Architecting and Programming a Hardware-Incoherent
Multiprocessor Cache Hierarchy

Wooil Kim, Sanket Tavarageri, P. Sadayappan,’ and Josep Torrellas

University of Illinois, Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract—

New architectures for extreme-scale computing need to be designed
for higher energy efficiency than current systems. One recently-
proposed extreme-scale manycore radically simplifies the architecture,
and proposes a cluster-based on-chip memory hierarchy without hard-
ware cache coherence. To program for such an environment, this paper
proposes two approaches. They use shared-memory programming
either inside clusters only, or both inside and across clusters. Both
approaches rely on ISA support for writeback and self-invalidation
operations. Our simulation results show that hardware-incoherent
cache hierarchies with our support deliver reasonable performance for
applications that were not written for such hierarchies. Specifically,
for execution within a cluster, the average execution time of the
applications is 2% higher than with hardware cache coherence; for
execution across multiple clusters, it is 5% higher than with hardware
cache coherence. This is accomplished with minimal hardware support.

Keywords-Cache coherence; Hardware-incoherent caches; Software-
managed caches.

I. INTRODUCTION

Continuous progress in transistor integration is delivering many-
cores with ever-increasing transistor counts. In the next few years,
to be able to utilize all the cores in these chips effectively — for
example, to build Exascale machines [1] — these chips will need
to operate in a much more energy-efficient manner than they do
today, following the ideas of what has been called Extreme-Scale
Computing [2], [3].

One such extreme-scale architecture is Runnemede [4]. A Run-
nemede chip integrates about 1,000 cores and runs at low supply
voltage. One of the keys to its expected high energy efficiency is a
radically-simplified architecture. For example, it employs narrow-
issue cores, hierarchically organizes them in clusters with memory,
provides a single address space across the chip, and uses an on-
chip memory hierarchy that does not implement hardware cache
coherence. It includes so-called hardware-incoherent caches [4].

A cache hierarchy without hardware coherence has obvious
advantages in ease of chip implementation. In addition, it enables
a more energy-efficient execution of some of the applications
expected to run on these machines. However, it presents a non-
trivial programming challenge. Indeed, some software has to or-
chestrate the movement of data between the different caches and
cache levels. Moreover, although one can argue that large exascale
machines such as a Runnemede system will mostly run regular
numerical codes, this is not the whole story. A single Runnemede
chip, with so much compute power, is also an enticing platform on
which to run smaller, more irregular programs. If so, the question
remains as to how to program for such a cache hierarchy.

There are several other proposals of multiprocessor cache hi-
erarchies without hardware coherence or with simplified hardware
coherence. Two examples are Rigel [5] and Cohesion [6], which are
manycores designed to accelerate regular visual programs. There is
also substantial work on software cache coherence schemes, mostly

fOhio State University
tavarageri.l,sadayappan.1 @osu.edu

relying on detailed compiler analysis of the code (e.g., [7], [8], [9]),
and also using bloom filters to summarize communication [10].
Moreover, there are efforts that try to simplify the design of
hardware cache coherence protocols (e.g., [11], [12]).

Building on this past work, our goal is to design a user-friendly
programming environment to exploit a cluster-based hardware-
incoherent cache hierarchy like Runnemede’s. We are not seeking
to simplify or minimize hardware cache coherence protocols.
Instead, we attempt to exploit this easy-to-build and unconven-
tional cache hierarchy using, as much as possible, existing cache
structures and programming styles.

The contributions of this paper are as follows:

e We propose simple hardware extensions to manage a hardware-
incoherent cache hierarchy. They are several flavors of writeback
and self-invalidation instructions, two small buffers next to the L1
cache, and a hardware table in the cache controller.

e We introduce two relatively user-friendly programming ap-
proaches for the machine that use our hardware extensions. These
programming approaches involve shared-memory programming
either inside clusters only, or both inside and across clusters. They
rely on annotating synchronization operations, and on identifying
producer-consumer pairs.

e Simulation results showing that our programming approaches
allow hardware-incoherent cache hierarchies to deliver reasonable
performance for applications that were not written for incoherent
hierarchies. Specifically, for execution within a cluster, the average
execution time of the applications is only 2% higher than with
hardware cache coherence; for execution across multiple clusters,
it is only 5% higher than with hardware cache coherence. This is
accomplished with our minimal hardware support.

This paper is organized as follows. Section II motivates the
work further; Section III describes the basic ISA used; Sections IV
and V present our two programming approaches and additional
hardware extensions; Sections VI and VII evaluate our design; and
Section VIII discusses related work.

II. MOTIVATION

Runnemede [4] is an extreme-scale manycore recently proposed
for the 2018-2020 timeframe. The chip integrates about 1,000
cores, and its goal is to use energy very efficiently. To do so, the
manycore operates at low supply voltage, and can change the volt-
age and frequency of groups of cores separately. In addition, one
of the keys to higher energy efficiency is a drastically-simplified
architecture. Specifically, cores have a narrow-issue width and are
hierarchically grouped in clusters with memory. Functional core
heterogeneity is avoided and, instead, the chip relies on voltage
and frequency changes to provide heterogeneity. All cores share
memory and a single address space, but the on-chip memory
hierarchy has no support for hardware cache coherence. Figure 1
shows the manycore’s architecture from [4].

CPU

Thermal
Monitors Off-chip
Network

Interface

Off-chip
Memory

Power Cntl.
Monitors
Third-level Barrier Network
-
plock 4G siock Mmook FRE miock N slock ERCY siock N siock
Circuit Block e slock | Block F1E Block J Block
Monitors

8MB L3
Mem.

8MB L3
Mem.

Block

8MB L3
Mem.

8MB L3
Mem.

Block
Block

8MB L3
Mem.

Block

8MB L3
Mem.
Bl

lock
Block

8MB L3
Mem.

Block Block Block
Block Block Block Block Block

J40MI3N JaL1eg [2A3]-pUO3S|
)40MI3N J31LIeg [2A3]-pUOIAS|

g
£
g
£

J4OMI3N eleq |23
JI0MIaN eleq 23
}IOMIBN JaLueg [2A3)
JiomiaN eleq |

}I0MI3N 3R [2A3]-PU0IAS

Block
Block

8MB L3
Mem.

Block
Block
J

Block

First-level Data Network
L1 Barrier Network

~ ~
N -

Reg. File

Performance
Monitors

/
Very Large

32K Reg. File
Incoherent

Cache

32K
Incoherent CxE
Memory

Cache

16 MB L4
Memory Vdd and Clock

Gating

Control Engine (CE) Execution Engine (XE)

Figure 1: The Runnemede chip architecture from [4].

As shown in the figure, each core (called Execution Engine or
XE) has a private cache, which we will call L1. This is a normal
cache but without hardware-coherence support. A core also has
a scratchpad labeled in the figure as L1 Memory, which we will
ignore. A group of 8 cores forms a cluster called Block, which has
a second level of SRAM called L2. Multiple blocks are grouped
into a bigger cluster called Unit, which also has a third level of
SRAM called L3. The system can further build up hierarchically,
but we will disregard it in this paper.

In Runnemede, 1.2 and L3 are memories rather than caches, each
with their own range of assigned addresses. In this paper, however,
we will use them as successive levels of on-chip incoherent caches,
to better resemble a conventional machine.

The fact that the cache hierarchy is not coherent means that the
application (i.e., the programmer or compiler) has to orchestrate the
data movement between caches. This may be seen as an opportunity
to minimize energy consumption by eliminating unnecessary data
transfers — at least for the more regular types of applications
that are expected to run on this machine. However, it introduces a
programming challenge.

