Tradeoffs in Buffering Memory State
for Thread-Level Speculation in Multiprocessors *

Maria Jes(s Garzaran, Milos Prvulovict, José Maria Llaberiaf,
Victor Vifials, Lawrence Rauchwerger$, and Josep Torrellast

Universidad de Zaragoza, Spain
{garzaran,victor } @posta.unizar.es

tUniversitat Politécnica de Catalunya, Spain
llaberia@ac.upc.es

Abstract

Thread-level speculation provides architectural support to ag-
gressively run hard-to-analyze code in parallel. As speculative
tasks run concurrently, they generate unsafe or speculative mem-
ory state that needs to be separately buffered and managed in the
presence of distributed caches and buffers. Such state may contain
multiple versions of the same variable.

In this paper, we introduce a novel taxonomy of approaches to
buffer and manage multi-version speculative memory state in mul-
tiprocessors. We also present a detailed complexity-benefit trade-
off analysis of the different approaches. Finally, we use numerical
applications to evaluate the performance of the approaches under
a single architectural framework. Our key insights are that sup-
port for buffering the state of multiple speculative tasks and ver-
sions per processor is more complexity-effective than support for
merging the state of tasks with main memory lazily. Moreover,
both supports can be gainfully combined and, in large machines,
their effect is nearly fully additive. Finally, the more complex sup-
port for future state in main memory can boost performance when
buffers are under pressure, but hurts performance when squashes
are frequent.

1 Introduction

Although parallelizing compilers have made significant ad-
vances, they still often fail to parallelize codes with accesses
through pointers or subscripted subscripts, possible interprocedu-
ral dependences, or input-dependent access patterns. To parallelize
these codes, researchers have proposed architectural support for
thread-level speculation. The approach is to build tasks from the
code and speculatively run them in parallel, hoping not to violate
sequential semantics. As tasks execute, special support checks that
no cross-task dependence is violated. If any is, the offending tasks
are squashed, the polluted state is repaired, and the tasks are re-
executed. Many different schemes have been proposed, ranging
from hardware-based (e.g. [1, 4, 6, 8, 10, 12, 13, 14, 15, 16, 20,

*This work was supported in part by the National Science Foundation
under grants EIA-0081307, EIA-0072102, and EIA-0103741; by DARPA
under grant F30602-01-C-0078; by the Ministry of Education of Spain un-
der grant TIC 2001-0995-C02-02; and by gifts from IBM and Intel.

tUniversity of Illinois at Urbana-Champaign
{prvulovi, torrellas}@cs.uiuc.edu

$Texas A&M University
rwerger@cs.tamu.edu

21, 23, 24, 26]) to software-based (e.g. [7, 11, 17, 18]), and target-
ing small machines (e.g. [1, 8, 10, 12, 14, 15, 20, 23, 24]) or large
ones (e.g. [4, 6, 11, 16, 17, 18, 21, 26]).

Each scheme for thread-level speculation has to solve two ma-
jor problems: detection of violations and, if a violation occurs,
state repair. Most schemes detect violations in a similar way: data
that is speculatively accessed (e.g. read) is marked with some or-
der tag, so that we can detect a later conflicting access (e.g. a write
from another task) that should have preceded the first access in
sequential order.

As for state repair, a key support is to buffer the unsafe mem-
ory statethat speculative tasks generate as they execute. Typically,
this buffered state is merged with main memory when speculation
is proved successful, and is discarded when a violation is detected.
In some programs, different speculative tasks running concurrently
may buffer different versions of the same variable. Moreover, a
processor executing multiple speculative tasks in sequence may
end up buffering speculative state from multiple tasks, and maybe
even multiple versions of the same variable. In all cases, the spec-
ulative state must be organized such that reader tasks receive the
correct versions, and versions eventually merge into the safe state
in order. This is challenging in multiprocessors, given their dis-
tributed caches and buffers.

A variety of approaches to buffer and manage speculative
memory state have been proposed. In some proposals, tasks
buffer unsafe state dynamically in caches [4, 6, 10, 14, 21], write
buffers [12, 24] or special buffers [8, 16] to avoid corrupting
main memory. In other proposals, tasks generate a log of up-
dates that allow them to backtrack execution in case of a viola-
tion [7, 9, 25, 26]. Often, there are large differences in the way
caches, buffers, and logs are used in different schemes. Unfortu-
nately, there is no study that systematically breaks down the design
space of buffering approaches by identifying major design deci-
sions and tradeoffs, and provides a performance and complexity
comparison of important design points.

One contribution of this paper is to provide such a systematic
study. We introduce a novel taxonomy of approaches to buffer and
manage multi-version speculative memory state in multiproces-
sors. In addition, we present a detailed complexity-benefit tradeoff
analysis of the different approaches. Finally, we use numerical ap-
plications to evaluate the performance of the approaches under a



single architectural framework. In the evaluation, we examine both
chip and scalable multiprocessors.

Our results show that buffering the state of multiple speculative
tasks and versions per processor is more complexity-effective than
merging the state of tasks with main memory lazily. Moreover,
both supports can be gainfully combined and, in large machines,
their effect is nearly fully additive. Finally, the more complex sup-
port for future state in main memory can boost performance when
buffers are under pressure, but hurts performance when squashes
are frequent.

This paper is organized as follows: Section 2 introduces the
challenges of buffering; Section 3 presents our taxonomy and
tradeoff analysis; Section 4 describes our evaluation methodol-
ogy; Section 5 evaluates the different buffering approaches; and
Section 6 concludes.

2 Buffering Memory State

As tasks execute under thread-level speculation, they have a
certain relative order given by sequential execution semantics. In
the simplest case, if we give increasing IDs to successor tasks,
the lowest-ID running task is non-speculative, while its successors
are speculative, and its predecessors are committed. In general, the
state generated by a task must be managed and buffered differently
depending on whether the task is speculative, non-speculative or
committed. In this section, we list the major challenges in memory
state buffering in this environment and present supporting data.

2.1 Challenges in Buffering State

Separation of Task State. Since a speculative task may be
squashed, its state is unsafe. Therefore, its state is typically kept
separate from that of other tasks and main memory by buffering it
in caches [4, 6, 10, 14, 21] or special buffers [8, 12, 16, 24]. Al-
ternatively, the task state is merged with memory, but the memory
overwritten in the process is saved in an undo log [7, 9, 25, 26].

Multiple Versions of the Same Variable in the System. A task
has at most a single version of any given variable. However, differ-
ent speculative tasks that run concurrently may produce different
versions of the same variable. These versions must be buffered
separately and provided to their consumers.

Multiple Speculative Tasks per Processor. When a processor
finishes executing a task, the task may still be speculative. If the
buffering support is such that a processor can only hold state for
a single speculative task, the processor stalls until the task com-
mits. In more advanced designs, the local buffer can buffer several
speculative tasks, enabling the processor to execute another task.

Multiple Versions of the Same Variable in a Single Processor. If
multiple speculative tasks can be buffered for each processor, a lo-
cal buffer may need to hold multiple versions of the same variable.
On external request, the buffer must provide the correct version.

Merging of Task State. When a task commits, its state can be
merged with the safe memory state. Since this merging is done
frequently, it should be efficient. Furthermore, if the machine (and
a buffer) can have multiple versions of the same variable, they must
be merged with memory in order.

2.2 Application Behavior

To gain insight into these challenges, Figure 1-(a) shows
some application characteristics. The applications (discussed in
Section 4.2) execute speculatively parallelized loops on a simu-
lated 16-processor scalable machine (discussed in Section 4.1).
Columns 2 and 3 show the average number of speculative tasks
that co-exist in the system and per processor, respectively. In most
applications, there are 17-29 speculative tasks in the system at a
time, while each processor buffers about two speculative tasks at a
time.

