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ABSTRACT
Directories for cache coherence have been recently shown to be
vulnerable to conflict-based side-channel attacks. By forcing di-
rectory conflicts, an attacker can evict victim directory entries,
which in turn trigger the eviction of victim cache lines from private
caches. This evidence strongly suggests that directories need to be
redesigned for security. The key to a secure directory is to block in-
terference between processes. Sadly, in an environment with many
cores, this is hard or expensive to do.

This paper presents the first design of a scalable secure directory.
We call it SecDir. SecDir takes part of the storage used by a conven-
tional directory and re-assigns it to per-core private directory areas
used in a victim-cache manner called Victim Directories (VDs). The
partitioned nature of VDs prevents directory interference across
cores, defeating directory side-channel attacks. The VD of a core
is distributed, and holds as many entries as lines in the private L2
cache of the core. To minimize victim self-conflicts in a VD during
an attack, a VD is organized as a cuckoo directory. Such a design
also obscures the victim’s conflict patterns from the attacker. For
our evaluation, we model with simulations the directory of an Intel
Skylake-X server with and without SecDir. Our results show that
SecDir has a negligible performance overhead. Furthermore, SecDir
is area-efficient.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and coun-
termeasures; • Computer systems organization → Multicore
architectures.
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1 INTRODUCTION
The design of directories for cache coherence has been an active
area of research for many years (e.g., [5, 6, 11, 17, 18, 37]). Most of
the research has focused on making the directories efficient and
scalable to large core counts. As a result, commercial machines
have incorporated directories (e.g., [26, 39]).

Recent research has shown that directories are vulnerable to
conflict-based side-channel attacks [46]. The insight is that every
single line in the cache hierarchy has a corresponding directory en-
try. Since directories are themselves cache structures organized into
sets and ways, an attacker can access data whose directory entries
conflict in a directory set with entries from the victim. The eviction
of victim directory entries automatically triggers the eviction of
victim cache lines from the private caches of the victim — irre-
spective of whether the cache hierarchy is inclusive, non-inclusive,
or exclusive. As the victim re-accesses its data, the attacker can
indirectly observe the directory state changing, hence succeeding
in their purpose.

Directory attacks are wickedly effective, as they only rely on the
fact that directories are shared between cores. Also, they become
easier to mount with higher core counts in the machine. This is
because the attacker can use the private caches of more cores to
access more cache lines whose directory entries map into the same
directory set as the victim’s.

These observations strongly indicate that directories have a fun-
damental security problem. Hence, they need to be redesigned with
security concerns in mind.

The key to a secure directory is to block interference between
processes. Sadly, this is hard or expensive to do in an environ-
ment with many cores. For example, an apparent solution is to
substantially increase the associativity of the directory structures.
Unfortunately, it is unrealistic to aim for a directory associativity as
high as the associativity of the private L2 cache times the number of
cores — which is the total number of different live directory entries
that could be mapped to one directory set.

A second approach is to way-partition the directory. Each ap-
plication is given some of the directory ways, to which it has
uncontested use. This solution is similar to cache partitioning
schemes [25, 28, 42]. Unfortunately, this approach is inflexible, low
performing, and limited, since servers can have many more cores
than directory ways.

Ideally, a secure directory has to have several characteristics.
First, it should set aside some directory area to support many iso-
lated partitions inexpensively and scalably. Second, each partition
should provide high associativity, so that a victim suffers few self-
conflicts under the pathological environment of an attack. Finally,
the directory should have little area overhead and provide fast
look-ups.

https://doi.org/10.1145/3307650.3326635
https://doi.org/10.1145/3307650.3326635


ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA M. Yan, et al.

In this paper, we use these ideas to design a secure directory
for a server multiprocessor. We call it SecDir. SecDir takes part of
the storage used by a conventional directory and re-assigns it to
per-core private directory structures of high effective associativity
called Victim Directories (VDs). The partitioned design of VDs pre-
vents directory interference across cores, thus defeating directory
side-channel attacks. The VD of a core is distributed, and holds as
many entries as lines in the private L2 cache of the core. To provide
high effective associativity, a VD is organized as a cuckoo direc-
tory. Such a design also obscures victim self-conflict patterns from
the attacker. An insight in SecDir is that conventional directories
need substantial storage to keep sharer information — especially in
machines with large core counts — while a core-private directory
structure like a VD does not need such information. Hence, a VD
can boost the number of directory entries for a very modest storage
cost.

We model with simulations the directory of an Intel Skylake-X
server [21] without and with SecDir. We run SPEC and PARSEC ap-
plications. Our results show that SecDir has negligible performance
overhead. Furthermore, SecDir is area-efficient: it only needs 28.5KB
more directory storage per core than the Skylake-X for an 8-core
machine, while it uses less directory storage than the Skylake-X
for 44 cores or more. Finally, a cuckoo VD organization eliminates
substantial victim self-conflicts in a worst-case attack scenario.

The contributions of this paper are:
• The design of SecDir, the first scalable secure directory.
• An analysis of the characteristics of a secure directory.
• An evaluation of SecDir.

2 BACKGROUND & MOTIVATION
2.1 Directories and Non-Inclusive Caches
Directory-based cache coherence (e.g., [5, 6, 11, 17, 18, 37]) is one
of the two ways of implementing hardware cache coherence. It
relies on a directory, which is a hardware table with an entry for
each of the lines stored in the cache hierarchy. A directory entry
keeps the sharer information for a line, namely, which cores cache
the line. The simplest encoding of this information is through a
Presence bit vector (one bit per core, which is set if the core’s caches
have a copy of the line); other encodings use a set of pointers to
the sharers [18]. For simplicity, this paper uses the design with the
presence bit vector by default. In addition, a directory entry contains
information on the coherence state of the line. Such information
can be as simple as a Dirty bit indicating whether the line is dirty.

Typically, the directory is partitioned and physically distributed
into as many slices as cores. Each directory slice can store directory
entries for a fixed set of physical addresses. A proprietary hash func-
tion maps each requested address to its corresponding slice. In an
inclusive cache hierarchy, each directory slice is closely associated
with a Last-Level Cache (LLC) slice.

In recent years, as the number of cores in amachine has increased,
there has been a trend toward using non-inclusive cache hierarchies
(NICHs). In NICHs, the LLC (typically, the L3) may not contain all
the lines present in the private caches (i.e., the L2s). The reason
why NICHs are desirable is that, for large core counts, the latency
from a core to remote slices of the LLC is very large; hence, it is

attractive to keep the L2 miss rates low by having large L2 caches.
Unfortunately, large L2 caches in inclusive cache hierarchies end-
up replicating substantial state. It is therefore better to keep large,
non-inclusive L2s, and use the LLC as a victim cache. This is the
approach used by Intel’s Skylake-X/SP [21, 40].

In a NICH, since some cache lines are in L2s and not in the LLC,
the directory is organized differently. Zhao et al. [48] propose to
have two directory structures per slice. One is like the directory for
an inclusive cache hierarchy, with one entry for each line in the
LLC slice; the other structure has entries for lines only in L2s. We
call these structures the Traditional Directory (TD) and the Extended
Directory (ED), respectively. Both TD and ED are set-associative
and queried concurrently.

According to our prior work [46], the Intel Skylake-X has a
similar type of directory structure. While the ED and TD in Skylake-
X appear to share some state, in this paper, we will assume for
Skylake-X a simplified structure where the ED and TD in a slice are
separate, as shown in Figure 2(a). As shown in the figure, the ED
and TD in a slice can have different associativities. Further, they
can have a different number and type of coherence states.

