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Easing the programmer’s burden does not 
compromise system performance or increase 
the complexity of hardware implementation. 

BY JOSEP TORRELLAS, LUIS CEZE, JAMES TUCK,  
CALIN CASCAVAL, PABLO MONTESINOS, WONSUN AHN,  
AND MILOS PRVULOVIC 

In the past, architectures were de-
signed primarily for performance or 
for energy efficiency. Looking ahead, 
one of the top priorities must be for 
the architecture to enable a program-
mable environment. In practice, pro-
grammability is a notoriously difficult 
metric to define and measure. At the 
hardware-architecture level, program-
mability implies two things: First, the 
architecture is able to attain high ef-
ficiency while relieving the program-
mer from having to manage low-level 
tasks; second, the architecture helps 
minimize the chance of (parallel) pro-
gramming errors. 

In this article, we describe a 
novel, general-purpose multicore 
architecture—the Bulk Multicore—
we designed to enable a highly pro-
grammable environment. In it, the 
programmer and runtime system 
are relieved of having to manage the 
sharing of data thanks to novel sup-
port for scalable hardware cache co-
herence. Moreover, to help minimize 
the chance of parallel-programming 
errors, the Bulk Multicore provides 
to the software high-performance se-
quential memory consistency and also 
introduces several novel hardware 
primitives. These primitives can be 
used to build a sophisticated program-
development-and-debugging environ-
ment, including low-overhead data-
race detection, deterministic replay 
of parallel programs, and high-speed 
disambiguation of sets of addresses. 
The primitives have an overhead low 
enough to always be “on” during pro-
duction runs. 

The key idea in the Bulk Multi-
core is twofold: First, the hardware 
automatically executes all software 
as a series of atomic blocks of thou-
sands of dynamic instructions called 
Chunks. Chunk execution is invisible 
to the software and, therefore, puts no 
restriction on the programming lan-
guage or model. Second, the Bulk Mul-
ticore introduces the use of Hardware 
Address Signatures as a low-overhead 
mechanism to ensure atomic and iso-
lated execution of chunks and help 

MULTICORE CHIPS AS commodity architecture 
for platforms ranging from handhelds to 
supercomputers herald an era when parallel 
programming and computing will be the norm. 
While the computer science and engineering 
community has periodically focused on advancing 
the technology for parallel processing,8 this time 
around the stakes are truly high, since there is 
no obvious route to higher performance other 
than through parallelism. However, for parallel 
computing to become widespread, breakthroughs 
are needed in all layers of the computing stack, 
including languages, programming models, 
compilation and runtime software, programming 
and debugging tools, and hardware architectures. 

At the hardware-architecture layer, we need to 
change the way multicore architectures are designed. 

The Bulk Multicore 
Architecture 
for Improved 
Programmability
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maintain hardware cache coherence. 
The programmability advantages of 

the Bulk Multicore do not come at the 
expense of performance. On the con-
trary, the Bulk Multicore enables high 
performance because the processor 
hardware is free to aggressively reor-
der and overlap the memory accesses 
of a program within chunks without 
risk of breaking their expected behav-
ior in a multiprocessor environment. 
Moreover, in an advanced Bulk Mul-
ticore design where the compiler ob-
serves the chunks, the compiler can 
further improve performance by heav-
ily optimizing the instructions within 
each chunk. Finally, the Bulk Multi-
core organization decreases hardware 

design complexity by freeing proces-
sor designers from having to worry 
about many corner cases that appear 
when designing multiprocessors. 

Architecture 
The Bulk Multicore architecture elim-
inates one of the traditional tenets of 
processor architecture, namely the 
need to commit instructions in order, 
providing the architectural state of the 
processor after every single instruc-
tion. Having to provide such state in 
a multiprocessor environment—even 
if no other processor or unit in the 
machine needs it—contributes to the 
complexity of current system designs. 
This is because, in such an environ-

ment, memory-system accesses take 
many cycles, and multiple loads and 
stores from both the same and dif-
ferent processors overlap their execu-
tion. 

