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Chapter 1

Introduction: The Illinois Research Agenda

For many decades, the microprocessor industry has seen a steady growth in CPU performance, driven by Moore’s
Law [113] and Dennard scaling [42]. Unfortunately, as feature size decreased below 130nm over a decade ago,
Dennard scaling ceased to apply, as static power became significant and voltage could not be decreased as fast as
before. To keep power consumption in check, designers stopped increasing the clock rate and started to integrate
multiple processors in one chip [41].

This technology shift has had major software implications. Before, single-threaded applications would
see their performance increase over successive microprocessor generations with little or no need for software
changes. Now, the performance of an application improves only if it can use an increasing number of concur-
rent threads. The problem is particularly acute for client (i.e., desktop and mobile) workloads which, unlike
server ones, are turnaround-oriented — parallelism is used to reduce response time or handle a more complex
problem. This is a difficult programming problem because it requires parallelization of many compute-intensive
algorithms, often with fine-grain sharing of complex data structures.

A key question is whether today’s multicore parallel computing context is fundamentally different from
the traditional high-performance parallel computing context. There are, in fact, two fundamental differences:
the importance of productivity and the market size. First, applications for desktop and mobile devices are
developed under enormous competitive pressure to minimize time-to-market and enhance functionality, leaving
less developer time for performance-oriented goals like parallelization. In this context, maximizing developer
productivity becomes vital: application teams are willing to accept moderate speedups at low developer cost
rather than invest the time to maximize speedups. Second, the client computing market is ten to a hundred times
larger than the high-performance one. This justifies far greater investments by industry, which in turn can enable
many high-level and specialized languages, libraries, frameworks, tools, and architectures addressing different
subsets of the market and aiming at improving programmer productivity.

If, however, client applications do not leverage parallelism, then users will see no performance improvement
as they buy a more powerful processor. They will have no incentive to upgrade their systems, and an industry
strongly dependent on a continuous demand for increasing performance will be threatened. This is the problem
addressed by the Illinois Parallelism Center, through the Universal Parallel Computing Research Center (UP-
CRC) funded by Intel and Microsoft during 2008-2010, and the Illinois-Intel Parallelism Center (I2PC) funded
by Intel during 2011-2013. The Center focused on three questions:
• What applications will require the increasing performance that parallelism can bring to client processors?
• What programming models and tools will facilitate productive development of such applications?
• What computer architectures will leverage most efficiently the many cores that future manycores may have?

This book summarizes the research results of the Illinois Parallelism Center, and includes a few key papers
resulting from the research.
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1.1 Applications
In a world that increasingly relies on technology to facilitate interpersonal communication, we envision

the killer client applications of the near future to be those that require high-quality, interactive tele-immersive
environments with significant amount of local processing. In the AvaScholar project described in Chapters 3
and 4, PIs John Hart, Minh Do, Thomas Huang, Sanjay Patel and Klara Nahrstedt study such an application: an
educational environment where an online instructor uses her hands to interact with real and virtual 3-D visual
aids while, in real time, gauging the engagement of thousands of online students by expression recognition
through their webcams. This application has posed many new challenges for parallel software engineering,
system design, and visual computing algorithm development. For example, synchronous communication relies
on minimizing latency, but the usual mobile-client/cloud-server relationship adds too much latency to client-
client communication. Hence, the PIs have used the new approach of using clients as cloud processors. 3-D
reconstruction of instructor and visual aids, along with student expression recognition required scaling up single-
user laboratory computer vision algorithms. It also needed new parallel algorithms for graphics rendering and
managing spatial data structures. The application has become so intriguing that the PIs plan to extend its use
beyond the educational environment.

One of the students in the project, Wanmin Wu, received the ACM SIGMM Best Ph.D. Thesis Award in
November 2012 for her thesis “Human-centric Control of Video Functions and Underlying Resources in 3D
Tele-immersive Systems”. She also received the Best Student Paper Award at ACM Multimedia in November
2011 [167]. PI Huang and his graduate student Usman Tariq won the First Prize in a competition for Automatic
Person-Dependent Emotion Recognition at the IEEE International Conference on Automatic Face and Gesture
Recognition in March 2011. A paper by student Liangliang Cao received the Best Paper Award at the Inter-
national Workshop on Big Data Mining in August 2012 [34]. In addition, another student, Raoul Rivas, has
finished his Ph.D. and will start working at Intel in the OS/power group.

• • •
Web browsing is a key client application where attaining high performance on mobile devices is critical. In

the Parallel Web Browser project of Chapter 5, PI Samuel King studies how to parallelize web browsing for
multicores. Rather than applying traditional techniques such as using parallel layout algorithms or applying
task-level parallelism to the browser, he proposes that browser developers focus on parallelizing web pages. He
presents the ADRENALINE prototype web browser [106], which consists of a server-side preprocessor and a
client browser. The former decomposes existing web pages on the fly into loosely coupled subpages or mini
pages; the browser then processes mini pages in parallel. Since each mini page is a “complete” web page, the
browser can download, parse, and render this web content in parallel, while still using single-threaded, mature
techniques in the client.

1.2 Software Development
Developing concurrent software is more difficult than developing sequential one. The programmer has to

think through all of the potential interactions between multiple concurrent threads. Subtle, non-repeatable bugs
occur because parallel programming today produces schedule-dependent, non-deterministic results. Low-level
notations rather than high-level, structured abstractions are widespread. To address these problems, the Illinois
Parallelism Center researched multiple directions.

• • •
In practice, the most widely-used approach to embrace parallelism is to retrofit a program incrementally by

changing the existing code — each small step being a behavior-preserving transformation or a refactoring. In
the Refactoring project described in Chapter 6, PI Danny Dig studies refactoring tools that allow developers
to interactively and safely change large existing code bases. His research has been driven by two questions:



CHAPTER 1. INTRODUCTION: THE ILLINOIS RESEARCH AGENDA 6

(i) what are the refactorings that occur most often in practice, and (ii) how can one automate refactorings to
improve programmer productivity and software quality. He opened the area of interactive tools for retrofitting
parallelism into sequential programs, which resulted in 11 publications that appeared in the top conferences
in Software Engineering. Two of his papers received awards: a Best Paper Award at ICST 2013 [105] and
an ACM SIGSOFT Distinguished Paper Award at ISSTA 2013 [137]. Some of Dig’s refactorings are already
shipping with the official release of the NETBEANS Integrated Development Environment (IDE), or are on-
going integration in the ECLIPSE IDE. Both IDEs are open-source and are used by millions of Java developers
everyday. Dig has taught his refactoring principles and tools to more than 800 participants that attended our
Center’s industrial courses, summer schools, and conference tutorials.

• • •

In the context of deep memory hierarchies, the development of efficient parallel applications has become
increasingly difficult. In the Tiling Notations and Optimizations project of Chapter 7, PIs David Padua and
Maria Garzaran discuss Hierarchically Tiled Arrays (HTAs), an API that facilitates parallel programming while
giving programmers the necessary control to attain good performance [20,32,72]. With HTAs, parallel programs
are written as a sequence of high-level operations on arrays or sets, so that they resemble sequential programs
— although there is parallelism inside each operator. Parallelism is controlled through partitioning of the data,
which gives programmers a powerful abstraction to express data distribution and locality. This approach has
advantages in program size, readability, portability, and control of determinacy. They also used tiles as first-
class objects for the automatic generation of linear algebra solvers through an autotuning system [58]. Based
on a description of the problem in the form of an equation, the system selects the best partition of arrays into
tiles and the best shape of parallelism that conforms to this partition. Finally, the PIs used tiles to facilitate the
process of compilation on multicores, distributed memory machines, and GPUs by automatically selecting the
best tiling shape and removing unnecessary barriers [175].

Two of the Ph.D. students from this project have joined Intel after graduation: James Broadman works in
the Software and Services Group, and Alexandre Duchateau works in the Programming Systems Group of Intel
Labs. The HTA technology is being actively used in two Intel-led exascale computing projects: the DARPA-
funded Runnemede project and the DOE-funded X-Stack Traleika Glacier project.

