Automatically Mapping Code on an
Intelligent Memory Architecture

Jaejin Lee™, Yan Solihin*, Josep Torrellas?
*University of lllinois at Urbana-Champaign
TMichigan State University
http://lacoma.cs.uiuc.edu/flexram

Overview

* Intelligent Memory Architecture
* Related Work

o Goals of This Study

 Mapping Algorithms

e Evaluation

e Conclusions

The Intelligent Memory Architecture

* Processors In Memory (PIM) Architecture
Integrates processor logic and DRAM on a
single chip.

e Two approaches:
o IRAM, Shamrock, RAW, Smart Memories: the PIM

architecture is main processing unit in the system
o Active Pages, DIVA, FlexRAM: the PIM chips
replace memory chips in the system (Intelligent
Memory Architecture)
* The Intelligent Memory Architecture has a

heterogeneous mix of processors.

The Intelligent Memory Architecture (cont’d)
Processor Chip * P.host: a wide-issue
superscalar with a deep
' cache hierarchy.
 P.mem: a simple,
- — narrow-issue superscalar
with only a small cache.
Off-the-shelf | « Compiler controlled
interconnection HiEmeRy Cily cache coherence
o P.host writeback dirty lines
- that might be read by
P.mem.

DRAM might be written

o P.host invalidates lines that

by P.mem.

Related Work

 Many different type of PIM architectures: IRAM,
Shamrock, RAW, Smart Memories, Active Pages,
DIVA, FlexRAM, etc.
* Previous work for Intelligent Memory architectures
argely depend on programmers and focuses on
running sections of code on a set of identical memory
DrOCEessors.
* Previous work in exploiting parallelism in a
neterogeneous environment (Globus, Legion) has
pigger granularity than ours and targets highly-
distributed systems.

The goal of this study

 How to automatically program the Intelligent

Memory Architecture?

o A combination of static and run-time algorithms.

o Partitioning code into smal
partitioning and advanced
o Mapping the sections onto

er sections (basic

partitioning).
the best processor

(processor affinity estimation).
o Overlapping executions of the sections if possible.

* The algorithms are adaptive to the overheads.

Basic Partitioning

* Finds code sections (basic modules) that are

easy to extract and have
o homogeneous computing and memory behaviors
o good locality.
* A basic module is a loop nest, where
o each nesting level has only one loop
o may span several subroutine levels.

Basic Partitioning (cont’d)

N1 = N*2
DO I=1, Nl

DO J = 1 N2

B(K) = C(K+1)
ENDDO

DOI 1, N1
N2=X*4
DOJ 1, N2

B(K) = C(K+1)
ENDDO

Advanced Partitioning

* Increases the grain size of the module, possibly
reducing uniformity resulting in compound modules.

 Repeatedly applying expansion and combining steps.

« Expansion: similar to the basic partitioning

If P then If P then

New module M’
else else

M

endif endif

Advanced Partitioning (cont’d)

 Combining: two adjacent modules with the same
affinity are combined into a new module.

M1

M2

if P then if P then
%

else else New module M’

.

endif endif

Advanced Partitioning with Retraction

« Compound modules resulting from advanced
partitioning may be very large and invoked very few
times (harder run-time adaptation).

 The algorithm selects advanced modules that are
expected to be invoked only 1-2 times.

» Peel-off statements until it reaches an all enclosing
loop or a set of disjoint loops.

iIe(p){
for(i=...{

}

}

Mapping (Static)

 Performance model (Delphi tool)
o For numerical applications.

o Execution time = T, + Temstal

Tcomp = max (Tint /Nint’ Tfp/ pr’ Tldst/ Nldst) + Tother

T emstan = SUM (Miss_penalty;)
i=caches

o Stack distance model for the number of misses.
* Profiling
o For non-numerical applications
o Gather execution time and the number of
Invocations for all modules and subroutines.

Mapping (Dynamic)

e Decision runs to determine affinity
e Coarse and CoarseR (adaptive to workload)

Invocation 1 2 34 5 eee

Coarse P.host] HE I
P.mem I
CoarseR P.host 1] BN N
P.mem I I

* For both basic modules and compound modules
e Fine and FineF are similar to Coarse and CoarseR,
but the decision runs are the first two iterations of

each invocation (high overhead).
o Only for basic modules

Overlapping Execution

« With basic partitioning.
 Module-wise parallel region and module-wise serial
region.

Module-wise parallel region

Module 1 P.host P.mem

Module 1
Module 3

Module 2

Module 2

Module 3

Module-wise Serial Region

e Static vs. Dynamic partitioning for overlapping execution to
balance the load considering cache write-back and invalidation

overheads.