In the Bulk Multicore, the default 
execution mode of a processor is to 
commit chunks of instructions at a 
time.2 A chunk is a group of dynami-
cally contiguous instructions (such as 
2,000 instructions). Such a “chunked” 
mode of execution and commit is a 
hardware-only mechanism, invisible 
to the software running on the pro-
cessor. Moreover, its purpose is not to 
parallelize a thread, since the chunks 
in a thread are not distributed to other 
processors. Rather, the purpose is to I
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addresses. 
In the Bulk Multicore, the hard-

ware automatically accumulates the 
addresses read and written by a chunk 
into a read (R) and a write (W) signa-
ture, respectively. These signatures 
are kept in a module in the cache hi-
erarchy. This module also includes 
simple functional units that operate 
on signatures, performing such op-
erations as signature intersection (to 
find the addresses common to two 
signatures) and address membership 
test (to find out whether an address 
belongs to a signature), as detailed in 
the sidebar. 

Atomic chunk execution is sup-
ported by buffering the state gener-
ated by the chunk in the L1 cache. 
No update is propagated outside the 
cache while the chunk is executing. 
When the chunk completes or when a 
dirty cache line with address in the W 
signature must be displaced from the 
cache, the hardware proceeds to com-
mit the chunk. A successful commit 
involves sending the chunk’s W sig-
nature to the subset of sharer proces-
sors indicated by the directory2 and 
clearing the local R and W signatures. 
The latter operation erases any record 
of the updates made by the chunk, 
though the written lines remain dirty 
in the cache. 

The W signature carries enough 
information to both invalidate stale 
lines from the other coherent caches 
(using the δ signature operation on W, 
as discussed in the sidebar) and en-
force that all other processors execute 
their chunks in isolation. Specifically, 
to enforce that a processor executes a 
chunk in isolation when the processor 
receives an incoming signature Winc, 
its hardware intersects Winc against 
the local Rloc and Wloc signatures. If any 
of the two intersections is not null, it 
means (conservatively) that the local 
chunk has accessed a data element 
written by the committing chunk. 
Consequently, the local chunk is 
squashed and then restarted. 

Figure 2 outlines atomic and iso-
lated execution. Thread 0 executes 
a chunk that writes variables B and 
C, and no invalidations are sent out. 
Signature W0 receives the hashed ad-
dresses of B and C. At the same time, 
Thread 1 issues reads for B and C, 
which (by construction) load the non-

improve programmability and perfor-
mance. 

Each chunk executes on the pro-
cessor atomically and in isolation. 
Atomic execution means that none of 
the chunk’s actions are made visible 
to the rest of the system (processors or 
main memory) until the chunk com-
pletes and commits. Execution in iso-
lation means that if the chunk reads a 
location and (before it commits) a sec-
ond chunk in another processor that 
has written to the location commits, 

then the local chunk is squashed and 
must re-execute. 

To execute chunks atomically and 
in isolation inexpensively, the Bulk 
Multicore introduces hardware ad-
dress signatures.3 A signature is a 
register of ≈1,024 bits that accumu-
lates hash-encoded addresses. Figure 
1 outlines a simple way to generate a 
signature (see the sidebar “Signatures 
and Signature Operations in Hard-
ware” for a deeper discussion). A sig-
nature, therefore, represents a set of 

Figure 1 in the main text shows a simple implementation of a signature. The bits of an 
incoming address go through a fixed permutation to reduce collisions and are then 
separated in bit-fields Ci. Each field is decoded and accumulated into a bit-field Vj in the 
signature. Much more sophisticated implementations are also possible. 

A module called the Bulk Disambiguation Module contains several signature 
registers and simple functional units that operate efficiently on signatures. These 
functional units are invisible to the instruction-set architecture. Note that, given a 
signature, we can recover only a superset of the addresses originally encoded into the 
signature. Consequently, the operations on signatures produce conservative results. 

The figure here outlines five signature functional units: intersection, union, test 
for null signature, test for address membership, and decoding (δ). Intersection finds 
the addresses common to two signatures by performing a bit-wise AND of the two 
signatures. The resulting signature is empty if, as shown in the figure, any of its bit-
fields contains all zeros. Union finds all addresses present in at least one signature 
through a bit-wise OR of the two signatures. Testing whether an address a is present 
(conservatively) in a signature involves encoding a into a signature, intersecting the 
latter with the original signature and then testing the result for a null signature. 

Decoding (δ) a signature determines which cache sets can contain addresses 
belonging to the signature. The set bitmask produced by this operation is then passed 
to a finite-state machine that successively reads individual lines from the sets in the 
bitmask and checks for membership to the signature. This process is used to identify 
and invalidate all the addresses in a signature that are present in the cache. 