As a core references an address and brings its line from memory
to the L2, the slice mapping the address allocates a directory entry
in the ED. The entry remains in the ED even if other cores also
access the line. An ED entry is moved to the TD in two cases. One
is if the ED entry is evicted from the ED due to a conflict in an ED
set. The other case is if a cache line is evicted from an L2; as the
line is written back to the LLC, its ED entry is moved to the TD.

There is one case when a TD entry is moved to the ED. It is
when a core writes to a line that has a directory entry in the TD.
In this case, as the hardware invalidates all the other copies of the
line in the system, its TD entry moves to the ED. To the best of our
knowledge, the eviction of a TD entry due to a conflict in a TD set
causes the corresponding cache line to be invalidated from all the
caches and the TD entry to be discarded. Some more details are
discussed in Appendix A.

2.2 Conflict-Based Cache Attacks
In a cache-based side-channel attack (or cache attack for short),
an attacker tries to observe a victim’s access patterns on a target
address, obtaining secret information in the process. One of the
most effective and popular cache attacks is the conflict-based cache
attack. It has been demonstrated on a wide range of computing plat-
forms, including Intel [30, 46], ARM [27], and AMD [22] processors,
and on many security-sensitive applications, such as encryption
algorithms [16, 34] and web browser transactions [14, 32].

A conflict-based attack has three steps. In the Conflict step, the at-
tacker evicts the target address from the cache by creating conflicts
in the cache set where the target address maps to. In a cross-core
attack, where attacker and victim run on different cores, this step
involves evicting the target line from the victim’s private cache,
creating a so-called inclusion victim [23, 45].

In the Wait step, the attacker waits for a predefined interval.
Meanwhile, the victim may perform an access to the target address,
bringing the line back into the cache. Finally, in the Analyze step,
the attacker analyzes the cache state to figure out whether the
victim has accessed the target line during the Wait interval.



SecDir: A Secure Directory to Defeat Directory Side-Channel Attacks ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

There are many variations of conflict-based attacks, such as
prime+probe [34], evict+reload [14], evict+time [33], alias-driven
attack [15], evict+prefetch [12], and prime+abort [7]. These attacks
are different only in the way they perform the Analyze step. SecDir
aims to defend against conflict-based cache attacks by blocking the
Conflict step.

There are two other types of cache attacks, which are not consid-
ered in this paper. The first one is flush-based attacks [12, 13, 22, 47],
which require that attacker and victim share the page with the tar-
get address. The attacker uses a special instruction (e.g., clflush),
to evict the target address from the cache hierarchy. This attack is
easy to block. Since attackers and victims can only share read-only
and execute-only pages, an effective solution is to disable clflush
on these pages [45]. The second type of attacks is cache-collision
attacks [4], where the attacker does not perform evictions and only
passively measures the victim’s execution time, which leaks infor-
mation. This type of attack can be fixed by modifying the victim
application or using a random fill cache architecture [29].

2.3 Directory Attacks
Recent work shows various examples of directory attacks on the In-
tel Skylake-X directory [46]. They exploit the limited associativity
of one directory slice compared to the combined associativity of all
of the L2 caches in the machine plus one LLC slice. To understand
the attacks, consider the parameters of the Skylake-X caches and
simplified directories that we use in this paper. In a given slice,
the TD and ED have associativities ofWTD = 11 andWED = 12,
respectively. Consequently, a given directory slice can hold at most
23 entries mapping to the same set. On the other hand, the associa-
tivity of an LLC slice isWLLC =WTD = 11, and that of an L2 cache
isWL2 = 16. Further, the machine can have many cores — i.e., from
N = 8 to 28.

An attacker can use up to N -1 cores to bring enough lines into
L2 caches and into one LLC slice to require more than 23 directory
entries to be mapped into a single set of a directory slice (Figure 1).
The result is that any directory entry in that set belonging to the
victim process is evicted, automatically evicting the corresponding
line from the victim’s L2 cache, which is an inclusion victim. As
the victim process later reloads the data, its directory entry is auto-
matically reloaded, which allows the attacker to indirectly observe
the victim’s action. This attack can be accomplished with a vari-
ety of techniques described in Section 2.2, including the popular
evict+reload and prime+probe.1

For a victim running on a core to be able to keep at least one
entry in the directory, a directory slice would have to have an
associativityWTD +WED such that

WTD +WED >WL2 × (N − 1) +WLLC

which assumes that the attacker can use all the cores minus one.
In a Skylake-X with 8 cores, this requires a directory slice with an
associativity higher than 123. With more cores, the required associa-
tivity increases rapidly. Since this is an unreasonable associativity,
current directories are easy targets of conflict-based side-channel
attacks.

1In [46], the version of prime+probe attack exploits a limitation of the implementation
of the Intel Skylake-X, as discussed in Appendix A.
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Figure 1: Attackers exploiting the limited associativity of a
directory slice.

3 THREAT MODEL AND DESIGN GOALS
Table 1 puts in context the threat model that SecDir targets. We
consider two aspects of the threat model, namely, the co-location of
victim and attacker, and the attacker’s strategy. The threat model
targeted by SecDir is marked with an X.

Co-location
Same-core Cross-core

Attack Strategy Active X
Passive

Table 1: Classification of threat models. The threat model
targeted by SecDir is marked with X.

SecDir targets a scenario where victim and attacker run on differ-
ent cores (i.e., cross-core). We consider server multiprocessors used
in cloud setups. The attacker and the victim are processes from
different security domains, and run in different virtual machines or
containers [8] with different domain tags. The hypervisor or host
OS is able to distinguish different domains, and avoids assigning
the two processes to the same cores [41]. Thus, since the attacker
and the victim are on different cores, they share the LLC, but not
private caches.

SecDir targets an active attacker, rather than a passive one. An
active attacker is one that interferes with the victim’s cache ac-
cesses by using directory conflicts, and exposes some of the vic-
tim’s security-sensitive cache accesses. It uses prime+probe [46],
evict+reload, or other techniques. It is possible that the attacker can
control multiple processes, or even the majority of the processes
in the chip. Hence, it can issue many requests from many cores to
stress the directory and trigger pathological cases.

On the other hand, a passive attacker does not interfere with the
victim. It simply monitors the victim’s cache accesses or execution
time, which may be affected by the reuse or conflict of cache lines
or directory entries within the victim itself (i.e., self-reuse and self-
conflict). An example is the cache-collision attack (Section 2.2).
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Figure 2: Slice of a conventional directory (a) and SecDir (b).

To summarize, our security goal is for directory conflicts experi-
enced by the victim program to be a function of the victim program
only, and not the attacker’s active behavior. Note that there is a big
difference between active and passive attackers. The effectiveness
of a passive attack strategy is highly dependent on how leaky the
victim application is, while an active attack strategy can be used to
expose more information than the victim itself leaks. Also, since
self-reuses and self-conflicts are not triggered by the attacker, their
patterns can be obfuscated by introducing randomness into entry
replacement algorithms.

We design a solution to defeat cross-core conflict-based active at-
tacks on directories for non-inclusive or exclusive cache hierarchies.
Our goal is to prevent an active attacker from creating inclusion
victims in the victim’s private caches through the eviction of the vic-
tim’s directory entries. We consider that evictions of victim cache
lines or victim directory entries from the victim’s private caches or
private directories due to self-conflicts (i.e., conflicts between victim
cache lines or victim directory entries) do not leak information.
Prior work [35, 45] has taken a similar approach, as self-conflicts
are not triggered by the attacker.

4 DESIGNING A SECURE DIRECTORY
4.1 Main Idea
The root cause of the directory vulnerability is the limited associa-
tivity of individual directory slices, given the number of cores in
current servers. To defeat directory attacks, we need a new direc-
tory organization with three attributes. First, the directory should
set aside some storage to support inexpensive and scalable per-core
isolated directory partitions. Such support will provide victim iso-
lation, and prevent the attacker from creating inclusion victims.
Second, each partition should have high associativity, so that a
victim suffers minimal self-conflicts under an attack. Finally, the
directory should add little area overhead and provide fast look-ups.
In this paper, we propose a new directory organization with these
three attributes called SecDir.

