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ABSTRACT
Sequential Consistency Violations (SCV) in relaxed consis-
tency machines cause programs to malfunction and are hard
to debug. While there are proposals for detecting and record-
ing SCVs, they are limited in that they end program execu-
tion after detecting the first SCV because the program is now
non-SC. Therefore, they cannot be used in production runs.
In addition, such proposals rely on complicated hardware.

To address these problems, this paper proposes the first
architecture that detects and logs SCVs in a continuous man-
ner, while retaining SC. In addition, the scheme is precise
and uses substantially simpler hardware. The scheme, called
SCsafe, operates continously because, after SCV detection
and logging, it recovers and resumes execution while retain-
ing SC. As a result, it can be used in production runs. In ad-
dition, SCsafe is precise in that it identifies only true SCVs
— rather than dependence cycles due to false sharing. Fi-
nally, SCsafe’s hardware is mostly local to each processor,
and uses known recovery techniques. We evaluate SCsafe us-
ing simulations of 16-processor multicores with Total Store
Order or Release Consistency. In codes with SCVs, SCsafe
detects and reports SCVs while enforcing SC during the ex-
ecution. In codes with few SCVs, it adds a negligible perfor-
mance overhead. Finally, SCsafe is scalable with the proces-
sor count.

1. INTRODUCTION
Programmers writing and debugging shared-memory pro-

grams assume Sequential Consistency (SC). Under SC, the
memory operations of the program must appear to execute
in some global sequence as if the threads were multiplexed
on a uniprocessor [15]. In practice, memory accesses are
pipelined, overlapped, and reordered by the hardware. Un-
less the program uses correct synchronization to prevent un-
wanted reorders, an SC violation (SCV) may occur, which is
very hard to debug.

As an example, consider Figure 1(a). Processor P1 initial-
izes variable a and then sets flag OK; later, P2 tests the flag
and, if set, uses a. If the hardware reorders the writes of P1
as shown with the arrows, where the initialization of a is de-
layed, P2 ends up reading the uninitialized a. This order is an
SCV.

An SCV occurs when there is a dependence cycle [28]. For
a two-threaded SCV, two conditions need to be true. First,
we need to have two data races. In the example, we have
races on variables a and OK. Second, at runtime, these races
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Figure 1: Example of an SC Violation (SCV).
must overlap in time and intertwine in a manner that forms
a cycle. This is shown in Figure 1(b). The dashed arrows
show program order, while the solid ones show the order of
dependences: A2 executed before A3 (arrow (1)), while A4
executed before A1 (arrow (2)), forming a cycle. A cycle can
be formed with any number of threads.

An SCV is a type of concurrency bug that, while not as
common as popular bugs like data races, is important for
three reasons. First, it can induce serious harm by causing
a program to execute totally counter-intuitively. Second, it
is hard to debug, as it depends on the timing of events, and
single-stepping debuggers cannot reproduce it. Finally, it is
often concentrated in critical codes, such as those that per-
form fine-grain communication and synchronization — syn-
chronization libraries, task schedulers, and run-time systems.

There are proposals of hardware schemes to detect and
record SCVs [19, 20, 21, 24]. However, they have limita-
tions. Specifically, some schemes are very conservative, as
they look for only a single data race where the two partici-
pating accesses are concurrent [19, 20].

The other schemes look for dependence cycles [21, 24].
However, they terminate execution after detecting the first
SCV. This is because the program state is now non-SC and,
therefore, incorrect. Further execution could find artificial
additional SCVs. This approach is incompatible with pro-
duction runs and, therefore, suboptimal, as some SCVs may
happen only during production runs. Instead, we would like
to log the SCV bug for later debugging, and continue at
production-run speeds under strict SC-enforced execution, in
order to correctly capture future SCVs. A second limitation
of these schemes is that they rely on complicated hardware.

To solve these limitations, this paper proposes the first ar-
chitecture that detects and logs SCVs in a continuous man-
ner, while retaining SC. The scheme is called SCsafe. In SC-
safe, when a processor Pi executes an out-of-order access A,
the hardware in Pi prevents other processors from observ-
ing it by rejecting coherence transactions received by Pi di-
rected to the address accessed by A. Pi only responds when
all local accesses prior to A finish. When two or more pro-
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cessors reject each other’s requests and cause a deadlock, a
dependence cycle (and, hence, an SCV) has just been pre-
vented from happening. In this case, SCsafe quickly detects
the deadlock, records the SCV, and recovers and resumes ex-
ecution while maintaining SC. As a result, SCsafe operates
under SC continuously, and can be used in production runs.

SCsafe is precise in that it records only true SCVs —
rather than dependence cycles due to false sharing. Also, its
hardware is simpler than prior schemes because it is mostly
local to each processor, and uses known recovery techniques.

SCsafe is a pure hardware scheme and, therefore, consid-
ers only access reordering induced by the hardware. The
compiler could itself induce SCVs with certain optimiza-
tions [27], but this is outside of SCsafe’s scope. It requires
passing information between compiler and hardware.

We evaluate SCsafe using simulations of 16-processor mul-
ticores with Total Store Order (TSO) or Release Consistency
(RC). The results show that SCsafe is effective. In codes with
SCVs, SCsafe detects and reports SCVs, while enforcing
SC during the execution. In codes with few SCVs, it adds a
negligible performance overhead. Finally, SCsafe is scalable
with the processor count.

This paper is organized as follows: Section 2 gives a back-
ground; Section 3 presents the idea in SCsafe; Sections 4–5
introduce the different parts of SCsafe; Sections 6–7 evaluate
it; and Section 8 covers related work.

2. BACKGROUND

2.1 Definitions
For a memory instruction, this paper uses the terms per-

formed, retired, finished, and M-speculative. A load has per-
formed when the processor receives the loaded data from the
memory system. It retires when it reaches the head of the
Reorder Buffer (ROB) and has performed. After retirement,
the load is finished.

A store retires when it reaches the head of the ROB and
its address and data are available. The store is deposited into
the write buffer. After this, when the memory consistency
model allows, the store is merged with the memory system,
potentially triggering a coherence transaction. When the co-
herence transaction terminates (e.g., when all the invalida-
tion acknowledgments have been received), the store has per-
formed, and is now finished.

The memory consistency model supported by the hard-
ware determines the access reorders that are legal. In TSO [1],
a load can perform before earlier (in program order) stores
but not before earlier loads; a store cannot perform before
earlier accesses. In RC [12], a load can perform before ear-
lier accesses; a store can also perform before earlier accesses
but, to keep precise exceptions, such earlier accesses are in
practice restricted to other retired stores. This is what we as-
sume in this paper.

Hardware implementations typically allow loads to per-
form earlier than allowed by the memory consistency model
— as long as the load is not observed by other processors [11].
A local load is observed when the processor receives a co-
herence transaction directed to the address read by the load.
Consider the time between when a load is performed and
when it is allowed to be performed according to the memory

consistency model. During this time, we say that the load is
M-speculative (or speculative relative to the memory consis-
tency model). We use this term to mean that its status depends
on the consistency model supported by the system. For ex-
ample, consider a load (l2) that performs while an earlier one
in the pipeline (l1) is not yet performed. Under RC, l2 is not
M-speculative; under TSO, l2 is.

While a load is M-speculative, if it is observed, the load
and subsequent instructions are squashed. When the load
ceases to be M-speculative, if it is observed, it will not be
squashed.

2.2 Detecting SCVs and Enforcing SC
An SCV occurs when threads participate in a cycle of data

dependences and program orders [28] (Figure 1(b)). There
are several hardware schemes for SCV detection [19, 20,
21, 24]. They can be classified into conservative and highly
specific. The former [19, 20] look for a fairly conservative
necessary condition for SCV: a data race where the two par-
ticipating accesses are concurrent. This is very conservative
because most such races are not accompanied by a second,
cycle-forming race.

