ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Jiho Choi, Thomas Shull,
Maria J. Garzaran, and Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://lacoma.cs.uiuc.edu

ISCA 2017

-acoma HiLiNois

Overheads of Scripting Languages

 Scripting languages are widely used n‘dc F pgthon”"
— Designed for productivity ©B)

— Dynamic type system: Difficult to generate efficient code

« Many overheads include:
— Slow interpreter
— Dynamic type check (e.g., integer or float?)

— Garbage collection

I-acoma ShortCut: Architectural Support for

~~ group Fast Object Access in Scripting Languages m ILLI NOIS 2

Traditional Languages: Fast Object Access

- Type declaration tells compiler the shape of an object
— Properties and their offsets within an object

¥i

//;truct I | ‘\\

int x;< offset
IR T g

{

}

1Rk 'get, XL o)

rFekEurn OCiuXe

i)

ay

get_x(a);

-

/

I-acoma

e group

[Code for get x]
Compile 1d R,, &o[0]

ShortCut: Architectural Support for

Fast Object Access in Scripting Languages ILLINOIS 3

Scripting Languages: Slow Object Access

* No type information available ahead of execution
* A naive approach requires an expensive dictionary lookup

function get x (o)} Object shape
{ unknown

return oO.X; : [Code for get x]
} Complle> [call Runtime }
a = {}; // new obj A,
S e 1 Dictionary lookup for every object access
get x(a); | Is prohibitively expensive. !

ShortCut: Architectural Support for
L%ng Fast Object Access in Scripting Languages m ILLI NOIS 4

Scripting Languages: Slow Object Access

//;;nction get_x(o;\\\

{

rerturn .3

// new ob]
; «<— X @ offset

// new obj
PP R 20

X ;
X (b); /

~~~ group Fast Object

Current software solution: Dynamically generate a specialized
handler for each object type and reuse it for the same type later

Compile ﬁjCode folr get x]

call Dispatcher

KIM&MI

if obj type is previously seen:
0 Jump to a spe01allzed handle
else:
\_ Jump to Runtime

J
S
:
J

\
x @ offset 1 Handler_] Handler, ]
1d R,, &o[0]|| ||1d R,, &o[1]
ret R, ) \xret Ry

ShortCut: Architectura. Program = Dispatcher = Handler

AccessmScr[_______y___________ __________ |



Scripting Languages: Slow Object Access

« This software code structure is called Inline Cache (IC)

« We find that IC still has major overheads:

— At least 14 instructions per dispatcher invocation
to choose a handler

— 22% of total instructions executed are in the dispatcher
— 46% of branch mispredictions are in the dispatcher

I-acoma ShortCut: Architectural Support for

~~ group Fast Object Access in Scripting Languages ILLI NOI S 6



Contributions

« Characterization of performance bottlenecks in IC operation
in a state-of-the-art JavaScript engine

* Proposed two levels of HW/SW optimization to improve
the efficiency of object access in scripting languages

* Implemented our proposal in multi-tier Google V8 compiler
and reduced the average execution time:

— by 30% running under the base tier
— by 11% with the advanced tier enabled

i-acoma ShortCut: Architectural Support for TLLI NOIS 7

~~ group Fast Object Access in Scripting Languages



Outline

* Motivation and background
« Contribution

* QOur solution: ShortCut
— Key idea
— Design
— Compiler integration

« Evaluation
e Summary

- ShortCut: Architectural Support for .
Iq,v\s\o,mg Fast Object Access in Scripting Languages ] ILLI NOIS 8



Key ldea

Program Program Program

Object access

Object access

Dispatcher

obj,? jump Handler;

obj,? jump Handler,
obj,? jump Handleij_—;iii>

g Handler
CHandler =x| Actual object access
Actual object accesi——::::> 4__::::>

Conventional 15t Level: Plain ShortCut 2nd evel: Aggressive ShortCut

.
.
.
.t
Y
----
.
.
[ LA

sunt®
e

* Plain ShortCut transforms the call to the dispatcher into a call
to the correct handler

« Aggressive ShortCut transforms the call to the dispatcher into
an actual object access in place

4 ShortCut: Architectural Support for
[I-acoma Fast Object Access in Scripting Languages j[ ILLI NOIS 9

~~ group



Conventional Design

Program

call Dispatcherl

Dispatcher

obj;? jump Handler,

obj,? jump Handler,
obj;? jump Handleri__;iii>
CHandler

Actual object accesi——::::>

Time

Fetch Decode
Immediate operand
PC (Dispatcher)
BTB
Validate
PC | Dispatcher

A

Update BTB on misprediction

Execution of Call Dispatcher

« A program calls the dispatcher at an object access site
— A BTB entry holds the dispatcher address
* The dispatcher chooses a handler

I-acoma

~ group

ShortCut: Architectural Support for

Fast Object Access in Scripting Languages

I{1LLINOIS 10



Plain ShortCut Design

Program

Fetch Rpype ready
Time >
IC _Call Dispatcher, Rg,. ICTable
Rrype
“ ) 4
KX PC :() » PC | Type | Handler
atc BTB
: Validate
PC
------------ : Y
Handler

Redirect execution to the dispatcher
and update BTB on ICTable miss

Actual object access
> Execution of IC_Call R, ., Dispatcher

A program directly calls a handler at an object access site

— IC_Call takes an additional operand: object type
— A BTB entry holds a handler address

A new hardware table, ICTable, validates the BTB prediction

— Falls back to the dispatcher upon ICTable miss
i'OCOmCI ShortCut: Architectural Support for

