
Shield:
Cost-Effective Soft Error Protection For Register Files

Pablo Montesinos, Wei Liu* and Josep Torrellas 

University of Illinois at Urbana-Champaign
*Intel



P=ac2. October 2006. Pablo Montesinos. University of Illinois at Urbana-Champaign

Vulnerability analysis of registers
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Vulnerability analysis of registers

๏ Vulnerability metric: AVF (Architectural Vulnerability Factor)

๏ Register File’s AVF: fraction of time its registers are vulnerable

๏ A register is vulnerable if a change in its value will produce an error

๏ Only the Useful period needs to be protected
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How vulnerable is the register file?

๏ What fraction of a register’s lifetime is in useful state?

๏ 22% for SPECint and 15% for SPECfp **

๏ How many registers are in useful state at a given time?

๏ 20 for SPECint and 17 for SPECfp **

๏ Are all the register versions equally vulnerable?

**(128 physical registers)
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Short and long register versions
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๏ Short version: a new instruction renames the register before it is written
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Characterizing long and short versions

๏  A few registers account for most of the useful lifetime of the register file
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How vulnerable is the register file?

๏ What fraction of a register’s lifetime is in useful state?

๏ A small fraction

๏ How many registers are in useful state at a given time?

๏ Just a few

๏ Are all the register versions equally vulnerable?

๏ No, a few registers account for most of the useful lifetime
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Shield’s goal: protect the register file

๏ Defend the register file by only protecting registers in useful state
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Shield Architecture
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ECC Table entry allocation

๏ Entries are allocated when registers are written

๏ Try to minimize the impact on the AVF

๏ Use lifespan prediction to choose the entry to replace

๏ Replacement policy might deny the allocation
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ECC Table entry replacement policies
๏ Shield uses an extended version of Ponomarev’s predictor:

๏ Predicts long-lived registers more accurately

๏ Avoids protecting dead versions

๏ The Effective replacement policy:

๏ Replaces versions with same or shorter lifespan

๏ Performs aging

๏ The OptEffective replacement policy:

๏ Effective plus architectural information about the registers

๏ Pins registers if known to be long lived (e.g: stack pointer)
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ECC Table entry deallocation

๏ Entries should be deallocated right after last read, but:

๏ Replacement policy may deallocate it earlier

๏ Predicting last read for a register impossible

๏ An entry is stale if it protects a register that won’t be read again

๏ Protecting stale entries hurts the efficiency of Shield

๏ Send eviction signal to the ECC table when some registers are deallocated

๏ The accuracy of the deallocation will affect the AVF significantly
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Evaluation

๏ Simulator: SESC, cycle-accurate execution-driven simulator

๏ # Registers:

๏ Integer:             128

๏ Floating point:    64

๏ # ECC Table entries:

๏ Integer:               32

๏ Floating point:    16    
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AVF reduction

๏ More effective in floating point applications: 

๏ Register versions` lifespan is more predictable

๏ Fewer floating point registers in useful state
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Performance impact

๏ The ROB provides enough slack: no performance loss
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Power and Area impact

๏ Power modeled with a modified CACTI 3.2

๏ Shield introduces:

๏  45% power overhead over a plain register file

๏ 10% area overhead over a plain register file

๏ Approx to a full parity protection for the register file (Montecito)

๏ Full parity protection can be added to Shield without much 
additional overhead
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Conclusions and future work
๏ Shield increases the resistance of register files to soft errors

๏ Performance is not affected

๏ Modest power and area consumption

๏ No need to protect the entire lifetime of the register versions

๏ Shield reduces the AVF of the register file

๏ Integer: Up to 84% (73%on average) 

๏ FP: Up to 100% (85% on average)

๏ Our future work includes

๏ Compiler support 

๏ Augment Shield with a parity protected register file
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