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Abstract—The advent of multi-core processors with a large
number of cores and heterogeneous architecture poses challenges
for achieving scalable cache coherence. Several recent research
efforts have focused on simplifying or abandoning hardware
cache coherence protocols. However, this adds a significant
burden on the programmer, unless automated compiler support
is developed.

In this paper, we develop compiler support for parallel systems
that delegate the task of maintaining cache coherence to software.
Algorithms to automatically insert software cache coherence
instructions into parallel applications are presented. This frees
the programmer from having to manually insert coherence
annotations, which can be tedious and error-prone. Experimental
evaluation over a number of benchmarks demonstrates that
effective compiler techniques can make software cache coherence
competitive with hardware coherence schemes both in terms of
energy and performance.

I. INTRODUCTION

As the number of transistors on a chip continues to scale,
multi-core and many-core processors are expected to have
hundreds of cores in the near future. The use of a hierarchy of
caches and/or scratchpad memory is universal, to enable fast
access to spatially and temporally reused data. But this also
introduces the cache coherence problem — keeping shared
variables coherent across multiple processors.

Commodity multicore processors currently enforce cache
coherence through snooping-based or directory-based proto-
cols. However, snoopy protocols [2] rely on the existence
of a shared bus to enforce cache coherence, and therefore
are not appropriate when a network-on-chip is used to con-
nect different processing elements. Network-on-chip is crucial
to achieve scalable performance for architectures that have
a large number of cores. Hence, directory-based hardware
coherence mechanisms [19] have been proposed for large-
scale parallel computers. Directory schemes however impose
additional storage requirements and increase memory access
latency, potentially causing significant network traffic due
to directory maintenance operations. Despite progress made
towards addressing the aforementioned problems [14], [13],
significant challenges remain for hardware cache coherence
schemes [28]. An additional challenge with hardware-based
coherence schemes is their attendant complexity: hardware
coherence protocols are known to be notoriously complex to
design and verify [1].

Consequently, there is a drive to simplify hardware cache
coherence protocols or to do away with them. For example,
Runnemede from the DARPA UHPC program [3] provides

scratchpads and software-managed incoherent caches, shifting
the responsibility of coherence to the software. The Cohesion
system [16] proposes a hybrid memory model that combines
software and hardware coherence schemes — for regular
applications, coherence is software-driven, while hardware
coherence is invoked for irregular code. The 48-core Intel
SCC research many-core processor [21] drops hardware cache
coherence altogether, and instead defines a new memory
type to facilitate communication between cores. A few other
research projects [6], [15] have proposed simplifying the
implementation of hardware cache coherence protocols by
restricting the types of sharing patterns that the application
can exhibit. In some cases, the programmer/compiler can
help identify potentially stale data for self-invalidation, further
increasing performance.

Therefore, it is of considerable interest to develop comple-
mentary compiler algorithms to automatically insert software
coherence instructions into application programs, so that valid
execution can be ensured on systems that do not provide
hardware coherence support, but expect the compiler (or
programmer) to ensure coherence.

The topic of compiler-directed cache coherence was previ-
ously addressed by several efforts (e.g., [7]). Even though that
had shown promise, software cache coherence was discontin-
ued mainly for a couple of reasons: 1) the kind of programs
for which the compiler support was available was limited and
therefore, it placed a lot of responsibility on the shoulders
of the programmer 2) snoopy-based hardware coherence pro-
tocols performed well on the parallel computers which had a
small number of cores. But the very high degree of parallelism
in upcoming multiprocessor systems, such as those proposed in
the DARPA UHPC and DOE XStack programs, is prompting
a renewed interest in alternatives to the traditional hardware-
based coherence schemes. In this paper, we develop compiler
analyses for efficient software managed cache coherence. We
take a multi-pronged approach using several strategies:

1) For memory accesses with affine index expressions, we
develop compile time analyses to precisely mark only
those variables for invalidation that could become stale
in the private cache due to other writes from other cores.
Similarly, we also develop analyses to precisely identify
the data to be written back from the private caches to
shared caches because other cores might need to access
the data in future epochs.

2) For repetitive irregular (non-affine) accesses, we present
inspector-based schemes that exactly demarcate data for
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coherence management.
3) Other irregular parallel applications are handled via meth-

ods that write back and invalidate data across synchro-
nization points and preserve data locality of read-only
data.

The paper makes the following contributions:
• Compiler algorithms to automatically instrument parallel

applications with cache management instructions that
write back and invalidate cached data,

• Efficient compiler analyses using the Polyhedral-model
[12] to precisely identify data for software-based cache
coherence for affine computations,

• Compiler analyses using the inspector-executor paradigm
to maintain cache coherence for iterative irregular com-
putations,

• Experimental demonstration using a range of programs
demonstrating that the developed compiler-based tech-
niques are competitive with hardware coherence schemes
in terms of performance and energy consumption, at a
lower hardware cost.

II. OVERVIEW & BACKGROUND

The software orchestrates cache coherence using the follow-
ing coherence primitives.
• Writeback: The address of a variable is specified in the

instruction and if the addressed location exists in the
private cache and has been modified, then it is written
to a shared cache or main memory.

• Invalidate: The instruction causes any cached copy of
the variable in the private cache to be discarded (self-
invalidation) so that the next read to the variable fetches
data from the shared cache.

if processor A has to send an updated value of a shared
variable X to processor B, then processor A issues a writeback
instruction on X, and processor B later invalidates X so that a
subsequent read to X fetches the latest value from the shared
cache.

Fig. 1 shows the API for the invalidate and writeback
instructions.