• • •

An important source of programmer hardship is that today’s parallel programming notations (languages
or libraries) permit concurrency errors that can produce schedule-dependent, non-deterministic results. In the
project Deterministic-by-default Parallel Programming described in Chapter 8, PIs Vikram Adve, Sarita Adve,
Madhusudan Parthasarathy, and Marc Snir observe that most compute-intensive algorithms used in client-side
programs are, in fact, deterministic [26]. Unfortunately, today’s parallel programming notations force devel-
opers to spend substantial time understanding and fixing the sources of unintentional non-determinism (i.e.,
concurrency errors). The DPJ project has developed powerful, largely compile-time, techniques based on a type
and effect system to guarantee the absence of concurrency errors, and also the stronger property of deterministic
results with sequential semantics [25, 27]. The Accord project has developed closely related verification-based
approaches for specifying, inferring, and checking thread contracts for safe parallelism [92]. Moreover, for the
many programs that mix non-deterministic with deterministic algorithms, DPJ provides a strong property called
“determinism-by-default,” which guarantees data race freedom, deadlock freedom, and strong atomicity to the
entire program, as well as sequential semantics for deterministic subsets of the program [28]. The Tasks-with-
effects programming model extends nearly all these guarantees to a much broader class of programs, including
server, interactive programs, and other programs with unstructured parallelism [77]. These guarantees eliminate
insidious concurrency errors and simplify reasoning about run-time behaviors of parallel code.
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The student Robert Bocchino was awarded the ACM SIGPLAN Distinguished Dissertation Award for his
Ph.D. thesis on DPJ. Alex Tzannes and PI V. Adve are working with Autodesk engineers to develop a static
checker for C++ applications parallelized using Intel’s Threading Building Blocks (TBB). The checker, called
Annotations for Safe Parallelism (ASP), is based on the DPJ and Accord projects. PI V. Adve co-founded a series
of workshops on Determinism and Correctness in Parallel Programming (WoDet). WoDet has been successful
in bringing together leading researchers in the area of correctness techniques for parallel programming.

• • •

GPUs are an increasingly popular platform for client computing. It has long been held that performance
programming for GPUs and CPUs require different source code development. In the MCUDA: CUDA for
Multicores project of Chapter 9, PI Wen-mei Hwu demonstrates that, with good high-level algorithm and data
optimization techniques, the same OpenCL kernel source code can be compiled for high-performance execution
on both CPUs and GPUs. This is attained by a collection of novel thread serialization techniques that enhance
vectorization, eliminate overhead in barrier synchronization, and coalesce privatized data. The early ACM LCPC
2008 paper [154] that describes the MCUDA compiler that first demonstrated this capability for the CUDA C
language has over 170 citations according to Google Scholar. It also inspired the Intel and AMD OpenCL
implementation for their multicore CPUs. The MCUDA project also led to the development of MxPA, a popular
product from MulticoreWare that enables multi-platform high-performance execution of OpenCL applications
in cloud, mobile, and consumer electronics platforms. Two papers that build on MCUDA to compile CUDA
kernel code into FPGA logic for energy-efficient execution won Best Paper Awards at the IEEE Symposium
on Application Specific Processors in April 2009 [124] and at the IEEE International Symposium on Field-
Programmable Custom Computing Machines in May 2011 [125].

• • •

The task of programming is made harder because multicores are becoming heterogeneous and rely on so-
phisticated energy management support. In the Scheduling for Energy Efficiency project described in Chapter 10,
PIs Maria Garzaran and David Padua develop scheduling algorithms to map vision applications onto heteroge-
neous mobile devices. Their algorithms take into account the properties of the different tasks to run, and the
performance and energy consumption characteristics of the heterogeneous cores in the chip. Experiments on
the Intel Ivy Bridge system show interesting trade-offs. A paper published by the PIs with Intel collaborators
was selected as one of the 5 Best Papers in the Conference on Languages, Compilers, Tools and Theory for
Embedded Systems in April 2011 [163].

1.3 Correctness
As long as today’s parallel programming languages and environments remain popular, the onus of correct-

ness will fall into the testing, verification, and debugging stages. Multiple concurrent threads can have a huge
number of possible schedules. As a result, programmers find it hard to reason about all of the potential inter-
actions between them. Unfortunately, a bug may manifest itself in only a small number of such schedules. In
the Verification and Testing Advances project of Chapter 11, PIs Darko Marinov and Madhusudan Parthasarathy
describe several novel techniques and tools to improve the testing and verification of parallel programs. One
line of work, on predictive testing, developed techniques that efficiently and automatically identify small sub-
classes of interleavings that are likely to cause various kinds of bugs to manifest themselves. The Penelope
tool has emerged as a mature platform for predictive testing for various kinds of bugs (e.g., data-races, atomic-
ity violations, deadlocks, or null-pointer dereferences) [149, 150]. Another line of work allows specifying, for
each test, a small set of schedules that should be explored for this particular test. Testing improvements also
include novel approaches for automatically generating tests and exploring interleavings to find more bugs faster
for evolving code. The open-source IMUnit testing tool [86, 87] is being considered for use at Google. The
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MuTMuT paper [69] was invited for journal publication [68]. Ph.D. student Vilas Jagannath graduated based on
this work [85].

• • •

In many cases, concurrency bugs are strongly timing dependent, and software instrumentation of the code
for debugging them alters their timing and prevents them from manifesting. In the Record&Replay and De-
bugging Architectures project described in Chapter 12, PIs Samuel King and Josep Torrellas propose hardware
architectures to aid program debugging and development without affecting the timing of execution. These archi-
tectures can be “always on”, even during production runs. In particular, the PIs have designed and constructed a
hardware prototype for Record&Replay (R&R) of parallel programs. The prototype, called QuickRec [127], was
built jointly with the Intel team of Gilles Pokam. It is built with FPGAs and has a full Linux-based OS. It has
special hardware that automatically records enough of the execution of a parallel program into a log, to be able to
reproduce the execution exactly later on. The prototype can record and replay complete Intel-Architecture (IA)
parallel applications. The PIs are currently exploring with Intel researchers many other uses of this R&R tech-
nology for debugging and security aids. The PIs have also designed other novel architectures for detecting and
avoiding other concurrency defects such as data races [116], atomicity violations [114], sequential consistency
violations [115], and determinism bugs. This work was featured in a Communications of the ACM Research
Highlight [80] and has been published in many high-visibility conferences [79,110,112], in several cases jointly
with Intel co-authors. Two Ph.D. students working in this project, Abdullah Muzahid and Radu Teodorescu,
received Intel Ph.D. Fellowships.

1.4 Multicore Architectures
Using multiprocessor systems reduces the need for complex processor design, but increases the complexity

of interconnecting them. Hence, forward-looking multiprocessor architectures must provide novel, simpler
memory subsystems and interprocessor communication fabrics. At the same time, the hardware architecture
must help provide a programmable environment for parallel software. The need for these characteristics resulted
in two multicore architecture projects.

• • •

In the Bulk Multicore Architecture for Programmability project, described in Chapter 13, PI Josep Torrellas
proposes a scalable shared-memory substrate designed to enable a programmable environment. Data sharing
is automatically managed with scalable hardware cache coherence based on the novel primitives of continuous
Chunks and Signatures. Chunks are groups of dynamically-contiguous instructions that execute atomically;
signatures are registers that encode address footprints. Chunk operation helps programmability by enabling
high-performance sequential consistency and novel chunk-based hardware primitives for parallel program de-
velopment (e.g., efficient R&R as in Chapter 12). The Bulk Multicore can operate with no changes to currently-
existing software stacks. At the same time, it keeps the hardware complexity in check by operating on chunks of
instructions in bulk, as opposed to single instructions at a time. The Bulk Multicore can deliver higher perfor-
mance than current systems with a compiler pass that marks chunks and aggressively optimizes the code inside
a chunk. Such optimizations can be unsafe in current machines, such as moving code across synchronization op-
erations or across potentially aliasing pointers [6,7]. Such optimizations are possible with Bulk because chunks
execute atomically. This work received a 2009 IEEE Micro Top Picks from Computer Architecture Conferences
Award [161], and has been published in several visible venues, including an article in the Communications of
the ACM [159]. Some of the publications are with Intel researchers. One Ph.D. student working in this project,
Aditya Agrawal, received an Intel Ph.D. Fellowship.

• • •
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Shared-memory is arguably the most widely used general-purpose multicore parallel programming model.
While it provides the advantage of a global address space, shared-memory programs are known to be difficult to
debug and maintain [102] due to unstructured parallel control, data races, and ubiquitous non-determinism. At
the same time, designing performance-, power-, and complexity-scalable hardware for such a software model
remains a major challenge. Directory-based cache coherence protocols are notoriously complex to verify [1],
hard to extend, and hard to scale. In the DeNovo project described in Chapter 14, PIs Sarita Adve and Vikram
Adve take the view that these problems are not inherent to a global address space paradigm. Instead, they oc-
cur due to undisciplined programming models that use arbitrary reads and writes for implicit and unstructured
communication and synchronization. There has been a recent surge of research on more disciplined shared-
memory programming models to address the software problem. The DeNovo project asks the question: “if
software becomes more disciplined, can we build more performance-, power-, and complexity-scalable shared-
memory hardware?” This work shows that the evolving software landscape represents a unique opportunity
for a new multicore architecture paradigm. Compared to conventional hardware driven by “wild shared mem-
ory programming models,” disciplined models can significantly simplify the hardware implementation, reduce
communication traffic, and provide comparable or better performance with commensurate energy savings. The
motivation and research agenda addressed by this work appeared in CACM in 2010, the first DeNovo paper won
the Best Paper Award at PACT 2011, and two students won Qualcomm innovation fellowships in 2012 to apply
these ideas to heterogeneous systems.