The highly-specific schemes (i.e., Vulcan [21] and Voli-
tion [24]) leverage cache-coherence transactions to dynami-
cally track the data dependences between processors, look-
ing for a cycle pattern like Figure 1(b). While they are effec-
tive at finding SCVs, they have two limitations.

The first one is that, after they find the first SCV in a pro-
gram, they are unable to retain SC. The program state is now
non-SC and, therefore, incorrect. As a result, they terminate
execution, perhaps with a crash. Hence, these schemes are in-
compatible with production runs and, therefore, suboptimal,
as some SCVs may only happen during production runs.

The second limitation is that they use complex hardware.
They introduce elaborate hardware structures for metadata.
They time-stamp the dynamic accesses of processors, and
then compare the time-stamps when processors communi-
cate — all in hardware. The time-stamps are passed in aug-
mented or special coherence transactions. Word-level depen-
dence disambiguation is attained with additional per-word
state and especial transitions (Vulcan) or with special hard-
ware structures and new cache coherence transactions (Voli-
tion). In SCsafe, we use simpler, mostly-local hardware.

A related approach is to use hardware to only enforce SC
(e.g., [4, 7, 11, 13, 18, 25, 33]). These schemes look for a
necessary condition for an SCV and, when detected, squash
instructions to force the threads away from the SCV path. In
most schemes, the necessary condition is the presence of an
access that is observed while it is M-speculative relative to
SC. The access can be a load or, with support for speculative
caches, a store. In Figure 1(b), the access is store A2.

While these schemes are useful for their purpose, they
are not usable to detect SCVs. This is because, when they
squash instructions to avoid the SCV, they discard the state
that would be needed for SCV detection and recording. In
addition, in most cases, as we will see, we would have a false
positive because no SCV would end up happening. We de-
scribe these schemes in Section 8.

2.3 Why Continuous Detection of SCVs?
Finding SCVs is important for several reasons. First, SCVs
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cause a program to execute in totally counter-intuitive man-
ners. Second, there are no software techniques for SCV de-
tection and recording. Third, SCVs are very hard to debug,
as single-stepping debuggers cannot reproduce them.

However, one can ask: (i) why not simply look for data
races, (ii) why not limit the design to SC enforcement only,
or (iii) why require the SCV detection to be continuous?

We target SCVs and not data races because SCVs are much
more harmful than most data races. In commercial codes,
race-detection tools find many races. Typically, a busy de-
veloper does not consider many of them important enough
to devote her attention to them [9, 22]. Instead, she prefers
to focus on those most likely to cause malfunction. Among
these are SCVs, which require two or more overlapping data
races in a cycle. Only a very small fraction of data races are
associated with an SCV [21]. A second reason for not using
data races as proxies is that we may want to find SCVs in
codes that have intentional data races, such as in some types
of lock-free data structures.

SCVs would disappear from high-level language code if
programmers annotated all racing accesses as volatile (in
Java) or atomic (in C++). However, programmers often fail
to do so, possibly involuntarily. There is substantial existing
code without these annotations.

Only enforcing SC rather than also recording SCVs is not
enough. The developer needs to know about SCVs that were
avoided, and debug them later, for two reasons. First, a latent
SCV is a sign of a deep bug; such bug may have other ramifi-
cations beyond causing SCVs, like changing code state. Sec-
ond, we would like the program to also run on off-the-shelf
machines correctly.

Finally, providing continuous SCV detection is important
because SCVs are timing-dependent and unpredictable. Hence,
they need to be caught at production-run speeds, possibly
during production runs. During a production run, terminat-
ing or crashing the program at the first SCV is unacceptable.

3. IDEA: CONTINUOUS & PRECISE SCV
DETECTION

SCsafe is the first hardware architecture for relaxed con-
sistency machines that detects and logs SCVs in a continuous
manner. This makes it different from past proposals. With
SCsafe, as a program executes at production run speeds, the
hardware records any SCVs that occur (for later debugging)
while ensuring that the execution is always SC. In addition,
SCsafe is precise (i.e., has no false alarms due to false shar-
ing) and has modest hardware cost.

A processor’s SCsafe hardware dynamically keeps track
of all the out-of-order accesses that are not M-speculative
relative to the consistency model of the machine (and hence
would not be squashed if observed). Then, it stalls any in-
coming coherence transaction directed to any of these out-
of-order accesses. When two or more processors that reject
each other’s requests cause a deadlock, a dependence cycle
(and, hence, an SCV) has just been prevented from happen-
ing. At this point, SCsafe’s hardware automatically detects
the deadlock and logs the SCV — i.e., the deadlocked in-
structions’ program counters and addresses accessed.

SCsafe then forces at least one of the threads involved in
the deadlock to roll back the out-of-order accesses and re-

execute them. During this process, SC is retained. As execu-
tion continues at production-run speed, the machine is able to
detect and record any future SCVs that occur. These will be
true SCVs, not “artificial” ones that could have been “fabri-
cated” if SC had not been enforced during the whole process.

As we will see, the SCsafe hardware is relatively simple:
it is mostly local to each processor, and uses known mech-
anisms for state recovery. Moreover, it is scalable. The key
to hardware simplicity over Vulcan and Volition is to never
satisfy a request that may end-up closing a dependence cy-
cle, but stall it. Then, we do not need timestamps to identify
an SCV: we simply look for a deadlock cycle. Fortunately,
then, no incorrect data has been supplied, and correct execu-
tion can resume.

4. SCsafe OPERATION

4.1 Reordered Accesses and SCVs
To understand SCsafe, we first define the concept of Re-

ordered accesses. Intuitively, these are performed accesses
that follow (in program order) unfinished accesses from the
same processor, but are allowed by the memory consistency
model to be visible to other processors. Other processors can
read and write the data accessed by the Reordered accesses
without squashing the Reordered access instructions.

Formally, a Reordered access in a thread is a load or a
store instruction for which all of the following is true:
• Has performed — i.e., for a load, it has brought the data
from the memory system and, for a store, the coherence trans-
action that it triggered has completed.
• It follows in program order at least one unfinished memory
access in the same thread: an earlier load has not yet per-
formed and retired, or an earlier store has not yet retired and
performed.
• It is not M-speculative. Hence, if the processor receives an
external coherence transaction for the data that the instruc-
tion accessed, the instruction is not squashed.

Different memory consistency models allow different types
of Reordered accesses. In TSO, given an unfinished store, all
the loads that follow it in program order, up to (but not in-
cluding) the earliest not-yet-performed load are Reordered.
In TSO, an unfinished load cannot have any Reordered ac-
cesses.

In RC, given an unfinished store, all the performed loads
and performed stores that follow it in program order are Re-
ordered. Given an unfinished load, all the performed loads
that follow it in program order are Reordered. (There cannot
be any performed store that follows an unfinished load).

An SCV occurs when two or more processors form a de-
pendence cycle. A necessary condition for a cycle is that a
processor (P1) has a Reordered access (A1) that: (i) conflicts
with an access (A2) by another processor (P2) and (ii) A2 is
ordered after A1. Since A1 is a Reordered access, it does not
get squashed by A2. Figure 2 shows an example for TSO,
where A1 is rd y and A2 is wr y.

This is a necessary but not sufficient condition for a cy-
cle. A cycle (for two processors) additionally needs that P2
issues a subsequent access (A3) that conflicts with an earlier
access from P1 (A4) and is ordered before A4. This is shown
in Figure 2, where A3 is rd x and A4 is wr x. We have an SCV.
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A3: rd x

P P1 2

A4: wr x A2: wr y

A1: rd y

Figure 2: Example of a pattern that creates an SCV.