In the rest of this paper, we focus on proposing simple hardware
extensions and programming models for a cluster-based hardware-
incoherent cache hierarchy like the one described.

III. BASIC ARCHITECTURAL SUPPORT

A. Using Hardware-Incoherent Caches

In the architecture considered, all cores share memory but the
cache hierarchy is not hardware-coherent. Writes by a core are
not automatically propagated to other cores because caches do not
snoop for coherence requests, nor there is any directory entity
that maintains the sharing status of data. For a producer and a
consumer core to communicate the value of a variable, we need
two operations. First, after the write, the producer needs to export
the value to a shared cache that the other core can see. Then,
before the read, the consumer needs to prepare for importing the
fresh value from the shared cache.

The first operation is done by a writeback (WB) operation that
copies the variable’s value from the local cache to the shared cache.
The second operation is a self-invalidation (INV) that eliminates a
potentially stale copy of the variable from the local cache. Between
the WB and the INV, the processors need to synchronize. Figure 2
shows the sequence.

Producer Consumer
write X
WB(x)
synch
Y T synch
INV(x)
read x

Figure 2: Communication between incoherent caches.

We call the set of dynamic instructions between two consecutive
synchronizations an Epoch. For correct operation, at the beginning
of an epoch, a thread self-invalidates any data that it may read in
the epoch and that may be stale because of an earlier update by
other threads. At the end of the epoch, the thread writes-back any
data that it has written in the epoch and that may be needed by
other threads in later epochs.

Except for the lack of automatic coherence, cache hierarchies
operate as usual. They use lines to benefit from spatial locality but
they do not need to support inclusivity.

B. Instructions for Coherence Management

WB and INV are memory instructions that give commands to
the cache controller. For this initial discussion, assume that each
core has a private L1 cache and that there is a shared L2 cache. WB
and INV can have different flavors. First, they can be invoked with
different data granularities: byte, half word, word, double word, or
quad word. In this case, they take as an argument the address of
the operand. Second, WB and INV can also operate on a range
of addresses. In this case, they take as arguments the start address
and the length of the range. In addition, with the mnemonic WB
ALL and INV ALL, they operate on the whole cache. In this case,
there is no argument.

Since caches are organized into lines for spatial locality, WB
and INV internally operate at cache line granularity. Specifically,
WB writes back all the cache lines that overlap with the address
or address range specified. Consequently, when two different cores
write to different variables in the same memory line and then each
performs a WB on its variable, we need to prevent the cores from
overwriting each other’s result. To prevent it, and to minimize data
transfer volume, we use fine-grained dirty bits in the cache lines.
For example, if our finest grain for sharing is a word (as we will
assume in our discussion), then we use per-word Dirty (D) bits.
When a WB is executed, the cache controller reads the target line(s)
and only writes back the dirty words. WB has no effect if the target

addresses contain no dirty valid data. After a line is written back,
it is left in state clean valid in the private cache.

INV eliminates from the cache all the cache lines that overlap
with the address or address range specified. Since a cache line has a
single Valid (V) bit, all the words in the line need to be eliminated.
If the line contains some dirty data, the cache controller first writes
it back to the shared cache before invalidating the line.

Overall, WB and INV do not cause the loss of any updated
data that happens to be co-located in a target cache line. Hence,
the programmer can safely use WB and INV with variables or
ranges of variables, which the hardware expands to cache line
boundaries. The lines can include non-shared data. At worst, we
trigger unnecessary data moves.

C. Instruction Reordering

The INV and WB instructions introduce some reordering con-
straints with respect to loads and stores to the same address. The
required constraints are that neither the compiler nor the hardware
can reorder INV(x)—ld x (Figure 3a), or st x—WB(x) (Figure 3b).
Effectively, a thread uses INV(x) to refresh its view of x and,
therefore, reordering it with a subsequent load would imply that
the load could fail to see the new value that the program intended.
Similarly, a thread uses WB(x) to globally post the value of x and,
therefore, reordering it with a prior store would imply that the value
posted would be different than the one the program intended.

‘ 1d x ‘ ‘ st X ‘ ‘ st X ‘ ‘ 1d x ‘ .
‘ * ‘ Required
‘ INV(X)‘ ‘ WB(x) ‘ ‘ INV(x) ‘ ‘ WB(x) ‘
\
‘ 1d x ‘ ‘ st X ‘ ‘ st X ‘ 1d x ‘ Desirable

(a) (b) (©) (d)
Figure 3: Ordering constraints.

Figure 3 also shows some desirable orders that both compiler
and hardware should retain. Consider /d x—INV(x) (Figure 3a).
Reordering the accesses is likely to cause additional traffic because
the load will now miss in the cache. Moreover, a core may execute
a load followed by INV in a spinning loop; reordering the accesses
is likely to delay when the core will see a new global value.

Consider now WB(x)—st x (Figure 3b). A producer core may
execute a WB(x) followed by a store to x in a loop, to make sure
that new values are posted as soon as they are generated; reordering
the accesses is likely to change when values are globally posted.

The case st x—INV(x)—st x (Figure 3c) is likely unusual.
However, it is desirable to enforce both orders for the same reason
as above: if these accesses are in a loop, reordering them changes
when values are globally posted.

Finally, consider loads that precede or follow a WB (Figure 3d).
Such accesses can always be reordered because a WB does not
change the value of the line in the local cache. Hence, a reodered
load sees the same value. In fact, the ability to pick a load that
follows a WB to the same address and execute it before the WB
can help performance by prefetching data.

Current processor hardware naturally enforces most of these
reordering constraints. This is because we envision WB and INV
to proceed in the pipeline like stores, and be deposited in the write
buffer at retirement time like stores. In the write buffer, stores to
the same location must be drained in order. Hence, given a WB(x)
or INV(x) in the write buffer, prior or subsequent stores to x would

not be able to reorder relative to them. In addition, loads to x before
WB(x) or INV(x) will not be reordered because the loads will be
finished by the time WB(x) or INV(x) retire into the write buffer.
We envision the new pipeline hardware to be designed such that
loads to x are not allowed to bypass an earlier /NV(x); however,
for performance, they are allowed to bypass an earlier WB(x) and
proceed directly to the write buffer and cache (Figure 3d).

D. Synchronization

Since conventional implementations of synchronization primi-
tives rely on the cache coherence protocol, they cannot be used
in machines with incoherent cache hierarchies. Any lock release
would have to be followed by a WB, and spinning for a lock
acquire would require continuous cache misses because each read
would be preceded by INV.

To avoid such spinning over the network, machines without
hardware cache coherence such as Tera [13], IBM RP3 [14],
or Cedar [15] have provided special hardware synchronization
in the memory subsystem. Such hardware often queues-up the
synchronization requests coming from the cores, and responds to
the requester only when the requester is finally the owner of the
lock, the barrier is complete, or the flag condition is set. All
synchronization requests are uncacheable. The actual support in
Runnemede [4] is not published, but it may follow these lines.

In this paper, we place the synchronization hardware in the
controller of the shared caches. We provide three synchronization
primitives: barriers, locks, and conditions. When a synchronization
variable is declared, the controller of the shared cache allocates an
entry in a synchronization table and some storage in the controller’s
local memory. When a processor issues a barrier request, the
controller intercepts it, and only responds when the barrier is
complete. Similarly, for a lock acquire request or a condition flag
check, the controller intercepts the requests and only responds when
it is the requester’s turn to have the lock, or when the condition is
true. Since synchronization support is not the focus of this paper,
we do not consider further details.