A. Execution Model

Release Consistency: The execution of parallel programs
consists of epochs (intervals between global synchronization
points). Examples of epochs include, code executed between
successive barriers, the code region between acquiring and
releasing of a lock. In an epoch, data which was written

i n v a l i d a t e w o r d ( void ∗ add r ) ;
i n v a l i d a t e d w o r d ( void ∗ add r ) ;
i n v a l i d a t e q w o r d ( void ∗ add r ) ;
i n v a l i d a t e r a n g e ( void ∗ addr , i n t num bytes ) ;

w r i t e b a c k w o r d ( void ∗ add r ) ;
wr i t eback dwor d ( void ∗ add r ) ;
wr i t eback qwor d ( void ∗ add r ) ;
w r i t e b a c k r a n g e ( void ∗ addr , i n t num bytes ) ;

Fig. 1: Coherence API list

potentially by other cores in previous epochs and that a core
may need to read in the current epoch are invalidated. Before
the end of the epoch, all the data that a core has written in the
current epoch and that may be needed by other processors in
future epochs are written-back to the shared level cache.

Before an epoch completes, all prior memory operations,
including ordinary load/store instructions and coherence in-
structions, are completed. Then the next epoch can start, and
the subsequent memory operations can be initiated. Further, or-
dering constraints between memory instructions are respected:
The order of a store to address i and the subsequent writeback
for address i should be preserved in the instruction pipeline of
the processor and caches. Similarly, the order of invalidation
to address j and a subsequent load from address j should be
preserved in the pipeline and caches to guarantee fetching of
the value from the shared cache.
Coherence Operations at Cache line granularity: Coher-
ence operations are performed at the granularity of cache
lines — all the lines that overlap with specified addresses
are invalidated or written-back. If the specified data are not
present in cache, then coherence instructions have no effect.
In addition, writeback instructions write back only modified
words of the line. In doing so, writeback instructions avoid the
incorrectness issue that may arise from false sharing: if two
processors are writing to variables that get mapped to the same
cache line, and whole cache lines (and not just the dirty words)
are written-back, then one processor’s modified words may be
overwritten with another processor’s clean words. Therefore,
per-word dirty bits are used to keep track of words of a cache
line that are modified.

B. Notation

The code shown in Fig. 2 is used as a working example to
illustrate the notation and the compiler algorithm in the next
section.
Sets: A set s is defined as:

s = {[x1, . . . ,xm] : c1∧·· ·∧ cn}

where each xi is a tuple variable and each c j is a constraint.
The iteration spaces of statements can be represented as
sets. For example, the iteration space of statement S1 in
the code shown in Fig. 2 can be specified as the set IS1 :
IS1 = {S1[t1, t2, t3] : (0 ≤ t1 ≤ tsteps− 1)∧ (0 ≤ t2 ≤ n− 1)∧
(1≤ t3 ≤ n−1)}
Relations: A relation r is defined as:

r = {[x1, . . . ,xm] 7→ [y1, . . . ,yn] : c1∧·· ·∧ cp}

where each xi is an input tuple variable, each y j is an output
tuple variable and each ck is a constraint. Array accesses

f o r ( t 1 =0; t1 <=t s t e p s −1; t 1 ++) {
#pragma omp p a r a l l e l f o r p r i v a t e ( t 3 )

f o r ( t 2 =0; t2 <=n−1; t 2 ++) {
f o r ( t 3 =1; t3 <=n−1; t 3 ++) {

S1 : B[ t 2 ] [ t 3 ] = B[ t 2 ] [ t 3 +1] + 1 ;
}}}

Fig. 2: A loop nest

2



appearing in the code may be modeled as relations from
iteration spaces to access functions of the array references. The
two accesses to array ‘B’ in Fig. 2, B[t2][t3] and B[t2][t3+1],
are represented as the following relations:

rS1
write ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3)}

rS1
read ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3 +1)}

The Apply Operation: The apply operation on a relation r
and a set s produces a set s′ denoted by, s′ = r(s) and is
mathematically defined as:

(~x ∈ s′)⇐⇒ (∃~y s.t. ~y ∈ s∧ (~y 7→~x) ∈ r)

The set of array elements accessed by an array reference in
a loop (data-footprint) may be derived by applying access
function relations on the iteration space sets. For the array
accesses in the example code shown in Fig. 2, data-footprints
of the two accesses are: rS1

write(I
S1),rS1

read(I
S1).

The Inverse Operation: The inverse operation r = r−1
k oper-

ates on a relation rk to produce a new relation r such that r
has the same constraints as rk but with the input and output
tuple variables swapped. (~x 7→~y ∈ r)⇐⇒ (~y 7→~x ∈ rk).

C. Polyhedral Dependences

In the Polyhedral model, for affine computations, depen-
dence analysis [11] can precisely compute flow (Read Af-
ter Write - RAW) and output (Write After Write - WAW)
dependences between dynamic instances of statements. The
dependences are expressed as maps from source iterations to
target iterations involved in the dependence.

The flow dependence determined by polyhedral dependence
analysis (for example, using ISL [26]) for the code in Fig. 2
is:

D f low = {S1[t1, t2, t3] 7→ S1[t1 +1, t2, t3−1] :
(0≤ t1 ≤ tsteps−2)∧ (0≤ t2 ≤ n−1)∧ (2≤ t3 ≤ n−1)}

The relation characterizes the flow dependence that exists
between the write reference B[t2][t3] and the read reference
B[t2][t3+1]. An analysis tool like ISL can also be used to
emit information regarding live-in data: data that are read in
the loop but are not produced by any statement instances in
the scope of analysis. A list containing maps from an iteration
point that reads live-in data to the live-in array elements that it
reads is computed. For the running example, the live-in maps
are:

Dlive−in =
{S1[0, t2, t3] 7→ B[t2, t3 +1] : 0≤ t2 ≤ n−1∧1≤ t3 ≤ n−2;
S1[t1, t2,n−1] 7→ B[t2,n] : 0≤ t1 ≤ tsteps−1∧0≤ t2 ≤ n−1 }

The two maps capture live-in data read for read reference
B[t2][t3+1].

