
Parallel	Virtualized	Memory	Translation	
with	Nested	Elastic	Cuckoo	Page	Tables	

ASPLOS,	March	2022	

	 Jovan	Stojkovic,	Dimitrios	Skarlatos‡,	Apostolos	Kokolis,	Tianyin	Xu,	Josep	Torrellas	

	 jovans2@illinois.edu	

	 University	of	Illinois	at	Urbana-Champaign									‡Carnegie	Mellon	university	

Virtualization
	 Cloud	computing	virtualizes	hardware	for	strong	isolation	and	server	consolidation	

	 +	Virtual	Machines	multiplexed	over	hardware	resources	and	offer	a	safe	sand-boxing	

	 +	Lightweight	virtualization	frameworks	that	reduce	long	boot-up	time	

	 -	Address	translation	becomes	more	complicated	

Radix Page Tables
	 Organized	as	a	tree	data	structure	
	 Current	systems	support	4-level	tree	(soon	5)	

CR3	

VA	 11..0	20..12	29..21	38..30	47..39	

+	 +	 +	 +	

+	 PA	

PGD	 PUD	 PMD	 PTE	

Nested Paging

	 In	virtualized	environments	à	nested	paging	

	 Physical	memory	is	managed	by	the	hypervisor	
◦  Not	exposed	to	guest	OS	

	 Guest	Page	Tables:	gVA	->	gPA	

	 Host	Page	Tables:	gPA	->	hPA	
	 Current	systems	support	4-level	tree	
◦  TLB	miss:	Up	to	24	sequential	memory	references	

hL4
1

hL3
2

hL2
3

hL1
4 +

gL4
gPA

gCR3 gVA

gVA[47:39]

hL4
6

hL3
7

hL2
8

hL1
9 +

gVA[38:30]

hL4
11

hL3
12

hL2
13

hL1
14 +

gVA[29:21]

hL4
16

hL3
17

hL2
18

hL1
19 +

gVA[20:12]

hL4
21

hL3
22

hL2
23

hL1
24

gVA[11:0]

hPA

EPTP

To TLB

NTLB Caching

+

gL3
gPA

gL2
gPA

gL1
gPA

Data
Page
gPA

gL4
5

gL3
10

gL2
15

gL1
20

Hashed Page Tables

	 In	native	environments	à	1	memory	access	

	 In	virtualized	environments	à	3	memory	accesses	

	 Hash	collisions	
◦  Open	addressing	
◦  Chain	walking	
◦  Invoking	OS	

	 Single	HPT	shared	by	all	processes	
◦  No	support	for	page	sharing	
◦  No	support	for	multiple	page	sizes	

Elastic Cuckoo Page Tables (ECPTs)
	 Hash	collisions	resolved	via	cuckoo	hashing	
	 Per-process	private	ECPT	
◦  Multiple	page	sizes	+	page	sharing	

	 Dynamic	ECPT	resizing	

	 Exploiting	parallelism	

	 Structures:	
◦  Software:	Cuckoo	Walk	Tables	(CWTs)		

◦  Prune	number	of	parallel	requests	

◦  Hardware:	Cuckoo	Walk	Caches	(CWCs)	
◦  Cache	recently	accessed	CWT	entries	

Contributions

	 The	first	page	table	design	for	parallel	nested	address	translation:	Nested	ECPTs	
◦  Eliminate	all	but	three	of	the	potentially	24	sequential	memory	accesses	of	Nested	Radix		

	 Judiciously	limits	the	number	of	parallel	memory	accesses	issued	
◦  Shortcut	Translation	Cache	
◦  Caching	some	metadata	(host	PTE	CWT),	sometimes	adaptively	

	 Nested	ECPTs	outperform	state-of-the-art	Nested	Radix	tables	
◦  Avg.		1.19X	for	4KB	pages	
◦  Avg.	1.24X	for	4KB	+	2MB	pages	

