as a fraction of all L2 TLB hits.

From the figure, we see that BabelFish reduces the MPKI
across the board. For example, for Data Serving, the data
MPKI reduces by 66%, and the instruction MPKI reduces
even more, by 96%. These are substantial reductions. Good
results are also seen for the Compute workloads. Functions see
smaller MPKI reductions, as they are short lived and interfered
by the docker engine/OS.

The reductions come from various sources. First, a container
may reuse the L2 TLB entries of another container and avoid
misses. Second, sharing L2 TLB entries effectively increases
TLB capacity, which reduces misses. Finally, as a result of
these two effects, there is a lower chance that co-scheduled
processes evict each other’s TLB entries.

To gain more insight into L2 TLB entry sharing, Figure 10b
shows the number of hits on L2 TLB entries that were brought
into the L2 TLB by processes other than the one performing
the accesses. We call them Shared Hits and show them as
a fraction of all L2 TLB hits. The figure is organized as
Figure 10a. As we can see, the percentage of shared hits
is generally sizable, but varies across applications, as it is
dependent on the applications’ access patterns.

For example, GraphChi shows 48% shared hits for in-
structions and 12% for data. This is because PageRank’s
code is regular, while its data accesses are fairly random,
causing variation between the data pages accessed by the two
containers. Overall, BabelFish’s TLB entry sharing bolsters
TLB utilization and reduces page walks.

C. Latency or Execution Time Reduction

To assess the performance impact of BabelFish, we report
different metrics for different applications: reduction in mean
and 95th percentile (Tail) latency in Data Serving applications;
reduction in execution time in Compute applications; and
reduction in bring-up time and function execution time in
Functions. Figure 11 shows the results, all relative to Baseline.
To gain further insight, Table II shows what fraction of the
performance improvement in Figure 11 comes from TLB
effects; the rest comes from page table effects. Recall that
transparent huge pages are enabled in all applications but
MongoDB and ArangoDB [6, 54].

Consider first the Data Serving applications. On average,
BabelFish reduces their mean and tail latencies by a significant
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Fig. 11: Latency/time reduction attained by BabelFish.

Data Sharing Functions
MongoDB: 0.77 Parse-Dense: 0.15
ArangoDB: 0.25 Parse-Sparse: 0.01
HTTPd: 0.81 Hash-Dense: 0.18
Average: 0.61 Hash-Sparse: 0.01
Compute Marshal-Dense: 0.28
Graphchi: 0.11 Marshal-Sparse: 0.02
FIO: 0.29 Dense Average: 0.20
Average: 0.20 Sparse Average:0.01

TABLE II: Fraction of time reduction due to L2 TLB effects.

11% and 18%, respectively. The reductions are higher in
MongoDB and ArangoDB than in HTTPd. It can be shown that
this is because, in Baseline, address translation induces more
stress in the MongoDB and ArangoDB database applications
than in the stream-based HTTPd application. Hence, BabelFish
is more effective in the former. Table II shows that MongoDB
gains more from L2 TLB entry sharing, while ArangoDB more
from page table entry sharing. Therefore, both types of entry
sharing are helpful.

Compute applications also benefit from BabelFish. On av-
erage, their execution time reduces by 11%. GraphChi has
lower gains because it performs low-locality accesses in the
graph, which makes it hard for one container to bring shared
translations that a second container can reuse. On the other
hand, FIO has higher gains because its more regular access
patterns enable higher shared translation reuse. Table II shows
that these applications benefit more from page table effects.



Recall that we run the Functions in groups of three at a time.
The leading function behaves similarly in both BabelFish and
Baseline due to cold start effects. Hence, Figure 11 shows the
reduction in execution time for only the other two functions
in the group. We see that the reductions are heavily dependent
on the access patterns. Functions with dense access patterns
access only a few pages, and spend little time in page faults.
Hence, their execution time decreases by only 10% on average.
In contrast, functions with sparse access patterns access more
pages and spend more time servicing page faults. Hence,
BabelFish reduces their execution time by 55% on average.
In all cases, as shown in Table II, most gains come from page
table entry sharing.

Finally, although not shown in any figure, BabelFish speeds-
up function bring-up by 8%. Most of the remaining overheads
in bring-up are due to the runtime of the Docker engine and
the interaction with the kernel. Overall, BabelFish speeds-up
applications across the board substantially, even in our con-
servative environment where we co-locate only 2-3 containers
per core.

BabelFish vs Larger TLB.
BabelFish’s main hardware requirements are additional bits

in the L2 TLB for the CCID and O-PC fields. It could be
argued that this extra hardware could be used instead to make a
conventional TLB larger. Hence, we have re-run the workloads
with a conventional architecture with this larger L2 TLB. On
average, the resulting architecture reduces the mean request
latency of Data Serving applications by 2.1%, the execution
time of Compute applications by 0.6%, and the execution time
of Functions by 1.1% (dense) and 0.3% (sparse).