III. COMPILER OPTIMIZATION FOR REGULAR CODE

The iteration space of an epoch in a parallel loop is modeled
by considering iterator values of the parallel loop and its
surrounding loops as parameters. In the parallel loop in Fig.
2, the t2 loop is parallel and an iteration of t2 constitutes
a parallel task executed in an epoch. Its iteration space
is modeled by considering values of iterators t1 and t2 as
parameters - tp and tq respectively:
IS1
current = {S1[t1, t2, t3] : (t1 = tp)∧ (t2 = tq)∧ (1≤ t3 ≤ n−1)}.

A. Computation of Invalidate and Writeback Sets

Invalidate Set: Algorithm 1 shows how the invalidate set
for a parallel task is computed. It is computed by forming the
union of invalidate data sets corresponding to all statements
within the parallel loop by iterating over each statement. For
each statement Si, first the source iterations of the dependence
- Isource - whose target iterations are in the current slice
for that statement - ISi

current - are determined by applying
the inverse relation of the flow dependence. From this set,
any of the source iterations that lie in the current slice -S

Sj∈stmts IS j
current , are removed from Isource because the source

and target iterations are run on the same processor and no
coherence instruction is needed. The array elements written
by iterations of Isource are placed in the set of data elements
for which invalidation coherence instructions must be issued
to guarantee coherence. To this set is added the live-in list
corresponding to data elements that come in live from outside
the analyzed region.

Algorithm 1 Compute Invalidate Set
Input: Flow Dependences : D f low, Live-in read maps : Dlive in,

Current Iteration Slices: Icurrent , Write maps: rwrite
Output: Statement and Invalidate set pairs: DSi

invalidate
1: for all statements - Si do
2: DSi

invalidate← φ

3: Isource←D−1
f low(ISi

current)\ (
S

Sj∈stmts IS j
current)

4: Din f low←
S

Sj∈stmts rS j
write(Isource)

5: Dlive in data←Dlive in(ISi
current)

6: DSi
invalidate← (Din f low∪Dlive in data)

7: end for

Example: The application of the algorithm to the running
example results in the following invalidate set: DS1

invalidate =
{[tq, i1] : 2 ≤ i1 ≤ n}. The array elements read in the parallel
task are marked for invalidation.

Writeback Set: Algorithm 2 shows how we compute the
writeback set for a parallel task that possibly has multiple
statements in it. To find the writeback set corresponding
to a statement Si, first all target iterations (Itarget ) of all
dependences are identified whose source iterations lie in
ISi
current . Those target iterations that are within the same parallel

task -
S

Sj∈stmts IS j
current are removed from Itarget (line 3). Then

the inverse dataflow relation is applied to this set and the
intersection to the current iteration slice is computed (line 4)
to identify the source iterations (Iproducer) in the slice that write
values needed outside this slice. These values must be part of
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the writeback set. Further, if a write by an iteration is the last
write to a certain variable, it must also be written back since
it represents a live-out value from the loop. The iterations
that are not sources of any output dependencies produce live-
out values. Such iterations are determined by forming the set
difference between ISi

current and domain of output dependences
- dom Dout put .

Algorithm 2 Compute Writeback Set
Input: Flow Dependences : D f low, Output Dependences : Dout put ,

Current Iteration Slices: Icurrent , Write maps: rwrite
Output: Statement and Writeback set pairs: DSi

writeback
1: for all statements - Si do
2: DSi

writeback← φ

3: Itarget ←D f low(ISi
current)\ (

S
Sj∈stmts IS j

current)
4: Iproducer←D−1

f low(Itarget)∩ ISi
current

5: Dout f low← rSi
write(Iproducer)

6: Ilive out ← ISi
current \dom Dout put

7: Dlive out data← rSi
write(Ilive out)

8: DSi
writeback← (Dout f low∪Dlive out data)

9: end for

Example: The algorithm produces the following writeback
set for the example in Fig. 2: DS1

writeback = {[tq, i1] : (tp ≤
tsteps−2∧2≤ i1 ≤ n−1)∨(tp = tsteps−1∧1≤ i1 ≤ n−1)}.

For 0 to tsteps-2 iterations of the outermost t1 loop, only
elements B[t2][2:n-1] need to be written back as they will be
read in the next iteration of t1 loop. Array cell B[t2][1] does
not need to be written back because it is overwritten in a later
t1 iteration and its value is not read. But the very last write
to B[t2][1], i.e., when t1 = tsteps-1 has to be written back as
it is a live-out value of the loop.

a) Code Generation: The invalidate and writeback sets
are translated to corresponding cache coherence instructions
by generating a loop to traverse elements of the sets using
a polyhedral code generator — ISL [26]. The invalidations
and writebacks are combined into coherence range functions
whenever elements of a set are contiguous in memory: when
the inner-most dimension of the array is the fastest varying
dimension of the loop.

B. Optimization: Analysis Cognizant of Iteration to Processor
Mapping

The techniques described until now do not assume any
particular mapping of iterations to processors. However, if
a mapping of processors to iterations is known, many in-
validations and write-backs could possibly be avoided. For
example, in the code shown in Fig. 2, the flow dependence
(mentioned in §II-C) is: S1[t1, t2, t3] 7→ S1[t1 + 1, t2, t3− 1]. If
parallel iterations of the ‘t2’ loop are mapped to processors
such that an iteration with a particular ‘t2’ value always gets
mapped to the same processor, the source and target iterations
of the flow dependence get executed on the same processor,
making invalidations and write-backs due to the dependence
unnecessary.