Average Wi Ave'r:age )
ritten Footprint
- #SpecTasks | o SpecTask | Speculative Parallel doi
In Per || Total | Priv doj
Sytem | Proc | (KB) (%) dok N
P3m 8000| 500] 17 | 87.9 e‘r’]"g"z(k) = work(f(i k)
Tree 240| 15 0.9 99.5 call foo (work(j))
Bdna 256| 16| 237 | 994 end do
Apsi 288| 18 20.0 60.0 end do
Track 208| 1.3 2.3 0.6
Dsmc3d 176 11 0.8 0.5
Euler 174| 11 7.3 0.7
€) (b)

Figure 1. Application characteristics that illustrate the chal-
lenges of buffering.

Columns 4 and 5 show the size of the written footprint of a
speculative task and the percent of it that results from mostly-
privatization access patterns, respectively. The written footprint
is an indicator of the buffer size needed per task. Mostly-
privatization patterns are those that end up being private most (but
not all) of the time, but that the compiler cannot prove as private.
These patterns result in many tasks creating a new version of the
same variable. As an example of code with such patterns, Fig-
ure 1-(b) shows a loop from Apsi. Each task generates its own
work(k) elements before reading them. However, compiler analy-
sis fails to prove work as privatizable. Figure 1-(a) shows that this
pattern is present in some applications, increasing the complexity
of buffering.

3 Taxonomy and Tradeoff Analysis

To understand the tradeoffs in buffering speculative memory
state under thread-level speculation, we present a novel taxonomy
of possible approaches (Section 3.1), map existing schemes to it
(Section 3.2), and perform a tradeoff analysis of benefits and com-
plexity (Section 3.3).

3.1 Novel Taxonomy of Approaches

We propose two axes to classify the possible approaches to
buffering: how the speculative task state in an individual processor
is separated, and how the task state is merged system-wide. The
taxonomy is shown in Figure 2-(a).

Separation of Task State

The vertical axis classifies the approaches based on how the
speculative state in the buffer (e.g. cache) of an individual proces-
sor is separated: the buffer may be able to hold only the state of



Merging

) of Task
Separation State Architectural Main Future
gft;ask Memory (AMM)  Main
€ ,———— Memory
Eager Lazy (FMM)
Multiple
Versons (MultiT&MV)
Multiple | of Same
Spec Tasks
Single i
Verdon (MUltiT&SV)
Single Single i
SpecTask  Version (SingleT)
Memory-System
History Buffer
(a) (MHB)

Memory-System Reorder Buffer
(MROB) in AMM schemes

Memory-System History Buffer
(MHB) in FMM schemes

_—
ﬁl Caches

Architectural state

in AMM schemes
Main
memory

- Future state
(b)

in FMM schemes
Figure 2. Buffering and managing speculative memory state:
taxonomy (a) and difference between architectural (AMM) and
future main memory (FMM) schemes (b).

a single speculative task at a time (SingleT); multiple speculative
tasks but only a single version of given any variable (MultiT&SV);
or multiple speculative tasks and multiple versions of the same
variable (MultiT&MV).

In SingleT systems, when a processor finishes a speculative
task, it has to stall until the task commits. Only then can the pro-
cessor start a new speculative task. In the other schemes, when
a processor finishes a speculative task, it can immediately start a
new onel. In MultiT&SV schemes, however, the processor stalls
when a local speculative task is about to create its own version of
a variable that already has a speculative version in the local buffer.
The processor only resumes when the task that created the first
local version becomes non-speculative. In MultiT&MYV schemes,
each local speculative task can keep its own speculative version of
the same variable.

Merging of Task State

The second (horizontal) axis classifies the approaches based on
how the state produced by tasks is merged with main memory.
This merging can be done strictly at task commit time (Eager Ar-
chitectural Main Memory); at or after the task commit time (Lazy
Architectural Main Memory); or at any time (Future Main Mem-
ory). We call these schemes Eager AMM, Lazy AMM, and FMM,
respectively.

Lintuitively, in SingleT schemes, the assignment of tasks to processors
is ”physical” or tied to a predetermined ordering of round-robin processors
after the first round, while in MultiT schemes, it is "virtual” or flexible.

The largest difference between these approaches is on whether
the main memory contains only safe data (Eager or Lazy AMM) or
it can contain speculative data as well (FMM). To help understand
this difference, we use an analogy with the concepts of architec-
tural file, reorder buffer, future file, and history buffer proposed by
Smith and Pleszkun for register file management [19].

The architectural file in [19] refers to the safe contents of the
register file. The architectural file is updated with the result of an
instruction only when the instruction has completed and all pre-
vious instructions have already updated the architectural file. The
reorder buffer allows instructions to execute speculatively without
modifying the architectural file. The reorder buffer keeps the reg-
ister updates generated by instructions that have finished but are
still speculative. When an instruction commits, its result is moved
into the architectural file.

Analogously, in systems with Architectural Main Memory
(AMM), all speculative versions remain in caches or buffers that
are kept separate from the coherent main memory state. Only
when a task becomes safe can its buffered state be merged with
main memory. In this approach, caches or buffers become a
distributed Memory-System Reorder Buffer (MROB). Figure 3-(a)
shows a snapshot of the memory system state of a program us-
ing this idea. The architectural state is composed of unmodified
variables (black region) and the committed versions of modified
variables (white region). The remaining memory system state is
comprised of speculative versions. These versions form the dis-
tributed MROB.

In [19], the result of an instruction updates the architectural file
at commit time. A straightforward approach in thread-level specu-
lation closely follows this analogy. Specifically, when a task com-
mits, its entire buffered state is eagerly merged with main mem-
ory. Such an approach we call Eager AMM. Merging may involve
write-backs of dirty lines to memaory [4] or ownership requests for
these lines to obtain coherence with main memory [21].

Unfortunately, the state of a task can be large. Merging it all as
the task commits delays the commit of future tasks. To solve this
problem, we can allow the data versions produced by a committed
task to remain in the cache, where they are kept incoherent with
other committed versions of the same variables in other caches or
main memory. Committed versions are lazily merged with main
memory later, usually as a result of line displacements from the
cache or external requests. As a result, several different committed
versions of the same variable may temporarily co-exist in different
caches and main memory. However, it is clear at any time which
one is the latest one [10, 16]. This approach we call Lazy AMM.

Consider now the future file in [19]. It is the most recent con-
tents of the register file. A future file entry is updated by the
youngest instruction in program order updating that register. The
future file is used as the working file by later instructions. When an
instruction commits, no data movement or copying is needed be-
cause the future file has already been updated. However, the future
file is unsafe: it is updated by uncommitted instructions. The his-
tory buffer allows the future file to be speculatively updated. The
history buffer stores the previous contents of registers updated by
speculative instructions. When an instruction commits, its history
buffer entry is freed up. In an exception, the history buffer is used
to revert the future to the architectural file.



Younger
versions

7 | Memory-System
| | Reorder Buffer (MROB)

Older
> Architectural memory versions

system state

@

-
Variables

Variables

e Future memory
| | systemstate Last speculative version
Mgmory—System I Non-last speculative version
History Buffer (MHB) [J Committed version

Il Unmodified
(b)

Figure 3. Snapshot of the memory system state of a program under thread-level speculation using the concepts of Memory-System

Reorder Buffer (a) and Memory-System History Buffer (b).

Architectural Main Memory (AMM)

Future Main
Eager Lazy Memory (FMM)
Multiple T T
; Hydra | |
))/feggar%r:es Seffan97800 | PrvulovicoL | Z(;‘a"99988 I
i ] arzaran
gutpe o | (MutiTamy) Cinra0 | |
(MultiT) Single |
Version Steffan978.00 |
(MultiT&SV) L
Single I~ Malfiscdar (with 1
Spec Task Single hierarchical ARB) : Multiscalar COARSE RECOVERY:
(SingleT) Version Superthreaded MDT 1 (with SVC) LRPD, SUDS,...
Marcuello99 DDSM

Figure 4. Mapping schemes for thread-level speculation in multiprocessors onto our taxonomy.

