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megawatt costs about one million dollars per year. For 
these reasons, high-performance computer architects are 
focusing on extreme-scale computing. 

Broadly speaking, an extreme-scale architecture is one 
thousand times more capable than a current architecture 
with the same power consumption and physical footprint. 
This means that a machine with the power consumption 
and physical footprint of a current petascale machine must 
be able to deliver exascale performance—namely, 1018 op-
erations per second (exa-ops). It also means that, intuitively, 
the power consumption and physical footprint of a current 
departmental server should be enough to deliver petascale 
performance. Finally, a single commodity chip should de-
liver terascale performance—namely, 1012 operations per 
second (tera-ops). 

Clearly, attaining such a general-purpose tera-op chip, 
peta-op departmental server, and exa-op data center 
would revolutionize computing. Conceiving and building 
such systems, however, poses technical challenges at all 
levels of the computing stack, including circuits, archi-
tecture, software systems, and applications. The sheer 
size of the challenges and opportunities of attaining such 
systems by the end of the next decade should act as a 
strong motivator for researchers.

ARCHITECTURAL CHALLENGES  
IN EXTREME-SCALE COMPUTING

To attain extreme-scale computing, researchers must 
address architectural challenges in energy and power 
efficiency, concurrency and locality, resiliency, and 
programmability. 

A fter many years of research and development, 
high-end computing has finally reached peta-
op performance—that is, individual machines 
that can execute about 1015 operations per 
second (peta-ops). These machines attain such 

performance using extraordinary, highly concurrent archi-
tectures. They include Los Alamos National Laboratory’s 
Roadrunner, which augments conventional processors 
with high-performance IBM Cell accelerators, providing a 
hybrid platform; or installations of IBM’s Blue Gene/P, which 
use a massive number of simpler, conventional processors 
and rely on high chip and system integration. They will 
soon include the University of Illinois’ Blue Waters system 
described in the “Blue Waters: Application-Driven System 
Design for Sustained Petascale Performance” sidebar, 
which uses high-performance processors and novel system 
components and packaging. With all of these architectures 
available, the next few years will bring breakthroughs in 
science and engineering.

However, these architectures are hardly scalable. They 
are simply too large and consume too much power. Indeed, 
petascale machines have a footprint of about 1/10th of a 
football field and consume several megawatts (MW). One 

Extreme-scale computers promise orders-
of-magnitude improvement in performance 
over current high-end machines for the 
same machine power consumption and 
physical footprint. They also bring some 
important architectural challenges. 
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data center that consumes 20 MW, a peta-op departmen-
tal server that consumes 20 kilowatts (KW), and a tera-op 
chip multiprocessor that consumes 20 watts (W). These 
numbers imply that the machine must deliver 50 giga  
operations (or 50 × 109 operations) per watt. Because these 
operations must be performed in a second, each operation 
can only consume, on average, an energy of 20 pico-Joules 
(pJ). For reference, consider Intel’s Core Duo mobile proces-

Increasing energy and power e"ciency
As Peter Kogge and his colleagues indicate in their 

DARPA-sponsored study on exascale computing, improv-
ing energy and power efficiency is the most formidable 
challenge facing designers of high-end systems.1 Because 
extreme-scale machines must be three orders of mag-
nitude more energy efficient than current machines, a 
possible target for extreme-scale computing is an exa-op 
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B lue Waters (www.ncsa.illinois.edu/BlueWaters), a system 
designed to provide sustained peta!ops performance on a 

wide range of applications, is being developed by IBM in 
collaboration with the National Center for Supercomputing 
Applications (NCSA) and the University of Illinois, and is funded by 
the National Science Foundation (NSF) and the state of Illinois. 

The heart of this system is the Power7 chip, which features 
eight cores, each with 32-Kbyte L1 instruction and data caches and 
a 256-Kbyte L2 uni"ed cache. The entire 32-Mbyte on-chip L3 
cache can be accessed by any core with latency approximately 
three times lower than local memory. For each core, up to 4 Mbytes 
of data in the L3 cache is automatically migrated to a private 
region with latency approximately 15 times lower than local 
memory. Each core includes four !oating-point units, a VSX 
(vector) unit that supports single- and double-precision operands, 
and two load/store units. Simultaneous multithreading (SMT) is 
supported, allowing one, two, or four SMT threads per core. Dual 
double data rate 3 (DDR3) memory controllers provide a sustained 
memory bandwidth of 100 Gbytes per chip.  