1.5 Training Efforts
Ultimately, the success of multiprocessors depends on the availability of programmers who understand the

problems and potential solutions to parallel programming. Therefore, training has been an important part of the
Center’s activities.

Inside the University of Illinois, we have offered courses on multicore programming (e.g., [44]). We have
revamped the Undergraduate Curriculum to include parallelism. We have integrated some of our research out-
comes in courses, such as annotations for thread-safety, testing tools, parallel programming patterns, and refac-
toring tools.

In an effort spearheaded by PI Danny Dig, the Center has taught Multicore Parallel Programming courses
outside the university. They include four one-week-long Summer Schools at Illinois, three one-week-long Tech-
nical Courses at Boeing, two conference tutorials, and one International Summer School in Singapore. These
courses educated more than 800 participants. While the majority were professional programmers, they also in-
cluded over 40 faculty from other universities. These courses have been highly rated by the participants. More
than 80% of the participants in the Summer Schools and Technical Courses at Boeing have rated the instructor
effectiveness and overall course quality as good or excellent. In anonymous surveys, Boeing engineers said “...
the multicore course presented by Prof. Dig was the best technical course I took at Boeing”.

PI David Padua lead an effort to assemble an Encyclopedia of Parallel Computing. With contributions from
more than 300 authors worldwide, the encyclopedia was published in 2011 [123].
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Chapter 3

AvaScholar Instructor

3.1 Problem Addressed
The goals of the Illinois Parallelism Center were to discover and define how we would program in an era

where performance improvements in consumer computing platforms came mainly from increased parallelism.
In this era, serial applications would no longer run faster on newer computers, causing a contraction of the
personal computing economy. Parallel programming had previously been relegated to high performance scien-
tific computing. We as a community needed to prepare for a time when all programming needed to be parallel
programming.

Research into new parallel programming tools needs applications to (1) motivate the need for higher perfor-
mance and (2) serve as a testbed to demonstrate that new tools are effective for real world examples. In the past,
the applications that drove consumer computing to its current state have been word processing and spreadsheets,
with e-mail and browsing added more recently. Video games have also merged into the consumer computing
application spectrum. When we combine this evolution of applications with our own expectations, we envision
that networked visual applications will dominate the foreseeable applications landscape. Intel further demon-
strated their commitment to this direction by initiating their first Intel Science and Technology Center with a
focus on visual computing.

AvaScholar was designed as a testbed application that contained the elements of networked visual comput-
ing that we expect of future applications. It is a system designed to facilitate remote synchronous education,
where a single instructor teaches a set of remote participants connected through standard consumer computing
devices (e.g., desktop, laptop or mobile computers). This choice of application was aided by the fact that we are
quite familiar with online education and have already used and developed a wide variety of systems for remote
education and teleconferencing.

The AvaScholar system as shown in Figure 3.1 consists of two components. The AvaScholar Instructor
component is a system that captures and reconstructs a real-time 3-D model of the instructor. This 3-D model can
be combined with any 3-D models of visual aids and transmitted to the remote students for arbitrary-viewpoint
observation, which built on our previous remote telepresence work [145].

The AvaScholar Student component uses the student’s computer camera to report statistics on engagement
and demographics, using soft biometric software to estimate race, sex, emotion and other indicators of the
students as they participate in an online class session. In this chapter we focus on the AvaScholar Instructor
component, whereas the next chapter details the AvaScholar Student.

Figure 3.2 illustrates the individual components of AvaScholar and their dependencies. At the top, the
instructor module depends on surface reconstruction, whereas the student module relies on soft biometrics. We
examined parallel methods for depth reconstruction using stereo images and using Kinect-style active depth,
which can be improved through Kinect-fusion style ICP alignment. All of these techniques rely on fast kernels
for nearest neighbors, for which we investigated parallel k-D tree algorithms, and image feature analysis, for

11
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Figure 3.1: AvaScholar consists of the Instructor module (left), which transmits a 3-D version of the instructor
interacting with visual aids to the Student module (right), which also measures student engagement via webcam
soft biometrics and reports aggregate statistics back to the instructor.

Figure 3.2: The “House of Cards” illustrating the different components of AvaScholar and their interdependence.

which we created the ViVid parallel image analysis library.
Nearest neighbor algorithms are particularly challenging for parallel programming. Figure 3.3 shows a spec-

trum of scalability for the parallelism of various visual computing processes, as measured by Intel production
applications. While none scales perfectly, two of the curves fall well below the rest, and will pose the great-
est challenge to parallelizing visual computing past 64 cores. These two scalability challenges are cloth and
rigid-body physics. Both critically rely on collision detection, especially cloth to avoid self interpenetration.
Collision detection itself relies on proximity queries, which largely rely on hierarchical spatial data structures to
accommodate the varying range of scales found in modern video games and simulations. The construction and
query of these hierarchies can lead to execution and memory divergence that inhibits scalable performance.

3.2 Contributions
Our work on visual computing has focused on areas that especially challenge scalable parallel programming.

For manycore GPU programming, these scalability challenges are largely due to code divergence. Our first con-
tribution examined shader performance when rendering photorealistic scenes. When rendering an image, each
pixel is run through a program, called a “fragment shader,” that uses its geometric information to run a lighting
simulation to determine what color it should be. While this lighting simulation can be uniform across a scene,
leading to fast data parallelism as it is applied to pixels from various geometric contexts, most scenes depict a
wide variety of different materials that each require unique code segments in the lighting simulation. Hence,
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Figure 3.3: The parallel visual computing processes most problematic for scalability are cloth and rigid body,
because both rely on collision detection. Source: Jim Held, Intel Fellow, personal communication .

materials lead to shader divergence when a scene is rendered. We sought to determine under what conditions
it was better to coalesce shading requests by material to reduce code divergence and improve performance. We
discovered that the cost of sorting shader requests by material justified the improvement in reduced divergence
performance for scenes with several different shaders, or even a few complex shaders (e.g., wood or hair) [78].

We studied surface reconstruction, through parallelization of a state-of-the-art film-quality stereo depth al-
gorithm from Disney’s Zurich Research Center [17]. This algorithm measures the disparity between two pre-
registered and aligned images by finding matching pixels in each scanline, taking special care that some features
may occur in the middle of a pixel in one image and between pixels in the other image. The algorithm’s disparity
searchers also utilize several consistency passes that can lead to race conditions and divergence that we used as
testbed code for our Center’s safe parallel programming tools. Our parallel re-implementation of this algorithm
on a 32-processor Intel Nehalem system accelerated it from its reported serial running time of 20 minutes to
an optimized parallel running time of 20 seconds. Further scaling will be necessary to use this high-quality
approach for real-time depth computation.

We also investigated parallel algorithms for processing depth images [53], such as those generated by the
Kinect depth camera. We describe a propagation approach to filling in color and depth for the regions that can
be seen from a user viewpoint but were occluded from the depth sensor. Two dimensional image propagation
leads to significant special-case divergence and race conditions, which were overcome by reducing them to eight
one-dimensional cases using epipolar geometry which could be collected and streamed efficiently.

Depth images are noisy and some areas are occluded in any single depth image. Kinect fusion and other
techniques have shown that by aligning multiple depth images, a more complete and cleaner averaged model
can be generated. A common method for geometric 3-D alignment is the Iterated Closest Point (ICP) algorithm,
which moves two point clouds closer by averaging the displacement vector from each point in one point cloud
to its nearest point in the other point cloud. We constructed a fast parallel manycore GPU method for ICP using
a volumetric model (a 3-D array) that measured and recorded a distance function for the other point cloud [95].
As the number of depth images increases, this approach outperforms classical ICP.

We investigated several parallel nearest-neighbor methods. Such nearest-neighbor queries are commonplace
in many graphics, vision and multimedia applications, including sparse data reconstruction, image stitching,
machine learning, vector quantization and even the ICP algorithm. Our ParKD approach [38] sought to build
k-D trees that optimized the Surface-Area Heuristic (SAH), which seeks to subdivide bounding boxes into
smaller bounding boxes that minimize their surface area. We collaborated with DeNovo and DPJ researchers
to investigate two approaches to parallel k-D tree construction: a nested parallel approach and an in-place
method. The nested parallel approach was faster on our 32-core system but the in-place algorithm exhibited
better scalability and we expect it to outperform the nested approach on finer-grain parallel systems.
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We also revealed a vulnerability of existing parallel k-D tree construction algorithms that tend to serialize
the construction of the upper levels of the k-D tree. This serialization creates an Amdahl’s law condition that
degrades the performance of such algorithms as the number of processors increases. We utilized a two-phase
construction algorithm that streams through data in parallel in the upper levels of the k-D tree to find the optimal
divisions, which avoids this serialization.

