Unconstrained'Snoop Request Delivery in
Embedded-Ring Multiprocessors

Karin Strauss AMD Advanced Architecture and Technology Lab

Xiaowei Shen IBM Research

Josep Torrellas University of lllinois at Urbana-Cha

http://lacoma.cs.uiuc.edu

Motivation

« CMPs are ubiquitous

« Shared memory + caches = cache coherence

e Traditional cache coherence solutions
» shared bus-based: electrical, layout issues

e directory-based: indirection, storage

i i ™ d -
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 2
are needed to see this picture.

Contributions

* Novel cache coherence scheme (ISCA 2006)

« Embedded-ring snoopy cache coherence

« Show protocol operation and invariant
» Transaction serialization

e Forward progress
* Improve performance

e Uncorq

* Optimization: Selective data prefetching

» Evaluate proposal and show it is competitive

i kT ™ d -
TIFF (Uncer:\j;I)creslsrgg) dea{:]on?pressor Ka” n Strauss _ U n CO rq ”
are needed to see this picture.

Embedded-ring cache coherence

 Logical ring is embedded in network

« Control messages use ring

e Data messages use any path

Cb b » Easily reconfigurable

e Simple

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 5
are needed to see this picture.

Embedded-ring terminology

* Broadcast-based snoopy, invalidate protocol
 Single supplier protocol
* Types of messages:

N
 request

* response > control messages
* request + response |

 data

data

A

. . SNOOp op. outcome
logical ri

positive snoop op. outcome

i kT ™ d -
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 6
are needed to see this picture.

Transactio
S

time

kTime™ and a

QuickTime
TIFF (Uncompressed) decompressor
are needed to see this picture.

S

A

-

old value

nv__..-------- 1S
‘;':’_—~—~ ///
_______ ’
ack s
,-
v
S| »
7’
//
//
//
’/
____________ >
S M

n serialization

B

new value

Karin Strauss - “Uncorg”

Transaction serialization on the ring

 Single supplier protocol

 supplier status is transferred when next request is processed

* For same memory location:

* network links do not reorder messages (requests or responses)
* nodes process requests in the order they arrive
 responses travel in the same relative order as their requests

A

request — request request — request —
response--—+response- - response---—+response--—

ring provides partial order

i kT ™ d -
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 9
are needed to see this picture.

Natural serialization

All nodes receive
messages in the
same order

Natural orderis A - B

— A's request and response
— B’s request and response

QuickTime™ and a

TIFF(Unc%mgrt eeeee)téi_eco_ rrrrrrrr Karln Stl'aUSS - “UnCOI'qH 10
are needed to see this picture.

Forced serialization

No clear “first” transaction
B’s request reaches S first

Ring guarantees responses
are forwarded in the order S
performed snoop operations

A receives B’s positive

response before its own

— A's request and response
— B’s request and response Aretries: B 2 A

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Karin Strauss - “Uncorg” 11

Ordering invariant

Predefined rule: transaction whose request arrives at
the node with supplier status first is the “winner”

What we need to maintain to enforce the rule:

Ordering Invariant: the order in which responses travel
the ring after leaving the supplier must be the same as the
order in which the supplier received and processed their
corresponding requests.

(such that the distributed algorithm has
enough information to determine the “winner” -——— -
throughout the ring)

i kT ™ d -
TIFF (Uncgr:\j;)creslsrgg) dgtr:]on?pressor Karl n Strauss - “U ncorq” 12
are needed to see this picture.

trained snoop

request deliver}—.

|

Uncorq

e ‘ — request e ‘

-~ ~rresponse

-
e =

ldea: requests do not have to follow the ring
(but responses do)

i kT ™ d -
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 14
are needed to see this picture.

Benefit of Uncorq

Cache-to-cache transfer latency:

request snoop data

Eager I .

Uncorq NS

" savings

QuickTime™ and a

TIFF (Uncompressed) decompressor Karin Strauss - “Uncorq”
are needed to see this picture.

15

Implications of Uncorg

e Uncorg no longer restricts order of requests
 Nodes may receive and process requests in any order
* Responses may also get reordered

Problem: distributed algorithm relies on the fact that
response order reflects order of snoops at supplier, if any

i kT ™ d -
TIFF (Uncer:\j;I)creslsrgg) dea{:]on?pressor Ka” n Strauss - “U ncorq” 16
are needed to see this picture.

Uncorg: request reordering

e +---

+———> _——)

A B A B
8\\ 72 ;%] ©-
C C

Solution: stall some responses to avoid reordering

QuickTime™ and a

TIFF(Unc%mgrt eeeeee) r(11_e(:0_ rrrrrrrr Karln Stl'aUSS - “UnCOI'qH 17
are needed to see this picture.