IV. PROGRAMMING MODEL 1: MPI + SHARED INTRA BLOCK

The first programming model that we propose for this machine
is to use a shared-memory model inside each block and MPI
across blocks. In this case, the MPI_Send and MPI_Recv calls
can be implemented cheaply. A message sender and a message
receiver communicate by writing to and reading from an on-chip
uncacheable shared buffer. Of course, sender and receiver need to
synchronize to ensure that writes and reads happen in the right
sequence. Moreover, the library needs to handle buffer overflows.
In communication with multiple recipients such as a broadcast,
there is no need to make multiple copies; the sender only needs to
perform a single write. The multiple receivers will all read from
the same location. Finally, we can implement the nonblocking
MPI_Isend and MPI_Irecv calls by using another thread in the
core to perform the writes and reads. A possible implementation
is presented by Friedley et al. [16].

In the rest of this section, we focus on intra-block shared-
memory programming. We first describe the proposed approach
and then some hardware support.

A. Intra-block Programming

Ideally, we would like to use the compiler to analyze the program
and automatically augment it with WB and INV instructions. For

Barrier Barrier Barrier Barrier
Epoch Epoch
Epoch(s) Epoch(s) INV Epoch Epoch Eooch WB
B 0C Epoch
WB WB Loc‘l;,Acq I‘j?ilg p LockAcék poc
Barrier LockRel INV set LockRel
INV \I\NV MaockAcq Flag LockAcq
WB wait
Epoch(s)| | Epoch(s) Epoch LockRel Epoch NINV Epoch | NLockRel
Barsi Epoch Epoch \INV
arrier Epoch
(@ ©) © (@

Figure 4: Annotations for communication patterns enabled by: barriers (a), critical sections (b), flags (c), and dynamic happens-before

epoch orderings (d).

many programs, however, the analysis would be too conservative,
leading to bad performance. For this reason, we develop a simple
approach that is easily automatable, even if it does not attain
optimal performance. Also, the programmer can use his knowledge
of the program to improve the performance.

The approach is based on relying on the synchronization op-
erations in the program as explicit markers that separate data
dependences between threads. Hence, at the point immediately
before and after a synchronization operation, depending on the
type of synchronization, WB and INV instructions are inserted. Our
algorithm decides which instructions to add, and the programmer
can refine or overwrite them. Of course, we need to consider data
races separately, as they are data dependences that are not ordered
by synchronization operations.

Recall that a block has a per-core private L1 cache and a shared
L2 cache (Figure 5a). In addition, there is a one-to-one thread-to-
core mapping and no thread migration.

& ﬁ LX) Block
Block Network ‘ ‘ Chip Network ‘
[[
L2 L3
(a) Block (b) Chip

Figure 5: Single block (a) and multi-block (b) cache hierarchy.

1) Annotating Different Communication Patterns: Each type of
synchronization operation tells us the type of potential commu-
nication pattern that it manages. For instance, a program-wide
barrier synchronization marks a point where a thread’s post-barrier
accesses can communicate with pre-barrier accesses from any of
the other threads (Figure 4a). Hence, the simplest scheme is as
follows: immediately before the barrier, we place a WB for all the
shared variables written since the last global barrier; immediately
after the barrier, we place an INV for all the shared variables that
will receive exposed reads (i.e., a read before any write) until the
next global barrier.

In some codes, a thread owns part of the shared space, and reuses
it across the barriers as if it was private. In this case, we do not
write back or invalidate that part of the shared space. Also, the
programmer can often provide information to reduce WB and INV
operations. Finally, if the code between global barriers is long and
we lack sharing pattern information, we can use WB ALL and INV
ALL, which write back and invalidate the whole L1 cache.

Threads often communicate by accessing variables inside a crit-
ical section protected by lock acquire and lock release (Figure 4b).
In this case, after we enter a critical section, we need to eliminate
any stale data from the cache. Moreover, before we leave, we need
to post all the updates created in the critical section. Consequently,
immediately after the acquire, we would place an INV for all the
shared variables that will receive exposed reads inside the critical
section. In addition, immediately before the release, we place a
WB for all the shared variables written inside the critical section.
To reduce the duration of the critical section, however, we place
the INV immediately before the acquire rather than affer it. This
is correct because we assume that the cache cannot change state
between the INV and the acquire — i.e., there is no context switch
to another thread that could pollute the cache.

Threads also coordinate with flag set-wait synchronization (Fig-
ure 4c). In this case, immediately before a thread sets the flag,
the thread needs a WB for all the shared variables written in
the epochs since a global barrier or an equivalent point of full
WB. Also, immediately after a thread successfully completes the
wait, the thread needs an INV for all the shared variables that will
receive exposed reads in the epochs until the next global barrier or
equivalent point of full INV. Like in the case of barriers, if such
epochs are very long, we use WB ALL and INV ALL, respectively.

For other types of structured synchronization patterns that we
have not seen in our applications, we can follow a similar
methodology. However, there is also a general pattern of com-
munication through dynamically-determined happens-before order
— especially in irregular applications. Specifically, after a thread
completes a critical section, it may want to consume data that
was generated by earlier holders of the critical section lock before
they executed the critical section (Figure 4d). For example, this
is observed with task-queue operations. A thread places a task
in the task-queue and then another thread fetches the task and
processes it. The task-queue is updated using a critical section, but
there is significant communication outside the critical section as
the consumer processes the task.

We call this pattern Outside Critical-Section Communication
(OCC). Unless the programmer explicitly states that there is no
OCC, our programming model has to assume that there is. Hence,
before a lock acquire, we add a WB of the shared variables written
since a global barrier or point of full WB. After a lock release, we
add an INV of all the exposed reads until the next global barrier or
point of full INV. Often, these become WB ALL and INV ALL.

2) Discussion: Many programs running on a Runnemede-style
chip are likely to have a structure based on global barriers. In this
case, it is easy for the compiler or programmer to insert WB and
INV instructions.

Some programs may contain data races. In this case, relying on
explicit synchronization to orchestrate data transfers is insufficient.
Indeed, the communication that data races induce in cache-coherent
hierarchies does not occur in a hardware-incoherent cache hierar-
chy. For example, assume that two processors try to communicate
with a store and a spinloop on a variable flag that is declared
volatile (Figure 6a). In an incoherent cache hierarchy, the consumer
may never see the update.

// producer // consumer // producer // consumer

data=1; for (;;) { data=1; for (;;) {
fence; if (flag) { WB (data); INV (flag);
flag=1; fence; fence; if (flag) {
process (data); flag=1; fence;
} WB (flag); INV (data);
} process (data);

(@) !
‘)

(b)

Figure 6: Enforcing data-race communication.

If we want to enforce the data-race communication, we need to
augment the write and read of flag with WB and INV, respectively.
In addition, to ensure that the effect of the fence in a processor is
observed by the other processor, we need WB and INV for the data
passed (data) as well (Figure 6b). If the program can be re-written,
a better solution is to eliminate the race by re-writing the code to
use synchronization or, in C++11, declare flag as atomic.

3) Application Classification: Table I lists the applications that
we use for intra-block programming in Section VII, and classifies
them according to the communication patterns present. For each
application, we list the main pattern under the Main column, and
then other patterns that the application exhibits under Other. The
patterns can be those just described: barrier, critical section, flag,
outside critical section, and data race. Cholesky had busy-waiting
on variables; to reduce unnecessary traffic, we changed it to flag
synchonization.