The 200,000+ Power7 cores in the system communicate via a 
unique, integrated, high-speed, low-latency interconnection 
fabric. Remote direct memory access technology enables e#ec-
tive overlap of communication and I/O operations with 
computational work. The system also includes well over 10 Pbytes 
of user disk space in a general parallel "le system (GPFS), and an 
archival high-performance storage system (HPSS) that will expand 
to 500 Pbytes. GHI, a software interface between GPFS and HPSS, 
will enable automatic migration of disk "les to archival storage 
while presenting users with a simple, uni"ed view of their "les.

The Blue Waters packaging extends the use of water-cooled 
designs, leading to greater energy e$ciency. In cold weather, an 
outdoor cooling tower will chill the water. In addition, energy 
losses due to AC/DC conversion associated with an uninterrupt-
able power supply are eliminated by exploiting the university’s 
highly reliable electricity supply.

High levels of reliability and automated system health moni-
toring will undoubtedly be critical for practical use of 
extreme-scale systems. Blue Waters includes numerous reliability, 
availability, and serviceability (RAS) features designed to ensure 
that the mean time between failures is more than a few days, and 
includes automated checkpoint/restart capabilities. Moreover, an 
integrated system console will assist operators in monitoring the 
system’s health by automatically "ltering status data collected by 
very large numbers of system components, enabling them to 
quickly pinpoint any problematic hardware. 

The programming environment for application developers 
and users is an important aspect of the Blue Waters system, and 
one that is under active development. It not only accommodates 
established tools and parallel programming models such as the 
message passing interface (MPI) and OpenMP, but also encour-
ages the use of new tools and models such as Uni"ed Parallel C 
(UPC), Co-Array Fortran, and global shared memory by ensuring 
interoperability for all of these programming languages and 
models. 

The Blue Waters programming environment also includes 
advanced software development tools, which are a key factor in 
programmer productivity. Developers will have the opportunity 
to move beyond the traditional command-line environment to an 
expanded Eclipse-based integrated development environment. 
The IDE will provide intuitive access via a common communication 
interface to many powerful capabilities on Blue Waters, including 
tools for basic code development and building, for remote debug-
ging, and for automated/expert-system-guided performance 
tuning. Further, interfaces provided to the Blue Waters resource 
manager will facilitate science and engineering discovery, includ-
ing input dataset creation/data staging, batch job submission and 
monitoring, in-line data analysis using coscheduled processors, 
data reduction/postprocessing, remote scienti"c visualization, 
and archival data storage.

The Blue Waters system design was chosen to deliver sustained 
petascale performance for a broad range of science and engineer-
ing applications. A wide range of applications selected by the NSF 
through the Petascale Computing Resource Allocations (PRAC) 
program are currently being prepared for Blue Waters with the 
help of a team of application specialists at NCSA. The PRAC teams 
span many areas of investigation, including quantum chromody-
namics (fundamental properties of matter), astrophysics 
(cosmology, galaxy formation, gamma ray bursts, turbulent stellar 
dynamics), chemistry (biomolecular dynamics, materials science, 
superconductors), turbulent !uid !ows, geosciences (earth-
quakes), weather and climate modeling (tornadoes, global 
warming), social sciences (contagion), and evolutionary biology.
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the number of cores in the machine can help make up 
for the cores’ lower speed. Moreover, the optimal NTV for 
memory structures is slightly higher than the optimal NTV 
for logic. Thus, caches can cycle at a few times higher fre-
quency than cores, suggesting novel architectural designs 
in which a group of cores might share a cache.3

Aggressive use of circuit or architectural techniques 
that minimize or tolerate process variation can address 
the higher-variation shortcoming. This includes techniques 
such as body biasing and variation-aware job scheduling. 
Finally, novel designs of memory cells and other logic can 
solve the problem of higher probability of logic failure. 
Overall, NTV operation is a promising direction that several 
research groups are pursuing.

