
COMPUTER 28

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

megawatt costs about one million dollars per year. For
these reasons, high-performance computer architects are
focusing on extreme-scale computing.

Broadly speaking, an extreme-scale architecture is one
thousand times more capable than a current architecture
with the same power consumption and physical footprint.
This means that a machine with the power consumption
and physical footprint of a current petascale machine must
be able to deliver exascale performance—namely, 1018 op-
erations per second (exa-ops). It also means that, intuitively,
the power consumption and physical footprint of a current
departmental server should be enough to deliver petascale
performance. Finally, a single commodity chip should de-
liver terascale performance—namely, 1012 operations per
second (tera-ops).

Clearly, attaining such a general-purpose tera-op chip,
peta-op departmental server, and exa-op data center
would revolutionize computing. Conceiving and building
such systems, however, poses technical challenges at all
levels of the computing stack, including circuits, archi-
tecture, software systems, and applications. The sheer
size of the challenges and opportunities of attaining such
systems by the end of the next decade should act as a
strong motivator for researchers.

ARCHITECTURAL CHALLENGES
IN EXTREME-SCALE COMPUTING

To attain extreme-scale computing, researchers must
address architectural challenges in energy and power
efficiency, concurrency and locality, resiliency, and
programmability.

A fter many years of research and development,
high-end computing has finally reached peta-
op performance—that is, individual machines
that can execute about 1015 operations per
second (peta-ops). These machines attain such

performance using extraordinary, highly concurrent archi-
tectures. They include Los Alamos National Laboratory’s
Roadrunner, which augments conventional processors
with high-performance IBM Cell accelerators, providing a
hybrid platform; or installations of IBM’s Blue Gene/P, which
use a massive number of simpler, conventional processors
and rely on high chip and system integration. They will
soon include the University of Illinois’ Blue Waters system
described in the “Blue Waters: Application-Driven System
Design for Sustained Petascale Performance” sidebar,
which uses high-performance processors and novel system
components and packaging. With all of these architectures
available, the next few years will bring breakthroughs in
science and engineering.

However, these architectures are hardly scalable. They
are simply too large and consume too much power. Indeed,
petascale machines have a footprint of about 1/10th of a
football field and consume several megawatts (MW). One

Extreme-scale computers promise orders-
of-magnitude improvement in performance
over current high-end machines for the
same machine power consumption and
physical footprint. They also bring some
important architectural challenges.

Josep Torrellas, University of Illinois at Urbana-Champaign

ARCHITECTURES
FOR EXTREME-
SCALE
COMPUTING

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

29NOVEMBER 2009

data center that consumes 20 MW, a peta-op departmen-
tal server that consumes 20 kilowatts (KW), and a tera-op
chip multiprocessor that consumes 20 watts (W). These
numbers imply that the machine must deliver 50 giga
operations (or 50 × 109 operations) per watt. Because these
operations must be performed in a second, each operation
can only consume, on average, an energy of 20 pico-Joules
(pJ). For reference, consider Intel’s Core Duo mobile proces-

Increasing energy and power e"ciency
As Peter Kogge and his colleagues indicate in their

DARPA-sponsored study on exascale computing, improv-
ing energy and power efficiency is the most formidable
challenge facing designers of high-end systems.1 Because
extreme-scale machines must be three orders of mag-
nitude more energy efficient than current machines, a
possible target for extreme-scale computing is an exa-op

Robert Fiedler, Robert Wilhelmson, William Kramer,
and Brett Bode
National Center for Supercomputing Applications

B lue Waters (www.ncsa.illinois.edu/BlueWaters), a system
designed to provide sustained peta!ops performance on a

wide range of applications, is being developed by IBM in
collaboration with the National Center for Supercomputing
Applications (NCSA) and the University of Illinois, and is funded by
the National Science Foundation (NSF) and the state of Illinois.

The heart of this system is the Power7 chip, which features
eight cores, each with 32-Kbyte L1 instruction and data caches and
a 256-Kbyte L2 uni"ed cache. The entire 32-Mbyte on-chip L3
cache can be accessed by any core with latency approximately
three times lower than local memory. For each core, up to 4 Mbytes
of data in the L3 cache is automatically migrated to a private
region with latency approximately 15 times lower than local
memory. Each core includes four !oating-point units, a VSX
(vector) unit that supports single- and double-precision operands,
and two load/store units. Simultaneous multithreading (SMT) is
supported, allowing one, two, or four SMT threads per core. Dual
double data rate 3 (DDR3) memory controllers provide a sustained
memory bandwidth of 100 Gbytes per chip.

