
Shield:
Cost-Effective Soft Error Protection For Register Files

Pablo Montesinos, Wei Liu* and Josep Torrellas

University of Illinois at Urbana-Champaign
*Intel

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Vulnerability analysis of registers

allocated written read1 ... readn deallocated

time
register

PreWrite Useful PostLastRead

version

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Vulnerability analysis of registers

๏ Vulnerability metric: AVF (Architectural Vulnerability Factor)

๏ Register File’s AVF: fraction of time its registers are vulnerable

๏ A register is vulnerable if a change in its value will produce an error

๏ Only the Useful period needs to be protected

not vulnerable

vulnerable

Useful

allocated written read1 ... readn deallocated

time
register

PreWrite Useful PostLastRead

version

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

How vulnerable is the register file?

๏ What fraction of a register’s lifetime is in useful state?

๏ 22% for SPECint and 15% for SPECfp **

๏ How many registers are in useful state at a given time?

๏ 20 for SPECint and 17 for SPECfp **

๏ Are all the register versions equally vulnerable?

**(128 physical registers)

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Short and long register versions

ADD R1, ,

...

MUL R1, ,

Original Code

ADD P10, ,

...

MUL P20, ,

Renamed Code

ADD
fetched renamed issued executed

time

allocated written
P10 time

MUL
fetched timerenamed renamed

P10 is considered short P10 is considered long

Ponomarev et al, 2004

๏ Short version: a new instruction renames the register before it is written

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Characterizing long and short versions

๏ A few registers account for most of the useful lifetime of the register file

0

20

40

60

80

100

SPECint SPECfp

Long Versions (%)
Useful Lifetime (%)

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

How vulnerable is the register file?

๏ What fraction of a register’s lifetime is in useful state?

๏ A small fraction

๏ How many registers are in useful state at a given time?

๏ Just a few

๏ Are all the register versions equally vulnerable?

๏ No, a few registers account for most of the useful lifetime

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

How vulnerable is the register file?

๏ What fraction of a register’s lifetime is in useful state?

๏ A small fraction

๏ How many registers are in useful state at a given time?

๏ Just a few

๏ Are all the register versions equally vulnerable?

๏ No, a few registers account for most of the useful lifetime

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Shield’s goal: protect the register file

๏ Defend the register file by only protecting registers in useful state

Detection

Parity Protected Register File

Detection
&

Recovery

ECC-Protected Register File

Partial
Detection

&
Recovery

Shielded Register File

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Shield Architecture

Write / Read Original DatapathRead

Write Data

Shield

Register File

ROB

Finish Bits

ECC TableECC Generators

Read

ECC Checkers

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

ECC Table entry allocation

๏ Entries are allocated when registers are written

๏ Try to minimize the impact on the AVF

๏ Use lifespan prediction to choose the entry to replace

๏ Replacement policy might deny the allocation

Free Entry?yesUse it!

Replace
entry

no

Available
Entry?

yes

Deny!

no

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

ECC Table entry replacement policies
๏ Shield uses an extended version of Ponomarev’s predictor:

๏ Predicts long-lived registers more accurately

๏ Avoids protecting dead versions

๏ The Effective replacement policy:

๏ Replaces versions with same or shorter lifespan

๏ Performs aging

๏ The OptEffective replacement policy:

๏ Effective plus architectural information about the registers

๏ Pins registers if known to be long lived (e.g: stack pointer)

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

ECC Table entry deallocation

๏ Entries should be deallocated right after last read, but:

๏ Replacement policy may deallocate it earlier

๏ Predicting last read for a register impossible

๏ An entry is stale if it protects a register that won’t be read again

๏ Protecting stale entries hurts the efficiency of Shield

๏ Send eviction signal to the ECC table when some registers are deallocated

๏ The accuracy of the deallocation will affect the AVF significantly

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Evaluation

๏ Simulator: SESC, cycle-accurate execution-driven simulator

๏ # Registers:

๏ Integer: 128

๏ Floating point: 64

๏ # ECC Table entries:

๏ Integer: 32

๏ Floating point: 16

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

AVF reduction

๏ More effective in floating point applications:

๏ Register versions` lifespan is more predictable

๏ Fewer floating point registers in useful state

0

0.2

0.4

0.6

0.8

1.0

SPECint

Random
LRU
Effective
OptEffective

0

0.2

0.4

0.6

0.8

1.0

SPECfp

In
t.R

eg
.F

ile
 A

V
F

(n
or

m
)

FP
.R

eg
.F

ile
 A

V
F

(n
or

m
)

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Performance impact

๏ The ROB provides enough slack: no performance loss

0

0.2

0.4

0.6

0.8

1.0

SPECint SPECfp

Processor with Shield

IP
C

 (
no

rm
)

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Power and Area impact

๏ Power modeled with a modified CACTI 3.2

๏ Shield introduces:

๏ 45% power overhead over a plain register file

๏ 10% area overhead over a plain register file

๏ Approx to a full parity protection for the register file (Montecito)

๏ Full parity protection can be added to Shield without much
additional overhead

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Conclusions and future work
๏ Shield increases the resistance of register files to soft errors

๏ Performance is not affected

๏ Modest power and area consumption

๏ No need to protect the entire lifetime of the register versions

๏ Shield reduces the AVF of the register file

๏ Integer: Up to 84% (73%on average)

๏ FP: Up to 100% (85% on average)

๏ Our future work includes

๏ Compiler support

๏ Augment Shield with a parity protected register file

P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Questions

Shield:
Cost-Effective Soft-Error

Protection for Register Files

University of Illinois at Urbana-Champaign
+Intel

Pablo Montesinos, Wei Liu+ and Josep Torrellas