Nonsilicon memory. Nonsilicon memory is another 
relevant technology. Phase change memory (PCM), which 
is currently receiving much attention, is one type of non-
silicon memory. PCM uses a storage element composed of 
two electrodes separated by a resistor and phase-change 
material such as Ge2Sb2Te5.

4 A current through the resistor 
heats the phase-change material, which, depending on the 
temperature conditions, changes between a crystalline 
(low-resistivity) state and an amorphous (high-resistivity) 
one—hence recording one of the two values of a bit.

PCM’s main attraction is its scalability with process 
technology. Indeed, both the heating contact areas and 
the required heating current shrink with each technology 
generation. Therefore, PCM will enable denser, larger, and 
very energy-efficient main memories. DRAM, on the other 
hand, is largely a nonscalable technology, which needs 
sizable capacitors to store charge and, therefore, requires 
sizable transistors.

Currently, PCM has longer access latencies than DRAM, 
higher energy per access (especially for writes), and limited 
lifetime in the number of writes. However, advances in 
circuits and memory architectures will hopefully deliver 
advances in all these axes while retaining PCM scalability. 

Finally, because PCM is nonvolatile, it can potentially 
support novel, inexpensive checkpointing schemes for 
extreme-scale architectures. Researchers can also use it 
to design interesting, hybrid main memory organizations 
by combining it with plain DRAM modules.

Photonic interconnects. Optics have several key prop-
erties that can be used for interconnects. They include 
low-loss communication, very large message bandwidths 
enabled by wavelength parallelism, and low transport 
latencies, as given by the speed of light.5 Consequently, 
they are especially good substrates for long-range 
communication. Indeed, when used for long-haul data 
communication, they deliver substantial end-to-end 
reductions in energy per bit and time per access. We 
therefore expect extreme-scale machines to use photonic 
interconnects extensively, especially to support communi-
cation between far-away nodes in larger machines. Some 

sor circa 2006, which consumed, on average, more than 
10,000 pJ per instruction.2 Our target is even harder to 
attain than these numbers suggest. This is because large 
machines spend most of the energy transferring data from 
or to remote caches, memories, and disks. Minimizing data 
transport energy, rather than arithmetic logic unit (ALU) 
energy, is the real challenge.

Several evolutionary approaches to attaining more en-
ergy-efficient architectures exist. At the circuit level, these 
approaches emphasize designing circuits for energy and 
power efficiency, rather than for speed, as in most current 
approaches. Such designs include on-chip interconnection 
network circuits for low swing, or new memory layouts and 
bank organizations that minimize the amount of capaci-

tance switched per access. The latter is important because 
current memory designs focus on providing cost-effective 
bandwidth, and are wasteful when activating portions of the 
memory. Future designs must minimize the energy spent 
charging and discharging lines, possibly through memory 
designs that include hierarchical bit-line organizations.

At the microarchitecture level, evolutionary approaches 
involve simplifying the cores, making their pipelines shal-
lower and their execution engines less speculative. Finally, 
at the machine architecture level, a popular approach is to 
augment the processing nodes with accelerators that are 
energy-efficient for some operations. 

Unfortunately, attaining three orders of magnitude higher 
efficiency in energy and power requires all of this and much 
more. In particular, it calls for the maturity of several tech-
nologies that are now being developed or investigated. 

Near-threshold voltage operation. One of the most 
effective approaches for energy-efficient operation is to 
reduce the supply voltage (Vdd) to a value only slightly 
higher than the transistor threshold voltage (Vth). This 
is called near-threshold voltage (NTV) operation. It cor-
responds to a Vdd value of around 0.4 V, compared to a Vdd 

of around 1 V for current designs.
Broadly speaking, operation under NTV can reduce 

the gates’ power consumption by about 100× while in-
creasing their delay by 10×. The result is a total energy 
savings of one order of magnitude.3 In addition to the 10× 
increase in circuit delay, the close proximity of Vdd and Vth 
induces a 5× increase in gate delay variation due to pro-
cess variation, and a several orders-of-magnitude increase 
in logic failures—especially in memory structures, which 
are less variation tolerant.