The 200,000+ Power7 cores in the system communicate via a
unique, integrated, high-speed, low-latency interconnection
fabric. Remote direct memory access technology enables e#ec-
tive overlap of communication and I/O operations with
computational work. The system also includes well over 10 Pbytes
of user disk space in a general parallel "le system (GPFS), and an
archival high-performance storage system (HPSS) that will expand
to 500 Pbytes. GHI, a software interface between GPFS and HPSS,
will enable automatic migration of disk "les to archival storage
while presenting users with a simple, uni"ed view of their "les.

The Blue Waters packaging extends the use of water-cooled
designs, leading to greater energy e$ciency. In cold weather, an
outdoor cooling tower will chill the water. In addition, energy
losses due to AC/DC conversion associated with an uninterrupt-
able power supply are eliminated by exploiting the university’s
highly reliable electricity supply.

High levels of reliability and automated system health moni-
toring will undoubtedly be critical for practical use of
extreme-scale systems. Blue Waters includes numerous reliability,
availability, and serviceability (RAS) features designed to ensure
that the mean time between failures is more than a few days, and
includes automated checkpoint/restart capabilities. Moreover, an
integrated system console will assist operators in monitoring the
system’s health by automatically "ltering status data collected by
very large numbers of system components, enabling them to
quickly pinpoint any problematic hardware.

The programming environment for application developers
and users is an important aspect of the Blue Waters system, and
one that is under active development. It not only accommodates
established tools and parallel programming models such as the
message passing interface (MPI) and OpenMP, but also encour-
ages the use of new tools and models such as Uni"ed Parallel C
(UPC), Co-Array Fortran, and global shared memory by ensuring
interoperability for all of these programming languages and
models.

The Blue Waters programming environment also includes
advanced software development tools, which are a key factor in
programmer productivity. Developers will have the opportunity
to move beyond the traditional command-line environment to an
expanded Eclipse-based integrated development environment.
The IDE will provide intuitive access via a common communication
interface to many powerful capabilities on Blue Waters, including
tools for basic code development and building, for remote debug-
ging, and for automated/expert-system-guided performance
tuning. Further, interfaces provided to the Blue Waters resource
manager will facilitate science and engineering discovery, includ-
ing input dataset creation/data staging, batch job submission and
monitoring, in-line data analysis using coscheduled processors,
data reduction/postprocessing, remote scienti"c visualization,
and archival data storage.

The Blue Waters system design was chosen to deliver sustained
petascale performance for a broad range of science and engineer-
ing applications. A wide range of applications selected by the NSF
through the Petascale Computing Resource Allocations (PRAC)
program are currently being prepared for Blue Waters with the
help of a team of application specialists at NCSA. The PRAC teams
span many areas of investigation, including quantum chromody-
namics (fundamental properties of matter), astrophysics
(cosmology, galaxy formation, gamma ray bursts, turbulent stellar
dynamics), chemistry (biomolecular dynamics, materials science,
superconductors), turbulent !uid !ows, geosciences (earth-
quakes), weather and climate modeling (tornadoes, global
warming), social sciences (contagion), and evolutionary biology.

Robert Fiedler is a technical program manager at the National Center
for Supercomputing Applications (NCSA), University of Illinois at
Urbana-Champaign. Contact him at rfiedler@ncsa.uiuc.edu.

Robert Wilhelmson is a chief science officer at NCSA. Contact him at
bw@ncsa.uiuc.edu.

William Kramer is a deputy project director at NCSA. Contact him at
wkramer@ncsa.uiuc.edu.

Brett Bode is a technical program manager at NCSA. Contact him at
bbode@ncsa.uiuc.edu.

BLUE WATERS: APPLICATION-DRIVEN SYSTEM DESIGN FOR SUSTAINED
PETASCALE PERFORMANCE

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER 30

the number of cores in the machine can help make up
for the cores’ lower speed. Moreover, the optimal NTV for
memory structures is slightly higher than the optimal NTV
for logic. Thus, caches can cycle at a few times higher fre-
quency than cores, suggesting novel architectural designs
in which a group of cores might share a cache.3

Aggressive use of circuit or architectural techniques
that minimize or tolerate process variation can address
the higher-variation shortcoming. This includes techniques
such as body biasing and variation-aware job scheduling.
Finally, novel designs of memory cells and other logic can
solve the problem of higher probability of logic failure.
Overall, NTV operation is a promising direction that several
research groups are pursuing.