Stalling responses

When to stall:

 outstanding positive response waiting in node
e another response (same address) Is ready to leave node

+
+ A B C ..
v |V sSnoops
addr | C v 1V responses

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 18
are needed to see this picture.

Preserving the ordering invariant

* A node cannot forward a response If:

it has an outstanding positive snoop outcome +

* it has an outstanding positive response - -

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 19
are needed to see this picture.

Optimization: Selective data prefetching

» Accessing memory while snooping may be faster...
... but wastes energy if done for every miss

 Solution: predict when no node is able to supply data
and access memory prematurely only in that case

e Two predictors:

* node-side predictor
 records addresses for which it has received requests recently
 sends requests to memory-side predictor if address is not present

* memory-side predictor
* records which lines have been brought on-chip recently
 sends request to memory if line has not been recently touched

ickTime™ and :
TIFF(Uncgr:\j;)creslsrgg)d:gon?pressor Ka_rln Strauss - “Uncorq” 20
are needed to see this picture.

Experimental setup
« SPLASH-2, SPECjbb and SPECweb workloads

« SESC simulator (sesc.sourceforge.net)
» Single-CMP, 64 nodes, each node with DL1, IL1 and L2

* Interconnection network: 2D torus with embedded-ring

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 22
are needed to see this picture.

UncoRq: data consumption latency

Eager
0 100
$ P N
S 8 80 o<
S 4 ,J’"J 60 Z 5
= — < .2
e — £ Q0
= 2 — ' 20 3 &
2 ©v
© 0 - L 0 ©
0 100 200 300 400 500 600
data consumption latency
U lower data consumption latency
ncorq /
__ 10 7 100 o
S 7 S
S 8 k| 80 O
>
c L = 0O
o 6 60 © .=
"5' L S S
a 4 a0 g2
5 2 —HHHHN 20 OB
2 2
S o , , . . 0
0 100 200 300 400 500 600
data consumption latency
] TIFE Uncaessed oSrpressr Karin Strauss - “Uncorg” 23

® %
\é
@C

T

execution time

0.9 -
0.8 1
0.7 1
0.6 -
0.5 -
0.4 1
0.3 -
0.2 1
0.1 1

Execution Time

M Eager
M Uncorq
“Uncorg+Pref

SPLASH-2 SPECjbb SPECweb

» Uncorq significantly reduces execution time

» Uncorqg + Pref performs the best

picesed) decoressor Karin Strauss - “Uncorq” 24

Quic
TIFF (Uncompresse:
are needed to s

Also In the paper

Serialization mechanism for case with no supplier
System and node forward progress

Fences and memory consistency issues
Characterization of prefetching mechanism

Comparison against ccHyperTransport

ickTime™ and :
TIFF(Uncgr:\j;)creslsrgg)d:gon?pressor Karln Strauss - “Uncorq”
are needed to see this picture.

25

Conclusion

« Show protocol operation and invariants
e Transaction serialization

e Forward progress
* Improve performance

e Uncorq

* Optimization: Selective data prefetching

» Evaluate proposal and show it is competitive

i kT ™ d -
TIFF (Uncer:\j;I)creslsrgg) dea(r:]on?pressor Karl n Strauss - “U ncorq”
are needed to see this picture.

26

Unconstrained'Snoop Request Delivery in
Embedded-Ring Multiprocessors

Karin Strauss, Xiaowei Shen*, Josep Torrellas

University of lllinois at Urbana-Champai
*IBM Research

http://iacoma.cs.uiuc.edu |

Question: single supplier?

e Simple!

e Destination-set prediction [Martin’03]
can be seamlessly used to avoid
performance penalty

* Proper thread scheduling can also help

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 28
are needed to see this picture.

Question: why c2c transfers?

* On-chip caches are growing
e Parallel programs are growing

 More on-chip cache sharing

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 29
are needed to see this picture.

Question: slow m2c transfers

e Latency depends on ring size

e Can be attenuated with:
e private data predictors
e prefetching
e speculation
e smaller, partitioned rings

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 30
are needed to see this picture.

Question: Latency of writes

* Problem for stricter consistency models

 \We assume a weaker consistency
model (PowerPC)
e requires large write buffers

e does not prevent instructions from retiring
* unless fences are present

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 31
are needed to see this picture.

Question: Latency of fences

e Problem: fences need to wait until all
previous writes complete

e Data can be provided before write
completes (lock changes hands quickly)

e Speculation across fences solves the
problem (Wait-free multiprocessors,
SC++, BulkSC)

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 32
are needed to see this picture.

Question: Token coherence?

« Embedded-ring and token coherence
can be combined

e Multicast request
e Data Is sent directly
e Collect tokens with ring

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 33
are needed to see this picture.