In order to incorporate this optimization, Algorithm 1 and
2 are modified to take iteration to processor mapping into

f o r ( t 1 =0; t1 <=t s t e p s −1; t 1 ++)
#pragma omp p a r a l l e l p r i v a t e ( myid , t2 , t 3 ) {

myid = omp get thread num ( ) ;
f o r ( t 2 =myid ; t2 <=n−1; t 2 +=8) {

i f ( t 1 == 0) {
i n v a l i d a t e r a n g e (&B[ t 2 ] [ 2 ] , s i z e o f ( double ) ∗ ( n−2 ) ) ;
}
inva l ida te dword (&B[ t 2 ] [ n ] ) ;
f o r ( t 3 =1; t3 <=n−1; t 3 ++) {

S1 : B[ t 2 ] [ t 3 ] = B[ t 2 ] [ t 3 +1] + 1 ;
}
i f ( t 1 == t s t e p s −1) {

writeback range (&B[ t 2 ] [ 1 ] , s i z e o f ( double ) ∗ ( n−1 ) ) ;
}}}

Fig. 3: Optimized loop nest for SCC

account. Line 3 of Algorithm 1 is now changed to:
Isource←D−1

f low(ISi
current)\ (

S
Sj∈stmts IS j

current ∪ Isame proc)
and line 3 of Algorithm 2 is changed to:
Itarget ←D f low(ISi

current)\ (
S

Sj∈stmts IS j
current ∪ Isame proc),

where Isame proc is the set of iterations that is executed on the
same processor as the processor on which Icurrent is executed.

For the working example, let us say that the OpenMP
scheduling clauses specify that iterations are cyclically
mapped onto processors and the number of processors used
is 8. Then, we encode that information into the following
iteration to processor map: ri2p = {S1[t1, t2, t3] 7→ [t ′2] : t ′2 = t2
mod 8}. The parallel region code is all the iterations that
are mapped to a parametric processor ‘myid’: Imy proc =
r−1

i2p(myid). The iteration set IS1
current is a subset of Imy proc

with the values of the t1 and t2 loop iterators parameterized.
Using the modified algorithms, the cache coherence code
generated for the working example is presented in Fig. 3.
In the optimized code, only the live-in data is invalidated:
elements B[t2][2 to n] at time-step t1 = 0, only a single element
– B[t2][n] at later time-steps, since other elements are written
to by the same processor ensuring that the updated values are
present in the processor’s private cache. Only the live-out data
is written back at the last time-step: t1 = tsteps−1.

IV. COMPILER OPTIMIZATION FOR IRREGULAR CODE

The irregular computations – code whose data flow and
control flow may not be determined precisely at compile-
time, are handled with a combination of compile-time and
run-time techniques. We first describe a completely general
scheme (§IV-A) that preserves data locality in caches within
an epoch but not across epochs. Then, we present specialized
methods (§IV-B, §IV-C) for certain classes of irregular code
which preserve data locality across epoch boundaries.

A. Bulk Coherence Operations: Basic Approach

The tasks that are executed in an epoch (interval between
synchronization points) by construction do not have any de-
pendences between them (otherwise, the dependences would
induce serialization of tasks and hence, the tasks would have to
be executed in different epochs). Therefore, all data accessed
within an epoch can be safely cached and cache coherence is
not violated.

For irregular applications that have non-affine references
and hence, are not amenable to the analysis presented in
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i n v a l i d a t e a l l ( ) ;
w r i t e b a c k a l l ( ) ;

Fig. 4: Coherence API for conservative handling

the previous section, software cache coherence is achieved
conservatively: at the beginning of an epoch, the entire private
cache is invalidated and at the end of the epoch, all data that
are written in the current epoch (dirty words) are written to the
shared cache. The coherence API functions shown in Fig. 4 are
inserted in the parallel program at epoch boundaries to con-
servatively manage software coherence. The basic approach
outlined above preserves intra-epoch cache data locality, but
cannot exploit any temporal locality that exists across epoch
boundaries.

B. Inspector-Executors

Many scientific applications use sparse and irregular com-
putations and are often iterative in nature and furthermore,
the data access pattern remains the same across iterations.
(Examples include programs for solving partial differential
equations, irregular stencils, the conjugate gradient method for
solving systems of linear equations which uses sparse matrix-
vector multiplications, atmospheric simulations that use semi-
regular grids).

whi le ( conve rged == f a l s e ) {
#pragma omp p a r a l l e l f o r
f o r ( i =0 ; i<n ; i ++) {

r e a d A[B[ i ] ] ; /∗ data−d e p e n d e n t a c c e s s ∗ /
}
#pragma omp p a r a l l e l f o r
f o r ( i =0 ; i<n ; i ++) {

w r i t e A[C[ i ] ] ; /∗ data−d e p e n d e n t a c c e s s ∗ /
}
/∗ S e t t i n g o f converged v a r i a b l e n o t shown ∗ /
}

Fig. 5: A time-iterated loop with irregular data references

For such code, we propose the use of inspectors to gather
information on irregular data accesses so that coherence op-
erations are applied only where necessary. The inspectors that
are inserted in the parallel code are themselves parallel and are
lock-free. The cost of inspectors is amortized by the ensuing
selective invalidations of data and thus fewer unnecessary L1
cache misses over many iterations of the iterative computation.
Fig. 5 shows an iterative code that has data-dependent refer-
ences to a one-dimensional array, viz., A[B[i]] and A[C[i]]. We
first illustrate the inspector approach for the simple example.
The ideas are more generally applicable in the presence of
multiple arrays and multi-dimensional arrays.