Nonsilicon memory. Nonsilicon memory is another
relevant technology. Phase change memory (PCM), which
is currently receiving much attention, is one type of non-
silicon memory. PCM uses a storage element composed of
two electrodes separated by a resistor and phase-change
material such as Ge2Sb2Te5.

4 A current through the resistor
heats the phase-change material, which, depending on the
temperature conditions, changes between a crystalline
(low-resistivity) state and an amorphous (high-resistivity)
one—hence recording one of the two values of a bit.

PCM’s main attraction is its scalability with process
technology. Indeed, both the heating contact areas and
the required heating current shrink with each technology
generation. Therefore, PCM will enable denser, larger, and
very energy-efficient main memories. DRAM, on the other
hand, is largely a nonscalable technology, which needs
sizable capacitors to store charge and, therefore, requires
sizable transistors.

Currently, PCM has longer access latencies than DRAM,
higher energy per access (especially for writes), and limited
lifetime in the number of writes. However, advances in
circuits and memory architectures will hopefully deliver
advances in all these axes while retaining PCM scalability.

Finally, because PCM is nonvolatile, it can potentially
support novel, inexpensive checkpointing schemes for
extreme-scale architectures. Researchers can also use it
to design interesting, hybrid main memory organizations
by combining it with plain DRAM modules.

Photonic interconnects. Optics have several key prop-
erties that can be used for interconnects. They include
low-loss communication, very large message bandwidths
enabled by wavelength parallelism, and low transport
latencies, as given by the speed of light.5 Consequently,
they are especially good substrates for long-range
communication. Indeed, when used for long-haul data
communication, they deliver substantial end-to-end
reductions in energy per bit and time per access. We
therefore expect extreme-scale machines to use photonic
interconnects extensively, especially to support communi-
cation between far-away nodes in larger machines. Some

sor circa 2006, which consumed, on average, more than
10,000 pJ per instruction.2 Our target is even harder to
attain than these numbers suggest. This is because large
machines spend most of the energy transferring data from
or to remote caches, memories, and disks. Minimizing data
transport energy, rather than arithmetic logic unit (ALU)
energy, is the real challenge.

Several evolutionary approaches to attaining more en-
ergy-efficient architectures exist. At the circuit level, these
approaches emphasize designing circuits for energy and
power efficiency, rather than for speed, as in most current
approaches. Such designs include on-chip interconnection
network circuits for low swing, or new memory layouts and
bank organizations that minimize the amount of capaci-

tance switched per access. The latter is important because
current memory designs focus on providing cost-effective
bandwidth, and are wasteful when activating portions of the
memory. Future designs must minimize the energy spent
charging and discharging lines, possibly through memory
designs that include hierarchical bit-line organizations.

At the microarchitecture level, evolutionary approaches
involve simplifying the cores, making their pipelines shal-
lower and their execution engines less speculative. Finally,
at the machine architecture level, a popular approach is to
augment the processing nodes with accelerators that are
energy-efficient for some operations.

Unfortunately, attaining three orders of magnitude higher
efficiency in energy and power requires all of this and much
more. In particular, it calls for the maturity of several tech-
nologies that are now being developed or investigated.

Near-threshold voltage operation. One of the most
effective approaches for energy-efficient operation is to
reduce the supply voltage (Vdd) to a value only slightly
higher than the transistor threshold voltage (Vth). This
is called near-threshold voltage (NTV) operation. It cor-
responds to a Vdd value of around 0.4 V, compared to a Vdd

of around 1 V for current designs.
Broadly speaking, operation under NTV can reduce

the gates’ power consumption by about 100× while in-
creasing their delay by 10×. The result is a total energy
savings of one order of magnitude.3 In addition to the 10×
increase in circuit delay, the close proximity of Vdd and Vth
induces a 5× increase in gate delay variation due to pro-
cess variation, and a several orders-of-magnitude increase
in logic failures—especially in memory structures, which
are less variation tolerant.

Effective use of NTV in extreme-scale architectures will
require solving these challenges. For example, increasing

Phase change memory’s main
attraction is its scalability with
process technology.

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

31NOVEMBER 2009

communication primitives—especially for dynamic and
irregular parallelism. These primitives must provide ef-
ficient point-to-point synchronization between two cores
and collective operations.7 Examples include low-overhead
dynamic hierarchical barriers, producer-consumer synchro-
nization through full-empty bits, and broadcast updates.