We also collaborated on a render server to reduce computational load on lightweight mobile clients [146].
Our implemented method for delivery of the AvaScholar Instructor is based on WebGL and runs in any compat-
ible browser.

3.3 Lessons Learned
We learned the following:

1. The GPU performance gain resulting from collecting similar jobs often overcomes the cost of sorting the
jobs. However, the resulting memory fragmentation can often degrade performance.

2. Volumetric ICP reduces the need for nearest-point queries by using a volume-based distance function, but
this benefit does not outperform ICP until ten or more depth images are merged.

3. Parallelization of spatial hierarchies needs to include all nodes, including the upper nodes, for scalability.

4. In-place construction of spatial hierarchies reduces the amount of data transfer, but also reduces memory
coherence.

5. Numerous opportunities exist for parallelism in visual computing that cannot be detected automatically
but require domain knowledge, such as epipolar geometry.

3.4 Future Work
We continue to work on high-performance methods for stereo reconstruction, high-dimensional neighbor

queries (e.g., FLANN) and image stitching, for a variety of concurrent projects. We also plan to continue
to pursue AvaScholar as an remote synchronous educational tool, with applications for Massive Open Online
Courses (MOOCs).

3.5 Key Papers and Other Material
We have included two papers in this book. The first one is “Parallel SAH k-D Tree Construction” from

High Performance Graphics 2010 [38]. The other is “Immersive Visual Communication” from the IEEE Signal
Processing Magazine 2011 [53].



Chapter 4

AvaScholar Student

4.1 Problem Addressed
In the previous chapter, we introduced AvaScholar Instructor, which supports seamless 3-D reconstruction

and streaming of the instructor’s scene to students. At the students’ side, another vision system is designed to
observe and understand the participation of the users. In a traditional lecturing setup, students’ participation
is monitored and responded directly by the instructor. This method is not efficient in large classroom setups
and remote online lectures. In AvaScholar Student, we design a student site setup that includes a screen which
shows the video cast from the instructor and a camera which captures the student’s appearance dynamics. These
visual data are then analyzed by local and distributed vision algorithms to estimate the participation behavior
of the student. The types of visual data that we concentrate on in this project includes 3-D geometrical motion
extracted by face tracking and dynamic appearance of the human faces analyzed by robust image representation.

The first problem we address is facial 3-D geometrical reconstruction and tracking. Using as input a single
low-resolution 2-D camera, we developed a novel non-invasive, reliable, fully automatic realtime algorithm for
reconstructing a 3-D facial model and tracking nonrigid motion. We designed a new optimization procedure
called Iterative Linearized Optimization [99] to concurrently optimize both rigid and nonrigid facial motions in
linear time from a set of visually-tracked landmark points [98]. The nonrigid motions are coded into MPEG
4’s facial animation parameters. These coded facial motions can be used for a number of applications, in-
cluding emotion recognition [101], attention detection [104] which conveys the inner state of the student, and
performance-driven avatar animation [99], which allows very low bit-rate avatar-based communication between
student and instructor. Figure 4.1 illustrates the workflow of the 3-D face tracking algorithm on an input of a
2-D video.

Figure 4.1: Workflow of our face tracking system.

In this chapter, we introduce one example application for face tracking, namely determining where a subject
is focusing her gaze. Attention and interest are correlated with gaze fixation in a number of settings. Therefore,
if a face tracker can estimate the location and duration of a subject’s gaze, it may also be able to determine what
is capturing the subject’s attention. This is particularly useful in online classroom sessions when a student’s gaze
tends to drift from their computer monitors. Having software that can detect when a student is losing focus will
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be instrumental in constructing effective learning environments.
Our system for estimating a subject’s gaze location can be split into two separate modules via a client-server

model. First, a program on the client runs the face tracking application and extracts various different facial
features of the subject over time. These features are bundled into packets and transmitted over TCP/IP to a
server. The server receives the packets sent from the client and computes where on the monitor the subject is
fixing her gaze. If the student’s gaze is outside of the monitor’s boundaries for a prolonged amount of time, then
the subject is considered to be disengaged and a warning flag is raised. A graphical interpretation can be seen
in Figure 4.2 below.

Figure 4.2: Attention detection system layout.

3-D facial tracking and its applications are designed to give real-time performance in a laptop PC computer.
However, the end points of the online learning participants are not powerful parallel PCs anymore but mobile
light-weight devices, such as smartphones and tablets. The problem becomes how to enable computationally-
heavy tasks in AvaScholar such as face tracking on thin mobile devices. Hence, another goal of our work is to
research the feasibility of using mobile devices as part of the AvaScholar system. Our approach to this problem
is two-fold:

1. We employ cloudlets. The cloudlet concept was introduced by Satya et al. [141], who pointed out early
on that the combination of heavy processing in clouds, and usage of mobile devices will need a novel
computing model which allows people to get access to cloud computing resources with their mobile
devices. The novel computing model encompasses a cloudlet — a local powerful server to which mobile
devices can offload their computationally-intensive tasks. In our AvaScholar system, this translates into
that each participant replaces its powerful parallel PC, equipped with cameras(s), microphone, speakers,
and graphics, with a pair of devices: the mobile device and its corresponding cloudlet, called mobile-
cloudlet. The mobile-cloudlet pair requires then a distributed solution for the computationally heavy
tasks.

2. We employ multi-threading on each device of the mobile-cloudlet pair to further increase the concurrency
and parallelism among computationally-heavy subtasks.

The challenges of our approach are

• Functional split (parallelization) of computationally-heavy tasks such as face tracking into individual sub-
tasks.

• Decision of locality for each subtasks with respect to mobile smartphone/tablet and cloudlet components.

• Impact of the network connecting the smartphone/tablet and the cloudlet components.

While human behavior can be conveyed through geometrical structures of the face which are analyzed by
face tracking, appearance dynamics of the facial image are also important clues for understanding the sub-
ject’s inner state. To exploit this important type of clues, we propose a new method for non-frontal expression
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recognition. The increasing applications of facial expression recognition, especially those in Human Computer
Interaction, have attracted a great amount of research work in this area in the past decade. However, much of the
literature focuses on expression recognition from frontal or near-frontal face images [156]. Expression recogni-
tion from non-frontal faces is much more challenging. It is also of more practical utility, since it is not trivial in
real applications to always have a frontal face. Nonetheless, there are only a handful of works in the literature
working with non-frontal faces. We approach this problem by proposing an extension to the very popular image
classification framework based upon the Bag-of-Words (BoW) models [157].

We develop a simple yet effective supervised learning method of GMM for Soft Vector Quantization (SVQ)
applied to facial expression recognition. The objective function is smooth, and can be easily solved by gradient
descent. We term the resulting image features as Supervised SVQ (SSVQ) features. Our extensive experiments
on the multiview face images, generated from the BU-3DFE database for recognizing expressions, show that
our approach significantly improves the resulting classification rate over the unsupervised training counterpart.
When our method is combined with Spatial Pyramid Matching, it also outperforms the published state-of-art
results, which were achieved with a much more complex model.

4.2 Contributions
4.2.1 3-D Face Modeling

The first contribution of AvaScholar Student is a fully automatic real time system for 3-D face model fitting
and tracking from monocular 2-D videos. The system accurately fits facial images into a highly-detailed 3-
D morphable model [100] which assists reliable tracking and allows realistic avatar rendering. The system
is powered by a novel efficient tracking and fitting algorithm based on an iterative linearized procedure. The
experiments on public datasets show that the system achieves high performance on face tracking and avatar
rendering and is suitable for animation and telepresence applications.

4.2.2 Performance Driven Avatar

Based on the face-modeling algorithm, we develop a demonstration of a performance-driven avatar and
attention estimation. After the initial fitting step, the shape of the face is recovered by applying the extracted
identity parameters. The textures of the model’s vertices are mapped from the images. The full textured model
is then used as an animated avatar.

In the motion-fitting step, we analyze the video frame and estimate the facial motion represented by FAP
values. These FAP values can be used to control any compatible face model to generate a facial animation that
resembles the facial actions of a performer in the video. The deformed face is recovered on the FAP spanned
subspace.

When the rendered avatar is of the performer, the system will be acting as a video encoding and decoding
system. The avatar can also be of another subject or a cartoon character. In that case, we have a performance-
driven animation. Figure 4.3 demonstrates an example of face tracking results on a video frame which is used
to play the avatar of the subject, and another prebuilt avatar named ”Obama”.