Overall, the support described here enables low-overhead operations on sets of 
addresses.3  

Signatures and Signature 
Operations in Hardware 

Operations on signatures. 
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speculative values of the variables—
namely, the values before Thread 0’s 
updates. When Thread 0’s chunk com-
mits, the hardware sends signature W0 
to Thread 1, and W0 and R0 are cleared. 
At the processor where Thread 1 runs, 
the hardware intersects W0 with the 
ongoing chunk’s R1 and W1. Since W0 
∩ R1 is not null, the chunk in Thread 1 
is squashed. 

The commit of chunks is serial-
ized globally. In a bus-based machine, 
serialization is given by the order in 
which W signatures are placed on the 
bus. With a general interconnect, seri-
alization is enforced by a (potentially 
distributed) arbiter module.2 W sig-
natures are sent to the arbiter, which 
quickly acknowledges whether the 
chunk can be considered committed. 

Since chunks execute atomically 
and in isolation, commit in program 
order in each processor, and there is 
a global commit order of chunks, the 
Bulk Multicore supports sequential 
consistency (SC)9 at the chunk level. 
As a consequence, the machine also 
supports SC at the instruction level. 
More important, it supports high-
performance SC at low hardware com-
plexity. 

The performance of this SC imple-
mentation is high because (within 
a chunk) the Bulk Multicore allows 
memory access reordering and over-
lap and instruction optimization. As 
we discuss later, synchronization in-
structions induce no reordering con-
straint within a chunk. 

Meanwhile, hardware-implementa-
tion complexity is low because memo-
ry-consistency enforcement is largely 
decoupled from processor structures. 
In a conventional processor that is-
sues memory accesses out of order, 
supporting SC requires intrusive pro-
cessor modifications. For example, 
from the time the processor executes 
a load to line L out of order until the 
load reaches its commit time, the 
hardware must check for writes to L 
by other processors—in case an in-
consistent state was observed. Such 
checking typically requires sending, 
for each external coherence event, a 
signal up the cache hierarchy. The sig-
nal snoops the load queue to check for 
an address match. Additional modifi-
cations involve preventing cache dis-
placements that could risk missing a 

coherence event. Consequently, load 
queues, L1 caches, and other critical 
processor components must be aug-
mented with extra hardware. 

In the Bulk Multicore, SC enforce-
ment and violation detection are per-
formed with simple signature inter-
sections outside the processor core. 
Additionally, caches are oblivious to 
what data is speculative, and their tag 
and data arrays are unmodified. 

Finally, note that the Bulk Mul-
ticore’s execution mode is not like 
transactional memory.6 While one 
could intuitively view the Bulk Multi-
core as an environment with transac-
tions occurring all the time, the key 
difference is that chunks are dynamic 
entities, rather than static, and invis-
ible to the software. 

High Programmability 
Since chunked execution is invisible 
to the software, it places no restriction 
on programming model, language, 

or runtime system. However, it does 
enable a highly programmable envi-
ronment by virtue of providing two 
features: high-performance SC at the 
hardware level and several novel hard-
ware primitives that can be used to 
build a sophisticated program-devel-
opment-and-debugging environment. 

Unlike current architectures, the 
Bulk Multicore supports high-per-
formance SC at the hardware level. 
If we generate code for the Bulk Mul-
ticore using an SC compiler (such as 
the BulkCompiler1), we attain a high-
performance, fully SC platform. The 
resulting platform is highly program-
mable for several reasons. The first is 
that debugging concurrent programs 
with data races would be much easier. 
This is because the possible outcomes 
of the memory accesses involved in 
the bug would be easier to reason 
about, and the debugger would in 
fact be able to reproduce the buggy 
interleaving. Second, most existing 

Figure 1. A simple way to generate a signature. 

. . .

Figure 2. Executing chunks atomically and in isolation with signatures. 
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software correctness tools (such as 
Microsoft’s CHESS14) assume SC. Veri-
fying software correctness under SC is 
already difficult, and the state space 
balloons if non-SC interleavings need 
to be verified as well. In the next few 
years, we expect that correctness-veri-
fication tools will play a larger role as 
more parallel software is developed. 
Using them in combination with an 
SC platform would make them most 
effective. 