~~~_ group

Fast Object Access in Scripting Languages

I{1LLINOIS

Aggressive ShortCut Design

Program
Fetch Ryype ready
Time >
" IIC Load Dispatcher, Ro .. [ussee . ICTable
) ype
) 4
PC :() » PC | Type
BTB

pc [Pcis_]

Redirect execution to the dispatcher
and update BTB on ICTable miss

Execution of IC_Load Ry,,., Dispatcher
A program performs an object access in place

- IC Load and IC_Store perform load and store, respectively
— A BTB entry holds the next address

Extend ICTable to store the offset of the property to access

The property of the object is read or written using the offset value from ICTable.

ShortCut: Architectural Support for
LQ\EQQE&,’ Fast Object Access in Scripting Languages m ILLINOIS 12

Compiler Integration

* Replace the call to the dispatcher with the new instructions
— IC_Call in Plain ShortCut
— IC Loador IC_ Store in Aggressive ShortCut

« Load the incoming object type and pass as an operand to
IC Call/Load/Store

* More details are in the paper

i-ocoma ShortCut: Architectural Support for j[TLLI NOIS 13

~~ group Fast Object Access in Scripting Languages

Outline

* Motivation and background
e Contribution
e Qur solution: ShortCut

« Evaluation
— Experimental setup

— Simulation Results

 Summary

- ShortCut: Architectural Support for .
LE{EQQD,% Fast Object Access in Scripting Languages ,., ILLINOIS 14

Experimental Setup

« Modified Google V8 JavaScript JIT compiler
— Implemented in the base tier of the compiler
— Application to the advanced tier is future work

« Extended SniperSim to model ShortCut hardware

« Benchmark Suites: Octane and SunSpider

ShortCut: Architectural Support for
LS{EQQQS Fast Object Access in Scripting Languages j[ILLINOIS 1®