4.2.3 Attention Detection

To detect the gaze point of the subject during tracking at the client module, several facial features are col-
lected for transmission to the server. These features include the pixel locations of the eyes as well as the head
pose via three rotation angles corresponding to pitch, yaw, and roll of the head. These parameters are then col-
lected into a packet and transmitted to the server via the TCP/IP protocol, where they are then used to compute
the world coordinates of the subject’s gaze.

Upon receiving a packet from the client, the server performs three steps to determine the 3-D location of
the subject’s gaze. First, the 3-D world coordinates of the subject’s eye are computed. Then, a direction vector
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Figure 4.3: Example of 3-D performance-driven avatar.

originating from the eyes is constructed via the estimated pose. Finally, the gaze point is considered to be the
intersection point of the z plane corresponding to the monitor and the line from the aforementioned line from
the subject’s eyes. The geometry model used in the process is shown in Figure 4.4.

Figure 4.4: System visualization.

After estimating the location of the subject’s gaze, the server checks whether the point is within the monitor’s
dimensions. If the subject’s gaze is outside the monitor’s boundary for a prolonged amount of time, then the
server sends a signal to alert the subject that she is not engaged.

4.2.4 Mobile-Cloudlet Design Framework

For the cloud-based face tracking design, we have developed (1) a mobile-cloudlet design framework; (2) a
scalable software architecture; and (3) an experimental validation using Android-class mobile devices such as
Nexus 4 and Nexus 7.

The validation and experimental environment of our mobile-cloudlet framework is shown in Figure 4.5.
To enable the execution of the face detection and tracking task in a distributed manner rather than on a single
powerful parallel machine, we have considered multiple splitting options of the functional data flow. One option
was to do face capturing, 3-D model fitting and face rendering on the mobile device, and visual tracking and
motion model-fitting on the cloudlet. The second option was to do the face capturing and face rendering on the
mobile device, and move the computation of 3-D model fitting, visual tracking, and deformation and motion
model-fitting on the cloudlet.

The second option is best, since current mobile devices are not powerful enough and fast enough to do 3-D
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Figure 4.5: Overview of the software architecture. Green lines and blocks denote Java code; orange lines and
blocks denote C/C++ code.

model fitting. On the other hand, we had the hypothesis that WiFi networks have the bandwidth availability to
transmit video streams. Overall, this particular (mobile-cloudlet) architectural choice meant that we traded-off
bandwidth for time.

In summary, the functional split and locality of subtasks in our architectural framework included the video
capturing, as well as the simple face rendering for avatar display on the mobile device; the core of computation
with 3-D model fitting upon first video frame and visual tracking with motion model fitting was included on the
cloudlet. This functional split and locality of individual subtasks meant that raw video frames are sent from the
mobile device to the cloudlet, and tracking-augmented frames are sent from the cloudlet to the mobile device.

4.2.5 Appearance-Based Emotion Recognition

We propose a novel supervised soft vector quantization model for appearance-based facial expression recog-
nition. The discriminative training of GMM produces significant performance gains compared with the unsu-
pervised counterpart. Combined with the spatial pyramid, our approach achieves state-of-the-art performance
on the BU-3DFE facial expression database with simple linear classifiers.

4.3 Lessons Learned
We learned the following:

• The feature-based approach has a significantly-improved efficiency over the appearance-based approach
for face-modeling algorithms, while preserving most of the details of facial structure and motion for
animation applications.

• Face tracking can provide accurate-enough pose information for attention-level recognition, although for
exact gaze detection, eye sight direction recognition is required.

• Faster processors and multicore/multi-GPU/CPU architectures on smartphones and tablets are necessary.
The reason is that if one can do some of the video processing tasks at the mobile device, and send to the
cloudlet only selected points for further processing, the bandwidth demand is smaller, and less computa-
tion is needed at the cloudlet, speeding up the overall face-detection and tracking process.
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• High-bandwidth and time-sensitive wireless networks for smartphones and tablets are necessary. The
reason is that if one has high-bandwidth availability for video streams, and capabilities for timing control
exist, the RTT overhead can be kept very small, ensuring low RTT and EED between mobile device and
cloudlet.

• The discriminative training of GMMs for expression recognition produces significant performance gains
compared to the unsupervised counterpart.

4.4 Future Work
In the near future, the face-tracking engine will be updated to take advantage of the RGBD signal that may

be available in depth cameras. The z dimension of the feature point will help estimate the motion parameters
more accurately and efficiently.

The attention-detection module will be upgraded to accurately detect the eye sight by analyzing infrared
images of the eyes. The eye sight will be combined with pose angles to determine the subject’s point of gaze.

The cloud architecture will be further exploited for higher performance. We plan to investigate the relation-
ship between mobile devices, cloudlets and clouds for multimedia support under diverse user behaviors. We
will consider groups of mobile users sharing cloudlets when conducting face-detection and tracking and other
multimedia-specific tasks.

For expression recognition, we will explore supervised training for full GMM parameters (mean, mixture
weights, and covariance matrices) with proper regularization. Incorporating SPM in supervised training will
also be investigated, to make each level of SPM more discriminative.

4.5 Key Papers and Other Material
We have included two papers in this book. The first one is “Maximum Margin GMM Learning for Facial

Expression Recognition” from FG 2013 [157]. The other is “Expression Recognition from 3-D Dynamic Faces
Using Robust Spatio-Temporal Shape Features”, from FG 2011 [101].



Chapter 5

Parallel Web Browser

5.1 Problem Addressed
Web browsing on mobile devices is slow, yet recent reports from industry show that performance is crit-

ical [108, 170]. Google and Microsoft reported that a 200ms increase in page load latency times resulted in
“strong negative impacts”, and that even delays of under 500ms “impact business metrics” [142].

One source of overhead for web-based applications (web apps) is the network [164]. Engineers have at-
tempted to mitigate this source of overhead with increased network bandwidth, prefetching, caching, content
delivery networks, and by ordering network requests carefully.

A second and increasing source of overhead for web apps is the client CPU [57,91]. Web browsers combine
a parser (HTML), a layout engine, and a language environment (JavaScript), where the CPU sits squarely on
the critical path [15, 63, 109]. Even though the serial performance of mobile CPUs continues to increase, the
constraints on mobile device form factors and battery power impose fundamental limitations on further improve-
ment.

Recent work proposes exploiting parallelism to improve browser performance on multi-core mobile plat-
forms [30, 140], including parallel layout algorithms [15, 109], and applying task-level parallelism to the
browser [71]. These special cases, however, only speed up web apps that make heavy use of specific features
(e.g., Cascading Style Sheets (CSS)), or are limited to the tasks that the browser developers identify ahead of
time. Unfortunately, years of sequential optimization, the sheer size of modern browsers (e.g., Firefox has over
three million lines of code), and the fundamentally single-threaded event-driven programming model of modern
browsers make it challenging to generalize this approach to refactor today’s browsers into fully multi-threaded
parallel applications.

5.2 Contributions
Our position is that browser developers should focus on parallelizing web pages. By taking a holistic ap-

proach, we anticipate an architecture that can work on a wide range of existing commodity browsers with
only a few minor changes to their implementation, rather than a major refactoring of existing browsers or a
re-implementation of these mature and feature-rich applications.

To back up our position, we present the design for Adrenaline [106], a prototype system that attempts to
speed-up web apps for multi-core mobile devices, like smart phones and tablets. Adrenaline consists of two
components, a server-side preprocessor and a client (i.e., browser) that renders pages concurrently on the mobile
device. The Adrenaline server decomposes existing web pages on the fly into loosely coupled sub pages, or
mini pages. The Adrenaline browser processes mini pages in parallel. Each mini page is a “complete” web page
that consists of HTML, JavaScript, CSS, and so on, running in a separate process. Therefore, the Adrenaline
browser can download, parse, and render this web content in parallel while still using a single-threaded and
mature browser on the client.

Figure 5.1 shows the workflow when a user accesses wikipedia.org with the Adrenaline browser. First,
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the browser issues a request to the Adrenaline server. Second, the Adrenaline server fetches the contents of the
web page, optimizes and decomposes it into mini pages. Third, the browser downloads, parses, and renders
each of these mini pages in separate processes running in parallel. The browser is responsible for properly
aggregating displays, synchronizing global data structures, and propagating DOM and UI events to maintain
correct web semantics. In this example, the server decomposes the wikipedia.org page into four mini
pages, and the browser runs four processes in parallel to render the page.

Component % of CPU 4 cores 16 cores
V8 16% 1.13 1.17

X & Kernel 17% 1.14 1.19
Painting 10% 1.08 1.10
libc+Qt 25% 1.23 1.31

CSS 4% 1.03 1.04
Layout/Render 22% 1.20 1.27

Other 6% 1.05 1.06
Table 5.1: Breakdown of CPU time spent on web browsing. The last two columns predict the ideal speed-ups
with Amdahl’s law, assuming that either 4 or 16 cores are available.