Effective use of NTV in extreme-scale architectures will 
require solving these challenges. For example, increasing 

Phase change memory’s main  
attraction is its scalability with  
process technology.
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communication primitives—especially for dynamic and 
irregular parallelism. These primitives must provide ef-
ficient point-to-point synchronization between two cores 
and collective operations.7 Examples include low-overhead 
dynamic hierarchical barriers, producer-consumer synchro-
nization through full-empty bits, and broadcast updates. 

The second architectural support for fine-grained paral-
lelism is low-overhead primitives for the creation, commit, 
and migration of lightweight tasks. Such lightweight tasks 
are likely to be created by the compiler, spawned with a 
single instruction, and managed with scalable queuing 
structures that minimize overheads and stall times.

In addition, several hardware architecture structures 
can help minimize data movement and exploit locality. 

The most obvious one is a many-core chip organization 
based on clusters. A cluster is a set of cores that have 
physical proximity and share some cache or other stor-
age structure. The compiler can break a task into smaller 
subtasks and assign them to the cores in a cluster.

A second structure for locality is simple compute 
engines in the memory controllers or in the L3 cache 
controllers that perform certain memory-intensive 
computations. Such an approach—often known as pro-
cessing-in-memory (PIM)—seeks to avoid transferring large 
amounts of data between the memory and the main cores 
and then back to perform a simple computation. PIM can 
be embodied in a variety of hardware—from simple func-
tional units to specialized compute engines. A PIM unit 
typically performs memory-intensive operations on arrays 
or sets of data, such as element-by-element operations, 
reductions of various sorts, and recurrences.

Finally, although conventional cache hierarchies seek to 
minimize data movement, it is important to note that they 
sometimes end up moving sizable amounts of data unnec-
essarily. They do this through their use of cache lines and 
automatic mapping of lines in the cache. Mechanisms to 
prevent such data movements are needed.

Bolstering resiliency
Resiliency will be another key challenge in extreme-

scale machines due to a combination of several effects:

Spatial variations in process, voltage, and temper-
ature, as well as logic wearout (aging), will likely 
become relatively more acute as semiconductor fea-
ture sizes decrease. 
Smaller feature sizes imply less charge in storage ele-
ments, making these elements more vulnerable to soft 

researchers are also proposing the use of photonics for 
on-chip interconnects,6 targeting the technology to large, 
high-bandwidth message transfers on chip. An area of 
intense current research is efficient interfaces between 
electronic and photonic signaling.

Other system technologies. Several other technolo-
gies will likely significantly impact energy and power 
efficiency. An obvious one is 3D die stacking, which will 
reduce memory access power. A 3D stack might contain 
a processor die and memory dies, or it might contain only 
memory dies. The resulting compact design eliminates 
energy-expensive data transfers, but introduces manu-
facturing challenges, such as the interconnection between 
stacked dies through vias. Interestingly, such designs, by 
enabling high-bandwidth connections between memories 
and processors, might also induce a reorganization of 
the processor’s memory hierarchy. Very high bandwidth 
caches near the cores are possible.

Efficient on-chip voltage conversion is another enabling 
system technology. The goal here is for the machine to 
be able to change the voltage of small groups of cores in 
tens of nanoseconds, so they can adapt their power to the 
threads running on them or to environmental conditions. 
A voltage controller in each group of cores can regulate 
the group’s voltage. Hopefully, the next few years will see 
advances in this area.

Enabling concurrency and locality
In general, the performance of future energy-efficient 

extreme-scale machines will not be attained through high 
frequency—dynamic power consumption is roughly pro-
portional to the cube of the frequency. Instead, circuits will 
likely be designed for low voltages and modest frequencies. 
Consequently, we will have to rely on more threads run-
ning concurrently.

Assume, for example, 1-GHz cores, each completing 
one operation per cycle. In this case, a chip will need 1,024 
cores to attain one tera-op, a server will need about 1 mil-
lion cores to attain one peta-op, and a data center will 
need about 1 billion cores to attain one exa-op. In reality, 
a thread will often stall waiting for data, rather than com-
mitting one operation per cycle. Consequently, to hide the 
stall time and attain the desired performance level, the 
system will have to support several times more threads. 
Extreme-scale architectures will need memory hierarchy 
organizations, synchronization primitives, and network 
links that support these concurrency levels. Moreover, 
designers cannot optimize such structures in a way that ig-
nores, let alone penalizes, locality. Exploiting high degrees 
of spatial and temporal data locality is the only way to 
attain the desired performance at the target power budget.