Figure 2(a) shows a slice of a conventional directory for non-
inclusive cache hierarchies, such as that of Intel’s Skylake-X, and
how we change it into SecDir in Figure 2(b). The key idea of SecDir
is to take a portion of the ED (e.g., some of its ways) and re-assign
the storage to per-core private directory structures called the Victim

Directories (VDs) (Figure 2(b)). We do not modify the TD because
that would also require modifying the LLC.

A given core’s VD in the slice shown is only one bank of the core’s
total VD. In other words, a core has a VD bank in every slice, each
mapping a different set of addresses. This distributed VD of a core is
sized such that it can hold as many directory entries as cache lines
can be in a private L2 cache. This size will minimize self-conflicts
in the VD in benign applications. Further, to provide high effective
associativity, each VD bank uses Cuckoo hashing [10, 11]. Such a
design also obscures any victim conflict patterns from the attacker.
Finally, since, to a large extent, VD access hits should occur mostly
during attacks, we simplify the hardware and access the VD only
after ED and TD.

A slice has as many VDs as cores. Like the ED and TD, the VDs
in a slice only contain directory entries for lines mapped to the
local slice. A VD is set associative and, because it keeps information
for a single core, it does not need sharer information bits. Such
information is effectively encoded in the VD ID.

The VD of a core loads an entry when the local ED plus TD
have a conflict and need to evict the directory entry for a line that
lives in that core’s L2 cache. The VD evicts an entry in two cases.
The first one is when the entry suffers a conflict; in this case, if
the entry belonged to a dirty line, the line is written back from the
core’s L2 to memory. The second case is when the corresponding
data line is evicted from the core’s L2 into the LLC; in this case, the
directory entry is moved from the VD to the TD. Full details of the
VD operation are presented in Section 4.2.

The VD is accessed after the ED/TD declare a miss. Hence, the
VD complements the ED/TD: the ED/TD provide fast directory
lookup, while the VD blocks interference of directory entries used
by different cores in an attack. Overall, SecDir has the attributes
discussed above:
Provides Isolation Inexpensively and Scalably. In a slice, there
are as many VDs as cores, each owned by a core. Hence, directory
entries used by different cores are isolated, and cannot interfere
with each other. A given core has one VD bank in each slice. We size
the banks so that, together, all the banks for a core across slices can
accommodate as many entries as lines fit in an L2 cache. This helps
minimize self-conflicts in the distributed VD of a core running a
victim program, as we can assume that the lines referenced by a
benign victim program are largely uniformly distributed across the
different slices.
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Note that the VD design is scalable with the number of cores in
the machine: irrespective of the number of cores in the machine,
the size of the distributed VD for a core is practically constant. As
more cores are added, the size of a VD bank in each slice decreases,
but the number of slices and, therefore, the number of VD banks,
increases.
Provides High Associativity. A slice of SecDir has a high ef-
fective associativity. It has the associativity of the ED plus TD
(available to all processes) plus the associativity of the private VD
bank augmented with cuckoo hashing (Section 5.2.1). Under benign
conditions, the VD is unlikely to be highly utilized. Under attack
conditions, the victim can utilize its core’s VD banks across all the
slices to isolate the directory entries corresponding to its L2 lines.
Uses Low Area. SecDir reassigns some storage from ED to VD. An
important insight in SecDir is that the ED needs substantial storage
to keep sharer information, while a core-private directory structure
like VD does not need such information (Figure 2(b)). Hence, SecDir
takes ED tags, which include sharer information, and converts them
to VD tags, which do not. The VD is area efficient.

Importantly, the overhead of the sharer information in an ED
entry tends to increase with the number of cores in the machine
(e.g., more presence bits). Hence, as the number of cores increases,
we can add more VD entries per core, as the VDs reuse more sharer
information bits.

This fact produces a surprising effect. Suppose that we redesign
Skylake-X’s directory into SecDir’s, using the following guidelines:
the number of entries in an ED slice, and the number of entries
in a core’s VD machine-wide is each equal to the number of lines
in a private L2 cache. In this case, SecDir only needs 28.5KB more
directory storage per slice than the Skylake-X directory for an 8-
core machine, and it uses less directory storage than the Skylake-X
for 44 cores or more. We present more details in Section 7.
Delivers Efficient Directory Lookup. Under ordinary, attack-
free conditions, most of the directory hits are satisfied by the TD
or ED. When TD and ED miss and a VD bank is accessed, the VD
typically misses. At that point, a main memory access is initiated.
Compared to a main memory access latency, a VD access latency
is very small. However, it is still important for the VD accesses to
be efficient. Consequently, as we will see, VDs have an Empty Bit
(EB), which helps to avoid unnecessary VD accesses. The EB saves
substantial energy and some latency (Section 5.2.2).

Note that a given directory entry can be, at the same time, in
multiple VD banks in the slice (i.e., banks of different cores). This is
a security requirement, as we will see. Hence, on a VD access, we
sometimes need to search all the banks. Searching multiple banks
does not increase the VD access latency, as the different banks are
independent (Section 5.1).

4.2 SecDir Directory Operation
Any line in the cache hierarchy has to have a corresponding direc-
tory entry. In this section, we describe how the SecDir directory
operates. First, however, we recall how a traditional directory op-
erates. For simplicity, the following discussion assumes a MESI
cache-coherence protocol. SecDir can work with any protocol —
e.g., our evaluation in Section 8 uses a MOESI protocol.

4.2.1 Traditional Directory Operation. Figure 3(a) shows the oper-
ation of a traditional directory in a non-inclusive cache hierarchy.
When a core accesses a line that does not exist in the cache hierar-
chy, the line is directly brought from main memory into the core’s
private cache. No data is inserted into the LLC. At the same time, a
directory entry for the line is inserted in the ED (①). As discussed
in Section 2.1, a directory entry can migrate from ED to TD due to
a conflict in an ED set, or due to a cache line eviction from an L2; a
directory entry can migrate from TD to ED due to a core writing
to a line that has a directory entry in the TD.

When a TD conflict occurs, the conflicting TD entry cannot be
moved to the ED (where it could have possibly come from), as it
could cause a conflict deadlock going back and forth. Instead, the
conflicting TD entry is discarded, which automatically causes all
copies of the corresponding cache line to be evicted from the cache
hierarchy (②). This is the transition that an attacker uses to create
an inclusion victim in the victim’s private cache. Specifically, the
attacker first forces the eviction of a victim directory entry from
ED, and then from TD.

Victim
Directory 

(VD)

Main 
Memory

① core
access

③ TD conflict
(>=1 sharer)

⑤ VD
conflict

④ L2
line evicted

Traditional 
Directory 

(TD)

Extended 
Directory 

(ED)

② TD conflict
(no sharer)

Main 
Memory

① core
access

Traditional 
Directory 

(TD)

Extended 
Directory 

(ED)

② TD conflict

(a) Traditional.

(b) SecDir.

Figure 3: Operation of a traditional (a) and SecDir (b) direc-
tory.

4.2.2 SecDir Operation. Figure 3(b) shows the operation of SecDir.
As in the traditional directory, when a line is fetched from main
memory to a core’s private cache, its directory information is stored
in the ED (①). Further, the directory state can migrate between ED
and TD exactly like in the traditional directory.