[Appl.] Main [Other |
FFT Barrier
LU Barrier
Cholesky Outside critical Barrier, critical, flag
Barnes Barrier, outside critical Critical
Raytrace Critical Barrier, data race
Volrend Barrier, outside critical
Ocean Barrier, critical
Water Barrier, critical

Table I: Communication patterns observed in our applications for
intra-block programming.

From the table, we see that different applications have different
dominant communication patterns. In addition, some applications
have multiple patterns. Overall, the data shows that our program-
ming model needs to support at least all the communication patterns
that we described earlier.

B. Hardware Support

Surrounding epochs with full cache invalidation (INV ALL) and
writeback (WB ALL) results in unnecessarily low performance —
especially for short epochs such as critical sections. One alternative
is to explicitly list the variables or address ranges that need to be
invalidated or written back. However, this approach is undesirable

because it requires programming effort. To improve both perfor-
mance and programmability, we proposed two small hardware
buffers called Entry Buffers. They can substantially reduce the cost
of WB and INV in short epochs such as critical sections.

1) Modified Entry Buffer (MEB) for WB: The MEB is a small
hardware buffer that automatically accumulates the IDs of the cache
lines that are being written in the epoch. Therefore, at the end of
the epoch, when we need to write back the lines written in the
epoch, we can use the MEB information. With this support, we
avoid a traversal of the cache tags and the costly writeback of all
the dirty lines currently in the cache. In short epochs, the MEB
can save substantial overhead.

The MEB is designed to be cheap. It is small (e.g., 16 entries)
and each entry only includes the ID of a line, rather than a line
address. For example, for a 32-Kbyte cache with 64-byte lines, the
ID is 9 bits. The MEB is updated in parallel with a write to the
L1 cache. Specifically, every time that a clean word is updated
(assuming that the cache has per-word D bits), if the line’s ID is
not in the MEB, it is inserted.

Some entries in the MEB may become stale. This occurs when
an MEB entry is created for a line that is written to, and later the
line is evicted from the cache by another line that is never written
to. To simplify the MEB design, stale entries are not removed. At
the end of the epoch, as the MEB is traversed, only dirty lines are
written back.

We use the MEB in small critical sections that conclude with
WB ALL because the programmer did not provide additional
information. The MEB records all the lines written in the critical
section and only those. When we reach WB ALL at the end of
the epoch, the MEB is used, potentially saving many writebacks.
However, if the MEB overflows during critical section execution,
the WB ALL executes normally.

2) Invalidated Entry Buffer (IEB) for INV: At the beginning
of an epoch, we need to invalidate all the lines that the epoch
will expose-read and that are currently stale in the local cache.
Since explicitly listing such lines may be difficult, programmers
may use INV ALL. This operation is very wasteful, especially in
small epochs. Hence, we propose not to invalidate any addresses
on entry, and to use the IEB instead.

The IEB is a small hardware buffer that automatically collects
the addresses of memory lines that do not need to be invalidated
on a future read. They do not need to because they have already
been read earlier in the epoch and, at that point, they have been
invalidated if they were in the cache. Hence, they are not stale.
With the IEB, we can minimize the number invalidations.

The IEB only has a few entries (e.g., 4) because it is often
searched and needs to be fast. Each entry has the actual address of
a line that needs no invalidation on a future read. The IEB contains
exact information, and is updated as follows. The IEB starts the
epoch empty. The IEB is accessed at every L1 read. If the line’s
address is already in the IEB, or the read hits in the cache and
the target word is dirty (again, assuming per-word dirty bits), no
special action is taken. The latter case occurs when the word was
written in the past by the current core and, therefore, it is not stale.
In all other cases, the hardware does the following: (1) the line’s
address is added to the IEB; (2) if the read hits in the cache, the
cache line is first invalidated as it is considered the first read in the
epoch; and (3) the read gets a fresh copy of the line from the shared
cache into the L1 and a fresh copy of the word to the processor.
Unlike the MEB, the IEB does not store unneeded entries.

The IEB is most useful in short epochs like small critical
sections. The reason is that if the IEB needs to track many lines,
it may overflow. Each time that an IEB entry is evicted, if the
corresponding line is accessed again, the hardware causes one
unnecessary invalidation. The execution is still correct, but the
performance decreases. Invalidations are expensive because they
are followed by a cache miss in the critical path.

V. PROGRAMMING MODEL 2: SHARED INTER BLOCK

The second programming model that we propose for this ma-
chine is to use a shared-memory model across all cores —
irrespective of whether they are in the same block or in different
ones (Figure 5b). Our idea is that, to obtain performance, we need
to have level-adaptive WB and INV instructions. This means that,
if two threads that communicate end-up being mapped into the
same block, then the WB and INV implicitly operate as described
until now: WB writes back the line to L2 and INV invalidates the
line from L1. However, if the two threads end-up being mapped to
different blocks, then WB implicitly writes back the line all the way
to L3, and INV implicitly invalidates the line from both L1 and
L2. We require that an application annotated with level-adaptive
WB and INV runs correctly both within a block and across blocks
without any modification.

For completion, we also provide instructions that write back
or invalidate lines to/from a given cache level. For example,
WB_L3(Addr) writes back Addr to the L3 cache (and to the L2
in the process), and INV_L2(Addr) invalidates Addr from the L2
cache (and from the L1 in the process).

In this section, we first describe the proposed programming
approach and then the hardware support.

A. Inter-block Programming

In the programming approach of Section IV, little information
was needed to insert WB and INV instructions. In the approach
presented here, we need two types of information to insert level-
adaptive WB and INV. First, we need to know how the program’s
computation is partitioned and mapped into threads. For example,
given a parallel loop, the relevant information may be that the
iterations are logically grouped into N consecutive chunks (where
N is the number of threads), and chunk i is executed by thread i.
Note that we do not know how the threads themselves will map to
cores at runtime (i.e., which cores and in what clusters). However,
such mapping will not be allowed to change dynamically.

The second piece of information needed is the producer-
consumer patterns. Specifically, we need to identify: (i) all the data
that is produced by thread i and consumed by thread j, and (ii) what
epochs in i and j produce and consume the data, respectively.

Once we know this information, we can annotate the code with
the level-adaptive WB and INV instructions WB_CONS (Addr,
ConsID) and INV_PROD (Addr, ProdID). In these instructions,
we augment the WB mnemonic with CONS for consumer, and
give it as a second argument the ID of the consumer thread
ConsID. Similarly, we augment the INV mnemonic with PROD
for producer, and give it the ID of the producer thread ProdID.

To understand how the instructions are used, assume that thread i
produces x and thread j consumes it. Figure 7 shows the instructions
inserted. Specifically, at the end of the epoch that produces x in
thread i, we place WB_CONS (x, j), while at the beginning of the
epoch that consumes x in thread j, we place INV_PROD (x, i). The
instructions’s arguments imply how the data should be transferred.

Thread i Thread j

INV_PROD(x,i)

Epoch
=X Epoch

WB_CONS(x.j)
Figure 7: Example of level-adaptive WB and INV.

Generating this information requires deeper code analysis than
in the first programming model (Section IV). Hence, while the
first programming model can handle applications with pointers and
irregular structures, this second model is targeted to more compiler-
analyzable codes.

To be able to insert level-adaptive WB and INV instructions, the
compiler starts by performing interprocedural control flow analysis
to generate an interprocedural control flow graph of the program.
Then, knowing how the computation is partitioned into threads,
the compiler performs data flow analysis to find pairs of producer
and consumer epochs in different threads (i, j). Then, the compiler
inserts WB_CONS in i and INV_PROD in j.