We suggest two architectural supports to enable the fine-
grained parallelism that extreme-scale machines require. 
The first support is efficient, scalable synchronization and 

A processing-in-memory unit typically 
performs memory-intensive operations 
on arrays or sets of data.
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network with more expensive detection and perhaps even 
correction codes. Testing circuitry (exercised right after 
manufacture and periodically in the field), various sen-
sors and detectors (wearout, power, and temperature), 
and watchdog timers to detect timeouts will likely also be 
needed. Widespread hardware replication or using engines 
or cores to check the work of other cores are probably too 
expensive for these machines.

Software can also help detect and isolate errors. A resil-
iency module can diagnose and isolate (and even correct) 
the error at runtime, while a compiler can augment the 
code with checks on code control flow or data accesses. 
Finally, some applications can check themselves.

Error recovery is typically based on checkpointing and 
rollback. Checkpointing can be implemented in different 
layers. For example, as Table 1 shows, it can be supported 
in hardware. One hardware-based implementation with 
especially low overhead is ReVive,8 which uses in-memory, 
incremental checkpointing—possibly coupled with non-
volatile memory. 

Checkpointing can also be compiler driven. In this case, 
the compiler, fully aware of the program state at any point, 
chooses to checkpoint when the program has the least 
state. Finally, the application itself can decide when to 
checkpoint, again based on the size of the program state. In 
general, checkpointing should induce only minor overhead 
during error-free operation and, in a rollback, result in little 
work loss and in low error-recovery latency. 

Unfortunately, conventional checkpointing consumes 
substantial time and power, and requires high disk band-
width and capacity. As the processor core count increases 
to more than one billion for exa-op machines, conventional 
checkpointing can consume most of the execution time 
and power, hence becoming infeasible. Thus, effective 
checkpointing support in extreme-scale architectures is a 
major challenge. These machines will require novel, highly 
energy-efficient checkpointing and rollback mechanisms 
that combine techniques from multiple layers of the stack. 

Other recovery mechanisms rely on reconfigurable or 
redundant hardware, such as spare cores. On an error, 
the hardware can be reconfigured and the faulty compo-
nent can be disabled or salvaged. The operating system 
or runtime system can schedule jobs around faulty com-
ponents, and even rely on virtualization to transparently 
mask away the faulty component. Finally, at the applica-
tion and programming system level, the application can be 
written using intrinsically resilient programming models. 
For example, in the transactional model, the transaction 
is rolled back if an error occurs.

Designing for programmability
Programming highly concurrent machines has 

traditionally required heroic efforts. Extreme-scale ar-
chitectures, with their emphasis on power efficiency, can 

errors induced by particle impacts. 
The use of Vdd values that are close to Vth will increase 
process variation. 

All these effects will increase the chances of transient 
and permanent faults. At the same time, the largest ex-
treme-scale machines will have many components, which 
will also increase the chance of faults. For example, an 
exa-op supercomputer might have 10 to 100 petabytes of 
memory, requiring tens or hundreds of millions of memory 
chips. The machine might also have hundreds of exabytes 
of secondary storage, requiring millions of disk drives.

No single solution can fully address the resiliency chal-
lenge. Instead, acceptable resilience in extreme-scale 
architectures might only be attainable through a combi-
nation of techniques at different levels of the computing 
stack. Each of these techniques has advantages and short-
comings, making the most cost-effective combination a 
complex function depending on, among other things, the 
workload executed. 

Table 1 lists some of the most popular techniques for 
resiliency. We classify them based on whether they detect 
and isolate (and sometimes also correct) errors or recover 
from errors. Within each group, we classify the tech-
niques based on the level at which they operate—namely, 
hardware, operating system and runtime, compiler, or 
application and programming system. 