Evaluated Configurations

Name Description

B Baseline: Unmodified V8

/ |deal: Baseline with perfect BTB for the IC
PS Plain ShortCut

AS Aggressive ShortCut

 Ideal (/) serves as an upper bound for BTB

» Aggressive ShortCut is currently limited to a simple form of
IC Load

I-acoma

~~~_ group

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

I{1LLINOIS 16



Normalized
Instruction Count (%)

Normalized
Instruction Count (%)

Instruction Count Breakdown

120

RN

80

E Code [J Runtime @8 IC
PS AS o

L

Base tier only

] -m [0 LG
|\|| IN il

I. 21%| 269

60

40}

20

Base + advanced tiers

Octane benchmark result

— SunSpider benchmark result is
in the paper

On average 26% of total instructions
executed in the dispatcher running under
the base tier

Plain ShortCut reduces the average
instruction count:

— by 21% running under the base tier
— by 8% with the advanced tier enabled

ShortCut: Architectural Support for
LS{EQQQS Fast Object Access in Scripting Languages j[ ILLINOIS 17



Branch Prediction

Average Branch Mispredictions Per Kilo Instruction (MPKI)

41%
<
0 2 4 6

54%

B

8 10 12 14 16

EDirect Olndirect ODispatcher BIC_Call

» 54% of branch mispredictions are in the dispatcher

« ShortCut reduces branch MPKI by 41% (from 14.4 to 8.5)

ShortCut: Architectural Support for
LS{EQQQSE Fast Object Access in Scripting Languages m ILLINOIS 18



Normalized
Execution Time (%)

Normalized
Execution Time (%)

Overall Performance Improvement

120

Plain ShortCut reduces the average
execution time

— by 37% running under the base tier
— by 13% with the advanced tier enabled

ShortCut outperforms perfect BTB (/).

Aggressive ShortCut delivers marginal
improvement over Plain ShortCut

13%
y

I-acoma ShortCut: Architectural Support for

~~—~ group Fast Object Access in Scripting Languages [LLINOIS 19



Conclusions

« Two main sources of slow object access in scripting languages
— Instructions executed in the dispatcher
— Hard-to-predict branches in the dispatcher

« Two levels of HW/SW optimization to accelerate object access
— Plain ShortCut: Skips the dispatcher execution
— Aggressive ShortCut: Skips even the handler execution
« Emulates fast object access in traditional languages

* Implemented our solution in Google V8 and improved execution
— by 30% running under the base tier
— by 11% with the advanced tier enabled

- ShortCut: Architectural Support for .
LS{EQQ}SE Fast Object Access in Scripting Languages ] ILLINOIS 20



ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

Jiho Choi, Thomas Shull,
Maria J. Garzaran, and Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://lacoma.cs.uiuc.edu

ISCA 2017

-acoma HiLiNois



Multi-tier Compiler

« Even if the advanced tier is enabled, a significant fraction of
the execution of programs uses code generated by the base
tier:

— It takes a while for the advanced tier to engage

— If any assumption made by any optimization fails (e.g.,
unexpected object type is encountered), the base tier is re-
iInvoked

— There are some functions in a program that the advanced
tier abstains from compiling, often based on heuristics;
they include eval constructs and other complicated cases

 Execution time is short

- ShortCut: Architectural Support for .
LS{EQQ}SE Fast Object Access in Scripting Languages ] ILLINOIS 22



Aggressive Shortcut

« |C_Store is not supported

« We note that of all the handler invocations
— 75.7% are loads
* 15.1% of them are covered by Aggressive ShortCut
— 24.3% are stores
« 17.2% of them can be covered by Aggressive ShortCut

ShortCut: Architectural Support for
LS{EQQQSE Fast Object Access in Scripting Languages m ILLINOIS 2



Future Work

* Full implementation of Aggressive ShortCut
— |C_Store

» Application to the advanced tier
— using Aggressive ShortCut

« Application to interpreters

ShortCut: Architectural Support for
LESQQ}&,’ Fast Object Access in Scripting Languages m ILLINOIS 24



ISA

» Conventional: Call Addr; . ..cher

* Plain ShortCut: IC_Call Addry;...icher Rrype
— If it hits in ICTable, call the handler
— Otherwise, call the dispatcher

* Aggressive ShortCut: IC_Load/Store Addry; . .icher R
— If it hits in ICTable, perform a load/store
— Otherwise, call the dispatcher

type

* Both: IC_Update Ry: Ry,
— Installs an entry in ICTable and updates BTB

 Both: IC Flush
— Flushes ICTable

ShortCut: Architectural Support for
LS{EQQQSE Fast Object Access in Scripting Languages m ILLINOIS 2



Experimental Setup: Processor Architecture

Core 4-wide out-of-order, 128-entry ROB, 2.66GHz
Branch Hybrid predictor

Predictor | BTB: 4K entries, 4-way, RR replacement, 96b/entry
Branch misprediction penalty: 15 cycles
ICTable | 512 entries, 4-way, RR replacement, 145b/entry
Caches L1-I: 32KB, 4-way, 4-cycle latency

L1-D: 32KB, 4-way, 4-cycle latency

L2: 256KB, 4-way, 12-cycle latency

L3: 8MB, 16-way, 30-cycle latency

Block size: 64B, LRU replacement

Memory | 120-cycle minimum latency

16 DRAM banks

- ShortCut: Architectural Support for .
I C’. c.omg Fast Object Access in Scripting Languages E ILLINOIS 26



Sensitivity Study

_ 100 m—=a Qctane
S .
> & -o SunSpider
£ oo}
|_
C
o
3 80f
Q
x
i
©
N 70}
©
£
o
Z 60}
Baseline 16 32 64 128 256 512 1024 Infinite

# of ICTable Entries

« PS outperformed B even with only 16 ICTable entries

« 512-entry ICTable is about 9 KB

ShortCut: Architectural Support for
LESQQ}&,’ Fast Object Access in Scripting Languages m ILLINOIS 27



Instruction Count Breakdown

= IC

= IC

Runtime

[ Runtime

|- Code

(]
©
o
(@]

I
o o o o o o o
o~ o [o¢] ©o < o~
— —

(%) 3UN0D uoIIdNIISU|
pazijew.oN

= IC

[ Runtime

|- Code

BO IO PSO ASO
me“m““

= IC

[ Runtime
““ ||I| nnjun

Hl Code

PS AS

[A

™M

T

I§ILLINOIS 28

ShortCut: Architectural Support for
Fast Object Access in Scripting Languages

ol
ol
ol
ol
0

100
8
6
4
2

o
o~
—

(%) 3UNOD UOoIPdNIISU|
pazijew.oN

I
o o o o o o
m 8 6 4 2

120

(%) 3UN0D UoIIdNIISU|
pazijew.on

(

%

) JUNOD UOIIdNIISU|
pazijewJoN

I-acomd
~e group



Branch MPKI Analysis

30 El Direct [ Indirect [ Dispatcher [ IC_Call

Branch MPKI

ShortCut reduces branch MPKI from 10.8 to 6.9 running under the baseline
compiler

» ShortCut avoids the hard-to-predict branch in the dispatcher

ShortCut: Architectural Support for
LESQQ}&,’ Fast Object Access in Scripting Languages m ILLINOIS 20



Overall Performance Improvement

(%) @wi] uonndax3
pazijewloN

0 10 PSO ASO

© o o o o
m8642

120

(%) aWi]l uonndaxgy
pazijewloN

! ! ! !
o O O O
0 OV < N

100

(%) awi] uoinNdax3
pazijewlon

o

! ! ! !
o O O O o
0 O < N

100

o
o~
—

(%) awi] uolnNdax3
pazijewlop

™

§ILLINOIS 30

G

n
@
o
o @©
2o
o ®
WL
5 2
N =
— 9
25
(d))
k3]
o .c
=
<
n
g
< 8
e
5
O o
£ 0
.m.m.
% Q
17
@®©
L

I-acoma
~~~. group