The second architectural support for fine-grained paral-
lelism is low-overhead primitives for the creation, commit,
and migration of lightweight tasks. Such lightweight tasks
are likely to be created by the compiler, spawned with a
single instruction, and managed with scalable queuing
structures that minimize overheads and stall times.

In addition, several hardware architecture structures
can help minimize data movement and exploit locality.

The most obvious one is a many-core chip organization
based on clusters. A cluster is a set of cores that have
physical proximity and share some cache or other stor-
age structure. The compiler can break a task into smaller
subtasks and assign them to the cores in a cluster.

A second structure for locality is simple compute
engines in the memory controllers or in the L3 cache
controllers that perform certain memory-intensive
computations. Such an approach—often known as pro-
cessing-in-memory (PIM)—seeks to avoid transferring large
amounts of data between the memory and the main cores
and then back to perform a simple computation. PIM can
be embodied in a variety of hardware—from simple func-
tional units to specialized compute engines. A PIM unit
typically performs memory-intensive operations on arrays
or sets of data, such as element-by-element operations,
reductions of various sorts, and recurrences.

Finally, although conventional cache hierarchies seek to
minimize data movement, it is important to note that they
sometimes end up moving sizable amounts of data unnec-
essarily. They do this through their use of cache lines and
automatic mapping of lines in the cache. Mechanisms to
prevent such data movements are needed.

Bolstering resiliency
Resiliency will be another key challenge in extreme-

scale machines due to a combination of several effects:

Spatial variations in process, voltage, and temper-
ature, as well as logic wearout (aging), will likely
become relatively more acute as semiconductor fea-
ture sizes decrease.
Smaller feature sizes imply less charge in storage ele-
ments, making these elements more vulnerable to soft

researchers are also proposing the use of photonics for
on-chip interconnects,6 targeting the technology to large,
high-bandwidth message transfers on chip. An area of
intense current research is efficient interfaces between
electronic and photonic signaling.

Other system technologies. Several other technolo-
gies will likely significantly impact energy and power
efficiency. An obvious one is 3D die stacking, which will
reduce memory access power. A 3D stack might contain
a processor die and memory dies, or it might contain only
memory dies. The resulting compact design eliminates
energy-expensive data transfers, but introduces manu-
facturing challenges, such as the interconnection between
stacked dies through vias. Interestingly, such designs, by
enabling high-bandwidth connections between memories
and processors, might also induce a reorganization of
the processor’s memory hierarchy. Very high bandwidth
caches near the cores are possible.

Efficient on-chip voltage conversion is another enabling
system technology. The goal here is for the machine to
be able to change the voltage of small groups of cores in
tens of nanoseconds, so they can adapt their power to the
threads running on them or to environmental conditions.
A voltage controller in each group of cores can regulate
the group’s voltage. Hopefully, the next few years will see
advances in this area.

Enabling concurrency and locality
In general, the performance of future energy-efficient

extreme-scale machines will not be attained through high
frequency—dynamic power consumption is roughly pro-
portional to the cube of the frequency. Instead, circuits will
likely be designed for low voltages and modest frequencies.
Consequently, we will have to rely on more threads run-
ning concurrently.

Assume, for example, 1-GHz cores, each completing
one operation per cycle. In this case, a chip will need 1,024
cores to attain one tera-op, a server will need about 1 mil-
lion cores to attain one peta-op, and a data center will
need about 1 billion cores to attain one exa-op. In reality,
a thread will often stall waiting for data, rather than com-
mitting one operation per cycle. Consequently, to hide the
stall time and attain the desired performance level, the
system will have to support several times more threads.
Extreme-scale architectures will need memory hierarchy
organizations, synchronization primitives, and network
links that support these concurrency levels. Moreover,
designers cannot optimize such structures in a way that ig-
nores, let alone penalizes, locality. Exploiting high degrees
of spatial and temporal data locality is the only way to
attain the desired performance at the target power budget.

We suggest two architectural supports to enable the fine-
grained parallelism that extreme-scale machines require.
The first support is efficient, scalable synchronization and

A processing-in-memory unit typically
performs memory-intensive operations
on arrays or sets of data.