These reductions are much smaller than those attained by
BabelFish (Figure 11). One reason is that BabelFish benefits
from both L2 TLB and page table effects. A second reason
is that BabelFish also benefits from processes prefetching
TLB entries for other processes into the L2 TLB and caches.
Overall, this larger L2 TLB is not a match for BabelFish.

D. BabelFish Resource Analysis

We analyze the hardware and software resources needed
by BabelFish. We also analyze the resources of a design
where, as soon as a write occurs on a CoW page, sharing
for the corresponding PMD table set immediately stops, and
all sharers get private page table entries. This design does not
need a PC bitmask.
Hardware Resources. BabelFish’s main hardware overhead
is the CCID and O-PC fields in the TLB, and the associated
comparison logic (Figure 3). We estimate that this extra
hardware adds 0.4% to the area of a baseline core (without
L2). If we eliminate the need for the PC bitmask bits, the area
overhead falls to 0.07%. These are very small numbers.

Table III shows several parameters of the L2 TLB, both for
Baseline and BabelFish: area, access time, dynamic energy
of a read access, and leakage power. The data corresponds
to 22nm, and is obtained with CACTI [10]. The table shows
that the difference in TLB access time between Baseline and

BabelFish is a fraction of a cycle. To be conservative, we add
two extra cycles to the access time of the BabelFish L2 TLB
when the PC bitmask has to be accessed.

Configuration Area Access Time Dyn. Energy Leak. Power
Baseline 0.030 mm2 327 ps 10.22 pJ 4.16 mW
BabelFish 0.062 mm2 456 ps 21.97 pJ 6.22 mW

TABLE III: Parameters of the L2 TLB at 22nm.

Memory Space. The memory space of BabelFish is minimal.
It includes one MaskPage with PC bitmasks and pid list
(Figure 13) for each 512 pages of pte ts. This is 0.19%
space overhead. In addition, it includes one 16-bit counter
per 512 pte ts to determine when to de-allocate a page of
pte ts (Section IV-B). This is 0.048% space overhead. Overall,
BabelFish only adds 0.238% space overhead. If we eliminate
the need for the PC bitmask bits, the first item goes away, and
the total space overhead is 0.048%.
Software Complexity. We implement BabelFish’s page table
sharing mechanism in the Linux kernel and in the Simics
shadow page tables. We require about 300 Lines of Code
(LoC) in the MMU module, 200 LoC in the page fault handler,
and 800 LoC for page table management operations.

VIII. RELATED WORK

Huge Pages. BabelFish transparently supports huge pages,
which are in fact a complementary way to reduce TLB and
cache pressure. Recent work has tackled huge-page bloating
and fragmentation issues [41, 57].
Translation Management and TLB Design. Recent work
[4, 74, 40] aims to reduce the translation coherence overheads
with software and hardware techniques. Other work provides
very fine grain protection domains and enables sub-page
sharing, but does not support translation sharing [73]. CoLT
and its extension [60, 59] propose the orthogonal idea of
coalesced and clustered TLB entries within the same process.

MIX-TLB [17] supports both huge page and regular page
translations in a single structure, increasing efficiency. In [8],
self-invalidating TLB entries are proposed to avoid TLB shoot-
downs. Shared last-level TLB [11] aims to reduce translation
overhead in multi-threaded applications. Recent work [51]
proposes to prefetch page table entries on TLB misses. Other
work [61, 69] shows optimizations for CPU-GPU environ-
ments. These approaches tackle a set of different problems
in the translation process and can co-exist with BabelFish.

Elastic cuckoo page tables [71] propose a hashed page table
design based on elastic cuckoo hashing. Such scheme can
be augmented with an additional hashed page table where
containers in a CCID group share page table entries. Auxiliary
structures called Cuckoo Walk Tables could be enhanced to
indicate whether a translation is shared. Since the TLB is not
affected by elastic cuckoo page tables, BabelFish’s TLB design
remains the same.

Other work has focused on virtualized environments. POM-
TLB and CSALT [64, 50] propose large in-memory TLBs
and cache partitioning for translations. DVMT [1] proposes



to reduce 2D page walks in virtual machines by enabling
application-managed translations. RMM [37] proposes redun-
dant memory mappings and [25] aims to reduce the dimen-
sionality of nested page walks. PageForge [70] proposes near-
memory extensions for content-aware page merging. This
deduplication process shares pages in virtualized environ-
ments, generating an opportunity to further share translations.
These solutions are orthogonal to BabelFish in a scenario with
containers inside VMs.