Figure 5.1 shows the workflow of Adrenaline when accessing wikipedia.org. In the figure, each of the
numbers, 1-4, show the four mini pages Adrenaline uses for this web page. The Adrenaline server acts as a proxy
between the Adrenaline browser and the Internet. It fetches the web page, optimizes and decomposes it into
mini pages, then sends them back to the Adrenaline browser. The Adrenaline browser downloads and renders
mini pages in parallel using multiple processes. To preserve the proper visual and programmatic semantics,
the Adrenaline browser aggregates the displays for all mini pages, forwards DOM and UI events between mini
pages, and synchronizes DOM interactions. Solid lines between the Adrenaline browser and the Adrenaline
server show the mappings of mini pages.

Caching
Page Decomposition

Optimization

Adrenaline Server

Parallel Rendering
Aggregated Display

Event Handling
DOM Synchronization

Adrenaline Browser

Internet

(1)

(2)

(3)

(4)

Figure 5.1: Workflow of Adrenaline when accessing wikipedia.org.

This architecture offers four unique advantages compared to other techniques for parallelizing web browsers.
First, Adrenaline is a data parallel system. It parallelizes web pages, rather than specific components in web
browsers. Conceptually, all components in a web browser can now be executed in parallel. Second, decompo-
sition reduces the total amount of work from some tasks, particularly layout and rendering because of smaller
working sets for each mini page. Third, careful decomposition could potentially remove serialization bottle-
necks. Specifically, Adrenaline isolates JavaScript into a single mini page to allow tasks such as layout and
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rendering in other mini pages to run concurrently. Fourth, pre-processing the pages on the Adrenaline server
creates opportunities to shift computation from the client to the server.

This architecture does also introduce two sources of overhead that the Adrenaline system must overcome.
Fundamentally, the architecture places a proxy in between the Adrenaline browser and the Web. This additional
component will add latency for individual network connections when compared to connecting to web sites
directly. In addition, this architecture uses more resources on the mobile device through its use of multiple
processes. Despite these inherent sources of overhead, the Adrenaline browser speeds up the overwhelming
majority of sites we tested.

5.2.1 Results

We implemented the Adrenaline server as an HTTP proxy that fetches web pages and decomposes them on
the fly automatically. This architecture mirrors closely the server-side architecture for other mobile browsers,
like Opera mini, Skyfire, and Amazon Silk [12, 122, 147].

The Adrenaline browser uses the WebKit rendering engine and the V8 JavaScript engine. We use the Qt
Toolkit to implement the platform-specific portions of the browser. Mini pages are implemented as browser
plugins in Adrenaline to reuse existing mechanisms and to maintain visual compatibility. Our changes were
rather minimal, and we believe that the same techniques are applicable to commodity browsers.

To test the performance of our prototype and to test the efficacy of the basic Adrenaline approach, we ran the
Adrenaline browser on a Cortex-A9 CPU running at 400MHz and 768MB of DDR2 RAM. We tested Adrenaline
on 170 of the most popular web sites (according to Alexa), and we compared against an unmodified version of
a WebKit-based browser. To isolate the effects of our algorithms we mirror the web pages on our local network
and connect to the server via an Ethernet connection.

Our preliminary experience with Adrenaline is encouraging. Adrenaline reduces the page load latency by
1.75s on average — more than the 0.5s latency reduction that industry considers meaningful [108, 142, 169].
Adrenaline improves the page load latency time by 1.54x on average across the entire workload. For one
experiment, Adrenaline speeds up web browsing by 3.95x, reducing the page load latency time by 14.9s. Among
the 170 popular web sites we tested, Adrenaline speeds up 151 out of 170 (89%) sites, and reduces the latency
for 39 (23%) sites by two seconds or more.

5.3 Lessons Learned
In this work, we advocated that browser developers should think about parallelizing web pages, rather than

individual components of web browsers. Based on our initial experience with Adrenaline, we believe that
Adrenaline can improve significantly the performance of web browsing on mobile devices.

5.4 Future Work
We plan to further investigate the performance of Adrenaline under more realistic network conditions and

hardware configurations. In addition, we plan to explore more heuristics on page decomposition, as well as
providing APIs for web developers to express page-level parallelism. Finally, we plan to apply Adrenaline to a
larger set of web sites to evaluate our techniques more comprehensively.

5.5 Key Papers and Other Material
We have included one paper in this book. It is “A Case for Parallelizing Web Pages” from HotPar 2012 [106].



Chapter 6

Refactoring

6.1 Problem Addressed
One approach to parallelize an existing sequential program is to rewrite it from scratch. However, this

requires a lot of programmer effort. Another approach is to use an automatic parallelizing compiler [8, 10, 11,
96]. Despite continuous improvements on compilers, programmers still need to change their programs to make
compilers work acceptably. Unfortunately, knowing where to introduce parallelism requires domain knowledge
and understanding of the program’s algorithms and data structures.

In practice, the most widely used approach is to parallelize a program incrementally by changing the existing
code. Each small step can be seen as a behavior-preserving transformation, i.e., a refactoring. Programmers
prefer this approach because it is safer: they maintain a working, deployable version of the program. Also, the
incremental approach is more economical than rewriting from scratch.

Unfortunately, little is known about the kinds of refactorings that programmers use to change real-world
programs for parallelism. The existing books on parallel programming and API documentation of parallel
constructs primarily focus on designing parallel programs from scratch. Therefore, average programmers lack
educational resources on how to retrofit existing programs for parallelism through refactoring. They also miss
examples of successful projects that were refactored for parallelism.

Programmers also lack tools that automate these refactorings. Despite high-productivity parallel libraries,
refactoring sequential code for parallelism is still tedious, because it requires changing many lines of code,
and error-prone, because programmers need to ensure non-interference of parallel operations. For example,
an expert parallel programmer who parallelized six simple divide-and-conquer algorithms like quicksort and
mergesort using Java 7’s ForkJoinTask spent on average 30 minutes and changed 50 lines per algorithm [48].

Automating refactorings is challenging as it requires complex code transformations that span multiple, non-
adjacent program statements and requires deep inter-procedural analyses that globally reason about objects
shared through the heap. A key problem is designing program analyses that are accurate yet fast enough to
be used in an interactive tool.

In the past, under sequential programming, interactive refactoring tools have revolutionized how program-
mers approach software design. Without refactoring tools, programmers often over-designed, because it was
expensive to change the design once it was implemented. Refactoring tools have enabled programmers to con-
tinuously explore the design space of large codebases, while preserving the existing behavior. Modern IDEs
incorporate refactoring in their top menu, and often compete on the basis of refactoring support.

Looking forward, under parallel programming, we envision that refactoring tools for retrofitting parallelism
can be similarly transformative. They will enable programmers to safely and efficiently explore the space of
performance optimizations and parallel constructs, while preserving the existing functionality.

24



CHAPTER 6. REFACTORING 25

6.2 Contributions
In this project, we embarked on an effort to develop automated refactoring tools. We started by empiri-

cally studying refactorings used [49] or misused [105] in practice, and how developers are embracing parallel
libraries [120]. Based on these findings, we built a Java refactoring toolset [46–48, 50, 66, 75, 93, 137, 162] that
currently automates ten refactorings that fall into three categories. First, Refactorings for Thread-Safety make
a program thread-safe, e.g., by synchronizing accesses to shared state via library classes. Second, Refactorings
for Throughput add multi-threading via task and loop parallelism. Third, Refactorings for Scalability replace
lock-based synchronization with accesses to lock-free, highly scalable data structures. Our empirical evaluation
shows that our toolset is useful: it reduces the burden of analyzing and modifying code, it is fast enough to be
used interactively, it correctly applies transformations that open-source developers applied incompletely, and the
refactored code exhibits good speedup.

We also validated rigorously the research results by employing empirical methods (e.g., case studies, con-
trolled experiments, and interviews) in the evaluation stage (did we built the tool right?) and also in the formative
stage (are we building the right tool?). Next, we describe the specific contributions we made.

6.2.1 Empirical Studies with Actionable Items

• Usage of Parallel Libraries [49] Industry leaders hope to convert the hard problem of using parallelism into
the easier problem of using a parallel library. Yet, we know little about how programmers adopt these libraries in
practice. Without such knowledge, other programmers cannot educate themselves about the state of the practice,
library designers are unaware of API misusage, researchers make wrong assumptions, and tool vendors do not
support common usage of library constructs. We conducted the first study that analyzes the usage of parallel
libraries in a large scale experiment. We analyzed 655 open-source applications that adopted Microsoft’s new
parallel libraries – Task Parallel Library (TPL) and Parallel Language Integrated Query (PLINQ) — comprising
17.6M lines of code written in C#. These applications are developed by 1609 programmers. Using this data, we
answered 8 research questions and uncovered some interesting facts. For example, (i) for two of the fundamental
parallel constructs, in at least 10% of the cases developers misuse them so that the code runs sequentially instead
of concurrently, (ii) developers make their parallel code unnecessarily complex, and (iii) applications of different
size have different adoption trends. Library designers confirmed that our findings are useful and will influence
the future development of the libraries.