Analogously, in systems with Future Main Memory (FMM),
versions from speculative tasks can be merged with the coher-
ent main memory state. However, to enable recovery from task
squashes, before a task generates a speculative version of a vari-
able, the previous version of the variable is saved in a buffer or
cache. This state is kept separate from the main memory state.
Now, caches or buffers become a distributed Memory-System His-
tory Buffer (MHB). Figure 3-(b) shows a snapshot of the mem-
ory system state of a program using this idea. The future state is
composed of unmodified variables, last speculative versions, and
committed versions of modified variables that have no speculative
version. The remaining speculative and committed versions form
the MHB.

It is important to note that, in all cases, part of the coherent
main memory state (architectural state in AMM systems and future
state in FMM systems) can temporarily reside in caches (Figure 2-
(b)). This is because caches also function in their traditional role
of extensions to main memory.

Finally, we shade SingleT FMM and MultiT&SV FMM
schemes in Figure 2-(a) to denote that they are relatively less in-
teresting. We discuss why in Section 3.3.4.

3.2 Mapping Existing Schemes to the Taxonomy

Figure 4 maps existing schemes for thread-level speculation in
multiprocessors onto our taxonomy?. Consider first SingleT Ea-
ger AMM schemes. They include Multiscalar with hierarchical
ARB [8], Superthreaded [24], MDT [14], and Marcuello99 [15].
In these schemes, a per-processor buffer contains speculative state
from at most a single task (SingleT), and this state is eagerly
merged with main memory at task commit (Eager AMM). These
schemes buffer the speculative state of a task in different parts of
the cache hierarchy: one stage in the global ARB of a hierarchical

2Note that we are only concerned with the way in which the schemes
buffer speculative memory state. Any other features, such as support for
interprocessor register communication, are orthogonal to our taxonomy.

ARB in Multiscalar, the Memory Buffer in Superthreaded, the L1
in MDT, and the register file (plus a shared Multi-Value cache) in
Marcuello99.

Multiscalar with SVC [10] is SingleT Lazy AMM because a
processor cache contains speculative state from at most a single
task (SingleT), while committed versions linger in the cache after
the owner task commits (Lazy AMM). In DDSM [6], speculative
versions are also kept in caches. It is, therefore AMM. However,
work is partitioned so that each processor only executes a single
task per speculative section. For this reason, the distinction be-
tween Eager and Lazy does not apply.

MultiT&MV AMM schemes include Hydra [12], Stef-
fan97&00 [21, 22], Cintra00 [4], and PrvulovicOl [16]. Hydra
stores speculative state in buffers between L1 and L2, while the
other schemes store it in L1 and in some cases L2. A processor
can start a new speculative task without waiting for the task that
it has just run to become non-speculative®. All schemes are Mul-
tiT&MV because the private cache hierarchy of a processor may
contain state from multiple speculative tasks, including multiple
speculative versions of the same variable. This requires appropri-
ate cache design in Steffan97&00, Cintra00, and Prvulovic01. In
Hydra, the implementation is easier because the state of each task
goes to a different buffer. Two buffers filled by the same processor
can contain different versions of the same variable.

Of these schemes, Hydra, Steffan97&00, and Cintra00 eagerly
merge versions with main memory. Merging involves writing the
versions to main memory in Hydra and Cintra00, or asking for
the owner state in Steffan97&00. Prvulovic01 is Lazy: committed
versions remain in caches and are merged when they are displaced
or when caches receive external requests.

One of the designs in Steffan97&00 [21, 22] is MultiT&SV.
The cache is not designed to hold multiple speculative versions of
the same variable. When a task is about to create a second local
speculative version of a variable, it stalls.

SWhile this statement is true for Hydra in concept, the evaluation in [12]
assumes only as many buffers as processors, making the system SingleT.



MultiT&MV FMM schemes include Zhang99&T [25, 26] and
Garzaran01 [9]. In these schemes, task state is merged with main
memory when lines are displaced from the cache or are requested
externally, regardless of whether the task is speculative or not. The
MHB in Zhang99&T is kept in hardware structures called logs. In
Garzaran01, the MHB is a set of software log structures, which
can be in caches or displaced to memory.

Finally, there is a class of schemes labeled Coarse Recovery
in Figure 4 that is different from those discussed so far. These
schemes only support coarse-grain recovery. The MHB can only
contain the state that existed before the speculative section. In
these schemes, if a violation occurs, the state reverts to the be-
ginning of the entire speculative section. These schemes typically
use no hardware support for buffering beyond plain caches. In
particular, they rely on software copying to create versions. The
coarse recovery makes them effectively SingleT. Examples of such
schemes are LRPD [17], SUDS [7], and other proposals [11, 18].

3.3 Tradeoff Analysis of Benefits and Complexity

To explore the design space of Figure 2-(a), we start with the
simplest scheme (SingleT Eager AMM) and progressively com-
plicate it. For each step, we consider performance benefits and
support required. Tables 1 and 2 summarize the analysis.

[[ Support | Description [l
Cache Task Storage and checking logic for a
ID (CTID) task-ID field in each cache line
Cache Retrieval Advanced logic in the cache to
Logic (CRL) service external requests for versions
Memory Task Task ID for each speculative variable
ID (MTID) in memory and needed comparison logic
Version Combining | Logic for combining/invalidating
Logic (VCL) committed versions
Undo Log (ULOG) | Logic and storage to support logging

Table 1. Different supports required.

3.3.1 Implementing a SingleT Eager AMM Scheme

In SingleT Eager AMM schemes, each task stores its state in
the local MROB (e.g. the processor’s cache). When the task com-
mits, its state is merged with main memory. If a task finishes while
speculative, the processor stalls until it can commit the task. If the
state of the task does not fit in the cache, the processor stalls until
the task becomes non-speculative to avoid polluting memory. Fi-
nally, recovery involves invalidating at least all dirty lines in the
cache that belong to the squashed task.

3.3.2 Multiple Speculative Tasks & Versions per Processor

Benefits: Tolerate Load Imbalance and Mostly-Privatization
Patterns

SingleT schemes may perform poorly if tasks have load imbal-
ance: a processor that has completed a short speculative task has
to wait for the completion of all (long) predecessor tasks running
elsewhere. Only when the short task finally commits can the pro-
cessor start a new task. For example, consider Figure 5, where T}
and ¢; mean execution and commit, respectively, of task i. Fig-
ure 5-(a) shows a SingleT scheme: processor 1 completes task T1
and waits; when it receives the commit token, it commits T1 and
starts T3.

Time T T NI NI
TO Tlﬂ TO Ti||x= T0|| T1||X=
3 T2l x = T2 || x =
Mo | Mo ”]CO\H
L | T3
T2 pel g3l p2fiet cl
T3
@ (b) (©

Figure 5. Example of four tasks executing under SingleT (a),
MultiT&SV (b), and MultiT&MV (c).

MultiT schemes do not need to slow down under load imbal-
ance because processors that complete a speculative task can im-
mediately start a new one. However, MultiT&SV schemes can run
slowly if tasks have both load imbalance and create multiple ver-
sions per variable. The latter occurs, for example, under mostly-
privatization patterns (Section 2.2). In this case, a processor stalls
when a task is about to create a second local speculative version
of a variable. When the task that created the first version becomes
non-speculative and, as a result, the first version can merge with
memory, the processor resumes.

As an example, Figure 5-(b) shows that processor 1 generates a
version of X in T1 and stalls when it is about to generate a second
one in T2. When processor 1 receives the commit token for T1, the
first version of X is merged with memory and T2 restarts.