SCsafe may need to undo Reordered accesses to avoid
SCVs. Hence, performing a Reordered store in RC should
not update memory irreversibly. Instead, it can update a spec-
ulative cache or, as in the design we present later, use exclu-
sive prefetch to obtain exclusive cache permissions — the
access updates the cache later when it is not Reordered any-
more.

4.2 Basic SCsafe Operation
From the previous discussion, we can deduce the low-cost

approach that SCsafe uses to detect SCVs: SCsafe stalls ac-
cesses that conflict with a Reordered access in another pro-
cessor. In most cases, the stall will naturally go away as ac-
cesses finish. However, if an SCV is about to occur, the par-
ticipating processors will necessarily deadlock. At that point,
SCsafe records the SCV, breaks the deadlock, recovers the
SC state, and resumes execution transparently to the running
program. We now consider each step, starting with the stall.

To stall accesses, SCsafe proceeds as follows:
• When an access (A) in a processor (P) becomes Reordered,
SCsafe’s hardware places the address accessed by A, A’s pro-
gram counter, and whether A is a load or a store in a structure
in P’s cache controller called the Reordered Set (RS).
• Coherence transactions received by P’s cache are checked
against its RS for an address match (at the cache line granu-
larity for realistic hardware). Specifically, incoming reads are
checked against the writes in the RS, while incoming writes
are checked against both reads and writes in the RS. If there
is a match, the transaction is refused (i.e., answered with a
Nack), which will cause the requester to retry.
• When A ceases to be Reordered, SCsafe’s hardware re-
moves it from the RS; it cannot trigger SCVs anymore.

If a processor runs out of RS entries, it stalls. Also, note
that, while an address is in a processor’s RS, the local cache
has to observe all the external coherence transactions directed
to the corresponding line. Hence, we need to carefully handle
cache evictions of lines with RS entries. If the line is clean,
it can be evicted silently, since future coherence transactions
will still be observed locally (in directory protocols, because
the directory has not been notified; in snoopy protocols, be-
cause invalidations are broadcasted).

If, however, the evicted line is dirty and the machine uses
directory-based coherence, special care is needed, since the
visibility of future coherence transactions is in jeopardy. In
this case, SCsafe rolls-back to the state before the instruction
that created the RS entry. We will see how this is done. In
practice, cache replacement algorithms that follow LRU-like
policies rarely choose to evict a line with a recently-inserted
RS entry.

Consider Figure 2 again. Assume load A1 performs be-
fore store A4 finishes, and address y is placed in P1’s RS.
Later, store A2 executes, initiating a coherence transaction
that reaches P1’s cache and hits in the RS. The transaction
is nacked, preventing P2 from executing A2. When store A4

finishes, address y is removed from P1’s RS. A retry of store
A2 by P2 now succeeds. However, if the timing is such that
A2 waits on A1, and A4 waits on A3, an SCV has just been
avoided, and the system deadlocks.

Section 5.1 describes the RS operation in detail.
Nacking requests simplifies SCV handling: the SCV has

been avoided at the last minute, incorrect data has not been
consumed, and execution can be easily rolled-back. Nack-
ing [14] has been implemented in several multiprocessors,
including DASH [17] and the Silicon Graphics Origin [16].

4.3 Types of Stalls
SCsafe’s stalls can be classified based on whether or not

they cause deadlocks (Table 1). In most cases, a stall is tem-
porary. It goes away after an access completes and what used
to be its Reordered accesses are removed from the RS. These
stalls do not flag SCVs (Table 1).

No Deadlock Deadlock
True Dependences False Sharing

SCV? No Yes No

Table 1: Deadlocks versus SCVs in SCsafe.
When stalls cause a deadlock, we have N processors stalling

one another in a cycle — each processor waiting on another
processor’s RS. If the cross-processor dependences are all
true dependences, an SCV has been averted. Examples of
two- and three-processor cycles of this type under RC are
shown in Figures 3(a) and (b), respectively. In the figures,
the addresses in the RS are shown in a box, and a nacked ac-
cess is represented by an arrow that curves back to its source.

P P1 2

A4: wr x

xyRS RS

A3: rd xA1: wr y

A2: rd y

(b)

(a)

PP

x RSRS

P1

yRS

A1: rd y

2 3

A6: wr x A2: wr y

A3: rd z

z

A4: wr z

A5: wr x

Figure 3: Examples of deadlocks caused by SCVs.
If at least one of the cross-processor dependences is due

to false sharing, the deadlock is not due to an SVC (Table 1).
Since processors initiate coherence transactions at cache-line
granularity, requests are nacked even though the accesses are
to different words of the same line. This is shown in Fig-
ure 4(a), where words a and b share a line. As we will see,
SCsafe detects this case, breaks the deadlock, restores SC,
and continues without recording any SCV.

When there is a deadlock (due to true dependences or false
sharing), it is possible that a processor that does not partic-
ipate in the cycle also gets embroiled in the deadlock. This
occurs when the processor accesses an address that is already
part of a cycle in other processors. An example is processor
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(b)

P1

RS

P2

wr x

rd a

a

wr b

rd x

x RS

x RS

P1

yRS

P2 P3

wr x

rd y

wr y

rd x

wr x

(a)

Figure 4: Other cases of deadlocks.

P3 in Figure 4(b). In this case, when SCsafe breaks the dead-
lock (Section 4.6), the processor is released.

Overall, SCsafe is precise because of two reasons. First,
SCsafe records all the SCVs that occur (for a given dynamic
execution of the program). This is because all SCVs cause
deadlocks. Second, SCsafe only records true SCVs. The rea-
son, as we will see, is that SCsafe identifies the deadlocks
caused by false sharing, and silently recovers from them.

4.4 Detecting a Deadlock
A sign that a processor Pi may be participating in a dead-

lock is that its RS bounces an external request, and one of its
own requests is being bounced by another processor. How-
ever, SCsafe initiates the Deadlock Detection and Analysis
(DDA) algorithm in Pi only if and when it is Pi’s oldest un-
finished access (Aold_i) the one bounced by another proces-
sor. In TSO, Aold_i is the write at the head of the write buffer;
in RC, Aold_i is either such a write or, if the write buffer is
empty, the read at the head of the ROB.

At a high level, when Pi bounces an external request and
its Aold_i access is also being bounced, SCsafe embeds some
information in Pi’s future Aold_i retry messages. Such infor-
mation will propagate to all of the processors involved in the
potential cycle. If the information ever reaches back to Pi, it
means that there is a cycle. Then, Pi records the local state of
the cycle and adds further information to its retry messages.
When this additional information reaches back to Pi again, it
means that all of the processors in the cycle have recorded
their state. Then, Pi initiates recovery.

The information included in a retry message is: (1) two
bitmaps with as many bits as processors in the machine, which
record the processors participating in the cycle (Round0 and
Round1); (2) the byte offset and datatype (such as word, half-
word, etc) of the data accessed by Aold_i in the line OffType);
and (3) a bit that records whether the cycle is due to false
sharing (FS). All request messages contain these fields, which
are 5 bytes long for the systems we evaluate, but they are or-
dinarily unused.

DDA starts when Pi bounces an external request and its
Aold_i access is bounced. At this point, the local SCsafe hard-
ware includes the following in Pi’s future Aold_i retry mes-
sages: (1) Round0 with bit i set, (2) an empty Round1 bitmap,
(3) OffType set to the byte offset and datatype of the data ac-
cessed by Aold_i in the line, and (4) FS set to zero.