A final reason for the program-
mability of an SC platform is that it 
would make the memory model of 
safe languages (such as Java) easier 
to understand and verify. The need to 
provide safety guarantees and enable 
performance at the same time has re-
sulted in an increasingly complex and 
unintuitive memory model over the 
years. A high-performance SC memo-
ry model would trivially ensure Java’s 
safety properties related to memory 
ordering, improving its security and 
usability. 

The Bulk Multicore’s second fea-
ture is a set of hardware primitives 
that can be used to engineer a sophis-
ticated program-development-and-
debugging environment that is always 
“on,” even during production runs. 
The key insight is that chunks and 
signatures free development and de-
bugging tools from having to record 
or be concerned with individual loads 
and stores. As a result, the amount of 
bookkeeping and state required by 
the tools is substantially reduced, as 
is the time overhead. Here, we give 
three examples of this benefit in the 
areas of deterministic replay of paral-
lel programs, data-race detection, and 
high-speed disambiguation of sets of 
addresses. 

Note, too, that chunks provide an 
excellent primitive for supporting 
popular atomic-section-based tech-
niques for programmability (such as 
thread-level speculation17 and trans-
actional memory6). 

Deterministic replay of parallel pro-
grams with practically no log. Hard-
ware-assisted deterministic replay 
of parallel programs is a promising 
technique for debugging parallel 
programs. It involves a two-step pro-
cess.20 In the recording step, while 
the parallel program executes, spe-
cial hardware records into a log the 

order of data dependences observed 
among the multiple threads. The log 
effectively captures the “interleaving” 
of the program’s threads. Then, in the 
replay step, while the parallel program 
is re-executed, the system enforces 
the interleaving orders encoded in the 
log. 

In most proposals of determinis-
tic replay schemes, the log stores in-
dividual data dependences between 
threads or groups of dependences 
bundled together. In the Bulk Multi-
core, the log must store only the total 
order of chunk commits, an approach 
we call DeLorean.13 The logged infor-
mation can be as minimalist as a list 
of committing-processor IDs, assum-
ing the chunking is performed in a 
deterministic manner; therefore, the 
chunk sizes can be deterministically 
reproduced on replay. This design, 
which we call OrderOnly, reduces the 
log size by nearly an order of magni-
tude over previous proposals. 

The Bulk Multicore can further re-
duce the log size if, during the record-
ing step, the arbiter enforces a certain 
order of chunk commit interleaving 
among the different threads (such as 
by committing one chunk from each 
processor round robin). In this case 
of enforced chunk-commit order, the 
log practically disappears. During the 
replay step, the arbiter reinforces the 
original commit algorithm, forcing 
the same order of chunk commits as 
in the recording step. This design, 
which we call PicoLog, typically incurs 
a performance cost because it can 
force some processors to wait during 
recording. 

Figure 3a outlines a parallel execu-
tion in which the boxes are chunks 
and the arrows are the observed cross-
thread data dependences. Figure 3b 
shows a possible resulting execution 
log in OrderOnly, while Figure 3c 
shows the log in PicoLog. 

Data-race detection at production-
run speed. The Bulk Multicore can 
support an efficient data-race detec-
tor based on the “happens-before” 
method10 if it cuts the chunks at syn-
chronization points, rather than at 
arbitrary dynamic points. Synchroni-
zation points are easily recognized by 
hardware or software, since synchro-
nization operations are executed by 
special instructions. This approach 

The Bulk Multicore 
supports  
high-performance 
sequential memory 
consistency at 
low hardware 
complexity. 
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is described in ReEnact16; Figure 4 in-
cludes examples with a lock, flag, and 
barrier. 

Each chunk is given a counter 
value called ChunkID following the 
happens-before ordering. Specifi-
cally, chunks in a given thread receive 
ChunkIDs that increase in program 
order. Moreover, a synchroniza-
tion between two threads orders the 
ChunkIDs of the chunks involved in 
the synchronization. For example, in 
Figure 4a, the chunk in Thread 2 fol-
lowing the lock acquire (Chunk 5) 
sets its ChunkID to be a successor of 
both the previous chunk in Thread 2 
(Chunk 4) and the chunk in Thread 1 
that released the lock (Chunk 2). For 
the other synchronization primitives, 
the algorithm is similar. For exam-
ple, for the barrier in Figure 4c, each 
chunk immediately following the bar-
rier is given a ChunkID that makes it a 
successor of all the chunks leading to 
the barrier. 