In the following, we present our compiler algorithm for level-
adaptive WB and INV. First, we present the general case; then we
consider irregular applications.

1) Extracting Producer-Consumer Pairs: Programs that have
no pointer manipulation or aliasing, use OpenMP work-sharing
constructs, and schedule OpenMP for loops statically are typically
amenable to compiler analysis. In these programs, there may be
data dependences between serial and parallel sections, and between
parallel sections. Typically, the relationship between serial and
parallel sections is relatively easy to analyze, while the relationship
between parallel sections is harder to. It requires understanding the
program’s inter-procedural control flow and performing data flow
analysis.

Inter-procedural control flow analysis finds parallel for loops that
potentially communicate with each other. Starting from each for
loop, we traverse the control flow graph to find reachable for loops.
Those for loops that are unreachable are not considered further. The
reachable loops are now targets of data flow analysis. We apply
DEF-USE analysis from a preceding for loop as a producer to any
reachable for loop as a consumer. We compare the array structures
accessed by the producer and consumer loops to determine if any
array is in both loops. If an array is in both, we compare the
indices. Since we use static scheduling, we know the mapping of
iteration to thread ID. Consequently, the compiler can determine
if there is a data dependence between two threads. In this case, it
puts WB_CONS (address,consumerID) in the producer epoch and
INV_PROD (address, producerID) in the consumer epoch.

We perform this analysis using some extensions to the ROSE
compiler infrastructure [17] that we developed. The consumer and
producer IDs in the WB_CONS and INV_PROD instrumentations
are typically expressed as equations. Our approach is similar to the
translation from OpenMP to MPI [18] and to the implementation of
software DSM [19]. They all use control flow and data flow analysis
to find communicating data and producer-consumer pairs. In par-
ticular, inferring MPI_Send corresponds to inserting WB_CONS,
and inferring MPI_Recv corresponds to inserting INV_PROD.

However, our approach differs from these two other techniques
in four aspects. First, our approach does not maintain explicit
replicated copies of data, while translated MPI code and software
DSM do. Second, our approach executes the serial section in

only one thread, and the result is written back by WB to the
global cache; translated MPI code executes the serial section in
all nodes. Third, our approach implements single producer-multiple
consumers with a single WB in the producer; MPI requires multiple
MPI_Send. Finally, our approach is reasonably efficient even when
exact data flow analysis is not possible — e.g., when we do not
know the exact consumers accurately. In this case, the producer
writes back the data to the last level cache. In an MPI translation,
we would need to send messages to all the possible receivers.

2) Handling Irregular Cases: Many scientific applications use
sparse computations that both are iterative and have data access
patterns that remain the same across iterations. An example is the
conjugate gradient method for solving systems of linear equations
using sparse matrix-vector multiplications. For such codes, we use
an inspector [20] to gather information on irregular data accesses
so that WB and INV instructions can be performed only where
necessary. The inspector is inserted in the code and is executed in
parallel by the threads. The cost of the inspector is amortized by
the ensuing selective WB and INV.

Figure 8 shows an excerpt from a conjugate gradient program.
The original code contained a loop that reads array p/] with indirect
accesses (Line 23), and another loop that writes p/] (Line 29). We
assume static scheduling of OpenMP loops with chunk distribution.
Thus, each thread gets a set of contiguous iterations.

#pragma omp parallel

1

2

3 /! inspector code starts

4 total_threads=omp_get_ num thredds()

5 my_ ld omp_get_ threaff num (

6 my J start=(n/total_ threads)*my_ld

g my_j_end=(n/total_threads)*(my_l 1d+1)
9 for (j=my_j_start; j<my_j_end; j++) {
10 for (k=A[j]; k<A[j+1]; k++) *;

11 target_id = colldx[k] / (n/total_threads);
12 conflict[k] = target_id;

13

14

{g /! inspector code ends

17 for (i=0; i<imax; i++) {

18 #pragma omp for

19 for (j=0; j<n; j++) {

20 for (k=A[j]; k<A[j+1]; k++) {

21 if (conf]lct[k] 1= myi)

22 INV_PROD(&(p[colidx[k]]), conflict[k]);
23) read p[colidx[k]]; // indirect access
24

25 }

26

27 #pragma omp for

28 for (j=0; j<n; j++) {

29 write p[]]

30

31 B_L3 range(&(p[my_;_start])

32 my_j_end—my_j_ start)

33) #pragma omp barrier

34

35 %}

Figure 8: An iterative loop with irregular data accesses.

The inspector loop is placed at the beginning (Line 9). It
determines the ID of the writer thread that will produce the value
obtained by each read. The result is stored in array conflict. Then,
at every iteration of the loop that reads, the code checks the ID
of the writer (Line 21). If it is not the same as the reader’s ID,
it inserts an INV_PROD instruction with the ID of the thread that
will produce the data (Line 22). Otherwise, it skips the INV.

In the figure, after the loop that writes to p/], we place a WB
to the L3 cache of the whole range written. We could perform an
analysis like the one used for the read, and save some writes to
L3 by using WB_CONS. To reduce the complexity of the analysis,
however, we write everything to L3.

B. Hardware Support

We implement WB_CONS and INV_PROD as follows. In each
block, the L2 cache controller has a ThreadMap hardware table
with the list of the IDs of the threads that have been mapped to
run on this block. This table is filled by the runtime system when
the threads are spawned and assigned to processors.

When a thread executes the WB_CONS(addr,ConsID) instruc-
tion, the hardware checks the ThreadMap in the local L2 controller
and determines whether or not the thread with ID ConsID is
running in the same block. If it is, for each of the lines in addr,
the hardware writes back the dirty words only to L2. Otherwise,
the dirty words are written back to both L2 and L3. Note that, for
a given line, this operation may require checking both the L1 and
L2 tags.

When a thread executes the INV_PROD(addr,ProdID) instruc-
tion, the hardware checks the ThreadMap in the local L2 controller
and determines whether or not the thread with ID ProdID is running
in the same block. If it is, for each of the lines in addr, the hardware
invalidates the line only from L1. Otherwise, the line is invalidated
from both L1 and L2. For each line, this operation may require
checking both the L1 and L2 tags.

When a thread’s WB_CONS propagates the target updates to L3,
the other L1 caches in the same block, and the L1 and L2 caches in
other blocks may retain stale copies of the line. Similarly, when a
thread’s INV_PROD self-invalidates the target addresses from the
L1 and L2 caches, the other L1s in the same block, and the L1
and L2 caches in other blocks may keep stale values.

It is sometimes necessary for an epoch to perform a full WB
or INV of the whole cache. Hence, we also support WB_CONS
ALL (ConsID) and INV_PROD ALL (ProdID). When the producer
and consumer are in different blocks, WB_CONS ALL writes back
not just the local L1 but also the whole local block’s L2 to the L3.
Similarly, in this case, INV_PROD ALL self-invalidates not only
the local L1 but also the whole local block’s L2.

A program annotated with WB_CONS and INV_PROD runs cor-
rectly both within a block and across blocks without modification.

VI. EXPERIMENTAL SETUP

Since this paper is about shared-memory programming, we
evaluate the first programming model (Section IV) by running
programs within a block, without any MPI component. We evaluate
the second programming model (Section V) by running programs
across blocks.

