
ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Jiho Choi, Thomas Shull,
Maria J. Garzaran, and Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu
 ISCA 2017

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Overheads of Scripting Languages

•  Scripting languages are widely used
–  Designed for productivity
–  Dynamic type system: Difficult to generate efficient code

•  Many overheads include:
–  Slow interpreter
–  Dynamic type check (e.g., integer or float?)
–  Slow object access
–  Garbage collection

2

Our Focus

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Traditional Languages: Fast Object Access

•  Type declaration tells compiler the shape of an object
–  Properties and their offsets within an object

3

struct T {
 int x;
 int y;
};

int get_x(T o)
{
 return o.x;
}

T a;
get_x(a);

Compile
[Code	 for	 get_x]	
ld RD, &o[0]

offset 0

What if there is no type declaration?

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Scripting Languages: Slow Object Access

•  No type information available ahead of execution
•  A naïve approach requires an expensive dictionary lookup

4

function get_x(o)
{
 return o.x;
}

a = {}; // new obj
a.x = 0;
get_x(a);

[Code	 for	 get_x]	
call Runtime Compile

Object shape
unknown

Dictionary lookup for every object access
is prohibitively expensive.

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

function get_x(o)
{
 return o.x;
}

a = {}; // new obj
a.x = 0;
get_x(a);
get_x(a);

b = {}; // new obj
b.y = 1; b.x = 2;
get_x(b);
get_x(b);

Scripting Languages: Slow Object Access

•  Current software solution: Dynamically generate a specialized
handler for each object type and reuse it for the same type later

5

Compile

x @ offset 0

[Handlera]	
ld RD, &o[0]
ret RD	

[Handlerb]	
ld RD, &o[1]
ret RD	

x @ offset 1

[Code	 for	 Dispatcher]	
if obj_type is previously seen:
 jump to a specialized handler
else:
 jump to Runtime	

[Code	 for	 get_x]	
call Dispatcher

Program à Dispatcher à Handler

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Scripting Languages: Slow Object Access

•  This software code structure is called Inline Cache (IC)

•  We find that IC still has major overheads:
–  At least 14 instructions per dispatcher invocation

to choose a handler
–  22% of total instructions executed are in the dispatcher
–  46% of branch mispredictions are in the dispatcher

6

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Contributions

•  Characterization of performance bottlenecks in IC operation
in a state-of-the-art JavaScript engine

•  Proposed two levels of HW/SW optimization to improve
the efficiency of object access in scripting languages

•  Implemented our proposal in multi-tier Google V8 compiler
and reduced the average execution time:
–  by 30% running under the base tier
–  by 11% with the advanced tier enabled

7

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Outline

•  Motivation and background
•  Contribution

•  Our solution: ShortCut
–  Key idea
–  Design
–  Compiler integration

•  Evaluation
•  Summary

8

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Key Idea

•  Plain ShortCut transforms the call to the dispatcher into a call
to the correct handler

•  Aggressive ShortCut transforms the call to the dispatcher into
an actual object access in place

9

…
Object access
…

Program

…

Dispatcher

Actual object access

Handler

1st Level: Plain ShortCut

…
Object access
…

Program

…

Dispatcher

…

Handler

2nd Level: Aggressive ShortCut

…
Object access
…

Program

…
obj1? jump Handler1
obj2? jump Handler2
obj3? jump Handler3
…

Dispatcher

Actual object access

Handler

Conventional

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Conventional Design

10

•  A program calls the dispatcher at an object access site
–  A BTB entry holds the dispatcher address

•  The dispatcher chooses a handler

…
call Dispatcher
…

Program

…
obj1? jump Handler1
obj2? jump Handler2
obj3? jump Handler3
…

Dispatcher

Actual object access

Handler

PC

PC Dispatcher

BTB

Fetch Decode

Immediate operand
(Dispatcher)

=

Update BTB on misprediction

Execu&on	 of Call Dispatcher

Time

Validate

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Plain ShortCut Design

11

•  A program directly calls a handler at an object access site
–  IC_Call takes an additional operand: object type
–  A BTB entry holds a handler address

•  A new hardware table, ICTable, validates the BTB prediction
–  Falls back to the dispatcher upon ICTable miss

…
IC_Call Dispatcher, RType
…

Program

…

Dispatcher

Actual object access

Handler

PC

PC Handler

BTB

Fetch RType ready

=

Redirect execution to the dispatcher
and update BTB on ICTable miss

Execu&on	 of IC_Call RType, Dispatcher

Time

Validate

RType

PC Type Handler

ICTable

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Aggressive ShortCut Design

12

…
IC_Load Dispatcher, RType
…

Program

…

Dispatcher

…

Handler

PC

PC PC + 4

BTB

Fetch RType ready

=

Execu&on	 of IC_Load RType, Dispatcher

Time

Validate

RType

PC Type Offset

ICTable

•  A program performs an object access in place
–  IC_Load and IC_Store perform load and store, respectively
–  A BTB entry holds the next address

•  Extend ICTable to store the offset of the property to access
•  The property of the object is read or written using the offset value from ICTable.