The difference occurs on a TD conflict. Depending on the sharer
information in the conflicting directory entry, two different transi-
tions may occur. First, if the directory entry shows that there are
no sharers of the cache line (i.e., the cache line is only in the LLC),
then the conflicting TD entry is discarded and, if the cache line
is dirty, the cache line is written back to main memory (②). Note
that it is secure to allow attackers to evict victim lines in such a
way. The reason is that, as we will see, for a victim line to be only
in LLC, it means that the victim process has evicted the line from
its private L2 due to a self-conflict. As per Section 3, we do not
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Transition VD Access Type Coherence Transaction Security
②: TD→ Memory — If cache line in Dirty state in LLC, write it

back to memory; invalidate line from LLC
No leakage

③: TD→ VD Insert the directory entry into the
VDs of all the sharers

— No leakage

④: VD → TD Search all VD banks to remove any
matching directory entry

Write back the cache line to the LLC Leak only L2 self-conflicts (safe)

⑤: VD→ Memory Remove the conflicting directory
entry from the VD bank

Write back the corresponding cache line from
the core’s L2 to memory if in Dirty state; in-
validate the line from that L2

Leak only VD self-conflicts (safe)

Table 2: Summary of SecDir transitions.

consider a victim’s self-conflicts in its private caches as part of the
attack model, since they are not caused by an active attacker.

The second case is when the conflicting TD entry shows that
there are one or more caches with a copy of the cache line. Hence,
evicting the cache line from the L2s would create a vulnerability
like in conventional directories (Section 4.2.1). Consequently, in
this case, the state in the conflicting TD entry is migrated to VD
(③). Specifically, for each of the sharers of the line, as specified in
the TD entry, SecDir creates an entry in the corresponding local VD
bank. To be secure, every single sharer needs to have a VD entry,
because every sharer needs to retain the line in its L2. Fortunately,
this operation is local to the directory, does not generate cache
coherence transactions, and has no impact on L2 cache states. In
particular, the victim process is unaffected: it continues to access
the cache line out of its L1/L2 caches, completely unaware that the
directory entry has moved from the TD to the VD. Further, after
the entry is inserted in the VD, it cannot be tampered with by the
actions of other cores, thanks to the partitioned nature of the VD.

A directory entry in the VD can be moved out of the VD in two
cases. The first one is when, due to a conflict in an L2 cache, a cache
line is evicted from an L2. In this case, SecDir consolidates all the
VD entries for the line (which result from multiple cores sharing
the line) into a single TD entry (④). It also inserts the line into the
LLC, so that future accesses to this cache line get it from the LLC.

Note that SecDir has to consolidate entries from as many VD
banks as cores share the line. Hence, this operation requires search-
ing all the VD banks in the slice and, for eachmatch found, removing
the entry from the VD bank and setting a bit in the presence bit
vector in the new directory entry in the TD. Fortunately, an L2 line
eviction is not on the critical path of serving cache accesses, and
this search overhead can be hidden. Further, Section 5 shows how
to optimize this operation. Finally, note that this transition does not
create a vulnerability, since it is created by a victim self-conflict in
the victim’s L2. The resulting self-eviction is not part of our attack
model because it is not caused by an active attacker.

The second case when SecDir moves an entry out of the VD
is a conflict in the VD. The conflicting entry cannot be moved
back to TD (where it came from) because it could cause a conflict
deadlock. Instead, SecDir discards the entry, and invalidates the
corresponding cache line from the corresponding L2 — writing it
back to main memory if dirty (⑤). Any other copies of the line in
other L2s, together with their VD entries, are undisturbed.

This operation is secure according to our model because, as
the VD is partitioned, such VD conflicts can only be self-conflicts
among directory entries owned by the same core. An active attacker

attempting a cross-core cache attack has no way to directly enforce
such VD self-conflicts. Also, recall that we size the distributed VD
for a core across all the slices to be similar to the size of the core’s
L2. In this case, even in the worst case when an attacker forces all
of the victim’s directory entries into the victim’s VD, the victim
will likely still be able to retain most of its L2 lines.

The SecDir transitions are summarized in Table 2.

5 VICTIM DIRECTORY DESIGN
This section discusses how to access the VD, and VD’s features for
security and efficiency.

5.1 Accessing the Victim Directory
The VD is accessed differently than the ED and TD. Let us assume
that the ED and TD have associativities equal toWED andWTD ,
respectively, and that they have the same number of sets. As shown
in Figure 4(a), the ED/TD are accessed as a conventional cache
structure ofWED +WTD associativity. For simplicity, the figure
neglects the Coherence State bits of each directory line. When an
address tag match is found, the sharer information is read.
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Figure 4: Accessing directories. For simplicity,weneglect the
Coherence State bits.

In a VD bank, there is no sharer information field. An access
only provides a single bit (hit or miss). A directory entry can be in
multiple VD banks. Hence, as shown in Figure 4(b), SecDir needs
to potentially search all the local VD banks. Each VD bank may
match, in which case it contributes with a set bit to a presence bit
vector. The vector gives the sharing information for the cache line.
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Given the size of the ED and TD, most accesses under attack-free
conditions hit in the ED/TD. However, we still want the VD access
to be fast and, therefore, SecDir keeps the associativity of each
VD bank (WVD ) modest. Note that searching all the local banks
in parallel does not slow down the VD access, as the searches are
independent. Unlike searches in an associative cache, this design
does not need an additional multiplexer to select one of the banks,
as it produces a bit vector.

There are three types of searches performed on the VDs of a
slice. On a read request, SecDir only needs to find one VD bank with
the matching address tag. The coherence protocol will access the
L2 of the core that owns the bank, and retrieve the line. On a write,
SecDir searches all the local VD banks to obtain the complete sharer
bit vector. A VD entry for the writing core is allocated (if it does not
exist already), and all the other matching entries are invalidated.
Finally, if SecDir performs transition④ in Table 2 (i.e., a cache line is
evicted from a private cache), the VD operation involves finding all
the matching entries in VD, generating a complete sharer bit vector,
creating a TD entry, and invalidating all the matching entries in
the VD.

In machines with many cores, SecDir can save hardware by
performing the VD search operation in batches — e.g., by accessing
and searching 8 VD banks at a time. This implementation saves
hardware, but results in slower searches. In this case, on a read
operation, SecDir calls off the search as soon as one matching entry
is found.

5.2 Victim Directory Features
The VD has two features that are helpful in two different scenarios:
one helps in pathological directory conflicts caused by attackers,
and the other in executions without attacks.

5.2.1 VD Bank Organization as a Cuckoo Directory. In a directory
attack, the attacker tries to cache in the private caches of multiple
cores many lines that map to a single set of a single directory slice.
In the worst case, the attacker completely fills the set of both ED
and TD in the slice, and SecDir has to move all the victim directory
entries in that set to the victim’s VD bank.

While the attacker concentrates its accesses on lines that map
to specific directory sets and slices, a benign victim application
generally distributes its directory entries across directory sets and
slices evenly. Consequently, in our design, we size the distributed
VD for a core across all the slices so that it holds as many entries as
the number of lines that fit in an L2 cache. This design should allow
the VD to retain many of the directory entries needed by the victim.
However, the victim may still suffer self-conflicts in the VD. To
minimize the number of self-conflicts in the VD, SecDir organizes
each VD bank as a Cuckoo Directory [10, 11].

A cuckoo directory is an organization that increases the occu-
pancy of a directory by using multiple hash functions to insert an
entry in the directory. The result is a higher effective associativity
and, hence, fewer evictions. In SecDir, a cuckoo directory has a
second advantage: it obscures victim self-conflict patterns from the
attacker.