Forward progress

o System forward progress: there is always one winner

* Node forward progress: also known as starvation-freedom
e Starving nodes can intercept many requests, but not all

starving node

eventually, B will be right next
to node with supplier status

when this happens, B can
Intercept all requests and

e supplier _ ! .
® " status direction finally complete its transaction

ickTime™ and :
TIFF(Uncgr:\];)creslsrgg)dgtr:]on?pressor Ka_rln Strauss - “Uncorq” 34
are needed to see this picture.

Starvation-freedom with UncoRqg

Problem: UncoRq no longer restricts requests to the ring

Starving node can no longer intercept requests

Solution: intercept responses and rely on LTT mechanism

e starving node records its own id on any response it receives

* when “winner” node receives its response back,
It sets its DRN to the starving node’s ID

e starving node can then safely complete its transaction

ickTime™ and :
TIFF(Uncgr:\j;)creslsrgg)d:gon?pressor Karln Strauss - “Uncorq” 35
are needed to see this picture.

Distributed arbitration algorithm

e Two different situations:

 there Is a node with supplier status

* node whose request gets to supplier first is the “winner”

 there iIs no node with supplier status

1. if one of them is invalidate transaction, it is the “winner”
2. If one of them iIs read transaction, it is the “loser”
3. node whose ID is the lowest is the “winner”

ickTime™ and .
TIFF (Uncompressed) decompressor Karin Strauss - “Uncorg” 36
are needed to see this picture.

Uncorg vs cc-Hypertransport

UncoRg 3

> 15 100
S e <
~ 12 f’ 80 CI>.) <
S o J 60 £ 5
2 £ o
= L, =
g 2 2 o3
T 0 -0 T
0 50 100 150 200 250 300
cc-Hypertransport
’\a o / 100 ~
< 1 80 4 >
c / S —
o 9 60 = €
= V © 9
3 6 40 3§
= | E o
o 3 20 3 g
S 9 ' - 0 S
0 50 100 150 200 250 300

data consumption latency

TIFF(Uncgr:\j:)crgisne]g;’:ieaggn?pressor Karln StraUSS - “UnCOI‘qH 37

are needed to see this picture.

© ——0O

normalized
execution time

Execution time

SPLASH-2

SPECjbb SPECweb

» UncoRq + Opts performs the best

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Karin Strauss - “Uncorq”

M Lazy

M Eager

M UncoRq
UncoRg+Opts

38

O——0

Execution time

)
8 E 1 :Iéazy
o] | ager
E - 0.8 Oracle
® O o6 . H Subset
- '5' M Superset Con
B 0 041 — M Superset Agg
< §<) 0.2 1 | Exact
o l UncoRq
0 - UncoRqg+Opts
SPLASH-2 SPECjbb SPECweb
» UncoRq + Opts performs the best
 Flexible Snooping algorithms do not perform as well
] TIFaFre(%gréé;ri\]ﬁ%%rgeg;t’:ﬁggﬁﬂfsor Karln StraUSS = “UnCOl'q" 39

Motivation

CMPs are ubiquitous
cheaper to build medium-size machines

shared memory + caches

cache coherence

shared bus-based directory-based
electrical, layout issues Indirection, storage

QuickTime™ and a

TIFF(U”C%mgrt eeeeee) r(]1_ecq rrrrrrrr Karln Stl'aUSS - “UnCOrqn 40
are needed to see this picture.

Conclusion

Show embedded-ring operation and invariants
» Transaction serialization

» Forward progress

Improve performance
» Uncorq

» Memory access prediction

Evaluate proposal and show it is competitive

i kT ™ d -
TIFF (Uncer:\j;I)creslsrgg) dea(r:]on?pressor Karl n Strauss - “U ncorq”
are needed to see this picture.

41

Implications of Uncorg

e Uncorg no longer restricts order of requests
 Nodes may receive and process requests in any order

* Responses may also get reordered

Problem: distributed algorithm relies on the fact that
response order reflects order of snoops at supplier, if any

Solution: stall some responses to avoid reordering

i kT ™ d -
TIFF (Uncgr:\j;)creslsrgg) dgtr:]on?pressor Karl n Strauss - “U ncorq” 42
are needed to see this picture.

Transaction serialization on the ring Il

* Ring partial order may avoid conflicts: natural serialization
« Some conflicts cannot be avoided: forced serialization

e Distributed algorithm uses partial order to resolve conflicts

* one transaction is determined to be the “winner”
e other transactions may have to retry

» Two different situations:

* there is a node with supplier status
* node whose request reaches the supplier first is the “winner”

* there is no node with supplier status
* need another strategy to pick a “winner” (in the paper)

i kT ™ d -
TIFF (Uncgr:\j;)creslsrgg) dgtr:]on?pressor Karl n Strauss - “U ncorq” 43
are needed to see this picture.

