
Automatically Mapp
Intelligent Memory AIntelligent Memory A

Jaejin Lee†, Yan SoliJaejin Lee , Yan Soli
‡University of Illinois a

†Michigan St
h //ihttp://iacoma.cs

ing Code on an
ArchitectureArchitecture

ihin‡, Josep Torrellas‡ihin , Josep Torrellas
at Urbana-Champaign
tate University

i d /fl.uiuc.edu/flexram

O iOverview
• Intelligent Memory
• Related Work
• Goals of This Study
• Mapping Algorithmapp g go t
• Evaluation
• ConclusionsConclusions

Architecture

y
ss

Th I t lli t MThe Intelligent Mem

Processors In Memory• Processors In Memory
Integrates processor lo
single chipsingle chip.

• Two approaches:
o IRAM Shamrock RAWo IRAM, Shamrock, RAW

architecture is main pro
o Active Pages, DIVA, Fle

replace memory chips i
Memory Architecture)

• The Intelligent Memory• The Intelligent Memory
heterogeneous mix of

A hit tory Architecture

y (PIM) Architecturey (PIM) Architecture
ogic and DRAM on a

W Smart Memories: the PIMW, Smart Memories: the PIM
ocessing unit in the system
exRAM: the PIM chips
in the system (Intelligent

y Architecture has ay Architecture has a
processors.

Th I t lli t M AThe Intelligent Memory Ar

Processor Chip

P.host

L1 $ L2 $

Memory Chip
Off-the-shelf

interconnection

L1 $

P.mem

DRAM

hit t (t’d)rchitecture (cont’d)

• P host: a wide issue• P.host: a wide-issue
superscalar with a deep
cache hierarchy.y

• P.mem: a simple,
narrow-issue superscalar

ith l ll hwith only a small cache.
• Compiler controlled

cache coherencecache coherence
o P.host writeback dirty lines

that might be read by
P memP.mem.

o P.host invalidates lines that
might be written by P.mem.

R l t d W kRelated Work

• Many different type of PIM
Shamrock, RAW, Smart M
DIVA FlexRAM etcDIVA, FlexRAM, etc.

• Previous work for Intellige
largely depend on prograg y p p g
running sections of code
processors.
P i k i l iti• Previous work in exploitin
heterogeneous environme
bigger granularity than oubigger granularity than ou
distributed systems.

M architectures: IRAM,
Memories, Active Pages,

ent Memory architectures
mmers and focuses on
on a set of identical memory

ll li ing parallelism in a
ent (Globus, Legion) has
urs and targets highly-urs and targets highly

The goal of this studThe goal of this stud
• How to automatically p• How to automatically p

Memory Architecture?
o A combination of statico A combination of static
o Partitioning code into s

partitioning and advanc
M i th tio Mapping the sections o
(processor affinity estim

o Overlapping executiono Overlapping execution
• The algorithms are ad

dydy
program the Intelligentprogram the Intelligent
?
c and run-time algorithms.c and run time algorithms.
smaller sections (basic
ced partitioning).

t th b tonto the best processor
mation).
s of the sections if possibles of the sections if possible.
aptive to the overheads.

B i P titi iBasic Partitioning

• Finds code sections (b
easy to extract and hay
o homogeneous computi
o good locality.

A b i d l i l• A basic module is a lo
o each nesting level has
o may span several subro may span several subr

basic modules) that are
ave
ing and memory behaviors

t hop nest, where
only one loop

routine levelsroutine levels.

B i P titi i (Basic Partitioning (c

N1 = N*2
DO I=1, N1
N2 X * 4N2 = X * 4
DO J = 1, N2
X = …
A(J I) =

DO J = 1, N2
X = …
A(J,I) = …A(J,I) = …
ENDDO
IF (X .LT. 1.0) THEN
X = …

(,)
ENDDO

ENDIF
ENDDO
C(N) = …
DO K 1 N 1DO K = 1, N-1
B(K) = C(K+1)
ENDDO

DO K = 1, N-1
B(K) = C(K+1)
ENDDO

t’d)cont’d)

N1 = N*2
DO I=1, N1
N2 X * 4
DO I=1, N1
N2 = X * 4N2 = X * 4
DO J = 1, N2
X = …
A(J I) =

N2 = X * 4
DO J = 1, N2
X = …
A(J,I) = …A(J,I) = …
ENDDO
IF (X .LT. 1.0) THEN
X = …

A(J,I) …
ENDDO
IF (X .LT. 1.0) THEN
X = …
ENDIF
ENDDO
C(N) = …
DO K 1 N 1

ENDIF
ENDDO

DO K = 1, N-1
B(K) = C(K+1)
ENDDO

DO K = 1, N-1
B(K) = C(K+1)
ENDDO

Ad d P titi iAdvanced Partitionin
• Increases the grain size ofIncreases the grain size of

reducing uniformity resultin
• Repeatedly applying expan
• Expansion: similar to the b

if P then i
…
else

M

…
e

endif
M

e

ng
f the module possiblyf the module, possibly
ng in compound modules.
nsion and combining steps.

basic partitioning

if P then
…
else

M

New module M’

endif
M

Advanced PartitioninAdvanced Partitionin
• Combining: two adjacentCombining: two adjacent

affinity are combined into
…

M1

M2

…

…
M2

…

if P then

M1
if P

else

endif

M2
else

endendif end

ng (cont’d)ng (cont d)
modules with the samemodules with the same
a new module.