Consider the intra-block runs first. We evaluate the architecture
configurations in the upper part of Table II. For programming
simplicity, the baseline uses WB ALL and INV ALL for all the
synchronization primitives of Section IV-A and shown in Figure 4.
Then, B+M, B+1, and B+M+I augment the baseline with the MEB,
IEB, and both MEB and IEB, respectively. These hardware buffers
are only used in critical sections. Finally, we compare to the same
machine with hardware cache coherence (HCC).

We run the SPLASH-2 applications, which use pointers heavily
and have many types of synchronization. Specifically, we run
FFT (64K points), LU (512x512 array, both contiguous and non-
contiguous), Cholesky (tk15.0), Barnes (16K particles), Raytrace
(teapot), Volrend (head), Ocean (258x258, both contiguous and
non-contiguous), and Water (512 molecules, both nsquared and
spatial). We use the SESC cycle-level execution-driven simula-
tor [21] to model the architecture in the upper part of Table III

H Intra-Block Experiments H

Name Configuration
Base Baseline: WB ALL and INV ALL
B+M Base plus MEB
B+1 Base plus IEB
B+M+I | Base plus MEB and IEB
HCC Hardware cache coherence
I Inter-Block Experiments |
Name Configuration
Base Baseline: WB ALL to L3; INV ALL from L2
Addr ‘WB of addresses to L3; INV of addresses from L2
Addr+L | WB_CONS and INV_PROD
HCC Hardware cache coherence

Table II: Configurations evaluated.

The architecture has 16 cores in a block. The coherent architecture
(HCC) uses a full-mapped directory-based MESI protocol.

[Intra-Block Experiments |

Architecture 16 out-of-order 4-issue cores
ROB 176 entries
Private L1 32KB WB, 4-way, 2-cycle RT, 64B lines

Per-core MEB
Per-core IEB

16 entries. Size: 9b (ID) + 1b (Valid)
4 entries. Size: 40b (Line addr) + 1b (Valid)

Shared L2 One bank per core. Each bank: 128KB WB,
8-way, 11-cycle RT (local bank), 64B lines
On-chip net 2D mesh, 4 cycles/hop, 128-bit links

Off-chip mem | Connected to each chip corner, 150-cycle RT

H Inter-Block Experiments H

4 blocks of 8 cores each
16MB in 4 banks. Each bank: 4MB WB,
8-way, 20-cycle RT (local bank), 64B lines

Architecture
Shared L3

Table III: Architecture modeled. RT means round trip.

We now consider the inter-block runs. We evaluate the configu-
rations in the lower part of Table II. The baseline is a simple design
that communicates via the L3 cache. This means that a WB pushes
the dirty lines to both L2 and L3, and an INV invalidates the lines
in both L1 and L2. Moreover, it always uses WB ALL and INV
ALL. The more optimized Addr configuration also communicates
via L3 but specifies the addresses to be written back or invalidated.
Finally, Addr+L uses our level-adaptive WB and INV instructions,
which transparently pick the correct cache level to write back and
invalidate data to/from. In addition, it also specifies the addresses
to operate on. The coherent machine (HCC) uses a hierarchical
full-mapped directory-based MESI protocol.

We cannot run the applications used in intra-block experiments
because the compiler cannot analyze them. Instead, we run four
OpenMP applications, namely EP, IS and CG from the NAS
Parallel Benchmark suite, and a 2D Jacobi application that we
developed. CG is irregular. We use an analysis tool that we
developed based on the ROSE compiler [17] to instrument the
codes with WB_CONS and INV_PROD instructions. We do not
apply nested parallelism but, instead, only parallelize the outermost
loop in a nest. We do not apply any loop optimizations such as loop
interchange or loop collapse.

The architecture modeled is shown in the lower part of Table III.
We model 4 blocks of 8 cores each. The parameters not listed are
the same as in the intra-block experiments.

VII. EVALUATION

We first compare the control and storage overhead of hardware-
incoherent and coherent cache hierarchies, then evaluate the intra-
block hardware and programming model, and finally evaluate the
inter-block hardware and programming model.

A. Control and Storage Overhead

We consider our hierarchical architecture with 4 blocks of 8
cores each, and compare the overhead needed by the incoherent and
the coherent cache hierarchies discussed. Both hierarchies require
special control and storage structures. In terms of control, coherent
hierarchies require the cache coherence controllers, which are pos-
sibly associated with each cache controller. Incoherent hierarchies
require much simpler control, namely the ability to write back and
self-invalidate cache lines, and the per-L2 ThreadMap table.

In terms of storage structures, coherent hierarchies require the
directory, and the coherence state bits in the L1 and L2 cache lines.
Incoherent hierarchies require the per-core MEB and IEB buffers
and, in each L1 and L2 cache line, a valid bit and per-word dirty
bits. The L3 cache is similar in both systems.

Consider the coherent hierarchy first. To estimate the directory
size, we assume a hierarchical, full-mapped directory protocol.
Each L3 line needs 4 presence bits (since we have 4 blocks) and
a dirty bit, while each L2 line needs 8 presence bits and a dirty
bit. A MESI protocol has 4 stable coherence states and several
transient ones. Hence, we assume that we need 4 bits to encode
the coherence state in each L1 and L2 line.

In the incoherent hierarchy, the per-core MEB and IEB buffers
have a very small size (Table III). Each L1 and L2 cache line needs
a valid bit and per-word dirty bits. Given our cache line size, this
is 16 dirty bits per line.

Overall, adding-up the sizes of all of these storage structures
for the 32-core machine considered, we find that the hardware-
incoherent hierarchy uses about 102KB less storage than the
coherent one. This is a very small savings in storage.

B. Performance of Intra-block Execution

Figure 9 shows the execution time of the applications for the
different architectures considered. For each application, from left to
right, the bars correspond to HCC, Base, B+M, B+1, and B+M+1.
For a given application, the bars are normalized to HCC. Each bar
is broken down into 5 categories: stall time due to INV (INV stall)
and WB (WB stall), stall time due to lock (lock stall) and barrier
(barrier stall) synchronization, and rest of the execution. Barrier
stall time mostly stems from thread load imbalance. Lock stall
time is the time spent waiting for lock acquires. Part of this time
is caused by WB stalls, which delay the end of critical sections.

We classify the applications into those that exhibit coarse-grain
or relatively little synchronization (FFT, LU cont, LU non-cont,
and Water Spatial) and the rest. In the former class, the WB and
INV overheads have very little impact. As a result, in these codes,
all the architectures considered have performance similar to HCC.

The rest of the applications have finer-grain synchronization. In
these codes, in Base, the overhead of WB and INV stalls, or their
impact on lock stall is large. In Raytrace, there are frequent lock
accesses in a set of job queues. Its fine-grain structure is the reason
for the large overhead. The average bar shows that the majority
of the overhead in Base comes from lock stall, which is largely
the result of WB stall. On average for all the applications, Base’s
execution time is 20% higher than HCC.

HNVstall I [] i
I 11
WB stall NS Nepgmg B____ T=c== §
0.9
B |ock stall
0.8
Barrier stall
0.7
Execution

0.6

I k3
& &

HCC
B+l
B+M+|
HCC
B+l
B+M+|
HCC
Base
HCC
Base
HCC
Base

2z =
F| o T
& &

=
<
&

Base
B+M
Base
B+M
B+M+|
B+M+|
B+M+l

LU cont LU non-cont CHOLESKY BARNES

HCC

Figure 9: Normalized execution time of the applications.

