
Prototyping Architectural Support for Program Rollback:
An Application to Software Debugging

Radu Teodorescu and Josep Torrellas
University of Illinois at Urbana-Champaign

Several recently-proposed architectural techniques require speculation over long program
sections. Examples of such techniques are Thread-Level Speculation [2, 4, 8, 9], speculation
on synchronization [7, 5], speculation on the values of invalidated cache lines [3], speculation
on conforming to a memory consistency model [1], and speculation on the lack of software
bugs [6, 10].

In all these cases, when speculation fails, the architecture has to provide a means to
quickly and cleanly rollback the side effects of the speculative code. More specifically, as
a thread executes speculatively, the architecture buffers the register and memory state that
it generates. If and when the speculation is shown to be correct, the architecture quickly
commits the speculative state. If, instead, the speculation is incorrect, the state is discarded
and the program is rolled back to before the speculative execution.

This paper reports on a processor and memory-hierarchy prototype based on FPGAs that
models hardware for program rollback. The prototype implements register checkpointing and
restoration, speculative state buffering in the L1 cache for later commit or discarding, and
instructions for transitioning between speculative and non-speculative execution modes.

We use the prototype to demonstrate how to use application rollback to help debug pro-
duction code. The compiler inserts hints into the application to indicate regions of code that
are “at risk”. These suspicious regions are then executed in speculative mode. If an external
source detects a bug, the suspicious region is rolled-back and re-executed. Upon re-execution,
the compiler can choose to enable more instrumentation that will help characterize the buggy
code region thoroughly.

For our prototype, we modified a synthesizable VHDL implementation of a 32-bit processor
compliant with the SPARC V8 architecture. We map the modified processor to a Xilinx
Virtex-II FPGA chip on a dedicated development board. We ran several applications on top
of the Linux kernel.

We show that with relatively simple hardware and minimum impact on performance we
can enable lightweight, on-the-fly debugging of production code. Our measurements show that
the hardware extensions increase the resource requirements of the processor, when targeting
the FPGA technology, by less than 2.5%.

We envision this hardware as part of a larger debugging infrastructure that includes com-
piler and OS assistance to provide bug detection and characterization in production runs.



References

[1] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is sc + ilp = rc? In Proceedings
of the 26th annual international symposium on Computer architecture, pages 162–171.
IEEE Computer Society, 1999.

[2] Lance Hammond, Mark Willey, and Kunle Olukotun. Data Speculation Support for a
Chip Multiprocessor. In Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct. 1998.

[3] Jaehyuk Huh, Jichuan Chang, Doug Burger, and Gurindar S. Sohi. Coherence decou-
pling: making use of incoherence. In Proceedings of the 11th international conference on
Architectural support for programming languages and operating systems, pages 97–106.
ACM Press, 2004.

[4] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with Speculative Mul-
tithreading. IEEE Trans. on Computers, pages 866–880, September 1999.

[5] Jose F. Mart́ınez and Josep Torrellas. Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. In Proceedings of the 10th international
conference on Architectural support for programming languages and operating systems,
pages 18–29. ACM Press, 2002.

[6] Jeffrey Oplinger and Monica S. Lam. Enhancing software reliability with speculative
threads. In Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 184–196, October
2002.

[7] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling highly concurrent
multithreaded execution. pages 294–305, Austin, TX, December 2001.

[8] G.S. Sohi, S.E. Breach, and T.N. Vijayakumar. Multiscalar Processors. In 22nd Inter-
national Symposium on Computer Architecture, pages 414–425, June 1995.

[9] J. G. Steffan and T. C. Mowry. The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. In Proceedings of the 4th International Symposium
on High-Performance Computer Architecture, February 1998.

[10] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iWatcher: Effi-
cient Architecture Support for Software Debugging. In Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA), pages 224–237, June 2004.