The inspector-code determines if a) the write performed
at a thread has readers at other threads: if that is the case,
the variable has to be written-back to shared cache so that
other threads will be able to obtain the updated value of the
variable. b) the variable being read at a thread was written
by another thread: if yes, the variable has to be invalidated
at the private cache so that the fresh value is retrieved from
shared cache. Fig. 6 presents the inspector-inserted parallel

1 /∗ I n s p e c t o r code b e g i n s ∗ /
2 #pragma omp p a r a l l e l f o r
3 f o r ( i =0 ; i<n ; i ++) {
4 A thread [ i ] = −1;
5 A c o n f l i c t [ i ] = 0 ;
6 writeback word (& A thread [ i ] ) ;
7 writeback word (& A c o n f l i c t [ i ] ) ;
8 }
9 / / Phase 1 : Record w r i t e r t h r e a d i d s

10 #pragma omp p a r a l l e l f o r
11 f o r ( i =0 ; i<n ; i ++) {
12 A thread [C[ i ] ] = myid ;
13 writeback word (& A thread [C[ i ] ] ) ;
14 }
15 / / Phase 2 : Mark c o n f l i c t e d i f
16 / / w r i t e r and r e a d e r t h r e a d s are n o t t h e same
17 #pragma omp p a r a l l e l f o r
18 f o r ( i =0 ; i<n ; i ++) {
19 i n v a l i d a t e w o r d (& A thread [B[ i ] ] ) ;
20 i f ( A th read [B[ i ] ] != −1
21 && A thread [B[ i ] ] != myid ) {
22 A c o n f l i c t [B[ i ] ] = 1 ;
23 writeback word (& A c o n f l i c t [B[ i ] ] ) ;
24 }
25 }
26 /∗ I n s p e c t o r code ends ∗ /
27
28 #pragma omp p a r a l l e l
29 { i n v a l i d a t e a l l ( ) ; }
30
31 whi le ( conve rged == f a l s e ) {
32 #pragma omp p a r a l l e l f o r
33 f o r ( i =0 ; i<n ; i ++) {
34 i f ( A th read [B[ i ] ] != −1
35 && A thread [B[ i ] ] != myid )
36 i n v a l i d a t e w o r d (&A[B[ i ] ] ) ;
37 r e a d A[B[ i ] ] ;
38 }
39
40 #pragma omp p a r a l l e l f o r
41 f o r ( i =0 ; i<n ; i ++) {
42 w r i t e A[C[ i ] ] ;
43 i f ( A c o n f l i c t [C[ i ] ] == 1)
44 writeback word (&A[C[ i ] ] ) ;
45 }
46 /∗ S e t t i n g o f converged v a r i a b l e n o t shown ∗ /
47 }
48 #pragma omp p a r a l l e l
49 { w r i t e b a c k a l l ( ) ; }

Fig. 6: An iterative code with irregular data references for SCC
system

code corresponding to the iterative code shown in Fig. 5 for
execution on software managed caches.

Two shadow arrays — A thread and A conflict for array A
that has data-dependent accesses are initialized (lines 4, 5).
In the first phase, A thread records the ids of the threads
that write to array cells (line 12). In the second phase, if an
array cell is read by a thread different from the writer thread,
the corresponding cell in A conflict array is set to 1 (line
22). Since the computation loops are parallel, the inspection
is also carried out in parallel. Consequently, accesses to
arrays A thread and A conflict are guarded with coherence
instructions. If there are multiple readers for an array cell then
more than one thread may set the respective cell of A conflict
to 1 in phase two and multiple threads will write-back the
same value, namely 1 to shared cache (in line 23). Since the
same value is being written, any ordering of writes by different
threads works.

Later in the computation loops, a thread invalidates a
variable (line 36) before reading it if the variable has a writer
(as opposed to read-only data) and that writer is a different
thread. A thread after writing to a variable, writes it back (line
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44) if the variable is marked conflicted.

C. Exclusion of Read-Only Data from Coherence

/∗ Pro logue b e g i n s ∗ /
w r i t e b a c k a l l ( ) ;

#pragma omp p a r a l l e l
{ i n v a l i d a t e a l l ( ) ; }

/∗ Pro logue ends ∗ /
whi le ( c o n d i t i o n ){

#pragma omp p a r a l l e l
{

/∗ r e g u l a r / i r r e g u l a r code ∗ /
}

}
/∗ E p i l o g u e b e g i n s ∗ /

#pragma omp p a r a l l e l
{ w r i t e b a c k a l l ( ) ; }

i n v a l i d a t e a l l ( ) ;
/∗ E p i l o g u e ends ∗ /

Fig. 7: A loop with bulk coherence operations at parallel region
boundaries

For irregular code whose data access patterns potentially
change with each iteration, we adopt a conservative approach
which excludes read-only data from coherence enforcement
and thus, is more accurate than a full invalidation and write-
back approach outlined earlier. We consider parallel regions
— parallel loops along with surrounding looping structures
and perform analysis of the parallel region as a stand-alone
unit. The read-only data of the parallel region need not be
invalidated/written-back. Only those variables that are both
written and read in the parallel region are invalidated and
written-back at epoch boundaries.

For this scheme to work however, the following conditions
have to be met:

1) None of the processors should have cached stale values of
read-only data of the parallel region. (This could happen
for example when, a program has a parallel region P
followed by a sequential segment Q and later a parallel
region R . And, variable x is read-only in P and R , but
is modified in Q ).

2) Since, in the parallel region coherence is enforced only
on data that are both read and written, for written-but-
not-read data coherence operations should be introduced
following the parallel region to ensure that future accesses
to them get updated values.

To meet condition 1), a prologue is introduced that writes
back all dirty words from the master thread and then does a full
invalidation of caches at all threads. Condition 2) is fulfilled
by writing-back all dirty words from all threads and doing
a full-invalidation by the master thread in an epilogue. The
code shown in Fig. 7 uses the outlined approach. Algorithm
3 presents the overall parallel-region analysis technique.