Using ChunkIDs, we’ve given a 
partial ordering to the chunks. For 
example, in Figure 4a, Chunks 1 and 
6 are ordered, but Chunks 3 and 4 are 
not. Such ordering helps detect data 
races that occur in a particular execu-
tion. Specifically, when two chunks 
from different threads are found to 
have a data-dependence at runtime, 
their two ChunkIDs are compared. If 
the ChunkIDs are ordered, this is not 
a data race because there is an inter-
vening synchronization between the 
chunks. Otherwise, a data race has 
been found. 

A simple way to determine when 
two chunks have a data-dependence 
is to use the Bulk Multicore signa-
tures to tell when the data footprints 
of two chunks overlap. This opera-
tion, together with the comparison 
and maintenance of ChunkIDs, can 
be done with low overhead with hard-
ware support. Consequently, the Bulk 
Multicore can detect data races with-
out significantly slowing the program, 
making it ideal for debugging produc-
tion runs. 

Enhancing programmability by mak-
ing signatures visible to software. Final-
ly, a technique that improves program-
mability further is to make additional 
signatures visible to the software. This 
support enables inexpensive monitor-
ing of memory accesses, as well as 

We propose that the software interact with some additional signatures through three 
main primitives:18 

The first is to explicitly encode into a signature either one address (Figure 1a) or all 
addresses accessed in a code region (Figure 1b). The latter is enabled by the bcollect 
(begin collect) and ecollect (end collect) instructions, which can be set to collect only 
reads, only writes, or both. 

The second primitive is to disambiguate the addresses accessed by the processor 
in a code region against a given signature. It is enabled by the bdisamb.loc (begin 
disambiguate local) and edisamb.loc (end disambiguate local) instructions (Figure 1c), 
and can disambiguate reads, writes, or both. 

The third primitive is to disambiguate the addresses of incoming coherence 
messages (invalidations or downgrades) against a given local signature. It is enabled 
by the bdisamb.rem (begin disambiguate remote) and edisamb.rem (end disambiguate 
remote) instructions (Figure 1d) and can disambiguate reads, writes, or both. When 
disambiguation finds a match, the system can deliver an interrupt or set a bit. 

Figure 2 includes three examples of what can be done with these primitives: Figure 
2a shows how the machine inexpensively supports many watchpoints. The processor 
encodes into signature Sig2 the address of variable y and all the addresses accessed in 
function foo(). It then watches all these addresses by executing bdisamb.loc on Sig2. 

Figure 2b shows how a second call to a function that reads and writes memory in 
its body can be skipped. In the figure, the code calls function foo() twice with the same 
input value of x. To see if the second call can be skipped, the program first collects 
all addresses accessed by foo() in Sig2. It then disambiguates all subsequent accesses 
against Sig2. When execution reaches the second call to foo(), it can skip the call if two 
conditions hold: the first is that the disambiguation did not find a conflict; the second 
(not shown in the figure) is that the read and write footprints of the first foo() call do not 
overlap. This possible overlap is checked by separately collecting the addresses read 
in foo() and those written in foo() in separate signatures and intersecting the resulting 
signatures. 

Finally, Figure 2c shows a way to detect data dependences between threads running 
on different processors. In the figure, collect encodes all addresses accessed in a 
code section into Sig2. Surrounding the collect instructions, the code places disamb.
rem instructions to monitor if any remotely initiated coherence-action conflicts with 
addresses accessed locally. To disregard read-read conflicts, the programmer can 
collect the reads in a separate signature and perform remote disambiguation of only 
writes against that signature. 

Making Signatures  
Visible to Software

Figure 1. Primitives enabling software to interact with additional signatures:  
collection (a and b), local disambiguation (c), and remote disambiguation (d). 

Figure 2. Using signatures to support data watchpoints (a), skip execution of  
functions (b), and detect data dependencies between threads running on  
different processors (c). 
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and undo and detection of cross-
thread conflicts. However, they also 
have a different goal, namely simplify 
code parallelization by parallelizing 
the code transparently to the user 
software in TLS or by annotating the 
user code with constructs for mutual 
exclusion in TM. On the other hand, 
the Bulk Multicore aims to provide a 
broadly usable architectural platform 
that is easier to program for while de-
livering advantages in performance 
and hardware simplicity. 