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER 32

network with more expensive detection and perhaps even
correction codes. Testing circuitry (exercised right after
manufacture and periodically in the field), various sen-
sors and detectors (wearout, power, and temperature),
and watchdog timers to detect timeouts will likely also be
needed. Widespread hardware replication or using engines
or cores to check the work of other cores are probably too
expensive for these machines.

Software can also help detect and isolate errors. A resil-
iency module can diagnose and isolate (and even correct)
the error at runtime, while a compiler can augment the
code with checks on code control flow or data accesses.
Finally, some applications can check themselves.

Error recovery is typically based on checkpointing and
rollback. Checkpointing can be implemented in different
layers. For example, as Table 1 shows, it can be supported
in hardware. One hardware-based implementation with
especially low overhead is ReVive,8 which uses in-memory,
incremental checkpointing—possibly coupled with non-
volatile memory.

Checkpointing can also be compiler driven. In this case,
the compiler, fully aware of the program state at any point,
chooses to checkpoint when the program has the least
state. Finally, the application itself can decide when to
checkpoint, again based on the size of the program state. In
general, checkpointing should induce only minor overhead
during error-free operation and, in a rollback, result in little
work loss and in low error-recovery latency.

Unfortunately, conventional checkpointing consumes
substantial time and power, and requires high disk band-
width and capacity. As the processor core count increases
to more than one billion for exa-op machines, conventional
checkpointing can consume most of the execution time
and power, hence becoming infeasible. Thus, effective
checkpointing support in extreme-scale architectures is a
major challenge. These machines will require novel, highly
energy-efficient checkpointing and rollback mechanisms
that combine techniques from multiple layers of the stack.

Other recovery mechanisms rely on reconfigurable or
redundant hardware, such as spare cores. On an error,
the hardware can be reconfigured and the faulty compo-
nent can be disabled or salvaged. The operating system
or runtime system can schedule jobs around faulty com-
ponents, and even rely on virtualization to transparently
mask away the faulty component. Finally, at the applica-
tion and programming system level, the application can be
written using intrinsically resilient programming models.
For example, in the transactional model, the transaction
is rolled back if an error occurs.

Designing for programmability
Programming highly concurrent machines has

traditionally required heroic efforts. Extreme-scale ar-
chitectures, with their emphasis on power efficiency, can

errors induced by particle impacts.
The use of Vdd values that are close to Vth will increase
process variation.

All these effects will increase the chances of transient
and permanent faults. At the same time, the largest ex-
treme-scale machines will have many components, which
will also increase the chance of faults. For example, an
exa-op supercomputer might have 10 to 100 petabytes of
memory, requiring tens or hundreds of millions of memory
chips. The machine might also have hundreds of exabytes
of secondary storage, requiring millions of disk drives.

No single solution can fully address the resiliency chal-
lenge. Instead, acceptable resilience in extreme-scale
architectures might only be attainable through a combi-
nation of techniques at different levels of the computing
stack. Each of these techniques has advantages and short-
comings, making the most cost-effective combination a
complex function depending on, among other things, the
workload executed.

Table 1 lists some of the most popular techniques for
resiliency. We classify them based on whether they detect
and isolate (and sometimes also correct) errors or recover
from errors. Within each group, we classify the tech-
niques based on the level at which they operate—namely,
hardware, operating system and runtime, compiler, or
application and programming system.

Several popular techniques support error detection and
isolation in hardware. They include error-correcting codes
(ECCs)—which also correct errors—for on- and off-chip
memory structures and parity for processor data path
and network links. Extreme-scale architectures might
need to augment single-bit parity in the data path and

Table 1. Characteristics of several popular techniques
for resiliency.

!"#"$ %"&"'&()*+,*-+(.)$,&()* /"')#"01

Hardware Error-correcting codes
(ECC) for on- and o!-chip
memory structures;
parity for processor data
path and network; test-
ing circuitry, sensors,
detectors, and watchdog
timers; hardware repli-
cation; checker engines
or cores

Low-overhead check-
pointing and rollback;
hardware recon"gura-
tion, including disabling
or salvaging the faulty
component

Operating
system/
runtime

Resiliency module to
diagnose and isolate

Job scheduling around
faulty components;
virtualization

Compiler Augmenting the code
with checks

Compiler support for
checkpointing

Application/
programming
system

Applications that check
themselves

Applications that check-
point themselves; trans-
actional model

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

33NOVEMBER 2009

continuous optimization, an approach that relies on a slow
adaptation of the program as it runs.