V. OVERALL APPROACH

The overall compiler analysis operates by checking if it can
apply optimizations in the following order (most constrained
to unconstrained): 1) regular programs with static schedules
(§III-B), 2) regular programs with dynamic schedules (§III-A),
3) inspector-executor (§IV-B): if the array-indexing variables

(e.g., in reference A[B[i]], we refer to B[i] as the indexing
variable) are not written inside the time-loop and the control
flow, if any, does not contain variables that are written inside
the time-loop. 4) exclusion of read-only data (§IV-C), finally,
for the rest, 5) bulk coherence operations (§IV-A).

TABLE II: Simulator parameters

Processor chip 8-core multicore chip
Issue width; ROB size 4-issue; 176 entries

Private L1 cache 32KB Write-back, 4-way,
2 cycle hit latency

Shared L2 cache 1MB Write-back, 8-way,
multi-banked

11 cycle round-trip time
Cache line size 32 bytes

Cache coherence protocol Snooping-based MESI protocol
Main Memory 300 cycle round-trip time

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of compiler-generated coher-
ence instructions for execution of parallel programs on soft-
ware managed caches. The main goal of the compiler support
developed in the paper is to insert coherence instructions
— invalidate and writeback functions only where necessary.
The conservative invalidations (of non-stale data) result in
read misses which lead to degraded performance relative to
a hardware coherence scheme. Therefore, to assess efficacy of
the compiler techniques, we compare read misses in L1 caches,
and execution time on software and hardware managed caches.
(The number of misses at the shared cache is unaffected and
will be the same for software and hardware cache coherence.)

Conservative coherence operations in software scheme in-
crease accesses to the shared cache and also, cause increased
traffic on the system bus. The hardware cache coherence
protocol uses control messages to maintain coherence, which a
software scheme does not. Therefore, if the software coherence
mechanism results in comparable cache misses compared to a
hardware protocol then, the software coherence also reduces
network traffic and cache energy. We therefore measure the
number of words transferred on the system bus and cache
energy by software and hardware coherence systems.

Algorithm 3 Generate Coherence Instructions using Parallel
Region Analysis
Input: AST of Parallel region: P
Output: AST of Parallel region for SCC: PSCC

1: Prologue ← API to write-back all dirty words from master
thread; API to invalidate entire cache of all threads

2: Read Set ← Arrays and scalars that are read in P
3: Write Set ← Arrays and scalars that are written in P
4: Coherence Set ← Read Set ∩Write Set
5: for all epoch code e ∈ P do
6: Invalidate Sete← Read Sete∩Coherence Set
7: Writeback Sete←Write Sete∩Coherence Set
8: Insert API for Invalidate Sete and Writeback Sete
9: end for

10: E pilogue← API to write-back all dirty words from all threads;
API to invalidate entire cache of master thread

11: PSCC ← Append {Prologue,P ,E pilogue}
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TABLE I: Benchmarks. Legend: #PL: Number of Parallel Loops; #PLI: Number of Parallel Loops containing irregular accesses

Does application
Benchmark Description have irregular acc.? #PL #PLI Techniques used

gemm Matrix-multiply : C = α.A.B+β.C No 2 0 Polyhedral
gemver Vector Multiplication and Matrix Addition No 3 0 Polyhedral

jacobi-1d 1-D Jacobi stencil computation No 2 0 Polyhedral
jacobi-2d 2-D Jacobi stencil computation No 2 0 Polyhedral

LU LU decomposition No 1 0 Polyhedral
trisolv Triangular solver No 1 0 Polyhedral

CG Conjugate Gradient method Yes 3 1 Inspector-Executor + Polyhedral
backprop Pattern recognition using unstructured grid Yes 2 0 Bulk + Polyhedral
hotspot Thermal simulation using structured grid Yes 2 0 Bulk + Polyhedral
kmeans Clustering algorithm used in data-mining Yes 1 1 Exclusion of RO data

pathfinder Dynamic Programming for grid traversal Yes 1 1 Exclusion of RO data
srad Image Processing using structured grid Yes 2 2 Inspector-Executor

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
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Fig. 8: L1 data cache read misses (lower, the better). The L1
read miss ratios for HCC are also shown.
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Fig. 9: Execution time (lower, the better)

A. Benchmarks

The benchmark programs used for the experiments and
their characteristics are listed in Table I. The benchmark
programs — gemm, gemver, jacobi-1d, jacobi-2d, LU, trisolv are
taken from PolyBench benchmark suite [25]. The PolyBench
benchmark suite is a collection of widely used linear algebra,
and stencil code. The code are parallelized using a polyhedral
compiler – PoCC [24]. All array references in the PolyBench
programs are affine and coherence instructions are generated
using Polyhedral techniques presented in Section III.

The backprop, hotspot, kmeans, pathfinder, srad applications
are taken from Rodinia suite [4], and they contain affine
as well as irregular data references. The Rodinia suite pro-
vides parallel programs from various application domains.
At the parallel region boundaries in Rodinia applications,
bulk coherence instructions (invalidate all and writeback all)
are applied (Section IV-A) while the parallel regions are
optimized. Inspector-executor method (Section IV-B) is used
for irregular data references in CG and srad applications.
Exclusion of read-only data optimization described in Section

IV-C is employed in kmeans and pathfinder code. The parallel
loops in backprop and hotspot benchmarks are amenable to
polyhedral analysis and therefore, bulk coherence operations
are inserted at the beginning and end of parallel regions,
and coherence operations in parallel loops are derived using
polyhedral algorithms (Section III).

B. Set-up

The snooping-bus MESI protocol hardware coherence (re-
ferred to as HCC in the following text), and software cache
coherence (referred to as SCC) have been implemented in an
architectural multi-processor simulator — SESC [23]. Details
of the simulator setup are described in Table II.

We compare performance and energy of the following four
coherence schemes:

1) HCC: Parallel programs are executed using MESI hard-
ware coherence.