Under MultiT&MYV, load imbalanced tasks do not cause stalls,
even if they have mostly-privatization patterns. An example is
shown in Figure 5-(c). The result is faster execution.

Supports: Cache Task ID and Cache Retrieval Logic

In MultiT schemes the cache hierarchy of a processor holds specu-
lative versions from the multiple tasks that the processor has been
executing. As a result, each line (or variable) must be tagged with
the owner task ID. Furthermore, when the cache is accessed, the
address tag and task ID of the chosen entry are compared to the re-
quested address and the ID of the requester task, respectively. This
support we call Cache Task ID (CTID) in Table 1.

An access from the local processor hits only if both tag and task
ID match. In an external access, the action is different under Mul-
tiT&SV and MultiT&MV. Under MultiT&SV, the cache hierarchy
can only keep a single version of a given variable. Therefore, an
external access can trigger at most one address match. In this case,
the relative value of the IDs tells if the external access is out of
order. If it is, a squash may be required. Otherwise, the data may
be safely returned.

Under MultiT&MV, a cache hierarchy can hold multiple entries
with the same address tag and different task ID. Such entries can
go to different lines of the same cache set [4, 22]. In this case, an
access to the cache may hit in several lines. Consider the case of an
external read request. The cache controller has to identify which
of the selected entries has the highest task ID that is still lower
than the requester’s ID. That one is the correct version to return.
This operation requires some serial comparisons that may increase
cache occupancy, or more hardware for parallel comparisons. Fur-
thermore, responses may require combining different words from



Performance Benefit

Upgrade |

Additional Support Required [l

SingleT — MultiT&SV

Tolerate load imbalance without mostly-privatization access patterns CTID

MultiT&SV — MultiT&MV

Tolerate load imbalance even with mostly-privatization access patterns | CRL

Eager AMM — Lazy AMM

Remove commit wavefront from critical path

CTID and (VCL or MTID)

Lazy AMM — FMM

Faster version commit but slower version recovery

ULOG and
(MTID if Lazy AMM had VCL)

Table 2. Benefits obtained and support required for each of the different mechanisms.

(a) MuUltiT& MV Eager AMM

(b) MUItiT&MV Lazy AMM

(c) SingleT Eager AMM (d) SingleT Lazy AMM

Figure 6. Progress of the execution and commit wavefronts under different schemes.

the multiple cached versions of the requested line. This support
we call Cache Retrieval Logic (CRL) in Table 1.

3.3.3 Lazy Merging with Architectural Main Memory
(AMM)

Benefits: Remove Commit Wavefront from Critical Path

Program execution under thread-level speculation involves the
concurrent advance of two wavefronts: the Execution Wavefront
advances as processors execute tasks in parallel, while the Commit
Wavefront advances as tasks commit in strict sequence by passing
the commit token. Figure 6-(a) shows the wavefronts for a Mul-
tiT&MV Eager AMM scheme.

Under Eager AMM schemes, before a task passes the commit
token to its successor, the task needs to write back to memory the
data it wrote [4] or get ownership for it [21]. These operations
may cause the commit wavefront to appear in the critical path of
program execution. Specifically, they do it in two cases.

In one case, the commit wavefront appears at the end of the
speculative section (Figure 6-(a)). To understand this case, we call
Commit/Execution Ratio the ratio between the average duration of
a task commit and a task execution. For a given machine, this ratio
is an application characteristic that roughly measures how much
state the application generates per unit of execution. If the Com-
mit/Execution Ratio of the application, multiplied by the number
of processors, is higher than 1, the commit wavefront can signifi-
cantly delay the end of the speculative section (Figure 6-(a)).

The second case occurs when the commit wavefront delays the
restart of processors stalled due to the load-balancing limitations
of MultiT&SV or SingleT (Figure 6-(c)). In these schemes, a pro-
cessor may have to stall until it receives the commit token and,
therefore, commits are in the critical path.

Under Lazy AMM, committed versions generated by a task are
merged with main memory lazily, on demand. Since commit now
only involves passing the commit token, the commit wavefront ad-
vances fast and can hardly affect the critical path. As an example,

Figures 6-(b) and (d) correspond to Figures 6-(a) and (c), respec-
tively, under Lazy AMM. In Figure 6-(b), instead of a long com-
mit wavefront at the end of the speculative section, we have a final
merge of the versions still remaining in caches [16]. This is shown
with diamonds in the figure. In Figure 6-(d), the commit wavefront
affects the critical path minimally. In both cases, the program runs
faster.

Supports: Cache Task ID and Version Combining Logic (or
Memory Task ID)

Lazy schemes present two challenges. The first one is to ensure
that different versions of the same variable are merged into main
memory in version order. Such in-order merging must be explic-
itly enforced, given that committed versions are lazily written back
to memory on displacement or external request. The second chal-
lenge is to find the latest committed version of a variable in the
machine; the difficulty is that several different committed versions
of the same variable can co-exist in the machine.

These challenges are addressed with two supports: logic to
combine versions (Version Combining Logic or VCL in Table 1)
and logic for ordering the versions of a variable. Different imple-
mentations of these two supports are proposed by Prvulovic01 [16]
and Multiscalar with SVC [10].

When a committed version is displaced from a cache, the VCL
identifies the latest committed version of the same variable still
in the caches, writes it back to memory, and invalidates the other
versions [10, 16]. This prevents the earlier committed versions
from overwriting memory later. A similar operation occurs when
a committed version in a cache is requested by a processor. Note
that if the machine uses multi-word cache lines, on displacements
and requests, the VCL has to collect committed versions for all the
words in the line from the caches and combine them [16].

For the VCL to work, it needs the second support indicated
above: support to order the different committed versions of the
variable. This can be accomplished by tagging all the versions
in the caches with their task IDs. This support is used by



Cache

TaskID Tag Data

Vaue Address

Task i writes 2 to 0x400
Taski+j writes 10 to 0x400

@ (b)

0x400 | 10

i |0x400]| 2
i+ MROB

MHB: Hardware or software structure

Cache in cache or in memory
TeskID Tag Data o\/erwritingPrOduoerTg;D
— Task ID JV@LN
i +]|0x400) 10 [ i+ ['i] oxaod 2

© N

Figure 7. Implementing the MROB and the MHB.

Prvulovic01 [16] and was called CTID in Table 1. An alterna-
tive approach used by Multiscalar with SVC [10] is to link all the
cached versions of a variable in an ordered linked list called VOL.
The relative version order is determined by the location of the ver-
sion in the list. This support is harder to maintain than CTID,
especially when a cache can hold multiple versions of the same
variable. As a result, we only list CTID in Table 2.

\We note that the version-combining support provided by VCL
can instead be provided by a scheme proposed in Zhang99&T [25].
The idea is for main memory to selectively reject write-backs of
versions. Specifically, for each variable under speculation, main
memory keeps a task-1D tag that indicates what version the mem-
ory currently has. Moreover, when a dirty line is displaced from a
cache and written back to memory, the message includes the pro-
ducer task’s ID (from CTID). Main memory compares the task
ID of the incoming version with the one already in memory. The
write-back is discarded if it includes an earlier version than the one
already in memory. This support we call Memory Task ID (MTID)
in Table 1.

3.3.4 Future Main Memory (FMM)

Benefits: Faster Version Commit but Slower Recovery

In AMM schemes, when a new speculative version of a variable is
created, it is simply written to the same address as the architectural
version of the variable. However, it is kept in a cache or buffer un-
til it can commit, to prevent overwriting the architectural version.
Unfortunately, the processor may have to stall to prevent the dis-
placement of such a version from the buffer. The problem gets
worse when the buffer has to hold state from multiple speculative
tasks. A partial solution is to provide a special memory area where
speculative versions can safely overflow into [16]. Unfortunately,
such an overflow area is slow when asked to return versions, which
especially hurts when committing a task. Overall, the process of
going from a speculative to a committed version in AMM schemes
carries the potential performance cost of stall to avoid overflows or
of slow accesses to an overflow area.