M1

M2

N d l M’

then

M1
New module M’e

dif

M2
dif

Advanced PartitioningAdvanced Partitioning
• Compound modules resu

partitioning may be very l
times (harder run-time ad

• The algorithm selects adv• The algorithm selects adv
expected to be invoked o

• Peel-off statements until i
loop or a set of disjoint loo

•••
while(p){
•••
for(i=…){

while(p){
•••
for(i=…){(){
•••
}
•••
}

(){
•••
}
•••
}}
•••
}

g with Retractiong with Retraction
lting from advanced
arge and invoked very few

daptation).
vanced modules that arevanced modules that are
nly 1-2 times.
it reaches an all enclosing g
ops.

•••
while(p){
•••
for(i=…){
•••
for(i=…){
•••
}
•••
}

•••
}
•••
}
•••

M i (St ti)Mapping (Static)

Performance model (D• Performance model (D
o For numerical applicatio
o Execution time = To Execution time Tcomp

Tcomp = max (Tint /Nint , Tfp / Nfp, T

Tmemstall = sum (Miss_penaltyi)
i=caches

o Stack distance model fo
• Profiling

o For non-numerical appl
o Gather execution time a

invocations for all modu

Delphi tool)Delphi tool)
ons.
+ T t ll Tmemstall

Tldst / Nldst) + Tother

or the number of misses.

ications
and the number of
ules and subroutines.

Mapping (Dynamic)Mapping (Dynamic)

• Decision runs to determineDecision runs to determine
• Coarse and CoarseR (ada

Invocation 1 2 3 4 5 •••Invocation 1 2 3 4 5 •••
P.host
P.mem

Coarse

P.host
P.mem

CoarseR

• For both basic modules and com
• Fine and FineF are similar

but the decision runs are t
each invocation (high ove

Only for basic moduleso Only for basic modules

e affinitye affinity
aptive to workload)

mpound modules
r to Coarse and CoarseR, ,
the first two iterations of
rhead).

O l i E tiOverlapping Executi
• With basic partitioning• With basic partitioning.
• Module-wise parallel regio

region.g

Module-wise para

Module 1

Module 2 M

M

Module 3

M

on

on and module-wise serial

allel region

P.host P.mem

Module 1

Module 2

Module 3

Module 2

Module wise Serial RegionModule-wise Serial Region

• Static vs. Dynamic partitioning fo
balance the load considering cac
overheads.

Fully parallel

Distributable

Dopipe
do i=1,100
A(i) = A(i-1)+B(i)

P.hos
do i=
A(i) =
if moDopipe A(i) A(i 1)+B(i)

C(i) = A(i)
enddo

if mo
Write
Sign
endif

ddendd

nn

r overlapping execution to
che write-back and invalidation

P.host P.mem

P.host P.mem

st
=1,100
= A(i-1)+B(i)
od(i 4)=0 then

P.mem
do i=1,100
if mod(i+3,4)=0 then
Waitod(i,4) 0 then

eback
al
f
d

Wait
endif
C(i) = A(i)
Enddo

do

Evaluation Environment
Evaluated both numerical (by Polaris compiler) and non-
numerical (by hand) applications.
Mint based simulator.

Module Parameter Values
P.host::P.mem Frequency

Issue width
Functional Units

800MHz :: 800MHz
Out-of-order 6 :: In-order 2
4Int+4Fp+2Ld/St :: 2Int+2Fp+1Ld/St

P.host Caches L1-Data
L2-Data

Write-back overhead
Invalidation overhead

Write-through, 32KB, 2-cycle hit
Write-back, 1MB (512KB for non-
numerical apps.), 10-cycle hit
5 + 1 � num_cache_lines (background)
5 + 1 � num_cache_lines

P.mem Cache L1-Data Write-back, 16KB, 2-cycle hit
Memory
and Bus

Memory Latency (cycles)
Bus Type

160 from P.host, 21 from P.mem
Split transaction, 16-B wide

Average Characteristics of Basic Modules

Different applications have a different distribution of
module affinity.

Averages
Numerical

Applications
Non-numerical

Applications
Total Modules 13.2 (99.1%) 41.8 (63.0%)

Parallel Modules
Serial Modules

11.4 (70.9%)
1.8 (28.2%)

8.8 (1.3%)
33.0 (61.7%)

P.host Affinity
P.mem Affinity

4.0 (37.0%)
9.2 (62.1%)

31.0 (38.9%)
37.8 (38.9%)

Average Number of
Invocations 442.9 182,177

Average Module Size
(P.host cycles) 4,570 K 477 K

Overall Speedups
Our algorithm delivers speedups that are
comparable to the ideal speedup.

Apps. P.host(alone)
/AdvCoarseR

P.host(alone)
/OverDyn

Amdahl’s
2 P.hosts

2-processor
SGI

Swim
Tomcatv

LU
TFFT2
Mgrid

1.67
1.17
1.26
1.42
1.05

2.71
1.60
1.22
1.22
1.55

2.00
1.67
1.04
1.91
1.94

1.85
1.44
0.99
0.80
1.47

Average 1.31 1.66 1.71 1.31
Bzip2

Mcf
Go

M88ksim

1.37
1.37
0.97
1.01

-
-
-
-

1.01
1.01
1.01
1.03

0.99
1.00
0.57
1.00

Average 1.18 - 1.02 0.89

C l iConclusions

ff• Different applications
computing and memo
B i bi ti• By using a combinatio
algorithms, we achiev
to the ideal speedup oto the ideal speedup o
multiprocessor system

• A heterogeneous mix• A heterogeneous mix
exploited cost-effectiv

ffhave different
ory behaviors.

f t ti d d ion of static and dynamic
ve comparable speedups
on the 2 hoston the 2-host
ms.

of processors can beof processors can be
vely.