The processor at the receiving end (Pj) simply ignores this
information if its own Aold_ j is not being bounced. However,
if it is, the SCsafe hardware performs two actions. First, it
checks if the OffType in the incoming message matches an
address in Pj’s RS exactly, or only because of false sharing.
If the latter is true, Pj sets a local FS bit. Second, Pj includes
in its own Aold_ j retry message: (1) Round0 coming from Pi
augmented by also setting the j bit, (2) Round1 coming from
Pi; (3) OffType with the byte offset and datatype of the data
that Aold_ j accesses, and (4) the FS bit coming from Pi OR-ed
with the locally-generated FS bit.

Successive processors in the cycle perform the same two
actions. If there is a cycle, Pi eventually finds out that it is
bouncing an incoming request with Pi’s own ID bit already
set in Round0. Hence, we have a deadlock. Pi also computes
its local FS bit. If the incoming message’s FS bit or the local
FS bit is set, the cycle is due to false sharing. In this case Pi
simply initiates recovery (Section 4.6).

Otherwise, the cycle is due to true dependences. Then, Pi
records the local SCV state (Section 4.5). In addition, in fu-
ture retries of Aold_i, in addition to including the usual in-
formation, Pi sets the i bit in Round1. The same operation
is performed by all the other processors in the cycle. There-
fore, a second wave of information traverses the cycle. Fi-
nally, when Pi finds that it is bouncing an incoming request
with Pi’s own ID bit already set in both Round0 and Round1,
it knows that all the processors in the cycle have recorded
their local SCV state. Then, Pi initiates the recovery.

Note that it is possible that multiple processors in a given
cycle start the DDA algorithm at the same time; the algo-
rithm works equally well. In this case, multiple processors
may initiate the recovery. However, each processor in the cy-
cle logs the local SCV state only once. Section 5.2 describes
the DDA algorithm in detail.

Figure 5 shows an example of DDA for four deadlocked
processors due to true dependences. In the figure, only P0 ini-
tiates DDA. For each message, the lighter bitmap is Round0,
while the darker one is Round1. The numbers in parenthe-
sis show the temporal sequence of events. While each pro-
cessor continuously issues retry messages, each chart only
shows one retry per processor. In Chart (a), as information
is propagated from P0 to back to P0, each processor popu-
lates Round0. In Chart (b), each processor finds its bit set in
Round0, logs the SCV state, and populates Round1. Finally,
Chart (c) shows what happens after P0 has received message
(8), as will be explained in Section 4.6. In this case, P0 ini-
tiates recovery (9) and, as a result, the next retry from P3
succeeds (10).

P0

P1

P3
(c)

(9)

(10)

0 0 0 1
0 0 0 0 0 0 0 0

0 0 1 1

0 0 0 0
0 1 1 1

0 0 0 0 
1 1 1 1

P2

P1

P3
(b)

P0
log P2

log

(5)
(6)

(7)
(8)

Success

P0

P1

P2

P3
(a)

(1) (2)

(3)(4)

log

log

Recovery

1 1 1 1
1 1 1 1

0 0 0 1
1 1 1 1

0 0 1 1
1 1 1 1

1 1 1 1
0 1 1 1

Figure 5: Example of deadlock detection and analysis.

4.5 Recording the SCV
As indicated above, when a processor Pi bounces for the
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first time an incoming access that contains Round0 with bit
i set and Round1 with bit i clear, and there is no false shar-
ing, SCsafe records the local SCV state. Specifically, SC-
safe dumps four pieces of information into a memory in the
cache controller: the program counter (PC) and the address
accessed by the two local instructions involved in the cycle.
One of the instructions is Aold_i (the access being bounced,
such as A4 in Figure 3(a)). Its PC and address are readily
available. The other instruction is the one that created the
RS entry that bounces the incoming coherence request (such
as A1 in Figure 3(a)). We identify the RS entry as the one
that exactly matches the address in the incoming bounced
request. RS entries contain both the address and the PC.

A processor’s recording operation is unlikely to take more
than several tens of cycles and, therefore, has a negligible
performance impact.

4.6 Recovery while Retaining SC
When a processor Pi bounces an incoming request where

bit i is set in both Round0 and Round1, Pi initiates recovery.
The goal is to return the deadlocked processors to production
execution transparently and right away. The recorded SCV
information can be analyzed off-line later.

To understand the recovery, note that the state of the global
memory system at this point is the one before Aold_k for all
the k processors participating in the deadlock. This is be-
cause, as we explain later, Reordered stores in RC do not up-
date memory, but obtain exclusive cache permissions. How-
ever, the pipeline state of each processor k is beyond this
point. Hence, to recover from the deadlock while retaining
SC, we need for at least one of the k processors (e.g., Pi)
to roll back its pipeline state to when its bounced request
(Aold_i) was at the head of its ROB, it had no Reordered ac-
cesses, and its RS was empty. An empty RS allows other
deadlocked processors to make progress. Concurrently, Pi
can re-execute Aold_i and subsequent instructions. This ap-
proach is attractive because it only requires logic that is local
to the processor, and is compatible with common pipeline-
recovery mechanisms.

Specifically, recovery in a processor involves rolling back
all the instructions that have been retired from the ROB since
the still-unfinished Aold access. These instructions can be of
all types, and may include stores. To roll back, SCsafe uses
a History Buffer (HB) circular queue [31], which has been
used for recovery in previous proposals (e.g., [13, 25]) with
different designs. SCsafe uses an HB design that can have
multiple retired stores. Recall that the HB temporarily stores
the processor state that each of the retired instructions over-
writes. As an instruction retires from the ROB, if there are
any preceding unfinished accesses (i.e., stores), SCsafe fills
an entry at the tail of the HB. Each entry contains, for the
register that the instruction overwrites, the old value and the
old register mapping. It also includes the instruction’s PC.

SCsafe does not store speculatively generated state in the
caches. A Reordered store in RC keeps its state in the write
buffer, and triggers an exclusive prefetch to the cache, to
bring the corresponding line in Exclusive state into the cache.
When the prefetch completes, the store is considered per-
formed, and is entered in the RS. In this way, when stores
are eventually merged in order with the memory system, they

can do so very quickly, while their rollback before that point
is simple. The actual recovery process under TSO and RC is
described in Section 5.3.

4.6.1 Livelock Considerations
In the example of Figure 5, P0 rolls back in Step (9). This

operation clears its RS, which enables the access from P3 to
succeed (Step (10)). As P3 makes progress, P2 and P1 will
also make progress.

Depending on the timing, it is possible that multiple pro-
cessors in the same deadlock cycle (or all of them) perform
rollbacks concurrently. The algorithm works correctly. As
processors re-execute their Aold accesses again, we prevent
them from getting into the same deadlock again by disal-
lowing any reordering during Aold execution. After Aold fin-
ishes, reordering is enabled again. In this way, processors
make guaranteed forward progress.

4.7 Store Atomicity Considerations
In SCsafe, we use an RC implementation with atomic stores

(also called multiple-copy atomic stores). This means that a
store operation by a processor can be observed by another
processor only if it has been made visible to all other proces-
sors, and that stores to the same location are serialized.

Store atomicity is required by well-known RC instantia-
tions, such as those of Tilera [32], SPARC RMO (and PSO)
[1], and Alpha [30]. Hence, the SCsafe design presented here
is directly applicable to all of them. Store atomicity is not
required by the IBM Power [23] or ARM [2] models — al-
though it is likely that, in practice, many (or most) ARM
implementations enforce it, due to their simple memory hi-
erarchies.

Relaxing store atomicity would complicate SCsafe non-
trivially. It would allow a processor P1 with a pending store
S to provide S’s value to another processor P2 before P1 re-
ceives the response to S’s transaction. If such a response was
a nack, it would be necessary to recall the value from P2. We
leave an extension for non-atomic stores to future work.

5. SCsafe IMPLEMENTATION
We now detail the operation of three components of SC-

safe: Reordered Set (RS), DDA, and History Buffer (HB).
Then, we examine SCsafe’s hardware complexity.