A cuckoo directory admits multiple organizations, some more
sophisticated than others. In SecDir, we use a very simple design, to
show the potential of the scheme. Specifically, to insert or look-up

an entry, a VD bank is accessed with two hash functions (i.e., h1(x)
and h2(x)) in a pipelined manner. Consider the insertion of an entry
first. If any of the hash functions picks a set with an empty slot, the
entry is stored in an empty slot. If both hash functions pick full sets,
an entry in one of the sets is evicted, leaving an empty slot for the
incoming entry to use. If the evicted entry had been hashed with
h1(x), it is now hashed with h2(x), or vice-versa, landing in another
set. If there is an empty slot there, it takes it; otherwise it evicts an
entry there, which is rehashed again. This process is repeated for
up to NumRelocations times, before an entry is evicted to memory
for good. Appendix B shows an example of this mechanism.

On a VD bank look-up, the two hash functions can return at
most one hit. To confirm a VD bank miss, both functions have to
miss. Note that the cuckoo organization requires one extra bit per
VD entry, to indicate which hash function was used (Cuckoo bit).

The cuckoo operation is useful during an attack, as it increases
the occupancy of victim VD banks and reduces victim self-conflicts
in VD. Moreover, even if the victim suffers self-conflicts in its VD
banks, the randomization of the conflicts obscures the conflict
patterns from the attacker. This increases the victim’s resistance
against even a passive attacker.

5.2.2 Early Detection of VD Misses. In an execution without at-
tacks, the VD is likely to be highly underutilized. In this case, it is
desirable to quickly detect when a VD bank access is guaranteed to
miss, and save energy by skipping the access. SecDir supports this
operation by adding an Empty Bit (EB) to each set of each VD bank.
The EB bit is wired to the NOR of the Valid bits of all the entries in
the set of the VD bank. Hence, if an EB bit is set, it means that the
corresponding set in the VD bank is empty.

With this support, VD bank queries that search for a certain
directory entry proceed as follows. First, the hardware accesses
the EB arrays of the VD banks with the correct set index bits. If
an EB array returns a logic one, the hardware skips the ordinary
access to the VD bank array; otherwise, it proceeds with the access.
This design saves energy. Moreover, since accessing the EB arrays
is faster than accessing the VD bank arrays, this design also saves
some access latency.

The EB hardware can be organized in different ways. One imple-
mentation has a separate EB array per VD bank. Another combines
the EB bits of all the VD banks into a single EB array of width N.

6 DICUSSION: VD TIMING CONSIDERATIONS
The fact that the VD is accessed after the ED/TD are accessed raises
the question of whether an attacker could exploit a timing side
channel. Specifically, an attacker could push a victim’s directory
entries from the ED/TD to the VD, and then time the execution of
the victim’s program to find whether it takes longer.

If the victim is a single-threaded program, there is no such tim-
ing side channel. A victim’s execution is oblivious to whether the
directory entry is in ED/TD or VD. In either case, the corresponding
cache line is in the victim’s private cache. On accessing the line, the
victim hits in its private cache, and does not access the directory.

The situation is different in a multi-threaded victim where two
or more victim threads share writable data. Specifically, every time
that one core writes a line and sends an invalidation to another
core, the directory is accessed. Similarly, when a core accesses
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the line and obtains it from another core’s cache, the directory is
accessed. In both cases, accessing the directory in the VD rather
than in the ED/TDmakes the coherence transaction take a bit longer.
For example, using the parameters of the system we evaluate in
Section 8, accessing the VD extends by about 7 cycles a transaction
that would otherwise typically take about 100 cycles.

While this timing side channel may be hard to exploit due to the
non-determinism of cross-thread communication (i.e., each thread’s
accesses occur asynchronously to other threads’), we need to disable
this side channel. One way to do so is by artificially slowing down a
response from the ED/TD by the time it would take to additionally
access the VD. A naive solution would apply such slowdown to ev-
ery ED/TD-satisfied transaction. A more advanced solution would
apply such slowdown only to ED/TD-satisfied transactions that
involve invalidating or querying another core’s cache. We leave the
implementation and evaluation of this solution to future work.

7 A POSSIBLE DESIGN OF SECDIR
As an example of a possible SecDir design, we take the parameters
of the Intel Skylake-X directory [46] and modify them to support
SecDir. We are interested in comparing the Skylake-X and SecDir
directories for the same total directory storage. For simplicity, in
our analysis, we make a few assumptions on the cache coherence
protocol and the encoding of the cache coherence states. Specifi-
cally, we use the MESI coherence protocol, and encode the sharer
information in each directory entry as a “full-mapped” bit vector of
N presence bits (where N is the number of cores in the machine) [5].
Using a full-mapped bit vector is reasonable for modest core counts.
Also, we neglect any extra bits needed to encode transient cache
coherence states. With these assumptions, the structures of Figure 2
only need the following Coherence State bits: TD entries need a
Dirty and a Valid bit, while ED and VD entries only need a Valid
bit.

The storage of the Skylake-X directory includes TD and ED; the
storage of SecDir includes TD, a new ED, and VD. To size VD, we
partition the original (i.e., Skylake-X’s) ED into a new (i.e., SecDir’s)
ED and VD. Specifically, we take some ways off the original ED
and give the storage to the VD. Hence, the original ED and new ED
have the same number of sets but different number of ways. This is
the simplest reorganization strategy. We use random replacement
in ED and VD, and conservatively neglect the storage taken by any
replacement algorithm bits in TD.

Table 3 lists the relevant parameters of Intel’s Skylake-X to the
best of our knowledge. They include physical address, L2 cache, TD,
and ED parameters. The table also shows the SecDir parameters
for ED and VD. Since the values of SecDir’s parameters will change
in our experiments, we refer to them as variables WED , WVD , and
SVD . Recall that each entry in a VD bank has a Cuckoo bit, and
each set in a VD bank has an Empty bit (EB).

The ED in Skylake-X has an associativity of 12, and the ED in
SecDir has an associativity of only WED . We use the difference
in ways (i.e., 12 −WED ways) to build the VD banks in a slice.
Specifically, we consider SecDir designs where WED is 6, 7, 8, 9, or
10. For a given WED and core count, we design the VD as follows.
We consider VD bank associativities (WVD ) ranging from 3 to 8.
We choose the VD design with the highest directory entry count

Parameter Value Parameter Value
Physical Address Extended Directory (ED) in SecDir

Line address 40 bits # ways WED
Line offset 6 bits # sets 2048

L2 Cache Victim Directory (VD) in SecDir
# ways 16 # VD banks/slice N
# sets 1024 # ways per VD bank WVD
Traditional Directory (TD) # sets per VD bank SVD
# ways 11 Cuckoo bit (per entry) 1 bit
# sets 2048 Empty bit (per set) 1 bit
Address tag 29 bits
Extended Directory (ED)
# ways 12
# sets 2048
Address tag 29 bits

Table 3: Parameters of the Intel Skylake-X directory and
SecDir. The number of cores is represented by N.

and a power-of-two number of sets (SVD ) that fits in the storage
available.

Once we pick a VD design, we count the number of directory
entries that such a design provides to a single core across all the
slices. In case of an attack, these are the directory entries that the
victim can use in an isolated manner. We compare this number
to the number of lines in an L2 cache. The ratio between these
two numbers is shown in Figure 5. Values above 1 mean that the
per-core VD contains more directory entries than lines in L2.
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Figure 5: Comparing the number of per-core VD entries
machine-wide to the number of lines in an L2 cache. Values
above 1 mean that the per-core VD has more entries than
lines in an L2. We use a SecDir design with the same direc-
tory storage as a Skylake-X.