2) SCC-basic: The coherence instructions are inserted with-
out iteration-to-processor aware analysis for affine refer-
ences and without the use of inspector-executor or read-
only data exclusion scheme for irregular accesses. That
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is, coherence instructions are generated with methods
described in Sections III-A and IV-A only without further
optimizations. The resulting code are run on software
managed caches.

3) SCC-opt: The coherence management is optimized us-
ing compiler optimizations presented, and the resulting
programs are executed on software managed caches.

4) HCC-opt: To study if any optimizations applied to SCC
code (such as explicit mapping of iterations to processors)
can also benefit the benchmarks for hardware coherence,
SCC-opt programs are adapted to run on HCC systems:
coherence operations and any inspectors inserted are
removed from SCC-opt code and these variants are run
on the HCC system.

The performances of only parallel parts of benchmarks
are measured — sequential initialization and finalization code
are excluded from measurements because the performance of
sequential code is expected to be the same on SCC and HCC
systems. Threads are pinned to cores for both schemes.

C. Performance Results

Fig. 8 plots the read misses in L1 cache; Fig. 9 shows the
execution time. The number of L1 read misses and execution
cycles are normalized with respect to HCC statistics (the
number of misses and execution cycles of HCC is considered
1). The L1 read miss ratios (fraction of L1 reads that are
misses) for HCC are also indicated in the graph. On average
(geometric mean) across benchmarks, HCC-opt has the same
number of cache misses as HCC; SCC-basic suffers 98% more
misses and SCC-opt experiences only a 3% increase (avg.
column in the graph). The geometric mean of normalized
execution time for the three variants — HCC-opt, SCC-basic,
and SCC-opt are, 0.97, 1.48, and 0.97 respectively. We observe
that SCC-opt greatly improves performance over SCC-basic
and brings down cache misses comparable to those of HCC.
Further, performance of HCC-opt is very similar to that of
HCC.

The gemm and trisolv benchmarks exhibit the so-called
communication free parallelism: the outer loop in these code
is parallel. Therefore, there is no communication between
processors induced by data dependences. All code variants
of gemm and trisolv have virtually the same number of cache
misses and execution cycles. In applications that have irregular
references, namely backprop, CG, hotspot, kmeans, pathfinder,
srad, the parallel region boundaries are guarded with full-
invalidation and full-writeback instructions (described in IV-C)
The affine accesses in the parallel regions are optimized; irreg-
ular accesses are handled using inspectors or invalidation and
write-back of entire arrays that are both written and read in the
parallel region (read-only arrays and scalars are excluded). For
backprop and pathfinder, full invalidation of cache at parallel
region boundaries results in some loss of data locality which
results in increased L1 cache read misses. The CG and srad
benchmarks have iterative loops and irregular accesses whose
indexing structures do not change across iterations. Therefore,
for those two benchmarks, inspector code are inserted for

deriving coherence operations. The inspectors contribute to a
certain number of L1 read misses. The reduced cache misses
in SCC-opt of srad compared to its HCC counterpart is an
artifact of the interaction that exists between cache coherence
and cache replacement policy (LRU): false-sharing in HCC
can cause soon-to-be-reused data to be evicted, which favors
SCC. The migratory writes may sometimes cause invalidations
of not-to-be-reused data and thus, making way for other to-
be-reused data and this benefits HCC. Conversely, the gemver
is an example of hardware cache coherence working to HCC
advantage, where the number of misses for HCC is lower
compared to SCC-opt.

The running time (depicted in Fig. 9) shows a strong correla-
tion between L1 cache read misses and performance. In HCC,
the snooping overhead plays a significant role in determining
execution time: In our implementation, we assign 1 cycle
to a read/write snooping request. In SCC, each coherence
instruction incurs a two-cycle overhead. In addition to these
overheads, there may be additional overheads depending upon
the response to a snooping request in HCC (e.g., a read request
may return an updated value from another processor) and the
number of cache lines specified in the coherence instruction
in SCC — each cache line incurs a 2-cycle delay. Because
of removal of hardware cache coherence, we observe a 3%
performance gain for SCC-opt over HCC on average.

Discussion: The performance results obtained for HCC
and SCC schemes are sensitive to architectural choices made
in the simulator implementation. And, we have opted for
architectural choices that favor HCC even though on a real
system they may be impractical or too costly. E.g., we have
allotted 1-cycle delay for a snooping request and on a real
system it might take multiple cycles. The implemented HCC
protocol in the simulator concurrently sends a snoop request
to other cores, and also a memory request to L2 cache.
Alternatively, the L1 cache can also be designed to send a
memory request to L2 cache after a snoop miss, but this will
increase the delay when there is a snoop miss.

D. Energy Results

Bus data transfers: Fig. 10 shows the traffic (number of
words transferred) on the system bus for different schemes.
All values are normalized with respect to HCC. The average
number of words transferred per cycle (obtained by dividing
total number of words with number of execution cycles) for
HCC is also shown. For hardware coherence scheme, the traffic
on the bus includes snoopy-bus coherence related exchange
of messages, transfers between private L1 caches and shared
L2 cache triggered by cache misses at L1 and replacement
of cache lines at L1. For SCC, this includes data transfers
between L1 caches and L2 cache prompted either by L1
misses and evictions, or invalidation and writeback coherence
instructions. The HCC normalized data transfers on the bus for
HCC-opt, SCC-basic, and SCC-opt are 0.99, 1.46, and 0.99
respectively, on average (geo-mean). In backprop and srad,
SCC-opt does fewer write-backs to L2 cache compared to
HCC; the L1 cache misses are lower for SCC-opt in the case
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of srad. Consequently, SCC-opt incurs fewer data transfers
in backprop and srad. Conservative writebacks in kmeans
increases the traffic on the bus for SCC-opt compared to HCC.