5.1 RS Implementation and Operation
The RS is a hardware structure in the cache controller that

stores the addresses accessed by the processor’s current Re-
ordered references. Each entry contains the address, the PC
of its instruction, and some additional state. New entries are
dynamically added and removed. The RS is organized as a
circular FIFO queue, ordered in program order of the Re-
ordered accesses. In this section, we describe its operation
under TSO and under RC.

5.1.1 Operation under TSO Hardware
Given an unfinished store, its Reordered accesses are all

the loads that follow it in program order, up to (but not in-
cluding) the earliest not-yet-performed load. An unfinished
load cannot have any Reordered accesses.
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From this discussion, the RS can only contain loaded ad-
dresses. Moreover, when a store finishes, we need to remove
from the RS the addresses of all the loads that follow the
store and that precede the next unfinished store. Hence, to
speed-up RS operation, we design SCsafe as follows. Each
instruction in the ROB has a Write Tag (WT). When a store
is inserted in the ROB, its WT is set to the value of the pre-
vious instruction’s WT plus one. For non-store instructions,
the WT is that of the previous instruction. Hence, a store plus
all the instructions following it until (but not including) the
next store have the same WT. The WT is also stored in each
RS entry.

The algorithm to insert entries in the RS tail and remove
them from the RS head is as follows. When a load (l1) per-
forms and (i) there is at least one preceding store that is un-
finished (it can still be in the ROB or already retired in the
write buffer) and (ii) all preceding loads in the ROB are per-
formed, then:
• The address loaded by l1 is inserted in the RS.
• The addresses loaded by all the loads ln that follow l1 in
program order up to (but not including) the earliest not-yet-
performed load are also inserted in the RS in program order.

Entries are removed when a store finishes. In this case,
starting at the RS head and moving toward the tail, SCsafe
removes all the loads that have the same WT as the store.
The process stops when the RS is empty or when we find
the first load with a higher WT (which follows a subsequent
unfinished store).

5.1.2 Operation under RC Hardware
Given an unfinished store, its Reordered accesses are all

the performed loads and all the performed stores (i.e., those
that have completed the exclusive prefetch) that follow it in
program order. Given an unfinished load, its Reordered ac-
cesses are all the performed loads that follow it in program
order.

Hence, the RS can have both loads and stores. Also, any
performed access that is preceded by at least one unfinished
access needs an RS entry. These facts make the hardware
costlier, but the insertion and removal algorithms simpler. In-
deed, as a load or a store access A enters the ROB, if there
is at least one unfinished earlier access, SCsafe reserves an
empty entry for A at the tail of the RS. Later, this entry may
be filled when A performs, and the entry may be removed
when an earlier access finishes.

Specifically, when an access A performs, if there is at least
one unfinished earlier access, then SCsafe stores A’s infor-
mation in its reserved RS entry. Otherwise, A is not a Re-
ordered access and, hence, has no RS entry.

When an access A finishes, if there is at least one unfin-
ished earlier access, the RS entry for A is left unchanged.
Otherwise, A was the earliest unfinished access and, hence,
had no RS entry. In this case, SCsafe may need to remove
RS entries. Specifically, starting at the RS head and mov-
ing toward the tail, SCsafe removes the RS entries of all the
finished accesses until it reaches the entry for the first (i.e.,
earliest) unfinished access. This entry is also removed, since
its access is not Reordered anymore. Note that this entry will
still be empty if the corresponding access has not yet per-
formed.

5.2 The DDA Algorithm
When the Aold_i access of a processor Pi is being bounced,

and Pi’s RS bounces an incoming request, the local SCsafe
hardware runs the DDA algorithm of Figure 6. If the incom-
ing request does not any contain deadlock information (Line
1), then Pi starts deadlock detection by including, in its Aold_i
retries: Round0 with the single bit i set, a null Round1, the
byte offset and datatype of Aold_i (OffTypei), and a clear FS
bit (Line 2).

3  else {        /* this proc does not start DDA */
4     if (hit due to false sharing)
5        local_FS =1

9     }

11        if (FS | local_FS == 0) {  /* cycle with only true dependences */

13              Record SCV                /* record the local SCV state */

15           }

17              Recover (P_i)     /* start recovery for proc P_i, which breaks the cycle */
18           }
19        }
20        else {   /* false sharing cycle; first detection */

22        }
23     }
24  }

16           else {     /* 2nd round completed now */

6     if (i bit is not set in incoming Round0){    
7        /* this proc hasn’t informed all the other procs in the cycle about its participation */ 

10     else {   /* information has propagated around the cycle */

12           if (i bit is not set in incoming Round1) {  /* only 1st round completed */

21           Recover (P_i)     /* breaks the cycle; no recording of SCV */

Round0

FS

OffTypeRound1

2     Include in A_old_i msg (i, null, OffType_i, 0)

8        Include in A_old_i msg (Round0 |= i, null, OffType_i, FS |= local_FS)

14              Include in A_old_i msg (Round0, Round1 |= i, OffType_i, 0) /*start 2nd round*/

1  if (incoming request has no info)    /* this proc starts DDA */

Figure 6: The DDA algorithm, as executed by Pi.

Otherwise, deadlock detection is already in progress (Line
3). In this case, Pi first checks if it is bouncing an access due
to false sharing (Line 4) and, if so, sets the local_FS bit (Line
5). Moreover, if bit i is not yet set in the incoming Round0
(Line 6), it means that Pi has not yet informed all the other
processors in the potential cycle about Pi’s participation in
the cycle. Hence, SCsafe takes the deadlock information in
the incoming bouncing message, augments it, and includes it
in future Aold_i retries. This augmentation involves setting bit
i in Round0, keeping Round1 null, enclosing the byte offset
and datatype of Aold_i, and OR-ing the local_FS bit to FS
(Line 8).

If bit i is set in the incoming Round0 (Line 10), we have a
cycle and the information has propagated around the cycle.
SCsafe first checks if any processor (including Pi) detected
false sharing (Line 11). If so (Line 21), Pi recovers. Other-
wise, SCsafe checks if the information has gone around the
cycle once or twice. If the former, SCsafe records the lo-
cal SCV state (Line 13) and augments the retry messages by
setting bit i in Round1 (Line 14). If the latter, since all pro-
cessors have recorded the SCV, SCsafe initiates the recovery
(Line 17).

5.3 HB Operation and Recovery
In our conservative design, as an instruction retires from

the ROB, if there are any preceding unfinished accesses (which
are necessarily stores in our model), SCsafe fills an entry at
the tail of the HB. Therefore, the retirement of a store forces
subsequent instructions to fill HB entries. In addition, when
a store finishes, if there is no earlier unfinished store, the
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hardware removes HB entries. Specifically, starting at the
HB head, it walks toward the tail, freeing all the entries until
(and including) the entry for the next unfinished store — or
until the HB is empty.

In RC, some of the freed entries may correspond to fin-
ished stores. Those can now proceed to update the cache;
hopefully, the exclusive prefetches have already brought the
lines to the cache, and the stores can drain immediately. Both
in TSO and RC, the next unfinished store can now also pro-
ceed to update the cache — some of its latency may be hid-
den by an exclusive prefetch issued earlier that has not yet
completed. Recall that, under TSO, the stores have to be
merged in program order.

The HB interacts with deadlock recovery as follows. Some-
times, the oldest unfinished access (Aold) ends up stalled in
a deadlock, while being followed by Reordered accesses. To
recover, SCsafe needs to undo all the Reordered accesses.