• Usage and Misusage of CHECK-THEN-ACT Idioms [105] Concurrent collections provide thread-safe,
highly-scalable operations, and are widely used in practice. However, programmers can misuse these concurrent
collections when composing two operations where a check on the collection (such as non-emptiness) precedes an
action (such as removing an entry). Unless the whole composition is atomic, the program contains an atomicity
violation bug. We conducted the first empirical study of CHECK-THEN-ACT idioms of Java concurrent collec-
tions in a large corpus of open-source applications. We cataloged nine commonly misused CHECK-THEN-ACT

idioms and showed the correct usage. We quantitatively and qualitatively analyzed 28 widely-used open source
Java projects that use Java concurrency collections – comprising 6.4M lines of code. We classified the commonly
used idioms, the ones that are the most error-prone, and the evolution of the programs with respect to misused
idioms. We implemented a tool, CTADETECTOR, to detect and correct misused CHECK-THEN-ACT idioms.
Using CTADETECTOR, we found 282 buggy instances. We reported 155 to the developers, who examined 90
of them. The developers confirmed 60 as new bugs and accepted our patch. This shows that CHECK-THEN-ACT

idioms are commonly misused in practice, and correcting them is important.

• Usage of Concurrent Refactorings [49]. A major software maintenance task in the multicore era will be
to make sequential programs concurrent. Must concurrency be designed into a program, or can it be retrofitted
later? What are the most common transformations to retrofit concurrency into sequential programs? Are these
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transformations random, or do they belong to certain categories? How can we automate these transformations?
To answer these questions, we analyzed the source code of five open-source Java projects and looked at a
total of 14 versions. We analyzed qualitatively and quantitatively the concurrency-related transformations. We
found that these transformations belong to four categories: transformations that improve the responsiveness,
throughput, scalability, or correctness of the applications. In 73.9% of these transformations, concurrency was
retrofitted on existing program elements. In 20.5% of the transformations, concurrency was designed into new
program elements. Our findings educate software developers on how to parallelize sequential programs, and
provide hints for tool vendors about what transformations are worth automating.

6.2.2 Refactoring and Analysis Tools

• CONCURRENCER [47, 48] The Java 5 package java.util.concurrent (j.u.c.) supports writing con-
current programs: much of the complexity of writing thread-safe and scalable programs is hidden in the library.
To use this package, programmers still need to reengineer existing code. This is tedious because it requires
changing many lines of code; it is error-prone because programmers can use the wrong APIs; and it is omission-
prone because programmers can miss opportunities to use the enhanced APIs. Our tool, CONCURRENCER

enables programmers to refactor sequential code into parallel code that uses three j.u.c. concurrent utilities.
CONCURRENCER does not require any program annotations. Its transformations span multiple, non-adjacent,
program statements. A find-and-replace tool cannot perform such transformations, which require program anal-
ysis. Empirical evaluation shows that CONCURRENCER refactors code effectively: CONCURRENCER correctly
identifies and applies transformations that some open-source developers overlooked, and the converted code
exhibits good speedup.

• LAMDBAFICATOR [66, 75] Java 8 introduces two functional features: lambda expressions and functional
operations like map or filter that apply a lambda expression over the elements of a Collection. Refactoring
existing code to use these new features enables explicit but unobtrusive parallelism and makes the code more
succinct. However, refactoring is tedious: it requires changing many lines of code. It is also error-prone: the pro-
grammer must reason about control flow, data flow, and side effects. Fortunately, refactorings can be automated.
We designed and implemented LAMBDAFICATOR, a tool which automates two refactorings. The first refactor-
ing converts anonymous inner classes to lambda expressions. The second refactoring converts for loops that
iterate over Collections to functional operations that use lambda expressions. Using 9 open-source projects,
we applied these two refactorings 1263 and 1709 times, respectively. The results showed that LAMBDAFICA-
TOR is useful: (i) it is widely applicable, (ii) it reduces the code bloat, (iii) it increases programmer productivity,
and (iv) it is accurate.

• IMMUTATOR [93] It is common for object-oriented programs to have both mutable and immutable classes.
Immutable classes make parallel programming simpler. Since threads cannot change the state of an immutable
object, they can share it without synchronization. An immutable object is embarrassingly thread-safe. Some-
times programmers write immutable classes from scratch, other times they transform mutable into immutable
classes. To transform a mutable class, programmers must find all methods that mutate its transitive state and all
objects that can enter or escape the state of the class. The analyses are non-trivial and the rewriting is tedious.
Fortunately, this can be automated. Our algorithm and tool, IMMUTATOR, enables the programmer to safely
transform a mutable class into an immutable class. Two case studies and one controlled experiment showed that
IMMUTATOR is useful. It (i) reduces the burden of making classes immutable, (ii) is fast enough to be used
interactively, and (iii) is much safer than manual transformations.

• ITERACE [137] Despite significant progress in recent years, the important problem of static race detec-
tion remains open. Previous techniques took a general approach and looked for races by analyzing the effects
induced by low-level concurrency constructs (e.g., java.lang.Thread). But constructs and libraries for ex-
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pressing parallelism at a higher level (e.g., fork-join, futures, and parallel loops) are becoming available in all
major programming languages. We claim that specializing an analysis to take advantage of the extra semantic
information provided by the use of these constructs and libraries improves precision and scalability. We designed
ITERACE, a set of techniques that are specialized to use the intrinsic thread, safety, and data-flow structure of
collections and of the new loop-parallelism mechanism to be introduced in Java 8. Our evaluation showed that
ITERACE is fast and precise enough to be practical. It scales to programs of hundreds of thousands of lines of
code and it reports few race warnings, thus avoiding a common pitfall of static analyses. The tool revealed six
bugs in real-world applications. We reported four of them; one had already been fixed, and three were new and
the developers confirmed and fixed them.

• DPJIZER [162] We have also developed refactoring tools to port existing code to new parallel programming
languages. We participated in the development of Deterministic Parallel Java (DPJ) (Chapter 8), a language that
aims to make parallel programming deterministic by default. At the heart of DPJ is a type and effect system that
ensures that the parallel tasks are non-interfering. Our tool, DPJIZER, reduces the burden of writing annotations,
by automatically inferring the method effects using a constraint-based algorithm.

6.2.3 Dissemination of Results

1. Product Releases. One of our tools, LAMDAFICATOR, is already shipping with the official release of
the NETBEANS Integrated Development Environment (IDE). Another tool, CONCURRENCER is ongoing
integration in the ECLIPSE IDE. Both NETBEANS and ECLIPSE are open-source IDEs, and are used by
millions of Java developers everyday. We are also committed to work with the Microsoft Visual Studio
team to integrate refactoring tools into the official release of Visual Studio.

2. Tool Releases. All our tools and empirical data are released as open-source code. In cases when the tools
are not shipping with the official release of an IDE, we package them as plugins for the IDE, which are
easily installable. Thus, researchers and software engineers can immediately use our results.

3. Publications. Our research results have been published in the major software engineering conferences
(FSE’13, ISSTA’13, ICST’13, ICSE’12, FSE’12, ICSE’11, IEEE Software’11, ASE’09, ICSE’09, OOP-
SLA’09). Two of our papers have received awards: our ICST’13 paper [105] got the Best Paper Award,
and our ISSTA’13 paper [137] got the ACM SIGSOFT Distinguished Paper Award.

4. Education and Outreach. We have taught the refactoring tools and techniques in the undergraduate/-
graduate software engineering courses (CS427/527) at the University of Illinois, as well as a special
topics class on Multicore Programming [44]. In addition to traditional audiences, we have reached over
800 professional programmers at three one-week long Industrial Training courses at Boeing, four Summer
Schools at Illinois [83] and one in Singapore, and two conference tutorials [43, 45]. We have also devel-
oped resources for educating developers. Our http://learnparallelism.net shows thousands
of relevant examples of how to use parallel APIs. Our website received more than 34,000 visits within a
year.

6.3 Lessons Learned
Building this refactoring toolset taught us several lessons. First, programmers often use parallel libraries,

thus refactoring tools need to support such libraries. Second, to keep the programmer engaged, refactoring
tools need to finish in less than thirty seconds. Thus, they must use efficient, on-demand program analyses.
Third, program analysis libraries and IDEs with excellent AST rewriting capabilities are essential for building
refactoring tools. Fourth, once a program is parallel, it must remain maintainable, i.e., readable and portable.
Fifth, refactoring tools must interact with other tools in the parallel toolbox, such as profilers and data-race
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detectors. Sixth, even carefully designed library APIs can still be misused by developers, so empirical studies
are crucial in discovering common usage errors.