In SecDir, we want to have at least as many directory entries
in the per-core VD as lines in L2. The figure shows that, even
allowing the ED to retain a large number of ways (i.e., WED out of
the original 12), we quickly attain a per-core VD that has as many
entries as lines in L2. This is because the VD, unlike the ED, does
not store sharer information. Specifically, the Skylake-X ED has 12
ways and holds 1.5× as many entries as L2 lines. SecDir can keep
8 ways for the ED (ensuring that the ED holds as many entries as
L2 lines), and reassign 4 ways to the per-core VD. At 44 cores or
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more, such per-core VD can also hold as many entries as L2 lines
or more. If we only have 8 cores, which is the design we evaluate in
Section 8, and we still want to keep 8 ways for the ED, the per-core
VD needs extra storage to have as many entries as the L2. It can be
easily computed that it only needs 28.5 Kbytes per slice to have as
many entries as the L2. This is a very small overhead compared to
the sizes of an L2 and an LLC slice.

8 EXPERIMENTAL SETUP
We evaluate SecDir and compare it to Skylake-X’s directory using
simulations with Gem5 [3]. The parameters of the architecture with
SecDir are shown in Table 4, which augments the parameters in
Table 3. We implement a directory-based MOESI cache coherence
protocol. Recall from Section 7 that both SecDir and Skylake-X use
the same cache and TD configurations. As shown in the tables, the
EDs of Skylake-X and SecDir in a slice have the same number of sets
(2048) but different set-associativity, namely 12 and 8, respectively.
This means that the ED of SecDir in a slice has as many entries as
lines in L2. The VD is designed so that, per core across all the slices,
it also has as many entries as lines in L2. As indicated in Section 7,
with these parameters, SecDir needs 28.5KB more directory storage
per slice than the Skylake-X directory for an 8-core machine. This
is a very small overhead considering the sizes of the L2 and the
LLC slice. We call the Skylake-X architecture Baseline.

Parameter Value
Architecture 8 cores at 2.0GHz using MOESI dir coherence
Core 8 issue, out-of-order, no SMT, 32 load queue

entries, 32 store queue entries, 192 ROB entries
Private L1-I 32KB, 64B line, 4-way, 4 cycle round-trip (RT) latency
Private L1-D 32KB, 64B line, 8-way, 4 cycle RT latency
Private L2 1MB, 64B line, 16-way, 10 cycles RT latency
Shared L3 1.375MB, 64B line, 11-way, 30 cycles RT local
(per slice) latency, 50 cycles RT remote latency
Directory TD: 11-way, 2048 sets; ED: 8-way, 2048 sets; num VD
(per slice) banks: 8; VD bank: 4-way, 512 sets; NumRelocations: 8
Directory To TD/ED: same as L3. To VD: over L3, add 2 cycles
RT latency (EB access) and, if miss in EB, add 5 cycles (VD access)
Network 4×2 mesh, 128b link width
DRAM RT latency: 50 ns after L3

Table 4: Parameters of the SecDir architecture.

In our cuckoo directory implementation, we use the skewing
hash functions proposed by Seznec and Bodin [38] as our h1(x)
and h2(x) functions. These functions distribute cache lines equally
among sets, possess local and inter-bank dispersion properties,
and can be easily implemented in hardware. We set the cuckoo
NumRelocations to 8.

We evaluate SecDir and Skylake-X with 12 mixes of single-
threaded SPEC applications [19] and 10 multi-threaded PARSEC
applications [2]. We use the same approach as Jaleel et al. [23] to
pick the mixes of SPEC applications. Specifically, we run 23 indi-
vidual SPECInt2006 and SPECFP2006 applications on a single core
and one slice of the non-inclusive LLC structure. These applica-
tions are classified into three categories, namely core cache fitting
(CCF ), last-level cache fitting (LLCF ), and last-level cache thrashing

(LLCT ), according to their L2 and L3 miss rates. We consider the
6 possible combinations of two of these categories, and select 2
application mixes in each combination, as listed in Table 5.

Category Name & Applications Name & Applications
CCF, CCF mix0: 4 gobmk + 4 sjeng mix1: 4 hmmer + 4 gamess
LLCF, LLCF mix2: 4 bzip2 + 4 omnetpp mix3: 4 gromacs + 4 zeusmp
LLCT, LLCT mix4: 4 libquantum + 4 lbm mix5: 4 bwaves + 4 sphinx3
CCF, LLCF mix6: 4 sjeng + 4 omnetpp mix7: 4 h264ref + 4 zeusmp
CCF, LLCT mix8: 4 gobmk + 4 libquantum mix9: 4 namd + 4 bwaves
LLCF, LLCT mix10: 4 omnetpp + 4 bwaves mix11: 4 zeusmp + 4 lbm

Table 5: SPEC workload mixes.

We use the reference input size for the SPEC applications. When
running these mixes on 8 cores, we run 4 copies of each application,
and assign them to different cores. We skip the first 10 billion
instructions, and report simulation results for 500 million cycles.
For the PARSEC applications, we use the simmedium input size
and report simulation results for the region-of-interest (ROI).

9 SECURITY EVALUATION
We evaluate the security properties of SecDir on the AES encryption
algorithm [44]. Software implementations of AES usually use 4 look-
up tables, called T-tables, to improve the performance of the cipher
computation. The encryption process involves multiple rounds, and
each round has a round key. To generate the result for a certain
round, the algorithm uses the last round’s result to look-up the
T-tables, and then perform an XOR operation on the obtained value
and the round key. This implementation is known to be vulnerable
to conflict-based cache attacks [34], as the access patterns on the
T-tables leak intermediate encryption results and round keys.

In a conflict-based cache attack, the attacker aims to observe
the victim’s access patterns on the T-tables. First, it evicts all the T-
table entries from the cache hierarchy, and then tests which entries
have been accessed by the victim in each round of encryption by
analyzing the resulting cache states.

SecDir can effectively block such attacks. In SecDir, the ED and
TD are shared by all the cores, but the VDs are per-core private. The
most powerful adversary can take full control of the ED and TD, but
is unable to interfere with the entries in the victim’s VD. In order to
emulate such a powerful attacker, we simulate SecDir without ED or
TD, assuming that the attacker fully controls these two structures.
This is the most pathological scenario that an attacker can create.

In this scenario, we run the AES encryption implementation
from OpenSSL 0.9.8, and record the access patterns on the T0 T-
table. The table uses 16 memory lines. Figure 6 shows the addresses
of the T0 memory lines accessed as a function of time. Accesses are
classified as: (i) main memory accesses or (ii) L1 or L2 hits. Note
that, in this experiment, if a line is evicted from L2, its VD entry
is evicted too because there is no TD. Consequently, since this is a
single-threaded application, no L2 cache miss will hit in the VD; all
L2 cache misses will access main memory.

From the figure, we see that the first access to each memory
line of the table misses in the cache hierarchy and causes a main
memory access. As the line is fetched from memory, its directory
entry is inserted into VD, since there is no TD or ED. As seen in the
figure, all of the victim’s subsequent accesses to the T0 table lines
hit in the private L1/L2 caches. The attacker cannot observe these
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Figure 6: Trace of accesses to the T0 table in AES encryption. The application runs on SecDir with VD but no ED or TD.

private cache hits, and cannot directly interfere with the entries in
the victim’s VD.

SecDir is effective at protecting other applications, such as the
square-and-multiply operations in the RSA encryption algorithm.
The data in the leaky region of RSA is much smaller than the T-table.
Hence, it fits in the L2 cache and its directory entries fit in the VD.
An attacker cannot evict the target lines from L2.

If the victim’s security-sensitive data is large, the victim may
suffer self-conflicts in its L2 and/or in its VD. In this case, the victim
may leak information. However, recall that protecting against such
leakage is not within the scope of SecDir, as such leakage is not
created by an active attacker.