In FMM schemes, the process of going from speculative to
committed version is simpler and avoids penalizing performance.
Specifically, when a task generates a new speculative version, the
older version is copied to another address and the new one takes
its place. The new version can be freely displaced from the cache
at any time and written back to main memory. When the task com-
mits, the version simply commits. The older version can also be
safely displaced from the cache and written back to memory at any
time. Hopefully, it is never accessed again.

FMM, however, loses out in version recovery. AMM recov-
ery simply involves discarding from the MROB (e.g. cache) the

speculative versions generated by the offending task and succes-
sors. In contrast, FMM recovery involves copying all the versions
overwritten by the offending task and successors from the MHB to
main memory, in strict reverse task order.

Supports: Cache Task ID, Memory Task ID, and Undo Log

Consider an example of a program where each task gener-
ates its own private version of variable X. Figure 7-(a) shows the
code for two tasks that run on the same processor. If we use an
AMM scheme, Figure 7-(b) shows the processor’s cache and local
MROB, assuming MultiT&MV support.

If we use an FMM scheme, Figure 7-(c) shows the processor’s
cache and local MHB. The MHB is a hardware or software struc-
ture in the cache or in memory. When a task is about to generate
its own version of a variable, the MHB saves the most recent local
version of the variable (one belonging to an earlier local task).

Note that we need to know what versions we have in the MHB.
Such information is needed after a violation when, to recover the
system, we need to reconstruct the total order of the versions of
a variable across the distributed MHB. Consequently, each MHB
entry is tagged with the ID of the task that generated that version
(Producer Task ID i in the MHB of Figure 7-(c)). This ID can-
not be deduced from the task that overwrites the version. Conse-
quently, all versions in the cache must be tagged with their task
IDs, so that the latter can be saved in the MHB when the version is
overwritten. Finally, groups of MHB entries are also tagged with
the Overwriting Task ID (i+]j in the MHB of Figure 7-(c)).

Overall, FMM schemes need three supports. One is a per-
processor, sequentially-accessed undo log that implements the
MHB. When a task updates a variable for the task’s first time, a log
entry is created. Logs are accessed on recovery and rare retrieval
operations [9]. Both hardware [25, 26] and software [9] logs have
been proposed. This support is called Undo Log (ULOG) in Ta-
ble 1.

The second support (discussed above) is to tag all the versions
in the caches with their task IDs. This is the CTID support in
Table 1. Unfortunately, such tags are needed even in SingleT
schemes. This is unlike in the MROB, where SingleT schemes do
not need task-ID tags. Therefore, SingleT FMM needs nearly as
much hardware as MultiT&SV FMM, without the latter’s potential
benefits. The same can be shown for MultiT&SV FMM relative to
MultiT&MV FMM. For this reason, we claim that the shaded area
in Figure 2-(a) is uninteresting (except for coarse recovery).

A third support is needed to ensure that main memory is up-
dated with versions in increasing task-1D order for any given vari-
able. Committed and uncommitted versions can be displaced from
caches to main memory, and main memory has to always keep the
latest future state possible. To avoid updating main memory out of



Architectural Main Memory (AMM)

Future Main
Eager Lazy Memory (FMM)

Multiple :

Versions
Multiple of Same
Spec Tasks (MultiT&MV)
(MultiT) singe (I s | Frequent Recoyerle_s from

Version Dependence Violations

(MultiT&SV)

Single | | o e S
Spec Task \S/'"gl.e
(SingleT) ersion

Task Commit Wavefront
in Critical Path

Cache Overflow due to
Capacity or Conflicts

Figure 8. Application characteristics that limit performance in each scheme.

task-1D order, FMM schemes [9, 25, 26] use the Memory Task 1D
(MTID) support of Section 3.3.3. Note that the Version Combin-
ing Logic (VCL) of Section 3.3.3 is not an acceptable alternative
to MTID in FMM schemes. The reason is that, under FMM, even
an uncommitted version can be written to memory. In this case,
earlier versions may be unavailable for invalidating/combining be-
cause they may not have been created yet. Consequently, VCL
would not work.

3.3.5 Discussion

Table 2 can be used to qualitatively compare the implementa-
tion complexity of the different supports. We start with SingleT
Eager AMM and progressively add features.

Full support for multiple tasks&versions (MultiT&MV Eager
AMM) is less complex than support for laziness (SingleT Lazy
AMM): the former needs CTID and CRL, while the latter needs
CTID and either VCL or MTID. CRL only requires local modifi-
cation to the tag checking logic in caches, while VVCL requires ver-
sion combining logic in main memory, as well as global changes to
the coherence protocol. The alternative to VCL is MTID, which is
arguably more complex than VVCL (Section 3.3.3). Indeed, MTID
requires maintaining tags for regions of memory and comparison
logic in the main memory. Such tags have to be maintained in the
presence of page remapping, multiple speculative sections, etc.

Supporting multiple tasks&versions and laziness under AMM
(MultiT&MV Lazy AMM) is less complex than supporting the
FMM scheme. The latter needs all the support of the former (with
MTID instead of VCL), plus ULOG.

Complexity considerations should be assessed against perfor-
mance gains. From our discussion, Figure 8 lists application char-
acteristics that we expect to limit performance in each scheme.

4 Evaluation Methodology
4.1 Simulation Environment

We use execution-driven simulations to model two architec-
tures: a scalable CC-NUMA and a chip multiprocessor (CMP).
Both systems use 4-issue dynamic superscalars with a 64-entry in-
struction window, 4 Int, 2 FP, and 2 Ld/St units, up to 8 pending
loads and 16 stores, a 2K-entry BTB with 2-bit counters, and an
8-cycle branch penalty.

The CC-NUMA has 16 nodes of 1 processor each. Each node
has a 2-way 32-Kbyte D-L1 and a 4-way 512-Kbyte L2, both
write-back with 64-byte lines. The nodes are connected with a

2D mesh. The minimum round-trip latencies from a processor to
the L1, L2, memory in the local node, and memory in a remote
node that is 2 or 3 protocol hops away are 2, 12, 75, 208 and 291
cycles, respectively.

The CMP models a more technologically advanced system. It
has 8 processors. Each one has a 2-way 32-Kbyte D-L1 and a 4-
way 256-Kbyte L2. All caches are write-back with 64-byte lines.
The L2s connect through a crossbar to 8 on-chip banks of both
directory and L3 tags. Each bank has its own control logic and
private interface to connect with its corresponding data array bank
of a shared off-chip L3. The L3 has 4 ways and holds 16 Mbytes.
The minimum round-trip latencies from a processor to the L1, L2,
another processor’s L2, L3, and main memory are 2, 8, 18, 38,
and 102 cycles, respectively. In both machines, contention is ac-
curately modeled in the whole system.

We model all the non-shaded buffering approaches in our tax-
onomy of Figure 2-(a). To model the approaches, we use a spec-
ulative parallelization protocol similar to [16], but without its sup-
port for High-Level Access Patterns. The protocol is appropriately
modified to adapt to each box in Figure 2-(a). Using the same base
protocol for all cases is needed to evaluate the true differences be-
tween them. This protocol supports multiple concurrent versions
of the same variable in the system, and triggers squashes only on
out-of-order RAWS to the same word [16]. It needs a single task-
ID tag per cache line. We avoid processor stalls in AMM due to L2
conflict or capacity limitations by using a per-processor overflow
memory area similar to [16]. For FMM systems, the per-processor
MHB is allocated in main memory.