This Aold access with Reordered accesses is handled dif-
ferently in TSO and in RC. In TSO, the Aold is a retired store
at the head of the write buffer, and its Reordered accesses are
loads; the HB will have entries for all these Reordered loads.
In RC, the Aold can be a store or a load. If it is store, it is a
retired store at the head of the write buffer, and its Reordered
accesses can be loads and stores; the HB will have entries for
all of them. However, if Aold is a load, it is the earliest un-
retired load and its Reordered accesses are only loads; there
are no entries in the HB. In this case, there is no interaction
with the HB. In the following, we explain how we recover in
TSO and in RC.

5.3.1 Recovery in TSO
Recovery for a processor starts by first clearing the RS,

the ROB, and the whole write buffer except for its earliest
entry. Then, starting from the HB tail and walking toward the
head, each HB entry is used to undo the state changes per-
formed by one instruction. After the whole HB is applied, all
the Reordered accesses have been undone, and the processor
has the state at the point of performing Aold . The hardware
simply attempts to perform the Aold access again. After it
succeeds, it starts fetching again.

5.3.2 Recovery in RC
If Aold is a store, the Reordered accesses can include other

stores. Recall that these stores had been left in the write
buffer without being merged with memory, while an exclu-
sive prefetch was sent to the cache. Consequently, if Aold is
a store, recovery proceeds as in TSO.

If Aold is a load, Aold is still in the ROB and the write buffer
is empty. The HB is empty and there is no HB to apply. Re-
covery involves clearing the RS and flushing the instructions
in the ROB that follow Aold . The hardware simply attempts
to perform the Aold access again.

5.4 Hardware Complexity
The hardware required by SCsafe is of modest complexity,

especially when compared to other SCV detection schemes
such as Vulcan [21] and Volition [24]. It has three compo-
nents: the RS, the DDA mechanism, and the HB (Figure 7).

The RS is a circular FIFO queue in the L1 cache controller.
Each entry has an address, a R/W bit, a PC and, under TSO, a
WT. Entries are allocated when accesses become Reordered,

Check

Nacked?

Check

FSM
DDA

Tail
Head

Head
Tail

Addr

RS HB
Incoming
Request

Shared L2

L1 Cache Controller
Cycle?

R
eq

ue
st

/R
ep

ly

Set bits

Processor
WTPCR/W Reg Mapping

Reg Val
PC

Figure 7: SCsafe hardware.
and deallocated when they cease to be Reordered. Incoming
requests are compared to the RS addresses. For efficiency,
the RS is not implemented as a CAM. Instead, we perform
sequential comparisons, 4 entries at a time. This is reason-
able because this operation is not time-critical, and because,
often, few RS entries are full — e.g., the RS evaluated in
Section 7 has 32 entries, but it fills on average only 6.3. A
further optimization involves using a Bloom filter.

The DDA mechanism consists of an FSM in the L1 cache
controller that examines some incoming messages and up-
dates some outgoing ones. Specifically, it reads information
from incoming messages that bounce off the RS, and sets
some bits in outgoing retry messages. Such bits are two pro-
cessor bitmaps, information to identify which byte offset of
the line was accessed and its datatype, and an FS bit. For a
16-processor machine with 32-byte cache lines, this amounts
to 5 bytes. All request messages now include these bits.

Note that the DDA does not add any new messages. It sim-
ply tags existing messages. Hence, it does not need any addi-
tional virtual channels. Moreover, each DDA FSM operates
independently and can declare a cycle locally.

Nacking (or bouncing) a request simply means that a re-
quest failed, and the FSM at the sender is informed that it
needs to retry. It is a null transaction that had no side-effects.
Hence, it does not impose any restriction on the coherence
protocol. Beyond request nacking and the extra bits per re-
quest, there is no other change to the coherence protocol: no
new messages, new states, or new transactions. There are no
changes to the directory module.

Finally, each processor has a circular HB to recover from
Reordered accesses in a deadlock. Each HB entry has a reg-
ister value, a register mapping, and a PC. An HB entry is
filled quickly with minimal computation, although it requires
a register read. No speculative updates go to L1 caches. Roll-
back involves undoing one instruction at a time, but it hap-
pens rarely.

Overall, the SCsafe hardware is mostly local to each pro-
cessor node and, in part, uses known recovery techniques.

6. EVALUATION SETUP
In our evaluation, we use detailed cycle-level execution-

driven simulations using the SESC simulator [26]. We eval-
uate SCsafe’s ability to detect SCVs in parallel programs
running under RC or TSO. We also evaluate SCsafe’s per-
formance overhead. We model a multicore with 16 cores
connected in a mesh network with a directory-based MESI
coherence protocol. Each core has a private L1 cache and a
bank of a shared L2 cache. The RS stores word addresses.
Table 3 shows the architecture. From the table, we see that
the storage needed by the SCsafe hardware is modest.

To evaluate SCsafe’s ability to detect SCVs, we use a set
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RC TSO
Code SCsafe IF IF-CoV SCsafe IF IF-CoV

#SCVs #Stalls #Squashes #Timeouts #Stalls #SCVs #Stalls #Squashes #Timeouts #Stalls
bakery 3 4494 5630 254 6647 3 4362 4583 6 6980
dekker 14 91412 76471 29 60961 17 83093 85603 21 58183
harris 302 23256 25885 2012 32792 191 24010 21723 1679 33210
lazylist 162 8845 8840 1039 9105 75 7946 8166 798 9466
takequeue 165 6980 6856 993 6731 98 6905 6816 788 6319
aharr 100 11525 11593 859 11494 74 10546 11504 803 11602
moirbt 218 9373 10381 1293 9459 143 8775 10893 1015 8522
moircas 149 5648 7964 843 9667 35 5225 6189 616 10833
ms2 193 19039 21907 1509 23244 145 17676 20831 1102 22837
snark 10 9431 14636 143 15855 13 9786 13262 180 17495
msn 2 8322 7302 35 6715 0 7676 7829 26 6222
mst 3 7927 9527 28 10663 0 7765 8230 21 12102
Average 110 17188 17249 753 16944 66 16147 17136 588 16981

Table 2: SCV detection for the kernel programs.
Architecture 16-core chip multiprocessor (CMP)
Core Out of order, 3-issue wide, 2.0 GHz
ROB; wr. buffer 96-entry; 32-entry
L1 cache Private 32KB WB, 4-way, 2-cycle RT
L2 cache Shared 2MB WB, with 16 128KB banks

Bank: 8-way, 11-cycle RT (local)
Line size 32 bytes
Cache coherence MESI, full-mapped directory
On-chip network 4x4 2D-mesh, 5 cyc/hop, 256bit links
Off-chip memory 200-cycle RT
Reordered Set 32 entries/proc: 8B addr+1b R/W+8B PC+1B WT
History Buffer 64 entries/proc: 8B reg+2B map+8B PC
Retry delay 20 cycles before issuing a retry message
Record an SCV 5 cycles of visible overhead

Table 3: Architecture modeled. RT means round trip.

of 12 programs [5, 6, 10] that implement concurrency algo-
rithms, such as a lock-free queue and a work-stealing queue.
We remove the fences in these codes and, therefore, their
execution may violate SC on plain RC or TSO hardware.
We call them kernels (Table 4). They come with their inputs.
Each thread of each kernel executes a loop with 200 itera-
tions that access shared data structures.

bakery Mutual excl. algorithm for any # of threads
dekker Mutual excl. algorithm for two threads
harris Non-blocking set
lazylist Concurrency list algorithm
takequeue Cilk THE work stealing algorithm
aharr Variant of harris
moirbt Non-blocking sync. primitives
moircas Non-blocking sync. primitives
ms2 Two-lock queue
snark Non-blocking double-ended queue
msn Non-blocking queue
mst Non-blocking queue

Table 4: Kernels of concurrency algorithms.