10 PERFORMANCE & AREA EVALUATION
10.1 Evaluation of SPEC Application Mixes
Figure 7 evaluates SecDir executing SPEC mixes. Figure 7(a) shows
the average instructions per cycle (IPC) of the SPEC mixes running
on SecDir and Baseline. For each mix, the bars are normalized to
Baseline. From the figure, we see that the IPC of the mixes changes
little across architectures. The reason is that SecDir has a positive
and a negative effect on the execution time, and both effects tend
to cancel out.

SecDir’s negative effect is that it slightly increases the latency of
a main memory access. This is because a request that misses in ED
and TD checks the VD on its way to main memory. As indicated
in Table 4, checking the VD takes 2 cycles (if the EB array satisfies
the request) or 2 plus 5 cycles (if it does not). Under attack-free
conditions, the VD is not highly utilized, and most VD accesses
miss. However, this does not mean that the VD is ineffective, since
whatever entries the VD contains are very useful. Indeed, such
entries enable the L2 to retain cache lines and, therefore, avoid an
L2 miss and directory access in the first place.

SecDir’s positive effect is that it reduces the number of directory
entry conflicts and, therefore, the number of cache line inclusion
victims. In Baseline, a TD entry conflict typically results in an L2
cache line eviction to DRAM. In SecDir, instead, the directory entry
is moved to VD and the corresponding cache line remains in L2,
avoiding an inclusion victim. Avoiding L2 inclusion victims results
in fewer memory accesses and fewer ED/TD accesses. This effect
improves performance.
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Figure 7: Evaluation of the SPEC mixes.

To understand the positive effect, Figure 7(b) shows the number
of L2 misses and breaks them into: (i) hits in the ED or TD, (ii)
hits in the VD, and (iii) misses in the directory, which cause main
memory accesses. For each SPEC mix, the figure shows bars for
Baseline (B) and SecDir (S), which are normalized to the former.

From the figure, we see that SecDir decreases the number of L2
misses in practically all the mixes. On average, the reduction is
11.4%. The reduction comes from reducing L2 inclusion victims. It
results in both fewer memory accesses and fewer ED/TD hits.

The bars show that there are no VD hits. This is the normal
behavior in single-threaded applications and, as indicated before,
it does not mean that the VD is useless. On the contrary, for VD
entries in use, there is no reason to access the VD: the L1/L2 caches
contain the line and intercept any access to the line from the core.
When the line is evicted from L2 andwritten back to the LLC, SecDir
migrates the VD entry to TD (④ in Figure 3(b)). Hence, subsequent
L2 misses will either hit in the TD or, if the entry is evicted from TD
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before the line is re-referenced, obtain the data from main memory.
In none of the cases will the VD hit.

10.2 Evaluation of PARSEC Applications
Figure 8 shows the same data as Figure 7 for the PARSEC appli-
cations. Figure 8(a) shows the execution time on Baseline and on
SecDir, normalized to the Baseline. Similar to Figure 7(a), SecDir has
a very small impact on the performance of PARSEC applications. As
before, this is a combination of both positive and negative effects.
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Figure 8: Evaluation of the PARSEC Applications.

Figure 8(b) shows the L2 miss count of PARSEC applications in
Baseline and in SecDir, normalized to Baseline. As in Figure 7(b),
the bars are broken down into: (i) hits in the ED or TD, (ii) hits in
the VD, and (iii) main memory accesses. Like in SPEC mixes, SecDir
reduces the L2 misses in most applications, causing a reduction in
the number of ED/TD hits and, to a lesser extent, in the number of
memory accesses. The average L2 miss reduction is 7%.

The figure shows that, on average, the number of VD hits is
very small. However, in the freqmine application, nearly 14% of
the L2 misses are intercepted by VD. This scenario is possible in
multi-threaded applications. It occurs when the L2 of a core misses
on a cache line present in another core’s L2 and the line has its
directory entry in the VD of the second core. We expect this case
to occur in applications with high data sharing between cores. In
this case, a fast VD would improve performance.

Overall, in both single-threaded and multi-threaded applications,
SecDir provides an effective defense against directory based side-
channel attacks, while introducing a negligible performance cost
in the absence of attacks.

10.3 Evaluating VD Features
Table 6 examines two features of the VD, namely, the Empty bit (EB)
and the cuckoo organization. To assess the impact of the EB, we

compare the number of VD bank look-ups performed when using
the EB (EBVD) to the number of VD bank look-ups performed when
not using the EB (NoEBVD). Recall that, without EB, we need to
perform a look-up of the N VD banks in a slice every time that we
miss in the ED/TD directory.

SPEC EBVD / CKVD / PARSEC EBVD / CKVD /
Mix NoEBVD NoCKVD Appl. NoEBVD NoCKVD
mix0 0.45 0.75 blackschol. 0.01 0.63
mix1 0.18 0.95 bodytrack 0.18 0.55
mix2 0.36 0.53 canneal 0.09 0.51
mix3 0.53 0.93 ferret 0.23 0.59
mix4 0.38 1.00 fluidanim. 0.08 0.46
mix5 0.44 0.84 freqmine 0.38 0.62
mix6 0.43 0.41 vips 0.24 0.83
mix7 0.49 0.81 swaptions 0.01 0.56
mix8 0.45 0.96 x264 0.34 0.59
mix9 0.52 0.90 Avg. 0.17 0.59
mix10 0.48 0.73
mix11 0.47 1.03
Avg. 0.43 0.82

Table 6: Evaluating the Empty bit and cuckoo organization.

The columns in the table labeled EBVD/NoEBVD show the ra-
tio between the two measures. Since the VD is under-utilized in
executions without attacks, the EB effectively decreases the num-
ber of VD bank look-ups across all applications. On average, only
43% and 17% of the VD bank accesses are needed with EB in SPEC
and PARSEC applications, respectively. For two PARSEC applica-
tions, namely blackscholes and swaptions, EB eliminates practically
all of the VD look-ups, as the VD remains highly unused during
execution.

We also evaluate the effectiveness of using the cuckoo organiza-
tion in the VD under the worst possible attack conditions. Specifi-
cally, we assume the case where the adversary fully controls the
TD and ED directories, and the victim can only use the VD. Conse-
quently, we disable TD and ED, and the application can only use
its VD. We compare the number of VD self-conflicts when the VDs
are used as cuckoo directories (CKVD) and when they are used as
plain directories (NoCKVD). CKVD uses two of the skewing hash
functions proposed by Seznec and Bodin [38] (Section 8); NoCKVD
simply uses one of them.

The columns in the table labeled CKVD/NoCKVD show the ratio
between the two self-conflict counts. We see that the cuckoo orga-
nization often eliminates a substantial fraction of the self-conflicts.
The impact on a given application depends on a variety of factors,
including the application’s access patterns and its working set. On
average, with SecDir’s simple cuckoo organization, 82% and 59%
of the VD self-conflicts remain in SPEC and PARSEC applications,
respectively. Note that there are two SPEC mixes (i.e., mix4 and
mix11) for which our cuckoo design does not reduce the number of
conflicts. As shown in Table 5, these mixes contain last-level cache
thrashing (LLCT) applications. In these cases, the VD bank in one
or more slices is full, and the cuckoo approach is unable to reduce
self-conflicts. To reduce the self-conflicts in these mixes, we need to
either increase the size or associativity of VD, or make the cuckoo
implementation more sophisticated — e.g., by improving the hash
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functions used, or by increasing NumRelocations. We leave these
avenues to future work. In any case, although our threat model does
not target victim self-conflicts, we note that the cuckoo operation
effectively reduces self-conflicts and obscures victim self-conflict
patterns from the attacker.

10.4 Storage and Area Overhead
We compute the storage and area required by the directory of the
baseline Skylake-X architecture and of SecDir. We use the parame-
ters of Section 8. We compute storage in Kbytes and area inmm2 as
given by CACTI 7 [1] using 22 nm technology. Table 7 shows the
per-slice results for TD, ED, and VD.