In Eager AMM systems, each processor uses a hardware ta-
ble to record the lines that a speculative task modifies in the L2
and overflow area. When the task commits, these lines are writ-
ten back to main memory, either explicitly by the processor (Sin-
gleT schemes) or in the background by special hardware (MultiT
schemes). If we changed our baseline speculative protocol, we
could instead use the ORB table proposed by Steffan et al. [21].
The ORB only contains modified lines that are not owned, and
triggers line ownership requests rather than write-backs. Using an
ORB and a compatible speculation protocol may change the over-
heads of eager data merging relative to those measured in this pa-
per. Quantifying these changes is beyond the scope of this paper*.

“We note that, for numerical codes like the ones considered in this pa-
per (Section 4.2), the ORB has to hold many more lines that the number
reported by Steffan et al. [21], who used non-numerical, fine-grained ap-



Non-Analyzable % of # Invoc; # Instr Commit/Exec Appl Characteristics
Appl Sections Tseq # Tasks per Task Ratio (%) Load Priv Comm/Exec
(Loops) per Invoc (Thousand) | NUMA | CMP Imbal | Pattern Ratio
P3m pp-do100 56.5 1;97336 69.1 0.3 0.1 High Med Low
Tree accel_dol10 92.2 41;4096 28.7 1.4 0.4 Med High Low
Bdna actfor_do240 44.2 1;1499 103.3 6.0 3.9 Low High Med
Apsi run_do[ 20,30, 29.3 | 900;63 102.6 114 6.1 Low High High-Med
40,50,60,100]
Track nifilt do300 58.1 56;126 22.3 8.4 2.0 Med Low High-Med
Dsmc3d move3_goto100 41.2 80;46777 5.4 6.2 4.4 Low Low Med
dflux_do[100,200],
Euler psmoo_do20, eflux_ | 89.8 | 120;1871 12.6 145 Low Low High
do[100,200,300]
[[ Average ] | 58.8 | 171;21681 | | 66 [ 45 ] | | I

Table 3. Application characteristics. Each task is one iteration, except in Track, Dsmc3d and Euler, where it is 4, 16, and 32 consecutive
iterations, respectively. In Apsi, we use an input grid of 512x1x64. In P3m, while the loop has 97,336 iterations, we only use the first 9,000
iterations in the evaluation. In Euler, since all 6 loops have the same patterns, we only simulate dflux_do100. All the numbers except

Tseq correspond to this loop. In the table, Med stands for Medium.

In all AMM and FMM systems, there is also a similar table for
the L1. The table is traversed when a task finishes, to write back
modified lines to L2. This table traversal takes largely negligible
time, given the size of the tasks (Section 4.2).

Finally, our simulations model all overheads, including dy-
namic scheduling of tasks, task commit, and recovery from depen-
dence violations. In FMM systems, recovery is performed using
software handlers whose execution is fully simulated.

4.2  Applications

For the evaluation, we use a set of numerical applications. In
each application, we use the Polaris parallelizing compiler [3] to
identify the sections that are not fully analyzable by a compiler.
Typically, these are sections where the dependence structure is ei-
ther too complicated or unknown, for example because it depends
on input data or control flow. These code sections often include ar-
rays with subscripted subscripts, and conditionals that depend on
array values.

The applications used are: Apsi from SPECfp2000, Track and
Bdna from Perfect Club, Dsmc3d and Euler from HPF-2, P3m
from NCSA, and Tree from [2]. We use these applications because
they spend a large fraction of their time executing code that is not
fully analyzable by a parallelizing compiler. The only exception is
Bdna, which has been shown parallelizable by research compiler
techniques [5], although no commercial compiler can parallelize
it. Our application suite contains only numerical applications be-
cause our compiler infrastructure only allows us to analyze Fortran
codes. While the results of our evaluation are necessarily a func-
tion of the application domain used, we will see that our applica-
tions cover a very wide range of buffering behaviors.

Table 3 shows the non-analyzable sections in each application.
These sections are loops, and the speculative tasks are chunks of
consecutive iterations. The chunks are dynamically scheduled.
The table lists the weight of these loops relative to Tseq, the to-
tal sequential execution time of the application with 1/0O excluded.
This value, which is obtained on a Sun Ultra 5 workstation, is on
average 58.8%. The table also shows the number of invocations
of these loops during execution, the number of tasks per invoca-
tion, the number of instructions per task, and the ratio between the

plications. Indeed, for numerical applications, [16] shows that the number
of non-owned modified lines per speculative task is about 200 on average.

time taken by a task to commit and to execute (Commit/Execution
Ratio). This ratio was computed under MultiT&MV Eager, where
tasks do not stall. It is shown for both the CC-NUMA and CMP
architectures.

The last three columns give a qualitative measure of the
load imbalance between nearby tasks, the weight of mostly-
privatization patterns, and the value of the Commit/Execution Ra-
tio. The applications exhibit a range of squashing behaviors.
Specifically, while Euler’s execution is substantially affected by
squashes (0.02 squashes per committed task), the opposite is true
for P3m, Tree, Bdna, and Apsi. Track and Dsmc3d are in between.

All the data presented in Section 5, including speedups, refer
only to the code sections in the table. Given that barriers separate
analyzable from non-analyzable code sections, the overall applica-
tion speedup can be estimated by weighting the speedups that we
show in Section 5 by the % of Tseq from the table.

5 Evaluation

We first focus on the CC-NUMA system, and then evaluate the
CMP in Section 5.3.

5.1 Separation of Task State under Eager AMM

Figure 9 compares the execution time of the non-analyzable
sections of the applications under schemes where individual pro-
cessors support: a single speculative task (SingleT), multiple spec-
ulative tasks but only single versions (MultiT&SV), and multiple
speculative tasks and multiple versions (MultiT&MV). Both Eager
and Lazy AMM schemes are shown for each case. The bars are
normalized to SingleT Eager and broken down into instruction ex-
ecution plus non-memory pipeline hazards (Busy), and stalls due
to memory access, not enough task/version support, and end-of-
loop stall due to commit wavefront or load imbalance (Stall). The
numbers on top of the bars are the speedups over sequential exe-
cution of the code where all data is in the local memory module.
In this section, we examine the Eager schemes, which are the bars
in odd positions; we leave the Lazy ones for Section 5.2.

Consider MultiT&MV first. It should perform better than Sin-
gleT in two cases. One is in highly load-imbalanced applications
(Figure 5-(c) vs 5-(a)). According to Table 3, only P3m has high
imbalance. As shown in Figure 9, MultiT&MV is faster than Sin-
gleT in P3m.



P3m Tree Bdna Apsi Track Dsmc3d Euler Average
1.6
Bl Busy
E = Eager
14 85 8.9 L :Lagy [ singleT
10 0.6 1F3 MultiT&SV Stall

MultiT&MV

Normalized Non-Analyzable Exec. Time
o
[o¢]
\

ELELEL ELELEL ELELEL

The other case is under modest load imbalance but medium-
sized Commit/Execution Ratio. The latter affects performance
because commits in SingleT are in the critical path of restart-
ing stalled processors (Figure 6-(c)). MultiT&MYV removes the
commits from the critical path. Note, however, that the Com-
mit/Execution Ratio should not be high. If it is, the end-of-loop
commit wavefront eliminates any gains of MultiT&MV (Figure 6-
(a)). According to Table 3, Bdna and Dsmc3d have a medium
Commit/Execution Ratio in NUMA. As shown in Figure 9, Mul-
tiT&MV is faster than SingleT in Bdna and Dsmc3d. In the other
applications, the Commit/Execution Ratio is either too high or too
low for MultiT&MYV to be much faster than SingleT.