Several popular techniques support error detection and 
isolation in hardware. They include error-correcting codes 
(ECCs)—which also correct errors—for on- and off-chip 
memory structures and parity for processor data path 
and network links. Extreme-scale architectures might 
need to augment single-bit parity in the data path and 

Table 1. Characteristics of several popular techniques  
for resiliency. 

!"#"$ %"&"'&()*+,*-+(.)$,&()* /"')#"01

Hardware Error-correcting codes 
(ECC) for on- and o!-chip 
memory structures; 
parity for processor data 
path and network; test-
ing circuitry, sensors, 
detectors, and watchdog 
timers; hardware repli-
cation; checker engines
or cores

Low-overhead check-
pointing and rollback; 
hardware recon"gura-
tion, including disabling 
or salvaging the faulty 
component

Operating 
system/
runtime

Resiliency module to 
diagnose and isolate

Job scheduling around 
faulty components;
virtualization

Compiler Augmenting the code 
with checks

Compiler support for 
checkpointing

Application/
programming 
system

Applications that  check 
themselves

Applications that check-
point themselves; trans-
actional model
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continuous optimization, an approach that relies on a slow 
adaptation of the program as it runs.

Several architectural features can help support the 
execution environment described. For example, the ma-
chine can provide a single address space to the software. 
With such a capability, programmers developing irreg-
ular codes have a substantially simpler task. Hardware 
mechanisms that support compiler optimizations and 
high-level languages are also helpful. For example, such 
mechanisms could detect dependences within and across 
threads inexpensively10 or manage the caches in software. 
The architecture can also provide features to detect data 
transfer patterns and eliminate, minimize, or hide data 
movement. For example, this includes efficient primitives 
for prefetching, multicast-update of the copies of a datum, 
and movement of computation to the data’s location. It 
also includes efficient implementations of synchronization 
primitives—in particular, various forms of barriers.

Finally, autotuning libraries and continuous optimi-
zation software will benefit from tight coupling with 
performance or energy-monitoring hardware structures, 
such as counters, signatures, and trace buffers. Ideally, 
these structures should be programmable by the user soft-
ware. They should also enable a low-latency feedback loop 
to the application, so program adaptation can be effective.

OUTLINE OF AN EXTREME-SCALE 
ARCHITECTURE

Figure 1 gives an overview of the Thrifty extreme-
scale architecture concept, which we are developing. The  

make the task even more difficult. Indeed, by keeping Vdd 

low, they need several times more concurrency to attain 
the same performance level. Moreover, power efficiency 
mandates carefully managing locality and minimizing 
communication. All of these requirements can easily in-
crease programming complexity.

Programmers of extreme-scale machines must be able 
to express a high degree of parallelism in a way that does 
not preclude careful locality management and communi-
cation minimization. An appealing approach is to program 
the machine using a high-level programming model, and 
then rely on intelligent static and dynamic compilation 
layers to efficiently map the code to the hardware. The 
most appropriate high-level model will likely be a data- 
parallel one, where programmers apply high-level opera-
tions to data aggregates.9 This model can compactly express 
high degrees of parallelism. With this model, execution 
appears as computation segments, in which the cores com-
pute largely independently, logically separated by barriers, 
with some data shuffling between the segments.

A compiler takes the computation assigned to individual 
elements of the data aggregate and, possibly driven by pro-
grammer annotations, breaks it into fine-grain tasks. Then, 
the compiler maps these tasks to cores, trying to leverage 
the different locality levels provided by the hardware, such 
as core cluster, chip, and node. Because the architecture is 
complex, this technique requires a level of code autotun-
ing or adaptation. Autotuning can be provided through 
libraries that generate multiple versions of code with dif-
ferent parameters and choose the best one, or through 
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Figure 1. Overview of the Thrifty architecture. The architecture comprises 1,024-core many-core chips. 
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S ubstantial advances in architecture and hard-
ware technologies should appear in the next 
few years. For extreme-scale computing to 
become a reality, we need to revamp most of 
the subsystems of current multiprocessors. 