Two architecture proposals in-
volve processors continuously execut-
ing blocks of instructions atomically 
and in isolation. One of them, called 
Transactional Memory Coherence and 
Consistency (TCC),5 is a TM environ-
ment with transactions occurring all 
the time. TCC mainly differs from the 
Bulk Multicore in that its transactions 

novel compiler optimizations that re-
quire dynamic disambiguation of sets 
of addresses (see the sidebar “Making 
Signatures Visible to Software”). 

Reduced Implementation 
Complexity 
The Bulk Multicore also has advan-
tages in performance and in hardware 
simplicity. It delivers high perfor-
mance because the processor hard-
ware can reorder and overlap all mem-
ory accesses within a chunk—except, 
of course, those that participate in 
single-thread dependences. In partic-
ular, in the Bulk Multicore, synchroni-
zation instructions do not constrain 
memory access reordering or overlap. 
Indeed, fences inside a chunk are 
transformed into null instructions. 
Fences’ traditional functionality of 
delaying execution until certain ref-
erences are performed is useless; by 
construction, no other processor ob-
serves the actual order of instruction 
execution within a chunk. 

Moreover, a processor can concur-
rently execute multiple chunks from 
the same thread, and memory access-
es from these chunks can also overlap. 
Each concurrently executing chunk 
in the processor has its own R and W 
signatures, and individual accesses 
update the corresponding chunk’s 
signatures. As long as chunks within 
a processor commit in program order 
(if a chunk is squashed, its succes-
sors are also squashed), correctness is 
guaranteed. Such concurrent chunk 
execution in a processor hides the 
chunk-commit overhead. 

Bulk Multicore performance in-
creases further if the compiler gener-
ates the chunks, as in the BulkCom-
piler.1 In this case, the compiler can 
aggressively optimize the code within 
each chunk, recognizing that no other 
processor sees intermediate states 
within a chunk. 

Finally, the Bulk Multicore needs 
simpler processor hardware than cur-
rent machines. As discussed earlier, 
much of the responsibility for mem-
ory-consistency enforcement is taken 
away from critical structures in the 
core (such as the load queue and L1 
cache) and moved to the cache hierar-
chy where signatures detect violations 
of SC.2 For example, this property 
could enable a new environment in 

which cores and accelerators are de-
signed without concern for how to sat-
isfy a particular set of access-ordering 
constraints. This ability allows hard-
ware designers to focus on the novel 
aspects of their design, rather than 
on the interaction with the target ma-
chine’s legacy memory-consistency 
model. It also motivates the develop-
ment of commodity accelerators. 

Related Work 
Numerous proposals for multipro-
cessor architecture designs focus on 
improving programmability. In par-
ticular, architectures for thread-level 
speculation (TLS)17 and transactional 
memory (TM)6 have received signifi-
cant attention over the past 15 years. 
These techniques share key primitive 
mechanisms with the Bulk Multicore, 
notably speculative state buffering 

Figure 4. Forming chunks for data-race detection in the presence  
of a lock (a), flag (b), and barrier (c). 

Figure 3. Parallel execution in the Bulk Multicore (a), with a possible  
OrderOnly execution log (b) and PicoLog execution log (c). 
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are statically specified in the code, 
while chunks are created dynamically 
by the hardware. The second propos-
al, called Implicit Transactions,19 is 
a multiprocessor environment with 
checkpointed processors that regular-
ly take checkpoints. The instructions 
executed between checkpoints consti-
tute the equivalent of a chunk. No de-
tailed implementation of the scheme 
is presented. 

Automatic Mutual Exclusion 
(AME)7 is a programming model in 
which a program is written as a group 
of atomic fragments that serialize in 
some manner. As in TCC, atomic sec-
tions in AME are statically specified 
in the code, while the Bulk Multicore 
chunks are hardware-generated dy-
namic entities. 

The signature hardware we’ve in-
troduced here has been adapted for 
use in TM (such as in transaction-
footprint collection and in address 
disambiguation12,21). 

Several proposals implement data-
race detection, deterministic replay of 
multiprocessor programs, and other 
debugging techniques discussed here 
without operating in chunks.4,11,15,20 
Comparing their operation to chunk 
operation is the subject of future work. 