We can speed-up execution by using the MEB to reduce the
number of WBs that are needed before exiting the critical sections.
This optimization succeeds in eliminating most of the WB stall and
lock stall. We can see, therefore, that the MEB is effective. The
resulting bars (B+M) are close to HCC. One exception is Raytrace,
where the bar is still high.

The third bar (B+1) shows that the IEB alone is not very effective
at speeding-up execution. The INV stall reduces a bit, but the WB
stall and lock stall return, and the bars return to about the same
height as Base. The problem is that, even though the number of
INVs decreases, there is a large number of WBs before exiting the
critical sections, which lengthens the critical sections and slows
down the program. The fewer misses due to fewer INVs do not
help significantly. Moreover, the IEB is so small that it sometimes
overflows, becoming ineffective.

However, the fourth bar (B+M+1) shows that, by adding both the
MEB and the IEB, we get the best performance. All the categories
of overheads decrease. As a result, the programs are now not much
slower than with hardware cache coherence (HCC). On average, the
execution time of the applications with B+M+1 is only 2% higher
than with HCC. This is a large speed-up compared to Base, whose
execution time was 20% higher than HCC. Overall, we have a
system without hardware cache coherence that is about as fast as
one with hardware coherence.

We now consider the traffic generated by HCC and B+M+I.
Given that HCC and B+M+1 have a similar average performance,
their different traffic gives us some idea of their different energy
consumption. Figure 10 shows, for each application, their relative
network traffic in number of 128-bit flits normalized to HCC.
Each bar is broken down into traffic between the L2 cache and
memory (memory), and three sources of traffic between the L1
and L2 caches: linefill due to read/write misses, writeback traffic,
and invalidations.

From the figure, we see that these applications have on average
4% less traffic in B+M+I than in HCC. This is despite the fact
that these applications were not written for an incoherent cache
hierarchy. As a result, B+M+1 suffers from the fact that the analysis
of which words need to be invalidated or written back is not very
precise, and often requires the use of INV ALL and WB ALL.
On the other hand, B+M+I removes traffic over HCC in three
ways. First, B+M+1 causes no invalidation traffic. Second, B+M+1
does not suffer from ping-pong traffic due to false sharing. Finally,

I B - []]
I | I | l- I [|
=2, u [| _in __ _ =
oS z|E |8gs=FF |8gsFE 89sFE O 8esFE O |8esFzE O |8es =
8z ez |2|8322 |2 &2z 28323 ZEz%z |28 F=3 |FE&F2=
& & & & & & &
RAYTRACE VOLREND OCEAN cont OCEAN non-cont WATER-NSQUARED, WATER-SPATIAL AVERAGE
1.2 - - - - - o
linefi W writeback invalidation ® memory

11

1

0.9

0.8

0.7

0.6

0.5

L
non-cont

VOLREND | OCEAN

cont

OCEAN | WATER-N
non-cont | SQUARED

WATER-
SPATIAL

AVER-
AGE

CHOLESKY ‘ BARNES ‘ RAYTRACE

Figure 10: Normalized traffic of the applications.

B+M+1I performs writeback of only dirty words, thanks to its per-
word dirty bits. Overall, B+M+1 causes only slightly less traffic
and, hence, consumes about the same energy as HCC.

We expect that, for applications actually written for an incoherent
cache hierarchy, the total traffic and energy in B+M+I will be
lower than in HCC — because of the three reasons listed above.
Moreover, even if the performance and energy is similar for HCC
and B+M+1, the latter has the major advantage of needing simpler
hardware, which translates into lower time to market for the
machine, and lower machine cost.

C. Performance of Inter-block Execution

To evaluate the effect of level-adaptive WB and INV, we start
by counting the number of global WBs (those going to L3) and
global INVs (those going to L2). We evaluate the Addr and Addr+L
configurations from Table II. Recall that Addr always performs
global WBs and INVs, while Addr+L only performs them if
producer and consumer cannot be proven to be in the same block.
Figure 11 compares these counts for our applications. The bars are
normalized to the values for Addr.

B WB to L3 in Addr
B WB to L3 in Addr+L
W INV L2 in Addr

INV L2 in Addr+L

Jacobi

Figure 11: Normalized number of global WB and INV.

From the figure, we see that Jacobi and CG take advantage of
level-adaptive instructions (Addr+L bars). In Jacobi, the number
of global WBs and INVs remaining is 25% of the number in
Addr. In CG, the number of global INVs remaining is 78%; to
eliminate global WBs requires a more complicated compiler anal-
ysis. Overall, with these level-adaptive instructions (WB_CONS
and INV_PROD), we reduce network traffic and miss stall time.

However, EP and IS show no impact. In these applications, the
major data communication pattern is reductions. Since a reduction
does not have ordering, it is not possible to determine producer-
consumer pairs. Thus, level-adaptive WB and INV cannot help. To
exploit local communication, one could re-write the code to have
hierarchical reductions, which reduce first inside the block and then
globally.

Figure 12 compares the performance of all the configurations in
the lower part of Table II (HCC, Base, Addr, and Addr+L). The
bars are normalized to HCC. Recall that Base always performs WB
ALL to L3 and INV ALL to L2. We see that Base performs the
worst. In Jacobi, knowing which addresses to WB and INV (Addr)
pays off. In CG, making some of the INVs local with Addr+L has a
further performance impact. In EP and IS, the reduction operations
prevent Addr and Addr+L from having any benefits over Base.

2
1.8
1.6
1.4 mHCC
1.2
1 M Base
0.8
0.6 Addr
0.4
0.2 B Addr+L
0

Jacobi EP IS CG Average

Figure 12: Normalized execution time of the applications.

On average, Addr+L reduces the execution time by 5% over Addr
and by 31% over Base. We conclude that level-adaptive WB and
INV can speed-up codes by transforming some global operations
into intra-block ones. However, the impact is a strong function
of the application — in particular, the contribution of the global
memory operations to the execution time, and the analyzability of
the memory operations.

Figure 12 also shows that HCC is faster than Addr+L. The reason
is that, in Addr+L, the WB and INV instructions are sometimes
conservative. In addition, the latency of WB and INV instructions
is often hard to hide. On average, however, Addr+L only takes 5%
more time to execute. This is tolerable, especially for applications
that were not specifically written for an incoherent cache hierarchy.

VIII. RELATED WORK

The most closely related works are Rigel [5] and its successor
Cohesion [6]. While these works also use hardware-incoherent
caches, and writeback and invalidation operations, we have three
contributions over these past works. First, we examine the ordering
constraints between the INV and WB instructions, and other
accesses. Second, we provide a simple yet effective methodology to
insert writebacks and invalidations both within a block and across
blocks. Third, we propose the use of level-adaptive writebacks
and invalidations to attain performance in a multi-block machine.
Rigel’s writebacks and invalidations always direct communication
through the last level cache.

Runnemede [4] does not specify how to communicate between
blocks except through DMA operations initiated by a DMA engine.

Rigel and Cohesion rely on manual coding for inter-block com-
munication. Communication occurs through the last-level global
cache regardless of the current thread mapping. This inefficiency is
justified by their focus on accelerator workloads, which do not have
much inter-block communication. However, more communication-
oriented algorithms, or programs that access memory in an irregular
manner do not perform efficiently on those architectures.