Baseline Storage Area SecDir Storage Area
Structure (KB) (mm2) Structure (KB) (mm2)

TD 107.25 0.080 TD 107.25 0.080
ED 114.00 0.087 ED 76.00 0.057
— — — VD 66.50 0.057

Total 221.25 0.167 Total 249.75 0.194

Table 7: Storage and area used by the directory structures in
a slice in the baseline Skylake-X and in SecDir.

We see that SecDir requires 28.5 KB additional storage per LLC
slice, which is 12.9% more than the baseline architecture. Also, the
SecDir directory structures take 0.027 mm2 more area, which is
16.2% more than the baseline. Overall, these are modest numbers.
Also, this analysis is for a machine with 8 cores. As indicated in
Section 7, SecDir uses less directory area than the baseline for 44
cores or more.

11 RELATEDWORK
Manyworks have been proposed to defeat cache-based side-channel
attacks. We classify these defense mechanisms into two categories,
isolation-based and randomization-based. These approaches all
have limitations when applied to directory structures, especially
when the number of cores is high.
Isolation-based defenses. Isolation-based defense mechanisms
rely on cache partitioning techniques to block unintended cache
interference. There are two types of cache-partitioning techniques
depending on the total number of partitions required.

The first type partitions the cache into as many regions as the
number of security domains. Static way-partition [36] provides
isolation by statically assigning certain cache ways to each security
domain. Unfortunately, this approach can introduce serious per-
formance overhead, since the cache cannot be dynamically shared.
Moreover, when the number of cores is higher than the cache as-
sociativity, some cores cannot get a cache partition, resulting in
serious under-utilization of core resources. Note that this scenario is
very common in modern server processors, which calls for scalable
defense solutions.

DAWG [25] is a dynamic way-partitioning technique, which is
designed to address side channels via cache occupancy states, co-
herence states, and replacement information. However, when the
number of security domains is higher than the cache associativity,
DAWG is forced to frequently re-assign cache ways from one do-
main to another. These re-assignment operations can leak cache oc-
cupancy information from the victim to the attacker. Other dynamic

partitioning techniques, such as SecDCP [42], NoMo cache [9], and
SHARP [45] have similar security issues. SecDir, instead, can scale
to high numbers of cores without losing the security guarantees,
since the per-core VD structure can flexibly provide as many parti-
tions as the number of cores.

The second type of partitioning technique, used by CATalyst [28]
and STEALTHMEM [24], partitions the cache into two regions, i.e.,
a security-sensitive region and a non-secure shared region. The
first region is reserved for security-sensitive data accesses. Cache
interference within the security region is blocked via page coloring.
The non-secure region can be dynamically shared by other applica-
tions. However, both approaches require programmers to provide
information about security-sensitive data or instruction accesses.
Such information is not easy to obtain for many applications.
Randomization-based defenses. There are several mitigation
techniques that rely on the randomization of the address mapping
logic or system timing components. CEASER [35] and RPcache [43]
randomize the mapping of addresses to cache sets to prevent the
attacker from evicting target lines from the cache. For example,
CEASER dynamically remaps cache lines, so that the attacker can-
not find an effective group of addresses that are mapped to the same
set as the target address. However, both techniques can only reduce
the bandwidth of the attack, instead of eliminating it. The attacker
can still perform the evict operation when it accesses enough lines
across a large number of cache sets.

TimeWarp [31] and FuzzyTime [20] disrupt timing measure-
ments by adding noise to the system clock. They can protect against
attacks which measure cache access latency and execution time, but
they are unable to prevent alias-driven attacks [15]. Furthermore,
they hurt benign programs that require a high-precision clock. Liu
et al. [29] proposed the random fill cache architecture for the L1
cache to defeat the cache-collision attack (i.e., the reuse-based at-
tack). However, this approach may suffer substantial performance
degradation if applied to the much larger last-level cache.

12 CONCLUSIONS
This paper presented SecDir, a secure directory to defeat directory
side-channel attacks. SecDir takes part of the storage used by a con-
ventional directory and re-assigns it to per-core private directory
areas used in a victim-cache manner called Victim Directories (VDs).
To minimize victim self-conflicts in a VD during an attack, a VD is
organized as a cuckoo directory. Such a design also obscures any
conflict patterns from the attacker. We modeled with simulations
the directory of an Intel Skylake-X server and a modified design
that supports SecDir. Our results showed that SecDir has a neg-
ligible performance impact. Furthermore, SecDir is area-efficient:
it only needs 28.5KB more directory storage than the Skylake-X
per slice for an 8-core machine, while it uses less storage than the
Skylake-X for 44 cores or more. Finally, a cuckoo VD organization
eliminated substantial victim self-conflicts in a worst-case attack
scenario.
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APPENDIX A: A LIMITATION IN SKYLAKE-X
Among the attacks that Yan et al. [46] have demonstrated on the
non-inclusive caches of Intel’s Skylake-X processor, one of them
does not exploit the limited associativity of the overall directory
structure — which, as discussed in Section 2.3, is the root cause of
directory attacks. Instead, Yan et al.’s prime+probe attack exploits
a limitation in the implementation of the cache coherence states
in Skylake-X’s cache hierarchy. In this section, we discuss this
limitation and suggest a simple method to fix it. Such a fix has been
incorporated in our SecDir implementation.

Consider a victim with the target cache line in its private cache
in the Exclusive coherence state, and the line’s directory entry in
the ED. The attacker creates conflicts in the ED, evicting the target
line’s directory entry from ED to TD. In Skylake-X, each TD entry
must be associated with data — i.e., it must have a corresponding
cache line in the LLC. Consequently, as the directory entry moves
from ED to TD, the target line is copied to LLC. Unfortunately,
the line cannot remain, at the same time, in Exclusive state in the
victim’s private cache. Hence, it is invalidated from the victim’s
private cache. This invalidation causes an inclusion victim, which
is leveraged by the attacker to complete the prime step. This is a
limitation of Skylake-X’s implementation, since this invalidation is
unnecessary.

To fix this limitation, we suggest to allow TD entries to be as-
sociated with empty LLC lines. In the example presented, as the
directory entry is moved from ED to TD, we propose to keep the
LLC entry empty, and retain the Exclusive cache line in the private
cache. In this way, ED conflicts do not cause L2 evictions. After
adopting this mechanism, the only way to create an L2 eviction
is to exploit the limited associativity of the combined TD plus ED
directory structure, as discussed in Section 2.3.

APPENDIX B: CUCKOO DIRECTORY EXAMPLE
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Figure 9: Example of cuckoo directory insertion operation.

While a cuckoo directory admits sophisticated organizations,
SecDir uses a very simple design. Figure 9 shows an example of
how to insert an item in a two-way set-associative directory that
uses SecDir’s design. When inserting a new item x, assume that the
two hash functions h1(x) and h2(x) select sets 1 and 3 (Figure 9(a)).
Since both sets are full, one of them is selected and one entry in
that set is evicted to provide space for x. Assume that item f in
set 3 is selected for eviction. After its eviction, f is re-inserted in a
line of its alternative set — Set 2 in the figure (①). Since there is no
space in Set 2, one item needs to be evicted and relocated. Assume
that it is item c, which is moved from Set 2 to 4 (②). Since there
is space in Set 4, c is inserted and there is no additional eviction.

Figure 9(b) shows the resulting directory state. Shaded entries are
those that have been moved.

In the general case, the relocation procedure is repeated until
it either finds an empty slot in the directory, or until a maximum
number of relocations (NumRelocations) is reached. In the later case,
an item is kicked out of the directory structure, which is not likely
to be from the same cache set as the item that was first inserted.
This fact confuses the attacker.
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