Several architectural features can help support the
execution environment described. For example, the ma-
chine can provide a single address space to the software.
With such a capability, programmers developing irreg-
ular codes have a substantially simpler task. Hardware
mechanisms that support compiler optimizations and
high-level languages are also helpful. For example, such
mechanisms could detect dependences within and across
threads inexpensively10 or manage the caches in software.
The architecture can also provide features to detect data
transfer patterns and eliminate, minimize, or hide data
movement. For example, this includes efficient primitives
for prefetching, multicast-update of the copies of a datum,
and movement of computation to the data’s location. It
also includes efficient implementations of synchronization
primitives—in particular, various forms of barriers.

Finally, autotuning libraries and continuous optimi-
zation software will benefit from tight coupling with
performance or energy-monitoring hardware structures,
such as counters, signatures, and trace buffers. Ideally,
these structures should be programmable by the user soft-
ware. They should also enable a low-latency feedback loop
to the application, so program adaptation can be effective.

OUTLINE OF AN EXTREME-SCALE
ARCHITECTURE

Figure 1 gives an overview of the Thrifty extreme-
scale architecture concept, which we are developing. The

make the task even more difficult. Indeed, by keeping Vdd

low, they need several times more concurrency to attain
the same performance level. Moreover, power efficiency
mandates carefully managing locality and minimizing
communication. All of these requirements can easily in-
crease programming complexity.

Programmers of extreme-scale machines must be able
to express a high degree of parallelism in a way that does
not preclude careful locality management and communi-
cation minimization. An appealing approach is to program
the machine using a high-level programming model, and
then rely on intelligent static and dynamic compilation
layers to efficiently map the code to the hardware. The
most appropriate high-level model will likely be a data-
parallel one, where programmers apply high-level opera-
tions to data aggregates.9 This model can compactly express
high degrees of parallelism. With this model, execution
appears as computation segments, in which the cores com-
pute largely independently, logically separated by barriers,
with some data shuffling between the segments.

A compiler takes the computation assigned to individual
elements of the data aggregate and, possibly driven by pro-
grammer annotations, breaks it into fine-grain tasks. Then,
the compiler maps these tasks to cores, trying to leverage
the different locality levels provided by the hardware, such
as core cluster, chip, and node. Because the architecture is
complex, this technique requires a level of code autotun-
ing or adaptation. Autotuning can be provided through
libraries that generate multiple versions of code with dif-
ferent parameters and choose the best one, or through

data interconnect
Synchronization and

Core Core Core

Core

+ L1 + L1 + L1

+ L1
Core

CoreCoreCore

+ L1

+ L1 + L1 + L1

L2 cache

Processor in memory

L3 bank

Processor cluster

Stacked memory

Stacked memory

Stacked memory
Stacked memory

Stacked memory

Many-core chip

Processor cluster

Many-core chip

Hierarchical global interconnect

Figure 1. Overview of the Thrifty architecture. The architecture comprises 1,024-core many-core chips.

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER 34

S ubstantial advances in architecture and hard-
ware technologies should appear in the next
few years. For extreme-scale computing to
become a reality, we need to revamp most of
the subsystems of current multiprocessors.

Many aspects remain wide open, including effective NTV
many-core design and operation; highly energy-efficient
checkpointing; rearchitecting the memory and disk sub-
systems for low energy and fewer parts; incorporating
high-impact technologies such as nonvolatile memory,
optics, and 3D die stacking; and developing cost-effec-
tive cooling technologies. A new generation of computer
designers will deliver these advances.

Acknowledgments
I thank Peter Kogge and the writers of the ExaScale report. I
also thank Rishi Agarwal, Pranav Garg, David Padua, Maria
Garzaran, Brian Greskamp, Ulya Karpuzcu, Shekhar Borkar,
David Dunning, Allan Snavely, and William Harrod.

References
 1. P. Kogge et al., ExaScale Computing Study: Technology

Challenges in Achieving Exascale Systems, DARPA Infor-
mation Processing Techniques Office (IPTO) sponsored
study, 2008; www.cse.nd.edu/Reports/2008/TR-2008-13.
pdf.

 2. E. Grochowski and M. Annavaram, “Energy per Instruc-
tion Trends in Intel Microprocessors,” Technology@Intel
Magazine, Mar. 2006, pp. 1-8.