	 Possible	migration	path	from	Nested	Radix	to	Nested	ECPTs	

Proposal: Nested ECPTs

	 Goal:	Speed-up	the	virtualized	translation	
process	by	exploiting	parallelism	

	 Employ	Elastic	Cuckoo	Page	Tables	(ECPTs)	

	 Plain	Nested	ECPTs	à	Directly	incorporate	
ECPT	structures	for	both	guest	and	host	

Design without Limiting Memory Accesses

hH

gVA

gCR3ij

hCR3ij

hPTE

hCR3ij

hPTE
To

TLB

hH

…

hH
hPTE

…

…

hPTE

…

gPM
D

gPTE

gP
U

D

hWay-1 hWay-1

gW
ay

-0

gW
ay-2

gWay-1

…

gH

gH

gPTE	 +

+

+

(1)	 (2)	 (3)	 (4)	
hPA

(1)  # g Page Sizes
(2)  # g Ways
(3)  # h Page Sizes
(4)  # h Ways

+

+

+

+

+

+

+

+

+

+ (3)	

gPA

(4)	

1 Step

hH

hH

hH

3 Step 2 Step

+

gH

Nested ECPTs With Caches
	 Previous	design	can	result	in	many	parallel	memory	requests	
◦  𝑛↑2  𝑥 𝑑↑2 	(Step	1),	𝑛 𝑥 𝑑	(Step	2),	𝑛 𝑥 𝑑	(Step	3)		(Step	2),	𝑛 𝑥 𝑑	(Step	3)		(Step	3)	

	 Cuckoo	Walk	Table	(CWT):	one	per	way	and	page	size	

	 Guest	and	Host	Cuckoo	Walk	Tables	(gCWT	and	hCWT)	

	 gCWT	and	hCWT	cached	in	the	Cuckoo	Walk	Caches	(gCWC	and	hCWC)		

	

Performance Improvement

0	

0.25	

0.5	

0.75	

1	

1.25	

1.5	

4KB	pages	only	 4KB	+	transparent	huge	pages	(THP)	

Average	Speedup	of	Nested	ECPTs:	Plain	Design	With	Caches	over	Nested	Radix	

Nested	Radix	 Nested	ECPTs:	Plain	Design	With	Caches	

3%	

5%	

Minor	performance	improvement	
Many	parallel	memory	accesses	

	
Need	to	analyze	and	redesign	translation	mechanisms	

Proposal: Advanced Design for Nested ECPTs

	 To	improve	Nested	ECPT	performance	need	to	redesign	
the	translation	mechanisms	in	the	MMU	

	 Goal	is	to	minimize	number	of	parallel	memory	requests	

	 1.	Shortcut	Translation	Cache	(STC)	

	 2.	Caching	some	metadata	(host	PTE	CWT),	sometimes	
adaptively	

	 3.	Not	caching	some	of	the	metadata	

	 4.	Page	tables	stored	in	4KB	pages	

New: Shortcut Translation Cache (STC)

	 On	a	CWC	miss	hardware	needs	to	fetch	CWT	entries	in	the	background	

	 -	hCWC	miss	à	Hardware	can	directly	access	hCWT	

	 -	gCWC	miss	à	Need	to	translate	gPA	of	gCWT	entry	to	hPA	of	gCWT	entry	
◦  Operations	and	memory	traffic	in	the	background	
◦  Hurts	performance	

	 Proposed	solution:	
◦  Cache	gPA	to	hPA	translations	of	gCWT	entries	in	a	small	cache	
◦  Called	Shortcut	Translation	Cache	(STC)	
◦  Conceptually	similar	to	the	NTLB	in	Nested	Radix	page	tables	

hH

hCR3ij

hPTE To
TLB

hH

…

hH
hPTE

…

hWay-1 hPA

+

+

+

+

+ (3)	

gPA

(4)	

3 Step

Caching PTE hCWT Entries
	 PTE	guest	CWT	exhibits	poor	locality	à	thus,	no	caching	