Our work is related to software cache coherence schemes, which
typically rely on compiler analysis of the code (e.g., [7], [8], [9]),
or on using bloom filters to summarize communication [10]. One
of the first works is Cheong et al. [7], who use data flow analysis
to classify every reference to shared memory either as a memory-
read or a cache-read. Invalidation is done selectively. Data flow
analysis is carried out at the granularity of arrays, which may cause
invalidations for an entire array. Choi et al. [8] propose to improve
inter-task locality in software managed caches by using additional
hardware support. Specifically, epoch numbers are maintained at
runtime, and cache words are associated with them. An epoch
flow graph technique establishes conditions under which it can
be guaranteed that the cached copy of a variable is not stale.
Darnell et al. [9] perform array subscript analysis to gather more
accurate data dependence information and then aggregate cache
coherence operations on a number of array elements to form vector
operations. Compared to these works, our intra-block approach
takes a simpler approach based on relying on synchronizations.
Our inter-block approach uses compiler techniques, but focuses on
producer-consumer pairs and inspector-executor patterns.

Ashby et al. [10] support software-based cache coherence with
selective self-invalidations using bloom filters. At each epoch, each
core accumulates the addresses written using bloom filters. The
generated signature of the written addresses is transferred with
a synchronization release. A new synchronization acquirer self-
invalidates its private cache using the signature received. While
this work takes advantage of selective invalidation, it can incur
significant overhead in lock-intensive programs. In our proposal,
we provide the MEB/IEB structures to isolate critical sections from
other epochs.

Our reliance on identifying synchronization in the program is
related to earlier work on lazy release consistency [22], performed
in the context of Distributed Shared Memory (DSM) (e.g., as
in TreadMarks [19]). DSM has similarities in that it provides a
coherent memory image without direct hardware support for cache
coherence.

Our work is also related to efforts that try to simplify the
design of hardware cache coherence protocols (e.g., [11], [12],
[23], [24]). The VIPS-M protocol [12] employs self-invalidation
and self-downgrade with a delayed write-through scheme. The
protocol relies on private and shared page classification. Cache
lines in shared pages are self-invalidated at synchronization, and
are self-downgraded using write-through. Our work differs in that
we use writeback L1 caches, and try to minimize unnecessary self-
invalidation using MEB/IEB. DeNovo [11], [23] tries to simplify
the hardware cache coherence protocol by using programming-
model or language-level restrictions for shared memory accesses
(e.g., determinism or data-race freedom). The benefit of DeNovo’s
approach is a simpler coherence protocol. In our work, we do
not introduce any requirements to the programming model. Our
approach takes and instruments legacy parallel codes. These works
also differ from our work in that they are limited to a two-
level cache hierarchy. Concurrent to our work, Ros et al. [24]

have extended self-invalidation protocols to hierarchical cluster
architectures. Their work uses the hierarchical sharing status of
pages to determine the level of self-invalidation. While using
dynamic page-sharing information enables hierarchical coherence
protocols, it complicates page management. In contrast, our work
uses information extracted from the program statically, in order to
infer the target of inter-thread communication.

IX. CONCLUSION

Runnemede is a recently-proposed extreme-scale manycore that
radically simplifies the architecture, and proposes a cluster-based
on-chip memory hierarchy without hardware cache coherence.
To program for such hardware-incoherent cache hierarchy, this
paper proposed simple hardware extensions and two user-friendly
programming approaches. The hardware extensions are several
flavors of writeback and self-invalidation instructions, two small
buffers next to the L1 cache, and a table in the cache controller. The
programming approaches involve shared-memory programming
either inside clusters only, or both inside and across clusters.

Our simulation results showed that hardware-incoherent cache
hierarchies with our support deliver reasonable performance for
applications that were not written for incoherent hierarchies.
Specifically, for execution within a cluster, the average execution
time of the applications was only 2% higher than with hardware
cache coherence; for execution across multiple clusters, it was
only 5% higher than with hardware cache coherence. This was
accomplished with our minimal hardware support.

ACKNOWLEDGMENT

This work was supported by NSF under CCF-1012759 and CCF-
1536795, and by DOE ASCR under award DE-SC0008717.

REFERENCES

[1] P. Kogge et al., “ExaScale Computing Study: Technology Chal-
lenges in Achieving Exascale Systems,” in DARPA-IPTO Spon-
sored Study, Sept. 2008.

[2] A. Hoisie and V. Getov, “Extreme-Scale Computing,” in Special
Issue, IEEE Computer Magazine, November 2009.

3

[t}

J. Torrellas, “Extreme-Scale Computer Architecture: Energy Ef-
ficiency from the Ground Up,” in International Conference on
Design, Automation and Test in Europe (DATE), March 2014.

[4] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David,
D. Dunning, J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase,
R. Lethin, B. Meister, A. K. Mishra, W. R. Pinfold, J. Teller,
J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu, “Runnemede:
An architecture for ubiquitous high-performance computing,” in
International Symposium on High Performance Computer Archi-
tecture, Feb. 2013.

[5

—_

J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mabhesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An
architecture and scalable programming interface for a 1000-core
accelerator,” in Int. Symp. on Comp. Arch., June 2009.

[6] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J.
Patel, “Cohesion: A hybrid memory model for accelerators,” in
International Symposium on Computer Architecture, June 2010.

[7

—

H. Cheong and A. V. Veidenbaum, “A cache coherence scheme
with fast selective invalidation,” in International Symposium on
Computer Architecture, June 1988.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

L. Choi and P. C. Yew, “A compiler-directed cache coherence
scheme with improved intertask locality,” in Supercomputing,
Nov. 1994,

E. Darnell, J. M. Mellor-Crummey, and K. Kennedy, “Automatic
software cache coherence through vectorization,” in International
Conference on Supercomputing, June 1992.

T. J. Ashby, P. Diaz, and M. Cintra, “Software-based cache co-
herence with hardware-assisted selective self-invalidations using
bloom filters,” IEEE Trans. Comput., vol. 60, no. 4, pp. 472-483,
Apr. 2011.

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism,”
in International Conference on Parallel Architectures and Com-
pilation Techniques, Oct. 2011.

A. Ros and S. Kaxiras, “Complexity-effective multicore coher-
ence,” in International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2012.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith, “The Tera Computer System,” in International
Conference on Supercomputing, 1990, pp. 1-6.

G. Pfister et al., “The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture,” in International Confer-
ence on Parallel Processing, 1985, pp. 764-771.

D. Kuck et al., “The Cedar System and an Initial Performance
Study,” in International Symposium on Computer Architecture,
1993, pp. 213-223.

A. Friedley, G. Bronevetsky, T. Hoefler, and A. Lumsdaine,
“Hybrid MPI: Efficient Message Passing for Multi-core Systems,”
in Supercomputing, Nov. 2013.

ROSE Compiler Infrastructure, www.rosecompiler.org.

A. Basumallik and R. Eigenmann, “Towards Automatic Trans-
lation of OpenMP to MPIL,” in International Conference on
Supercomputing, June 2005.

C. Amza et al., “TreadMarks: Shared Memory Computing on
Networks of Workstations,” Computer, vol. 29, no. 2, pp. 18-28,
Feb. 1996.

R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang, “Communication
optimizations for irregular scientific computations on distributed
memory architectures,” J. Parallel Distrib. Comput., 1994.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC
simulator,” January 2005, http://sesc.sourceforge.net.

P. Keleher, A. Cox, and W. Zwaenepoel, “Lazy Release Consis-
tency for Software Distributed Shared Memory,” in International
Symposium on Computer Architecture, May 1992.

H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
Hardware Support for Disciplined Non-determinism,” in Conf. on
Arch. Sup. for Prog. Lang. and Op. Sys., Mar. 2013.

A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared
classification: The key to simple and efficient coherence for
clustered cache hierarchies,” in HPCA, Feb. 2015.