Khalidi and Talluri [38] propose a scheme to share TLB
entries between processes. The idea is to tag each TLB
entry with a PCID or a bitvector. The bitvector uses one-
hot encoding to identify one of 10-16 different collections of
shared translations. A TLB is accessed twice: with the PCID
and with the bitvector. If the bitvector matches, the shared
translation is retrieved. The authors also suggest tagging global
hashed page tables with PCIDs or bitvectors. While this
scheme allows translation sharing, compared to BabelFish, it
has several limitations. First, unlike BabelFish, the scheme is
not scalable because the number of different collections of
translations that can be shared is limited to the number of
bits in the bitvector. Second, to find a shared translation, the
TLB is accessed twice. Third, unlike BabelFish, the scheme
does not support CoW or selective sharing of a translation. In
addition, it does not support ASLR. Finally, BabelFish also
proposes the sharing of multi-level page table entries.
Native Execution Environment. A software-only approach
that improves zygote fork and application performance in
Android by sharing page translations across applications is
presented in [23]. This scheme only shares code translations
of 4KB pages in a 2-level page table design. This solution
requires disabling TLB tagging and marking TLB entries
as global, which leads to TLB flushes at context switches.
Moreover, this solution does not support the sharing of data
translations. In contrast, BabelFish shares both code and data
translations in both TLB and page tables, for multiple page
sizes, while supporting tagged TLBs and CoW.

IX. CONCLUSION

Container environments create replicated translations that
cause high TLB pressure and redundant kernel work during
page table management. To address this problem, we proposed
BabelFish, a novel architecture to share address translations
across containers in the L2 TLB and in the page tables. We
evaluated BabelFish with simulations of an 8-core processor
running a set of Docker containers. On average, BabelFish
reduced the mean and tail latency of containerized data-serving
workloads by 11% and 18%, respectively. It also lowered
the execution time of containerized compute workloads by
11%. Finally, it reduced serverless function bring-up time
by 8% and execution time by 10%–55%. Overall, BabelFish
sped-up applications across the board substantially, even in
our conservative environment where we co-located only 2-3
containers per core.
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APPENDIX: STORING AND ACCESSING THE PC BITMASK

To understand where the PC bitmask is stored and how it is
accessed, consider Figure 12(a), which shows the page tables
of three processes of a CCID group that share a PTE table.
BabelFish adds a single MaskPage associated with the set of
PMD tables of the processes.

PGD PUD PMD PTE

PGD PUD PMD

PGD PUD PMD

PGD PUD PMD PTE

PGD PUD PMD

PGD PUD PMD

PTE

PTE

MaskPage MaskPage
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Fig. 12: Operation of the MaskPage.

The OS populates the MaskPage with the PC bitmask and
the pid list information for all the pages mapped by the PMD
table set. Figure 13 shows its contents. It contains up to 512
PC bitmasks for the 512 pmd t entries in the PMD table set.
Further, it contains a single pid list, which has the ordered
pids of the processes in the CCID group that have performed
a CoW on any of the pages mapped by the PMD table set.
The pid list has at most 32 pids. Hence, there can be at most
32 distinct processes performing CoW on these pages.

PC0 PC1 … PCi

…

… PC511
pidi

512 PC bitmasks;  
one per pmd_t

pid_list of
at most 32 pids

2KB

128B

Fig. 13: MaskPage with 512 PC bitmasks and one pid list.

As a process performs a CoW on a page in this PMD table
set for the first time, the OS puts its pid in the next position
in the ordered pid list. If this is position i, it means that the
process claims bit i in all of the 512 PC bitmasks. Of course,
bit i is set in only the PC bitmasks of the pmd t entries that
reach pages that the process has performed a CoW on.

With this design, on a TLB miss, as a pmd t entry is
accessed, the hardware checks the ORPC bit (Section III-A).
If it is set, then the hardware accesses the MaskPage in parallel



with the request for the pte t entry. The hardware then reads
the corresponding PC bitmask and loads it into the L1 TLB.

If more than 32 processes in a CCID group perform CoWs
on pages mapped by a PMD table set, this design runs out
of space, and all the processes in the group need to revert
to non-shared translations — even if many processes in the
group share many {VPN, PPN} mappings. Specifically, when
a 33rd process performs a CoW, the OS allocates a page of
pte t translations for each of the processes in the group that
were using shared translations in the PMD page set. In these
new translations, the OS sets the Ownership (O) bit. The only
physical data page that is allocated is the one updated by
the writing process. The result is the organization shown in
Figure 12(b), for a single PTE table being shared.