Many aspects remain wide open, including effective NTV 
many-core design and operation; highly energy-efficient 
checkpointing; rearchitecting the memory and disk sub-
systems for low energy and fewer parts; incorporating 
high-impact technologies such as nonvolatile memory, 
optics, and 3D die stacking; and developing cost-effec-
tive cooling technologies. A new generation of computer 
designers will deliver these advances. 
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operation. All the clusters share an on-chip L3 cache, 
which is banked and distributed across the chip. Each L3 
bank has a simple PIM engine that performs reductions 
and other simple memory-intensive operations. The chip 
has efficient hardware primitives for synchronization 
and communication (including hierarchical barrier and 
multicast update). A wide hierarchical network connects 
the cores.

The machine can connect thousands of these chips hi-
erarchically into boards and cabinets, using a network 
organized in a fat tree. Memories are organized in 3D 
stacks and associated with PIM engines. A low-overhead, 
in-memory incremental checkpointing system based on a 
hierarchical form of ReVive provides recovery for applica-
tions that are explicitly willing to pay for it.8 The scheme 
is outlined in Figure 2.

The architecture is programmed with high-level, data-
parallel operators on data aggregates. Tasks are mapped 
to processor clusters. A back-end compiler further divides 
these tasks into small subtasks, which it then maps to the 
cores in a cluster for locality.

thread teams

Thread
team

Thread
team

Threads
Team checkpoint

dirty cache lines
Write back of Log every !rst

memory update
Communication between

Figure 2. Hierarchical operation of ReVive. Threads are organized in teams, and each team independently follows the ReVive 
operation. This involves performing regular team checkpoints, in which processors write their registers to memory and caches 
write their dirty lines to memory. Between checkpoints, a controller logs the value in memory before every "rst memory 
update. Communication between teams is explicitly recorded and causes additional checkpoints.

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore.  Restrictions apply. 



IEEE Computer Graphics and Applications bridges the theory and practice of computer graphics. 
From speci! c algorithms to full system implementations, CG&A offers a unique combination 
of peer-reviewed feature articles and informal departments. CG&A is indispensable reading 
for people working at the leading edge of computer graphics technology and its applications 
in everything from business to the arts.

AAA&&GGCC
Visit us at www.computer.org/cga

35NOVEMBER 2009

Parallelism (HotPar), Usenix Assoc., 2009; www.usenix.
org/event/hotpar09/tech/full_papers/brodman/brodman.
pdf.

 10. J. Tuck et al., “SoftSig: Software-Exposed Hardware Sig-
natures for Code Analysis and Optimization,” Proc. Int’l 
Conf. Architectural Support for Programming Languages 
and Operating Systems (ASPLOS 08), ACM Press, 2008, pp. 
145-156.

Josep Torrellas is a professor and Willett faculty scholar 
in the Department of Computer Science at the University 
of Illinois at Urbana-Champaign. His research interests in-
clude computer architectures, parallel computing, hardware 
and software reliability, and low-power design. Torrellas 
received a PhD in electrical engineering from Stanford Uni-
versity. He is an IEEE Fellow and a member of the ACM. 
Contact him at torrellas@cs.uiuc.edu.

 4. B. Lee et al., “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” Proc. Int’l Symp. Computer 
Architecture (ISCA 09), ACM Press, 2009, pp. 2-13.

 5. R. Ramaswami and K. Sivarajan, Optical Networks: A Prac-
tical Perspective, Morgan Kaufmann, 2nd ed., 2002.

 6. D. Vantrease et al., “Corona: System Implications of Emerg-
ing Nanophotonic Technology,” Proc. Int’l Symp. Computer 
Architecture (ISCA 08), IEEE Press, 2008, pp. 153-164.

 7. J. Shirako et al., “Phasers: a Unified Deadlock-Free Con-
struct for Collective and Point-to-Point Synchronization,” 
Proc. Int’l Conf. Supercomputing (SC 08), ACM Press, 2008, 
pp. 277-288.

 8. M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-
Effective Architectural Support for Rollback Recovery in 
Shared-Memory Multiprocessors,” Proc. Int’l Symp. Com-
puter Architecture (ISCA 02), ACM Press, 2002, pp. 111-122.

 9. J. Brodman et al., “New Abstractions for Data Parallel Pro-
gramming,” Proc. First Usenix Workshop on Hot Topics in 

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore.  Restrictions apply. 