SCsafe detects and records SCVs precisely during the ex-
ecution, and recovers from an SCV while retaining SC. We
compare SCsafe to an SCV-detection scheme that, when an
SCV is found, terminates execution because SC cannot be
maintained. Examples of such a scheme are Vulcan [21] and
Volition [24]. We also compare SCsafe to two SC-enforcing-
only schemes: InvisiFence [4] with and without Commit on
Violation (we call them IF and IF-CoV). Such conservative
schemes squash execution as soon as a certain necessary con-
dition for an SCV occurs. They are not usable to report SCVs
because they would report many false positives (Section 2.2).
IF-CoV uses a 4,000-cycle timeout threshold.

To evaluate the performance overhead of SCsafe over plain
RC or TSO hardware, we use 16 SPLASH-2 [34] and PAR-
SEC [3] programs. We call them apps. SPLASH-2 apps use

the default inputs; PARSEC use simmedium. Apps run cor-
rectly on RC or TSO hardware, but SCsafe can induce per-
formance overhead as it tries to conservatively enforce SC.

7. EVALUATION

7.1 SCV Detection

7.1.1 Number of SCVs Detected
To assess SCsafe’s ability to detect and record SCVs, we

run the fenceless kernels under RC and TSO. We report the
number of SCVs and the number of accesses stalled. The
apps are found to have practically no SCV, and so they are
not shown. For comparison, we also run the fenceless ker-
nels with IF and IF-CoV. Since these schemes cannot ob-
serve SCVs, we report the number of squashes (in IF), and
stalls and timeouts (in IF-CoV). The data is shown in Table 2,
where RC data is on the left and TSO data on the right.

Consider the RC environment. Column 2 shows the num-
ber of dynamic SCVs detected by SCsafe. We see that SC-
safe detects SCVs in all the kernels. On average, it detects
110 SCVs. Column 3 shows the number of dynamic accesses
stalled by SCsafe. Such number is more than 100 times higher
than the number of SCVs. Most of these stalls are very short
and unrelated to an SCV. This shows that seeing a single ac-
cess reorder from another processor (e.g., a data race) is not
a good SCV indicator; one needs to see a dependence cycle.

Column 4 shows the number of squashes in IF. This num-
ber is similar to the stalls in SCsafe — but not exactly the
same because memory accesses interleave differently. It is,
however, much higher than the number of SCVs. Finally,
Columns 5 and 6 show the number of timeouts and stalls in
IF-CoV. The number of stalls is also similar to SCsafe. The
number of timeouts is closer to the number of SCVs, but it is
still much higher for two reasons. First, as we will see, most
timeouts are caused by false sharing. Second, when a group
of processors times out, this counter increases by the number
of timed-out processors. In any case, IF-CoV’s timeouts are
unable to record information useful to debug SCVs.

The data for the stricter TSO is similar, with fewer SCVs.
Overall, we conclude that SCsafe successfully finds SCVs,
and that conventional SC-enforcement approaches cannot be
used for SCV detection and debugging.

7.1.2 Stopping versus Continuing
Unlike SCsafe, other precise SCV detection schemes such
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as Vulcan [21] and Volition [24] terminate execution once
they find an SCV. They are unable to retain SC execution
and, therefore, they could find additional artificial SCVs caused
by the non-SC execution. We call them Stop approaches. De-
bugging with them involves multiple iterations of: SCV de-
tection, termination, fixing the SCV by inserting fences, and
then re-execution from the beginning of the application. It
usually takes several runs to detect the SCV bugs that SCsafe
detects in a single run. Also, these schemes are incompatible
with production runs.

We compare SCsafe to the operation of SCsafe with the
Stop approach. In this case, each re-execution finds one SCV,
which is fixed with fences. Table 5 compares the number of
runs to detect all the SCVs in the kernels for the two ap-
proaches, using RC. This table differs from Table 2 in that
we perform as many runs as needed to find all SCVs (Table 2
corresponds to only one run). We see that Stop typically re-
quires several runs to find all the SCVs. SCsafe only needs
one run or, in three kernels, two.

Code SCsafe Stop Code SCsafe Stop
bakery 1 1 dekker 1 1
harris 1 6 lazylist 1 4
takequeue 1 6 aharr 1 7
moirbt 1 3 moircas 1 4
ms2 1 2 snark 2 14
msn 2 9 mst 2 8

Table 5: Number of runs to find all SCVs in RC.

7.1.3 Sensitivity Study
We examine the sensitivity of SCV detection to the size

of the RS. As the size of the RS increases, the degree of
reordering of memory operations increases, which leads to
more SCVs. The results are shown in Figure 8 for both RC
and TSO hardware. The figure shows the average number of
SCVs observed per kernel for 16-processor runs.
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Figure 8: Impact of RS size on the number of SCVs.
In the figure, we change the RS size from 2 to our de-

fault of 32. We can see that, as the hardware becomes more
aggressive, SCsafe detects more SCVs. Also, RC systems al-
ways detect more SCVs than TSO ones. Overall, we choose
our default size based on when the curves saturate.

7.2 SCsafe Execution Time Overhead
Compared to conventional hardware, SCsafe incurs two

types of execution overhead. The first is access stall over-
head. It is mainly caused by accesses that hit in the RS of
other processors and have to retry. It can also be caused by
the HB or RS being full. The second overhead is recovery
from deadlock. This operation requires restoring the archi-
tectural state by flushing the pipeline and traversing the HB.

Figure 9 shows the execution time of SCsafe for apps nor-
malized to the execution time on plain RC hardware. The

bars are labeled S. We also show bars for the IF-CoV scheme
for SC enforcement. The bars are labeled I. The bars are bro-
ken down into categories. SCsafe has Recovery (overhead of
accesses that deadlock, including their stall, recovery, and
re-execution), Stall (overhead of stalls that do not deadlock),
and Useful (rest of the time). IF-CoV has Timeout (overhead
of accesses that timeout, including their stall, squash, and re-
execution), Stall (overhead of stalls that do not timeout), and
Useful. IF-CoV uses flash clear of dirty lines in a squash.
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Figure 9: Execution time of apps with IF-CoV (I) and SCsafe
(S) on RC. The bars are normalized to plain hardware.

The figure shows that, on average, SCsafe induces an over-
head of ⇡2% over RC. The overhead of IF-CoV is similar.
We see that most of the SCsafe overhead is due to stall cy-
cles. The stall is small because the latency of nacked accesses
is partially hidden by the execution of other instructions. A
few codes have a larger stall time. Typically, these are codes
with fine-grain sharing, where the stalls are due to false shar-
ing. In Radix, SCsafe sometimes stalls because the HB is
full. The figure also shows that recovery and timeout cycles
are only significant in one application. This is because there
are very few dependence cycles in these codes. Overall, SC-
safe induces a tiny overhead, which is an acceptable cost to
ensure SC. A similar result can be shown for TSO.

In prior work, the SC++ scheme [13] used HBs to enforce
SC. They found that they needed 512-entry HBs to hide re-
ordered accesses, while we use 64-entry HBs and only ob-
serve modest HB-full stall in a couple of applications. The
reason is that they model a distributed shared-memory archi-
tecture, with an order-of-magnitude higher cache to cache
transfer latency than in our CMP.

We now consider the kernels. Since we removed the fences
from these codes, they may run incorrectly on plain RC or
TSO hardware. Hence, we only compare the execution time
of SCsafe to IF-CoV. Figure 10 shows the execution time of
the kernels for IF-CoV (labeled I) and SCsafe (labeled S) on
RC. The bars are normalized to IF-CoV and broken down as
above.
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With plain RC or TSO hardware, access reordering by the
hardware would cause SCVs. With SCsafe, it causes stalls
and recoveries. The figure shows that, on average, the stall
cycles in SCsafe are about 6%. Recovery time is also vis-
ible. With IF-CoV, we see stalls and timeouts. On average,
SCsafe has approximately the same execution time as IF-
CoV. A similar result can be shown for TSO. Overall, there-
fore, the key capability of SCsafe, namely continuous and
precise detection and recording of SCVs while enforcing SC
does not come at the expense of any slowdown relative to an
SC-enforcing-only scheme such as IF-CoV.