Future Directions 
The Bulk Multicore architecture is a 
novel approach to building shared-
memory multiprocessors, where the 
whole execution operates in atomic 
chunks of instructions. This approach 
can enable significant improvements 
in the productivity of parallel pro-
grammers while imposing no restric-
tion on the programming model or 
language used. 

At the architecture level, we are ex-
amining the scalability of this organi-
zation. While chunk commit requires 
arbitration in a (potentially distrib-
uted) arbiter, the operation in chunks 
is inherently latency tolerant. At the 
programming level, we are examin-
ing how chunk operation enables 
efficient support for new program-
development and debugging tools, 
aggressive autotuners and compilers, 
and even novel programming models. 

Acknowledgments 
We would like to thank the many pres-
ent and past members of the I-acoma 

Press, 2008, 289–300. 
14. Musuvathi, M. and Qadeer, S. Iterative context 

bounding for systematic testing of multithreaded 
programs. In Proceedings of the Conference on 
Programming Language Design and Implementation 
(San Diego, CA, June 10–13). ACM Press, New York, 
2007, 446–455. 

15. Narayanasamy, S., Pereira, C., and Calder, B. 
Recording shared memory dependencies using 
strata. In Proceedings of the International 
Conference on Architectural Support for 
Programming Languages and Operating Systems 
(San Jose, CA, Oct. 21–25). ACM Press, New York, 
2006, 229–240. 

16. Prvulovic, M. and Torrellas, J. ReEnact: Using 
thread-level speculation mechanisms to debug data 
races in multithreaded codes. In Proceedings of the 
International Symposium on Computer Architecture 
(San Diego, CA, June 9–11). IEEE Press, 2003, 
110–121. 

17. Sohi, G., Breach, S., and Vijayakumar, T. Multiscalar 
processors. In Proceedings of the International 
Symposium on Computer Architecture (Santa 
Margherita Ligure, Italy, June 22–24). ACM Press, 
New York, 1995, 414–425. 

18. Tuck, J., Ahn, W., Ceze, L., and Torrellas, J. SoftSig: 
Software-exposed hardware signatures for code 
analysis and optimization. In Proceedings of the 
International Conference on Architectural Support 
for Programming Languages and Operating Systems 
(Seattle, WA, Mar. 1–5). ACM Press, New York, 2008, 
145–156. 

19. Vallejo, E., Galluzzi, M., Cristal, A., Vallejo, F., 
Beivide, R., Stenstrom, P., Smith, J.E., and Valero, 
M. Implementing kilo-instruction multiprocessors. 
In Proceedings of the International Conference on 
Pervasive Services (Santorini, Greece, July 11–14). 
IEEE Press, 2005, 325–336. 

20. Xu, M., Bodik, R., and Hill, M.D. A ‘flight data 
recorder’ for enabling full-system multiprocessor 
deterministic replay. In Proceedings of the 
International Symposium on Computer Architecture 
(San Diego, CA, June 9–11). IEEE Press, 2003, 
122–133. 

21. Yen, L., Bobba, J., Marty, M., Moore, K., Volos, H., Hill, 
M., Swift, M., and Wood, D. LogTM-SE: Decoupling 
hardware transactional memory from caches. In 
Proceedings of the International Symposium on High 
Performance Computer Architecture (Phoenix, AZ, 
Feb. 10–14). IEEE Press, 2007, 261–272. 

Josep Torrellas (torrellas@cs.uiuc.edu) is a professor 
and Willett Faculty Scholar in the Department of 
Computer Science at the University of Illinois at Urbana-
Champaign. 

Luis Ceze (luisceze@cs.washington.edu) is an assistant 
professor in the Department of Computer Science and 
Engineering at the University of Washington, Seattle, WA. 

James Tuck (jtuck@ncsu.edu) is an assistant 
professor in the Department of Electrical and Computer 
Engineering at North Carolina State University, Raleigh, 
NC. 

Calin Cascaval (cascaval@us.ibm.com) is a research 
staff member and manager of programming models 
and tools for scalable systems at the IBM T.J. Watson 
Research Center, Yorktown Heights, NY. 

Pablo Montesinos (pmontesi@samsung.com) is a staff 
engineer in the Multicore Research Group at Samsung 
Information Systems America, San Jose, CA. 