Consolidating CoW information from all the pages mapped
by a PMD table set in a single MaskPage may sometimes be
inefficient. However, we make this choice because selecting
a finer granularity will increase space overhead. Furthermore,
recall that writable pages (e.g., dataset) and read-only pages
(e.g., code) can have an unlimited number of sharers. CoW
pages can also be read-shared by an unlimited number of
sharers; they just cannot have more than 32 writing processes.
It can be shown that, with an extra indirection, one could
support more writing processes.

REFERENCES

[1] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual
memory translation,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), June 2017, pp. 457–468.

[2] Amazon, “AWS Lambda,” https://aws.amazon.com/lambda.
[3] Amazon Web Services, “Amazon Elastic Container Service,” https://aws.

amazon.com/ecs.
[4] N. Amit, “Optimizing the TLB shootdown algorithm with page access

tracking,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), 2017.

[5] Apache Software Foundation, “Apache HTTP Server Project,” https:
//httpd.apache.org.

[6] ArangoDB, “Transparent Huge Pages Warn-
ing,” https://github.com/arangodb/arangodb/blob/
2b84348b7789893878ebd0c8b552dc20416c98f0/lib/
ApplicationFeatures/EnvironmentFeature.cpp.

[7] ArangoDB Inc., “ArangoDB,” https://www.arangodb.com.
[8] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh, “Avoiding

TLB Shootdowns Through Self-Invalidating TLB Entries,” in 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2017.

[9] A. Awad, S. D. Hammond, G. R. Voskuilen, and R. J. Hoekstra, “Samba:
A Detailed Memory Management Unit (MMU) for the SST Simulation
Framework,” Sandia National Laboratories, Tech. Rep. SAND2017-
0002, January 2017.

[10] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.

[11] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level TLBs
for chip multiprocessors,” in 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, Feb 2011, pp. 62–63.

[12] B. Burns and D. Oppenheimer, “Design Patterns for Container-based
Distributed Systems,” in Proceedings of the 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud’16), Denver, CO, USA, Jun.
2016.

[13] Canonical, “Ubuntu Server,” https://www.ubuntu.com/server.
[14] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui, and V. J.

Reddi, “Simulation and Analysis Engine for Scale-Out Workloads,” in
Proceedings of the 2016 International Conference on Supercomputing,
ser. ICS ’16. New York, NY, USA: ACM, 2016, pp. 22:1–22:13.

[15] J. Choi, J. Kim, and H. Han, “Efficient Memory Mapped File I/O for
In-Memory File Systems,” in 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17), 2017.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

[17] G. Cox and A. Bhattacharjee, “Efficient address translation for architec-
tures with multiple page sizes,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New York, NY,
USA: ACM, 2017, pp. 435–448.

[18] Docker, “Docker Community Edition,” https://github.com/docker/
docker-ce.

[19] ——, “Docker Hub,” https://hub.docker.com.
[20] ——, “Swarm Mode Overview,” https://docs.docker.com/engine/swarm.
[21] ——, “What is Docker?” https://www.docker.com/what-docker.
[22] ——, “Best practices for writing Dockerfiles,” https://docs.docker.com/

develop/develop-images/dockerfile best-practices, Tech. Rep., 2019.
[23] X. Dong, S. Dwarkadas, and A. L. Cox, “Shared address translation

revisited,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM,
2016, pp. 18:1–18:15.

[24] A. Ellis, “Open Functions-as-a-Service,” https://github.com/openfaas/
faas.

[25] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-47), Cambridge, United Kingdom, Dec.
2014.

[26] Google, “Cloud Functions,” https://cloud.google.com/functions/.
[27] ——, “Compute Engine,” https://cloud.google.com/compute.
[28] ——, “Production Grade Container Orchestration,” https://kubernetes.io.
[29] ——, “Kubernetes pods,” https://kubernetes.io/docs/concepts/workloads/

pods/pod, Tech. Rep., 2019.
[30] IBM, “Docker at insane scale on IBM Power Systems,”

https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-scale-
on-ibm-power-systems.

[31] ——, “IBM Cloud Computing,” https://www.ibm.com/cloud-computing.
[32] IBM Cloud Functions, “Function-as-a-Service on IBM,” https://www.

ibm.com/cloud/functions.
[33] B. Ibryam, “Principles of Container-based Application Design,”

https://www.redhat.com/cms/managed-files/cl-cloud-native-container-
design-whitepaper-f8808kc-201710-v3-en.pdf, Red Hat, Inc, Tech.
Rep., 2017.

[34] Intel, “Developer’s Manual,” https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-vol-3a-part-1-manual.pdf.

[35] B. J. McKenzie, R. Harries, and T. Bell, “Selecting a hashing algorithm.”
Software: Practice and Experience, vol. 20, pp. 209 – 224, 02 1990.

[36] Jens Axboe, “Flexible I/O Tester,” https://github.com/axboe/fio.
[37] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,

M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant Memory
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