Consider now MultiT&SV. It should match MultiT&MV when
mostly-privatization patterns are rare. According to Table 3, Track,
Dsmc3d and Euler do not have such patterns. As shown in Fig-
ure 9, MultiT&SV largely matches MultiT&MV in these applica-
tions. This observation indirectly agrees with Steffan et al. [21],
who found no need to support multiple writers in their applica-
tions.

However, MultiT&SV should resemble SingleT when mostly-
privatization patterns dominate. According to Table 3, such pat-
terns are common in P3m and dominant in Tree, Bdna, and Apsi.
As shown in Figure 9, MultiT&SV takes in between SingleT and
MultiT&MV in P3m. For Tree, Bdna, and Apsi, tasks write to
mostly-privatized variables early in their execution. As a result, a
processor stalls immediately (Figure 5-(b)) as in SingleT. In prac-
tice, it can be shown that our greedy dynamic assignment of tasks
to processors causes unfavorable task interactions in MultiT&SV
that result in additional stalls. This is why MultiT&SV is even
slower than SingleT in Tree, Bdna, and Apsi.

Overall, MultiT&MYV is a good scheme: applications run on
average 32% faster than in SingleT.

5.2 Merging of Task State with Main Memory

Comparing Eager to Lazy AMM Schemes

Laziness can speed up execution in the two cases where the com-
mit wavefront appears in the critical path of an Eager scheme.
These cases are shown in Figures 6-(c) and 6-(a).

The first case (Figure 6-(c)) occurs when processors stall during
task execution, typically under SingleT and, if mostly-privatization
patterns dominate, under MultiT&SV. It can be shown that this
situation occurs frequently in our applications: in all applications

ELELEL

ELELEL ELELEL ELELEL

ELELEL
Figure 9. Supporting single or multiple speculative tasks or versions per processor, for eager or lazy architectural main memory (AMM)
schemes. In the figure, E and L stand for Eager and Lazy, respectively.

under SingleT and in the privatization applications (P3m, Tree,
Bdna, and Apsi) under MultiT&SV. In this case, the impact of
laziness (Figure 6-(d)) is roughly proportional to the application’s
Commit/Execution Ratio. From Table 3, we see that the ratio is
significant for all applications except P3m and Tree. Consequently,
in this first case, laziness should speed up SingleT for Bdna, Apsi,
Track, Dsmc3d, and Euler, and MultiT&SV for Bdna and Apsi.
Figure 9 confirms these expectations.

The second case where the wavefront is in the critical path (Fig-
ure 6-(a)) occurs when processors do not stall during task execu-
tion but the Commit/Execution Ratio times the number of proces-
sors is higher than 1. In this case, the wavefront appears at the
end of the loop. This case could occur in all applications under
MultiT&MYV, and in the non-privatization ones (Track, Dsmc3d,
and Euler) under MultiT&SV. However, according to Table 3, only
Apsi, Track, and Euler have a Commit/Execution Ratio sufficiently
high in NUMA such that, when multiplied by 16, the result is over
1. Consequently, laziness (Figure 6-(b)) should speed up Mul-
tiT&MV for Apsi, Track, and Euler, and MultiT&SV for Track
and Euler. Figure 9 again confirms these expectations®.

Overall, Lazy AMM is effective. For the simpler schemes (Sin-
gleT and MultiT&SV), it reduces the average execution time by
about 30%, while for MultiT&MV the reduction is 24%.

Comparing AMM to FMM Schemes

Figure 10 compares the execution time of AMM schemes (Eager
and Lazy) to the FMM scheme. All schemes are MultiT&MV.
We also show the same FMM scheme except that the copying of
overwritten versions to the MHB is done in software, with plain
instructions added to the application [9] (FMM.Sw). This scheme
eliminates the need for hardware support for the undo log.
Section 3.3.4 argued that FMM schemes are better suited to
version commit, while AMM schemes are better at version recov-
ery. Figure 10 shows that there are few differences between Lazy
AMM and FMM. The only significant ones occur in P3m and Eu-
ler. P3m has high load imbalance and mostly-privatization pat-
terns. As aresult, in Lazy (and Eager) AMM, the MROB in a pro-

50ur conclusions on laziness agree with [16] for 16 processors for the
applications common to both papers: Tree, Bdna, and Euler (Apsi and
Track cannot be compared because the problem sizes or the number of it-
erations per task are different). Our MultiT&MV Eager and Lazy schemes
roughly correspond to their OptNoCT and Opt, respectively, without the
support for High-Level Access Patterns [16].



P3m Tree Bdna

Apsi

Track Dsmc3d Euler

Average

- Busy
= Avm

} Stall

Normalized Non-Analyzable Exec. Time

5 >N S = 5 > S = 5 > S = 5 >
@ @ @ @
o5 8 259 o> 3 S a o8 S 0 o
ﬂjJi‘u_z C 1 o s C 1 o s [ I
w N 2 w Z L Z w
-
s [y [

FMM.Sw

Figure 10. Supporting an architectural main memory (AMM) or a future (FMM) one.

cessor may keep the state of numerous speculative tasks, with mul-
tiple versions of the same variable competing for the same cache
set. Overflowing read-only, non-speculative data is silently dis-
carded, while overflowing speculative data is sent to the overflow
area. Note that, unlike the versions in the MHB, the versions in
the overflow area have to be accessed eventually. Overall, the re-
sulting long-latency accesses to the overflow area or to memory to
refetch data slow down P3m. To eliminate this problem, we have
increased L2’s size and associativity to 4 Mbytes and 16 ways, re-
spectively (Lazy.L2 bar in P3m). In this case, AMM performs just
as well as FMM.

In Euler, the Lazy AMM scheme performs better than the FMM
scheme. The reason is that Euler has frequent squashes due to
violations. Recall that AMM schemes recover faster than FMM
schemes (Section 3.3.4).

We conclude that, in general, Lazy AMM and FMM schemes
deliver similar performance. However, Lazy AMM has an advan-
tage in the presence of frequent squashes, while FMM has an ad-
vantage when task execution puts pressure on the size or associa-
tivity of the caches.

Finally, Figure 10 shows that the slowdown caused by up-
dating the MHB in software (FMM.Sw) is modest. This agrees
with [9]. On average, FMM.Sw takes 6% longer to run than FMM.
FMM.Sw eliminates the need for the ULOG hardware in Table 2,
although it still needs the other FMM hardware in the table.

5.3 Evaluation of the Chip Multiprocessor (CMP)

Figure 11 repeats Figure 9 for the CMP architecture. Overall,
we see that the trends are the same as in the NUMA architecture.
The most obvious change is that the relative differences between
the different buffering schemes are smaller in the CMP than in the
NUMA architecture. This is not surprising, since buffering mainly
affects memory system behavior. The CMP is less affected by the
choice of buffering because its lower memory latencies result in
less memory stall time. This observation is clear from the rela-
tively higher Busy time in the CMP bars.

One observation in the CMP is that the improvement of Lazy
over Eager schemes is much smaller than before. There are two
reasons for this. First, since the number of processors is smaller,
the commit serialization is less of a bottleneck. Second, the Com-
mit/Execution Ratios are smaller (Table 3) because of the lower
memory latencies. Overall, laziness reduces the average execution
time by 9% in the simpler schemes (SingleT and MultiT&SV), and

by only 3% in MultiT&MV. We also note that adding support for
multiple task&versions is still good: when applied to SingleT Ea-
ger, it reduces the execution time by 23% on average (compared to
32% in NUMA).

Finally, a comparison between Lazy AMM and FMM schemes
for CMP is not shown because it is very similar to Figure 10. The
Lazy AMM and FMM schemes perform similarly to each other.