	 PTE	host	CWT	has	more	locality	à	Opportunity	to	cache	it	in	hCWC	

	 Step	1:	translate	gPA	to	hPA	of	gECPT	entries	
◦  Small	size	of	gECPT	and	large	coverage	per	CWC	entry	
◦  Always	cache	PTE	hCWT	

	 Step	3:	translate	gPA	to	hPA	of	data	pages	
◦  Locality	is	application	dependent	
◦  Adaptively	cache	PTE	hCWT	by	monitoring	hit	rates	hCWCs	

Leverage Page Size used by Page Tables

	 By	knowing	page	size	used	by	page	tables	we	can	optimize	page	table	walk	

	 Used	to	trim	number	of	parallel	memory	requests	issued	in	Step	1	

	 KVM	(host)	and	Linux	(guest	and	native)	always	place	page	tables	in	4KB	pages	
◦  Page	tables	are	usually	small,	no	need	to	allocate	them	in	huge	pagesà	avoid	internal	fragmentation	
◦  4KB	pages	are	more	flexible	à	help	with	external	fragmentation	
◦  Legacy	reasons	

	 Guest	page	table	always	stored	in	4KB	pages		
	 à	No	need	to	issue	requests	to	2MB	and	1GB	host	ECPTs	

Helps	with	the	tail	latency	during	application	warm	up		

Migration Path: Hybrid Design

	 Nested	ECPTs	radical	change	
	 Hybrid	design	
◦  Guest	OS	unmodified	à	Radix	Page	Tables	
◦  Hypervisor	modified	à	ECPTs	

	 Advantages	
◦  Legacy	guest	OS	
◦  Hypervisor	tuned	for	high-performance	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	 Nested	Hybrid	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	 Nested	Hybrid	 Nested	Hybrid	THP	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	 Nested	Hybrid	 Nested	Hybrid	THP	 Nested	ECPTs	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	 Nested	Hybrid	 Nested	Hybrid	THP	 Nested	ECPTs	 Nested	ECPTs	THP	

4.7	
Substantial	performance	improvement	of	Nested	ECPTs	over	Nested	Radix	

1.19X	with	4KB	only	
1.24X	with	4KB	+	Transparent	Huge	Pages	(THP)	

Evaluation Results: Application Speedup

0	

0.5	

1	

1.5	

2	

2.5	

3	

BC	 BFS	 CC	 DC	 DFS	 GUPS	 MUMMER	 PR	 SSSP	 SYSBENCH	 TC	 AVERAGE	

Sp
ee
du

p	

Nested	Radix	 Nested	Radix	THP	 Nested	Hybrid	 Nested	Hybrid	THP	 Nested	ECPTs	 Nested	ECPTs	THP	

4.7	Impact	of	each	of	the	Optimization	techniques:	
STC	à	7%	

Step	1	Always	Caching	à	4.6%	
Step	3	Adaptive	Caching	à	4.2%	
4KB	Pages	for	Page	Tables	à	0.5%	

More in the Paper
	 OS/Hypervisor	support	requirements	

	 Evaluation	results	
◦  MMU	and	Cache	characterization	
◦  Characterization	of	Nested	ECPT	walks	
◦  Memory	Consumption	and	Hardware	cost	

	 Comparison	to	other	advanced	designs	
◦  Agile	Paging	
◦  POM-TLB	
◦  Flat	Nested	Page	Tables	

Conclusion

	 The	first	page	table	design	for	parallel	nested	address	translation:	Nested	ECPTs	
◦  Eliminate	all	but	three	of	the	potentially	24	sequential	memory	accesses		

	 Judiciously	limits	the	number	of	parallel	memory	accesses	issued	
◦  Shortcut	Translation	Cache	
◦  Caching	some	metadata	(host	PTE	CWT),	sometimes	adaptively	
◦  Page	tables	always	stored	in	4KB	pages	