L1 and L2 cache energy: The cache SRAM is a major
consumer of energy in a processor. We compare cache energy
consumption for HCC and SCC-opt schemes based on the
number of accesses to tag SRAMs and data SRAMs. Using the
SESC simulator, event counts for all relevant activities in the
L1 and L2 caches are collected to account for all tag and data
accesses to SRAMS. CACTI [27] is used to obtain the energy
per access for tag and data for each cache level. The L1 cache
employs dual ported SRAM to service snoop requests quickly.
For SCC also we used the same dual ported SRAM for a fair
comparison (per-access cost is a function of, inter alia, number
of ports). The L1 cache accesses tag and data together for local
processor requests while for snooping requests it accesses data
SRAM only after tag hit. The L2 cache is configured to be
in sequential access mode — it starts to access data SRAM
after tag matching. We did not consider main memory energy
because main memory accesses would be the same for both
HCC and SCC schemes.

Fig. 11 plots relative energy consumption in caches for
hardware and software cache coherence approaches: energy
expenditure by HCC is considered 1 and energy dissipation
by SCC-opt is scaled with respect to HCC. The break-down of
energy expended in L1 and L2 caches is indicated. On average
(arithmetic mean) SCC-opt energy consumption in caches is
5% less than that of HCC. Most of the savings in SCC-opt
come from two sources: elimination of snooping requests in
L1 cache, and reduction in the number of writeback words
by partial line transfers (only dirty words are written back to
shared L2 cache in a software managed cache as opposed to
entire cache lines which are the granularity of communication
for HCC). We also observe that energy spent in all L1 caches
together is around 86%, while the rest — 14% is expended in
L2 cache.

VII. RELATED WORK

Some prior studies [7], [5], [8] have developed compiler
analysis techniques to generate cache coherence instructions
for software managed caches. The work in this paper distin-
guishes itself from prior efforts both by being more general
as well as more precise, as we elaborate below.

Cheong et al. [5] use data flow analysis to classify every
reference to shared memory either as a memory-read or a
cache-read. A read reference is marked as a memory-read
if the compiler determines that the cache resident copy of
the data might have become stale, otherwise the reference is
marked as cache-read. A limitation of that work is that the
data flow analysis is carried out at the granularity of arrays,
which will result in invalidations for an entire array even if
two processors are accessing distinct parts of it. Choi et al.
[7] propose to improve inter-task locality in software managed
caches by using additional hardware support: the current epoch
number is maintained at runtime using an epoch counter and
each cache word is associated with a time-tag which records
the epoch number in which the cache copy is created. Then
they develop the so-called epoch flow graph technique to
establish conditions under which it can be guaranteed that
the cached copy of a variable is not stale. The analysis here
too treats an entire array as a single variable. Lim et al
[20] build on this work and combine data prefetching and
cache coherence with a customized data prefetching hardware
support.

Darnell and his colleagues [8] perform array subscript
analysis to gather more accurate data dependence information
and then aggregate cache coherence operations on a number of
array elements to form vector operations. The method however
can handle only simple array subscripts: only loop iterators are
allowed as subscripts.

O’Boyle et al. [22] develop techniques to identify data for
Distributed Invalidation (DI) for affine loops that are run on
distributed shared memory architectures. The DI scheme uses
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a directory to maintain coherence, and where possible it seeks
to eliminate invalidation messages from the directory to remote
copies and associated acknowledgments. Their analysis to
minimize invalidation messages has similarities to our analysis
for minimizing invalidations. But the coherence equations in
DI place some restrictions on the kinds of affine loops that
can be analyzed: for example, conditional execution within the
loop is disallowed, and increments of loop iterators must be
unity. The approach presented in this paper efficiently handles
arbitrary affine loops including those whose iterator values are
lexicographically decreasing, that have a non-unit increment-
count, or have a modulus operator etc., and conditionals are
permitted. The DI work does not involve writebacks, which
however are a part of our software cache coherence model,
and we develop techniques to optimize writebacks as well.
We also optimize irregular code using a number of techniques
including an inspector-executor approach, while such code are
not optimized in the DI scheme.

Inspector-executor approaches have been used in the context
of parallelization (e.g., [9]), run-time reorderings [10] but
to our knowledge have not previously been developed for
optimizing for cache coherence.

There also have been numerous works exploring software
cache coherence and, simplifying hardware cache coherence
schemes by seeking assistance from software. We discuss a
few of those efforts here and note that none of them develop
compiler algorithms to instrument the needed software instruc-
tions automatically. Instead, they rely on the programmer or
complementary compiler support such as the one proposed in
this paper to achieve the required program modifications.

Kontothanassis et al. [18] present a software cache coher-
ence protocol with page granularity in large scale machines.
The compiler analysis developed in this paper supports fine-
grained coherence at the level of variables. DeNovo [6]
simplifies complicated hardware cache coherence protocols
by enforcing a disciplined parallel programming model. The
compiler support proposed in this work can complement the
DeNovo project in automatically identifying self-invalidation
regions. Kim et. al [17] provide an architectural design for
incoherent cache hierarchies and propose two programming
approaches – inter-block and intra-block. The compiler work
in this paper is complementary to their architecture-centric
work.

VIII. CONCLUSION

The complexity of developing efficient hardware coher-
ence protocols for emerging manycore heterogeneous systems
makes software controlled coherence schemes attractive. How-
ever, a significant challenge for software controlled cache
coherence is that of generation of efficient coherence instruc-
tions. The automatic coherence management and optimization
approaches developed in the paper advance compiler technol-
ogy towards making software cache coherence a viable solu-
tion on shared-memory multiprocessor systems. Simulation re-
sults demonstrate the effectiveness of the compiler algorithms

in achieving performance and cache-energy comparable to that
of a hardware cache coherence scheme.
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