Distributable m

P.host P.mem

do i=1,100 do i=1,100

A() = A@-1)+B(i) if mod(i+3,4)=0 then
if mod(i,4)=0 then Wait

_ do i=1,100
Dopipe INOEYYEMN:0
C(1) = A()
enddo

Writeback endif
Signal C@) =A()
endif Enddo
enddo

Evaluation Environment

e Evaluated both numerical (by Polaris compiler) and non-
numerical (by hand) applications.

e Mint based simulator.

Write-back overhead
Invalidation overhead

Module Parameter Values

P.host::P.mem |Frequency 800MHz :: 800MHz
Issue width Out-of-order 6 :: In-order 2
Functional Units 4Int+4Fp+2Ld/St :: 2Int+2Fp+1Ld/St

P.host Caches [L1-Data Write-through, 32KB, 2-cycle hit
L2-Data Write-back, 1MB (512KB for non-

numerical apps.), 10-cycle hit
5+ 1 [0 num_cache_lines (background)
5+ 1 [J num_cache lines

P.mem Cache

L1-Data

Write-back, 16KB, 2-cycle hit

Memory
and Bus

Memory Latency (cycles)
Bus Type

160 from P.host, 21 from P.mem
Split transaction, 16-B wide

e Different applications have a different distribution of

module affinity.

Average Characteristics of Basic Modules

Numerical Non-numerical
Averages Applications Applications
Total Modules 13.2 (99.1%) 41.8 (63.0%)
Parallel Modules 11.4 (70.9%) 8.8 (1.3%)

Serial Modules

1.8 (28.2%)

33.0 (61.7%)

P.host Affinity
P.mem Affinity

4.0 (37.0%)
9.2 (62.1%)

31.0 (38.9%)
37.8 (38.9%)

Average Number of

Invocations 442.9 182,177
Average Module Size
(P.host cycles) 4,570 K 477 K

Tomcat

._O

__1\\\\ﬂ2,$f

(\\HW\\ \/\M, f#o Moy,

RN Py,

VA .,

1\3&» ~

\ g,

| _ \\? .moﬂh,

gy

\\§%/%/ ",
LﬂﬂE?EEd.S!l%M&Q@#GW@T

L] UORNJed pazjjeuLIoN

% Busy N Memoryl Other ™ Idle BRWB&INY O |[deal

Overall Speedups

e Our algorithm delivers speedups that are
comparable to the ideal speedup.

Apps. P.host(alone) |P.host(alone) |Amdahl’s 2-processor
/AdvCoarseR |/OverDyn 2 P.hosts SGl

Swim 1.67 2.71 2.00 1.85
Tomcatv 1.17 1.60 1.67 1.44
LU 1.26 1.22 1.04 0.99
TFFT2 1.42 1.22 1.91 0.80
Mgrid 1.05 1.55 1.94 1.47
Average 1.31 1.66 1.71 1.31
Bzip2 1.37 - 1.01 0.99
Mcf 1.37 E 1.01 1.00
Go 0.97 - 1.01 0.57
M88ksim 1.01 - 1.03 1.00
Average 1.18 E 1.02 0.89

Conclusions

 Different applications have different
computing and memory behaviors.

e By using a combination of static and dynamic
algorithms, we achieve comparable speedups
to the ideal speedup on the 2-host
multiprocessor systems.

* A heterogeneous mix of processors can be
exploited cost-effectively.

Nomallzed Execution TIim

% Busy N\ Memory® Other |dle R WB&INYV U Ideal

LU

%)

s
___\\\m

?_____\,.

ik
i
| | \\NMN
_ AN
s

et

\\\%\\\\\\\\ \\»%.
.\\\\\\\\\\\\).

.Llllllunuuuuuuun

Ulll UojnooX3 pozjjeulioN

“ug

one
@o@&o

O,
f g

oeh.a

% Busy X Memory® Other ™ |dle B WB&INY U Ideal

TFFT2

D

[
i J\\\N\\XW O,

____ | Ve,

| lgm o,
A
1] k\\f Porng,
] % ey,
_ 1\\\\&% gy
| | "0,
IR v,
.4321&93?554321%“."“.0&\#;&‘
A HHA-HOO0O0O0O00000 0 fa_.

L] UOENJGXd PoZjjeulLION

% Busy X Memory® Other ™ |dle B WB&INY U Ideal

Normalized BExecution Tim

\

,,,,,,,,,,,,,,,,, -::c;,,,,,,.
/W M,

S B

% Busy X Memory® Other ™ |dle B WB&INY U Ideal