5.4 Summary

Starting from the simplest scheme (SingleT Eager AMM), we
have the choice of adding support for multiple tasks&versions
(MultiT&MV) or for laziness. Our main conclusion is that sup-
porting multiple tasks&versions is more complexity-effective than
supporting laziness: the reduction in execution time is higher (32%
versus 30% in our NUMA,; 23% versus 9% in our CMP), and Sec-
tion 3.3.5 showed that the implementation complexity is lower for
adding multiple tasks&versions. We also note that laziness is only
modestly effective in tightly-coupled architectures like our CMP.

A second conclusion is that the improvements due to multi-
ple tasks&versions and due to laziness are fairly orthogonal in
a large machine like our NUMA. Indeed, adding laziness to the
MultiT&MV Eager AMM scheme reduces the execution time by
an additional 24% (Figure 9). In our CMP, however, the gains are
only 3% (Figure 11).

A third conclusion is that the resulting system (MultiT&MV
Lazy AMM) is competitive against what Table 2 billed as the most
complex system: MultiT&MV FMM. The Lazy AMM scheme is
generally as fast as the FMM scheme (Figure 10). While Lazy
AMM is not as tolerant of high capacity and conflict pressure on
the buffers (P3m in Figure 10), it behaves better when squashes
due to dependence violations are frequent (Euler in Figure 10).

Finally, we show that MultiT&SV is not very attractive for
applications like the ones we use, which often have mostly-
privatization patterns: it is as fast as SingleT (Figures 9 and 11),
while it requires support beyond SingleT (Table 2).

6 Conclusion

The contribution of this paper is threefold. First, it introduces
a novel taxonomy of approaches to buffer multi-version memory
state for thread-level speculation in multiprocessors. Second, it
presents a detailed complexity-benefit tradeoff analysis of the ap-
proaches. Finally, it uses numerical applications to evaluate their
performance under a single architectural framework.



P3m Tree Bdna Apsi Track Dsmc3d Euler Average
1.6
E = Eager - Busy
1.4 L = Lazy [ singleT
12 6.4 47 3.6 MUItiT&SV Stall
' 0.80.8 707.1 B mutitamv
0. 11 )

0.8

0.6 q

0.4 -

0.2

Normalized Non-Analyzable Exec. Time

ELELEL ELELEL

ELELEL

ELELEL ELELEL

ELELEL

Figure 11. Supporting architectural main memory (AMM) schemes in a CMP. In the figure, E and L stand for Eager and Lazy, respectively.

Our analysis provides an upgrade path of features with
decreasing complexity-effectiveness. Specifically, starting
from the simplest scheme (SingleT Eager AMM), the most
complexity-effective improvement is to add support for multiple
tasks&versions per processor (MultiT&MV Eager AMM). Then,
performance can be additionally improved in large machines by
adding support for lazy merging of task state (MultiT&MV Lazy
AMM). Finally, if the applications do not suffer frequent squashes,
additional performance can be obtained by supporting future main
memory (MultiT&MV FMM). This change adds complexity and
only modest average performance benefits. If, instead, applica-
tions suffer frequent squashes, MultiT&MV Lazy AMM is faster.
Overall, with our mix of applications, we find that MultiT&MV
Lazy AMM and FMM have similar performance.

References

[1] H. Akkary and M. A. Driscoll. A Dynamic Multithreading Processor.
In Intl. Symp. on Microarchitecture, pages 226-236, Dec. 1998.

[2] J. E. Barnes. ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/. Uni-
versity of Hawaii, 1994.

[3] W. Blume et al. Advanced Program Restructuring for High-
Performance Computers with Polaris. |EEE Computer, 29(12):78-
82, December 1996.

[4] M. Cintra, J. F. Martinez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Multiproces-
sors. In Proc. 27th Annual Intl. Symp. on Computer Architecture,
pages 13-24, June 2000.

[5] R. Eigenmann, J. Hoeflinger, and D. Padua. On the Automatic Par-
allelization of the Perfect Benchmarks. In |IEEE Trans. Parallel and
Distributed Systems, volume 9, pages 5-23, January 1998.

[6] R.Figueiredo and J. Fortes. Hardware Support for Extracting Coarse-
grain Speculative Parallelism in Distributed Shared-memory Multi-
procesors. In Proc. Intl. Conf. on Parallel Processing, September
2001.

[7] M. Frank, W. Lee, and S. Amarasinghe. A Software Framework
for Supporting General Purpose Applications on Raw Computation
Fabrics. Tech. Rep., MIT/LCS Technical Memo MIT-LCS-TM-619,
July 2001.

[8] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dy-
namic Reordering of Memory References. |EEE Trans. Computers,
45(5):552-571, May 1996.

[9]1 M. J. Garzaran, M. Prvulovic, J. M. Llaberia, V. Vifals, L. Rauch-
werger, and J. Torrellas. Software Logging under Speculative Paral-
lelization. In Workshop on Memory Performance Issues, in conjunc-
tion with ISCA-28, July 2001.

[10] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative
Versioning Cache. In Proc. 4th Intl. Symp. on High-Performance
Computer Architecture, pages 195-205, February 1998.

[11] M. Gupta and R. Nim. Techniques for Speculative Run-Time Paral-
lelization of Loops. In Proc. Supercomputing 1998, November 1998.

[12] L.Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. In 8th Intl. Conf. on Arch. Support for
Prog. Lang. and Oper. Systems, pages 58-69, October 1998.

[13] T. Knight. An Architecture for Mostly Functional Languages. In
ACM Lisp and Functional Programming Conf., pages 500-519, Au-
gust 1986.

[14] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture
with Speculative Multithreading. |EEE Trans. on Computers, pages
866-880, September 1999.

[15] P. Marcuello and A. Gonzalez. Clustered Speculative Multithreaded
Processors. In Proc. 1999 Intl. Conf. on Supercomputing, pages 365—
372, June 1999.

[16] M. Prvulovic, , M. J. Garzaran, L. Rauchwerger, and J. Torrellas.
Removing Architectural Bottlenecks to the Scalability of Specula-
tive Parallelization. In Proc. 28th Annual Intl. Symp. on Computer
Architecture, pages 204-215, July 2001.

[17] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-
Time Parallelization of Loops with Privatization and Reduction Par-
allelization. In Proc. SGPLAN 1995 Conf. on Prog. Lang. Design
and Implementation, pages 218-232, June 1995.

[18] P. Rundberg and P. Stenstrom. Low-Cost Thread-Level Data Depen-
dence Speculation on Multiprocessors. In 4th Workshop on Multi-
threaded Execution, Architecture and Compilation, December 2000.

[19] J. E. Smith and A. R. Pleszkun. Implementing Precise Interrupts
in Pipelined Processors. |EEE Trans. Computers, C-37(5):562-573,
May 1988.

[20] G. S. Sohi, S. Breach, and S. Vijaykumar. Multiscalar Processors.
In Proc. 22nd Annual Intl. Symp. on Computer Architecture, pages
414-425, June 1995.

[21] J. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. A Scalable Ap-
proach to Thread-Level Speculation. In Proc. 27th Annual Intl. Symp.
on Computer Architecture, pages 1-12, June 2000.

[22] J. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Support
for Thread-Level Data Speculation. Tech. Rep., CMU-CS-97-188,
Carnegie Mellon University, November 1997.

[23] M. Tremblay. MAJC: Microprocessor Architecture for Java Comput-
ing. Hot Chips, August 1999.

[24] J. Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P. C. Yew. The Su-
perthreaded Processor Architecture. |EEE Trans. on Computers,
48(9):881-902, September 1999.

[25] Y. Zhang. Hardware for Speculative Run-Time Parallelization in
DSM Multiprocessors. Ph.D. Thesis, Dept. of Elec. and Comp. En-
gineering, Univ. of lllinois at Urbana-Champaign, May 1999.

[26] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Speculative
Parallelization of Partially-Parallel Loops in DSM Multiprocessors.
In Proc. 5th Intl. Symp. on High-Performance Computer Architec-
ture, pages 135-139, January 1999.