Redirect execution to the dispatcher
and update BTB on ICTable miss

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Compiler Integration

•  Replace the call to the dispatcher with the new instructions
–  IC_Call in Plain ShortCut
–  IC_Load or IC_Store in Aggressive ShortCut

•  Load the incoming object type and pass as an operand to
IC_Call/Load/Store

•  More details are in the paper

13

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Outline

•  Motivation and background
•  Contribution
•  Our solution: ShortCut

•  Evaluation
–  Experimental setup
–  Simulation Results

•  Summary

14

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Experimental Setup

•  Modified Google V8 JavaScript JIT compiler
–  Implemented in the base tier of the compiler
–  Application to the advanced tier is future work

•  Extended SniperSim to model ShortCut hardware

•  Benchmark Suites: Octane and SunSpider

15

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Evaluated Configurations

•  Ideal (I) serves as an upper bound for BTB

•  Aggressive ShortCut is currently limited to a simple form of
IC_Load

16

Name Description
B Baseline: Unmodified V8
I Ideal: Baseline with perfect BTB for the IC
PS Plain ShortCut
AS Aggressive ShortCut

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Instruction Count Breakdown

17

•  Octane benchmark result
–  SunSpider benchmark result is

in the paper

•  On average 26% of total instructions
executed in the dispatcher running under
the base tier

•  Plain ShortCut reduces the average
instruction count:

–  by 21% running under the base tier
–  by 8% with the advanced tier enabled

Base tier only

Base + advanced tiers

26% 21%

8%

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Branch Prediction

•  54% of branch mispredictions are in the dispatcher

•  ShortCut reduces branch MPKI by 41% (from 14.4 to 8.5)

18

0 2 4 6 8 10 12 14 16

B

PS

Average Branch Mispredictions Per Kilo Instruction (MPKI)

Direct Indirect Dispatcher IC_Call

54%

41%

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Overall Performance Improvement

19

Base tier only

Base + advanced tiers

37%

13%

•  Plain ShortCut reduces the average
execution time

–  by 37% running under the base tier
–  by 13% with the advanced tier enabled

•  ShortCut outperforms perfect BTB (I).

•  Aggressive ShortCut delivers marginal
improvement over Plain ShortCut

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Conclusions

•  Two main sources of slow object access in scripting languages
–  Instructions executed in the dispatcher
–  Hard-to-predict branches in the dispatcher

•  Two levels of HW/SW optimization to accelerate object access
–  Plain ShortCut: Skips the dispatcher execution
–  Aggressive ShortCut: Skips even the handler execution

•  Emulates fast object access in traditional languages

•  Implemented our solution in Google V8 and improved execution
–  by 30% running under the base tier
–  by 11% with the advanced tier enabled

20

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Jiho Choi, Thomas Shull,
Maria J. Garzaran, and Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu
 ISCA 2017

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Multi-tier Compiler

•  Even if the advanced tier is enabled, a significant fraction of
the execution of programs uses code generated by the base
tier:
–  It takes a while for the advanced tier to engage
–  If any assumption made by any optimization fails (e.g.,

unexpected object type is encountered), the base tier is re-
invoked

–  There are some functions in a program that the advanced
tier abstains from compiling, often based on heuristics;
they include eval constructs and other complicated cases

•  Execution time is short

22

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Aggressive Shortcut

•  IC_Store is not supported

•  We note that of all the handler invocations
–  75.7% are loads

•  15.1% of them are covered by Aggressive ShortCut
–  24.3% are stores

•  17.2% of them can be covered by Aggressive ShortCut

23

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Future Work

•  Full implementation of Aggressive ShortCut
–  IC_Store

•  Application to the advanced tier
–  using Aggressive ShortCut

•  Application to interpreters

24

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

ISA

•  Conventional: Call AddrDispatcher

•  Plain ShortCut: IC_Call AddrDispatcher RType
–  If it hits in ICTable, call the handler
–  Otherwise, call the dispatcher

•  Aggressive ShortCut: IC_Load/Store AddrDispatcher Rtype
–  If it hits in ICTable, perform a load/store
–  Otherwise, call the dispatcher

•  Both: IC_Update RPC RType
–  Installs an entry in ICTable and updates BTB

•  Both: IC_Flush
–  Flushes ICTable

25

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Experimental Setup: Processor Architecture

26

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Sensitivity Study

•  PS outperformed B even with only 16 ICTable entries

•  512-entry ICTable is about 9 KB

27

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Instruction Count Breakdown

28

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Branch MPKI Analysis

29

•  ShortCut reduces branch MPKI from 10.8 to 6.9 running under the baseline
compiler

•  ShortCut avoids the hard-to-predict branch in the dispatcher

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Overall Performance Improvement

30