Wonsun Ahn (dahn2@uiuc.edu) is a graduate student in 
the Department of Computer Science at the University of 
Illinois at Urbana-Champaign. 

Milos Prvulovic (milos@cc.gatech.edu) is an associate 
professor in the School of Computer Science, College of 
Computing, Georgia Institute of Technology, Atlanta, GA. 

© 2009 ACM 0001-0782/09/1200 $10.00

group at the University of Illinois who 
contributed through many discus-
sions, seminars, and brainstorming 
sessions. This work is supported by 
the U.S. National Science Foundation, 
Defense Advanced Research Projects 
Agency, and Department of Energy and 
by Intel and Microsoft under the Uni-
versal Parallel Computing Research 
Center, Sun Microsystems under the 
University of Illinois OpenSPARC Cen-
ter of Excellence, and IBM.  

References 
1. Ahn, W., Qi, S., Lee, J.W., Nicolaides, M., Fang, X., 

Torrellas, J., Wong, D., and Midkiff, S. BulkCompiler: 
High-performance sequential consistency through 
cooperative compiler and hardware support. In 
Proceedings of the International Symposium on 
Microarchitecture (New York City, Dec. 12–16). IEEE 
Press, 2009. 

2. Ceze, L., Tuck, J., Montesinos, P., and Torrellas, J. 
BulkSC: Bulk enforcement of sequential consistency. 
In Proceedings of the International Symposium on 
Computer Architecture (San Diego, CA, June 9–13). 
ACM Press, New York, 2007, 278–289. 

3. Ceze, L., Tuck, J., Cascaval, C., and Torrellas, 
J. Bulk disambiguation of speculative threads 
in multiprocessors. In Proceedings of the 
International Symposium on Computer Architecture 
(Boston, MA, June 17–21). IEEE Press, 2006, 
227–238. 

4 Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, 
V., and Sridharan, M. Efficient and precise data-
race detection for multithreaded object-oriented 
programs. In Proceedings of the Conference on 
Programming Language Design and Implementation 
(Berlin, Germany, June 17-19). ACM Press, New 
York, 2002, 258–269. 

5 Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., 
Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya, H., 
Kozyrakis, C., and Olukotun, K. Transactional memory 
coherence and consistency. In Proceedings of the 
International Symposium on Computer Architecture 
(München, Germany, June 19–23). IEEE Press, 2004, 
102–113. 

6. Herlihy M. and Moss, J.E.B. Transactional memory: 
Architectural support for lock-free data structures. 
In Proceedings of the International Symposium on 
Computer Architecture (San Diego, CA, May 16–19). 
IEEE Press, 1993, 289–300. 

7 Isard, M. and Birrell, A. Automatic mutual exclusion. 
In Proceedings of the Workshop on Hot Topics 
in Operating Systems (San Diego, CA, May 7–9). 
USENIX, 2007. 

8. Kuck, D. Facing up to software’s greatest challenge: 
Practical parallel processing. Computers in Physics 
11, 3 (1997). 

9. Lamport, L. How to make a multiprocessor computer 
that correctly executes multiprocess programs. 
IEEE Transactions on Computers C-28, 9 (Sept. 
1979), 690–691. 

10. Lamport, L. Time, clocks, and the ordering of events 
in a distributed system. Commun. ACM 21, 7 (July 
1978), 558–565. 

11. Lu, S., Tucek, J., Qin, F., and Zhou, Y. AVIO: Detecting 
atomicity violations via access interleaving 
invariants. In Proceedings of the International 
Conference on Architectural Support for 
Programming Languages and Operating Systems 
(San Jose, CA, Oct. 21–25). ACM Press, New York, 
2006, 37–48. 

12. Minh, C., Trautmann, M., Chung, J., McDonald, A., 
Bronson, N., Casper, J., Kozyrakis, C., and Olukotun, 
K. An effective hybrid transactional memory with 
strong isolation guarantees. In Proceedings of the 
International Symposium on Computer Architecture 
(San Diego, CA, June 9–13). ACM Press, New York, 
2007, 69–80. 

13. Montesinos, P., Ceze, L., and Torrellas, J. DeLorean: 
Recording and deterministically replaying shared-
memory multiprocessor execution efficiently. In 
Proceedings of the International Symposium on 
Computer Architecture (Beijing, June 21–25). IEEE 