	 Nested	ECPTs	outperform	state-of-the-art	Nested	Radix	tables	
◦  Avg.		1.19X	for	4KB	pages	
◦  Avg.	1.24X	for	4KB	+	2MB	pages	

	 Possible	migration	path	from	Nested	Radix	to	Nested	ECPTs	

Parallel	Virtualized	Memory	Translation	
with	Nested	Elastic	Cuckoo	Page	Tables	

ASPLOS,	March	2022	

	 Jovan	Stojkovic,	Dimitrios	Skarlatos‡,	Apostolos	Kokolis,	Tianyin	Xu,	Josep	Torrellas	

	 jovans2@illinois.edu	

	 University	of	Illinois	at	Urbana-Champaign									‡Carnegie	Mellon	university	

Backup Slides

Caching gECPT-to-hECPT translations?
	 Due	to	its	importance	applied	to	both	Plain	and	Advanced	designs	

	 NTLB	in	Nested	Radix	caches	address	translation	of	a	level	of	the	guest	page	table	

	 In	Nested	ECPTs	parallel	to	NTLB	would	be	caching	hECPT	to	gECPT	translations	in	Step	2	
◦  Could	eliminate	one	of	the	three	sequential	steps	of	the	translation	process	

gVA gH + gCWC

gCR3i0j0

hCWC hH +

hCR3i0j0

hPTE
gPA

gPTE	 hCWC hH +

hCR3i0j0

hPTE To TLB
hPA *

CACHE
*

* Memory Access

1 Step 3 Step 2 Step

Avoid Stale hECPT entries
	 hPA	of	gPTE	changes	often	
◦  Due	to	cuckoo	rehashing,	inserting	an	entry	may	cause	shuffling	of	existing	entries	
◦  Due	to	dynamic	resizing	of	a	gECPT,	entries	migrate	from	old	to	new	gECPT	

	 On	a	change	of	hPA	of	a	gPTE		

	 à	hPTE	that	maintained	the	original	pointer	to	the	gPTE	becomes	stale	

	 To	avoid	flushing	such	translations,	neither	the	Plain	nor	the	Advanced	Nested	ECPT	design	
caches	the	mapping	of	hPTEs-to-gPTEs	in	Step	2	

Adaptive Caching Monitoring

Area and Power Comparison

MMU Busy Cycles

Cache Characterization

Walk-Type Distribution: guest and host

Latency Histogram

Memory Consumption
	 On	average	80MB	needed	(application	data	size	*	8B	page	table	entry	size)	

	 Nested	Radix	84MB	
◦  56MB	host	
◦  28MB	guest	

	 Nested	ECPTs	97MB	
◦  61MB	host	
◦  36MB	guest	

Comparison to Advanced Designs
	 Agile	Paging	–	combines	nested	and	shadow	paging	
◦  Idea:	levels	of	upper-level	page	tables	are	unlikely	to	be	changed	
◦  Need	4	sequential	requests	at	best	case	+	hypervisor	intervention	cost	
◦  We	model	Ideal	Agile	Paging:	4	sequential	memory	requests	at	most	+	caching	structure	+	no	host	cost	
◦  Nested	ECPTs	outperform	Agile	Paging	by	16%	on	average	

	 POM-TLB	–	large	in-memory	TLB	
◦  Eliminates	many	page	table	walks	
◦  L2	TLB	miss	needs	to	go	to	DRAM	and	can	still	miss	there	
◦  We	model	POM-TLB	with	perfect	page	size	predictor	
◦  Nested	ECPTs	outperform	POM-TLB	by	14%	on	average	

	 Flat	Nested	Page	Tables	–	combine	guest	radix	page	table	with	a	host	flat	page	table	
◦  Reduces	number	of	sequential	memory	accesses	from	24	to	9	
◦  Nested	ECPTs	outperform	Flat	Nested	Page	Tables	by	12%	(no	THP)	and	by	15%	(with	THP)	