7.3 SCsafe Characterization
Table 6 characterizes SCsafe for all the programs on RC.

We do not show a characterization on TSO due to lack of
space. Columns 2-3 show the average and maximum number
of entries used in the RS during execution. On average, the
RS size is only around 6 entries for both kernels and apps. It
can be shown that the corresponding number for TSO is ⇡3.
Columns 4-5 consider the reads and writes that are bounced
due to a hit in an RS. The columns show, in order, the number
of such accesses per 10K accesses, and the average number
of cycles between the first bounce at an RS entry and the
deallocation of that RS entry. As we can see, for the large
majority of codes, the rate of bounced accesses is very low.
In addition, the duration of the stall in an RS entry is only
a few tens of cycles. The rate of bounced accesses does not
correlate perfectly with the SCsafe stalls in Figures 9 and 10;
other factors like the access rate or clustering have an effect
as well.

Reordered Bounced Reads Recovery Reads
Code Set (RS) Size & Writes & Writes

Avg Max #/10K Cyc. #/10K FS(%)
bakery 3.0 32 489.8 45.0 32.5 87.3
dekker 11.0 32 270.3 42.2 11.1 92.2
harris 6.7 19 30.3 69.7 2.0 79.5
lazylist 2.7 16 33.8 20.0 2.0 81.4
tkqueue 5.0 32 156.0 33.1 5.4 68.0
aharr 2.0 15 30.8 35.6 0.4 77.4
moirbt 8.5 32 138.2 54.7 6.6 91.2
moircas 7.2 32 124.8 34.5 3.8 93.9
ms2 3.2 27 297.9 34.4 16.2 73.8
snark 5.5 12 0.3 26.6 0.0 89.4
msn 12.0 30 7.2 39.2 0.0 94.5
mst 8.2 19 13.2 17.2 0.0 69.6
Avg. 6.2 24.8 132.7 37.6 6.6 83.2
barnes 10.7 32 2.3 40.7 0.0 100.0
fmm 6.2 32 2.2 71.1 0.1 96.9
ocean 7.0 32 1.0 62.6 0.0 100.0
radio 6.5 32 0.2 81.3 0.0 100.0
raytrace 10.5 28 2.9 25.8 0.0 100.0
water-ns 5.2 30 0.0 87.2 3.1 100.0
water-sp 10.5 32 0.2 76.5 0.0 100.0
cholesky 5.5 24 35.1 65.8 0.0 100.0
fft 10.5 32 3.0 55.2 0.0 100.0
radix 2.2 28 7.8 43.2 0.1 100.0
black 2.0 6 0.0 26.6 0.0 100.0
cann 6.5 13 0.5 39.1 0.0 100.0
dedup 0.7 24 105.8 82.0 0.7 100.0
fluid 6.2 30 0.3 25.8 0.0 100.0
stream 11.5 32 150.8 33.0 5.8 100.0
swap 0.5 32 0.3 42.6 0.0 100.0
Avg. 6.3 27.4 19.5 53.6 0.6 99.8

Table 6: Characterization of SCsafe on RC.
Columns 6-7 consider the reads and writes that are in-

volved in a cycle and trigger a recovery. The columns show
the number of such accesses per 10K accesses, and the per-

centage of such cycles caused by false sharing. We can see
that recoveries are much rarer than bouncing events: on aver-
age, 20x rarer in kernels and 32x in apps. In addition, most of
the dependence cycles in the kernels (83% on average) and
practically all of those in the apps are due to false sharing.
Hence, supporting a precise scheme like SCsafe is crucial.
Finally, it can be shown that the traffic increase due to SC-
safe is negligible.

7.4 SCsafe Scalability Analysis
Figure 11 shows SCsafe’s execution time overhead as we

change the processor count for the apps. Due to lack of space,
the plot only shows a sample of the apps; however, the av-
erage corresponds to all of the apps. For each app, we show
the overhead of SCsafe over plain RC hardware for 8, 16 and
32 processors, and over plain TSO hardware for 8, 16 and 32
processors.

The figure shows that, with increased numbers of proces-
sors, the average overhead of SCsafe does not change much,
and stays around 2% for both RC and TSO. This shows that
SCsafe is scalable. The actual changes in the bars with the
number of processors are often very small. Moreover, they
are also affected by the scalability of the baseline plain RC
and TSO execution with the processor count.
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Figure 11: Scalability of SCsafe.

8. RELATED WORK
Section 2.2 already compared SCsafe to its most related

schemes, namely Vulcan [21] and Volition [24]. Another re-
lated work is that of Chen et al. [8], who attempt to find hard-
ware design bugs by checking for consistency-violating de-
pendence cycles. In their work, a processor tags its cache
lines with access IDs, which it then uses to record cross-
processor dependences. It regularly sends this dependence
information to a Centralized Graph Checker that checks for
cycles. The hardware is centralized and likely intrusive.

There are schemes for SC-enforcement only, such as Load
Speculation [11], Speculative Retirement [25], SC++ [13],
BulkSC [7], ASO [33], InvisiFence (IF) [4], and Conflict
Ordering (CO) [18]. These schemes are not usable for our
purpose, namely to detect and record SCVs. Their goal is to
steer execution away from any potential SCV when a (con-
servative) necessary condition for SCV is detected.

The condition that most of these schemes detect is the
presence of an access that is observed while it is M-speculative
relative to SC. The access would not be squashed because
it is not M-speculative relative to the relaxed-consistency
model supported by the machine. The access can be a load
or a store. For example, in Figure 1(b), the access is store A2.

When the condition is detected, the schemes squash at
least the access that is M-speculative relative to SC. Most
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schemes extend the speculation beyond the ROB, using his-
tory buffers, speculative caches, and checkpoints ([4, 7, 13,
25, 33]). The scheme IF with CoV waits for a time-out pe-
riod before squashing.

CO [18] is different in that the condition that it looks for
is two or more concurrent data races. This is a stronger con-
dition than before, but one that can still cause false positives.
To make a decision, a processor must first fetch from a global
structure that has a list of pending writes. If the condition is
true, CO squashes local accesses.

End-to-end SC [29] is a technique to enforce SC in a dif-
ferent way. It allows reordering for accesses to private loca-
tions, and enforces program order for memory accesses to
shared locations. SCsafe is more aggressive in that it allows
reordering of shared data accesses.

9. CONCLUSION
While there are prior proposals for SCV detection, they

are limited in that they terminate program execution after
detecting the first SCV because the program is now non-SC.
Therefore, they cannot be used in production runs, wherein
some SCVs may occur. In addition, they rely on complicated
hardware.

To address this challenge, this paper presented SCsafe, the
first architecture for relaxed consistency machines that de-
tects and logs SCVs in a continuous manner, while retaining
SC. In SCsafe, the processor hardware temporarily stalls in-
coming requests that conflict with some types of reordered
accesses. A true SCV is detected when processors wait on
each other in a cycle. In this case, SCsafe quickly detects
the SCV, records it, recovers the processors’ state, and re-
sumes execution while retaining SC. As a result, it can be
used in production runs. In addition, SCsafe is precise in that
it identifies only true SCVs — cycles due to false sharing are
discarded. Also, its hardware is simpler because it is mostly
local to each processor, and uses known recovery techniques.

We evaluated SCsafe using simulations of 16-core multi-
cores. In codes with SCVs, SCsafe detected and logged SCV
bugs while enforcing SC during the complete execution. In
codes with few SCVs, it added negligible slowdown. Finally,
SCsafe was scalable with the number of processors.
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