 3. R. Dreslinski et al., “Near Threshold Computing: Overcom-
ing Performance Degradation from Aggressive Voltage
Scaling,” Proc. Workshop Energy-Efficient Design, 2009,
pp. 44-49.

architecture comprises 1,024-core many-core chips, and
supports a shared address space. Because Thrifty has no
hardware cache coherence, the software must maintain
data coherence.

The chips’ cores are homogeneous, two-issue, in-
order, and single-threaded. They have floating-point
support and a reconfigurable vector unit. To enable
locality optimizations, groups of eight cores are orga-
nized in a cluster, sharing an L2 cache. Each group of
four clusters is an independent voltage and frequency
domain, because Thrifty relies heavily on voltage and
frequency changes to control its power-performance
operation. All the clusters share an on-chip L3 cache,
which is banked and distributed across the chip. Each L3
bank has a simple PIM engine that performs reductions
and other simple memory-intensive operations. The chip
has efficient hardware primitives for synchronization
and communication (including hierarchical barrier and
multicast update). A wide hierarchical network connects
the cores.

The machine can connect thousands of these chips hi-
erarchically into boards and cabinets, using a network
organized in a fat tree. Memories are organized in 3D
stacks and associated with PIM engines. A low-overhead,
in-memory incremental checkpointing system based on a
hierarchical form of ReVive provides recovery for applica-
tions that are explicitly willing to pay for it.8 The scheme
is outlined in Figure 2.

The architecture is programmed with high-level, data-
parallel operators on data aggregates. Tasks are mapped
to processor clusters. A back-end compiler further divides
these tasks into small subtasks, which it then maps to the
cores in a cluster for locality.

thread teams

Thread
team

Thread
team

Threads
Team checkpoint

dirty cache lines
Write back of Log every !rst

memory update
Communication between

Figure 2. Hierarchical operation of ReVive. Threads are organized in teams, and each team independently follows the ReVive
operation. This involves performing regular team checkpoints, in which processors write their registers to memory and caches
write their dirty lines to memory. Between checkpoints, a controller logs the value in memory before every "rst memory
update. Communication between teams is explicitly recorded and causes additional checkpoints.

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

IEEE Computer Graphics and Applications bridges the theory and practice of computer graphics.
From speci! c algorithms to full system implementations, CG&A offers a unique combination
of peer-reviewed feature articles and informal departments. CG&A is indispensable reading
for people working at the leading edge of computer graphics technology and its applications
in everything from business to the arts.

AAA&&GGCC
Visit us at www.computer.org/cga

35NOVEMBER 2009

Parallelism (HotPar), Usenix Assoc., 2009; www.usenix.
org/event/hotpar09/tech/full_papers/brodman/brodman.
pdf.

 10. J. Tuck et al., “SoftSig: Software-Exposed Hardware Sig-
natures for Code Analysis and Optimization,” Proc. Int’l
Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS 08), ACM Press, 2008, pp.
145-156.

Josep Torrellas is a professor and Willett faculty scholar
in the Department of Computer Science at the University
of Illinois at Urbana-Champaign. His research interests in-
clude computer architectures, parallel computing, hardware
and software reliability, and low-power design. Torrellas
received a PhD in electrical engineering from Stanford Uni-
versity. He is an IEEE Fellow and a member of the ACM.
Contact him at torrellas@cs.uiuc.edu.

 4. B. Lee et al., “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” Proc. Int’l Symp. Computer
Architecture (ISCA 09), ACM Press, 2009, pp. 2-13.

 5. R. Ramaswami and K. Sivarajan, Optical Networks: A Prac-
tical Perspective, Morgan Kaufmann, 2nd ed., 2002.

 6. D. Vantrease et al., “Corona: System Implications of Emerg-
ing Nanophotonic Technology,” Proc. Int’l Symp. Computer
Architecture (ISCA 08), IEEE Press, 2008, pp. 153-164.

 7. J. Shirako et al., “Phasers: a Unified Deadlock-Free Con-
struct for Collective and Point-to-Point Synchronization,”
Proc. Int’l Conf. Supercomputing (SC 08), ACM Press, 2008,
pp. 277-288.

 8. M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors,” Proc. Int’l Symp. Com-
puter Architecture (ISCA 02), ACM Press, 2002, pp. 111-122.

 9. J. Brodman et al., “New Abstractions for Data Parallel Pro-
gramming,” Proc. First Usenix Workshop on Hot Topics in

Authorized licensed use limited to: University of Illinois. Downloaded on November 26, 2009 at 20:20 from IEEE Xplore. Restrictions apply.