6.4 Future Work
There are new forces that shape computing. First, mobile devices and web applications represent the envi-

ronment and the applications where end-users spend most of their time. Second, JavaScript is the lingua franca
of the Internet. Third, mobile devices are all moving into the multicore direction. Given the confluence of
these three trends, refactorings that enable mobile and web programmers to transform their code so that their
applications can run faster on the multicore devices can have a tremendous impact.

We will implement refactorings that improve responsiveness, e.g., by extracting a lengthy computation that
is currently scheduled on the GUI Event Dispatch Thread into an asynchronous task, running in a background
thread. Such refactorings are extremely important for mobile devices, where users’ perception of responsiveness
makes the difference between a usable and an unusable application.

A second line of work, on refactoring for parallel JavaScript, has huge rewards too. We are currently studying
the River Trail implementation of Intel’s flavor of ParallelArray for JavaScript. We are also surveying the
literature to find the unique challenges and state-of-the-art program analysis for dealing with JavaScript. We are
collaborating with a team at Intel Labs on this project.

6.5 Key Papers and Other Material
We include two representative papers in this book, one on the empirical work and another on the refactoring

tools. The first one is “How Do Developers Use Parallel Libraries?” from FSE 2012. This paper presents
a large-scale study on the usage of Microsoft Parallel Libraries. Our study has several practical implications.
First, it is a tremendous resource for educating developers. Our http://learnparallelism.net shows
thousands of relevant examples of how to use parallel APIs. We received more than 34,000 visitors within the last
year. Second, it provides value for researchers, tool vendors, and the software testing/verification community.
Microsoft library designers confirmed that our findings are useful and will influence the future development of
their libraries.

The second paper is “Transformation for Class Immutability” from ICSE 2011. This paper illustrates the
challenges of implementing one refactoring, namely converting a mutable into an immutable class. Since its
state cannot be mutated once an object is properly constructed, the immutable class is thread-safe. Immutability
plays an important role in other fields, e.g., in computer security, memory optimizations, and distributed com-
puting. Our refactoring tool, IMMUTATOR, uses a demand-driven points-to analysis to find mutator methods and
objects that enter into or escape from the object’s transitive state. Our 3-pronged evaluation involves running
IMMUTATOR on 346 classes from popular open-source projects, a case-study of how open-source developers
refactor manually, and a controlled experiment. The evaluation shows that IMMUTATOR is useful.

All refactoring tools and the experimental data are freely available for download at:
http://refactoring.info/tools/.



Chapter 7

Tiling: Notations and Optimization Techniques

7.1 Problem Addressed
A widely-used program optimization strategy consists of partitioning arrays and organizing computations

in terms of the subarrays resulting from the partition. This strategy was, to the best of our knowledge, first
introduced in the 1950s [139] for enhancing locality, and is universally used today for this purpose [54,74,165].
In parallel computing, the way partitioning is done [64, 90, 103] determines the performance of both distributed
and shared-memory computations.

In this project, we studied three topics in the area of data partitioning:

• Notations that explicitly manipulate data blocks.

• The use of partitioning to generate multiple implementations of linear algebra algorithms.

• Compiler techniques for the automatic partitioning of arrays.

7.2 Contributions
This section outlines our contributions in each of the three areas.

7.2.1 Programming with Tiles

Our work on programming notations is based on the assumption that two key characteristics facilitate the
development, maintenance, and portability of parallel programs: (i) a global view of the data and explicit repre-
sentation of the data partition, and (ii) a single thread of execution and parallelism encapsulation.

Today’s codes typically do not possess these two characteristics. Thus, data partitioning is typically repre-
sented implicitly with locality-enhancement strategies, often relying on control flow to schedule array accesses
one block at a time and implicit data partitioning being the norm in MPI codes. Also, multiple threads of control,
and the difficulties they create, are pervasive in today’s parallel programs.

Our work in this area started with the design of Hierarchically Tiled Arrays (HTAs) [20, 21, 72], which are
partitioned arrays whose components could be scalars or lower-level partitioned arrays. The blocks or tiles of the
HTAs can be referenced explicitly and used to control locality, data distribution or both. For distributed-memory
computations, the outermost tiles are typically distributed across processors for parallelism, and the inner tiles
are used to improve locality within a processor. Figure 7.1 depicts an HTA with two levels of partitioning. The
figure also shows how elements of an HTA can be referenced. In the figure, braces are used to index tiles and
parentheses to index scalar elements. As can be seen, all or just some of the tile indices can be omitted to enable
global indexing of the scalar elements (i.e., to ignore tiling).

We can illustrate the use of HTAs as a notation to enhance locality using matrix-matrix multiplication whose
tiled version takes the following form in MATLAB notation:
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Distributed

Local

Local

Recursive Tiling

C{2,1}(1,4)
C(5,4) 

, C{2,1}{1,2}(1,2) or 
, or 

HTA C

C{2,1}
(b)(a)

Figure 7.1: Pictorial view of a hierarchically tiled array.

f o r i =1 : n
f o r j =1 : n

f o r k =1: n
c{ i , j } = c{ i , j } + a{ i , k} * b{k , j } ;

Here, the operation * represents matrix-matrix multiplication, not element-by-element product, and a, b,
and c are two dimensional HTAs. Clearly, even in this simple case, our notation simplifies coding since, to
achieve the same result using scalar notation would require six levels of nesting.

With HTAs, data parallel computations are represented as element-by-element operations. The operations
within each tile, in the case of unary operations, or within corresponding tiles, in the case of binary operations,
can be executed in parallel with each other. Thus, if the operation sin(C) was applied on the HTA C depicted
in Figure 7.1, it would be 16-way parallel if the leaf tiles were assigned to different processors, or just 4-way
parallel if only the top level tiles were distributed. Similarly, assuming a second HTA A, with identical shape
and distribution as those of C, the operation A+C could be 16-way or just 4-way parallel.

There is no communication in these operations. Sin is a unary operation and tiles are identically distributed
in the addition operation. Communication is needed when the corresponding tiles in a binary operation are in
different nodes, or when we are executing assignments between tiles that are in different processors. Consider
for example the 3 × 3 HTA V, of Figure 7.2. If each tile of V were assigned to a different node of a distributed
memory machine, the assignment V{2:n,:}(1,:)=V{1:n-1,:}(n,:) would copy all the elements in the
last row of each tile to the first row of their neighbor tile below it.
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V{2:n,:}(1,:)=
V{1:n−1,:)(n,:)

Figure 7.2: Assignment of the elements in the last row of tiles to the first row of their neighbors below.

Besides assignment and arithmetic operations, several other HTA methods that operate at the tile level fa-
cilitate the expression of communication and parallel computation. These include circshift, transpose,
repmat, permute, reduce and hmap, as well as the standard arithmetic operators. For example, the MAT-
LAB circshift function implements circular shifts of array elements. The HTA version shifts instead whole
tiles of HTAs, which could require communication.

For example, in the following tiled version of Cannon’s algorithm (assuming that c is initially all zeroes):
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f o r i =2 : n {
a{ i : n , : } = c s h i f t ( a ( i : n , : } , dim =2 , s h i f t = 1 ) ; ! Communicat ion
b { : , i : n} = c s h i f t ( b { : , i : n } , dim =1 , s h i f t =1) ! Communicat ion
}

f o r k =1: n {
c { : , : } = c { : , : }+ a { : , : } * b { : , : } ; ! P a r a l l e l c o m p u t a t i o n
a { : , : } = c s h i f t ( a { : , : } , dim = 2 ) ; ! Communicat ion
b { : , : } = c s h i f t ( b { : , : } , dim = 1 ) ; ! Communicat ion
}

all the parallelism is in the statement

c { : , : } = c { : , : }+ a { : , : } * b { : , : } ;

which represents n2 independent tile operations. In this case, HTA also simplifies coding as the code above is
significantly simpler than its MPI counterpart.

Particularly useful in many parallel computations are the reduce and hmap. Reduce applies associative
operations between components of an HTA and hmap applies the same function to each tile of an HTA or to
the corresponding tiles of different HTAs when the hmap implements an n-ary operation. Other more complex
operators such as scan, mapReduce and operators for dynamic partitioning and overlapped tiling are also
useful [21, 72].

The tiled notation can also be applied successfully to data structures other than arrays. The PhD thesis of
James Brodman [31] is a study of notations to tile sets for parallel symbolic computations.

7.2.2 HYDRA: Automatic Tuning from Equations

During the last decade there has been growing interest in autotuning systems which automatically explore the
space of algorithms and implementations seeking high performance. An influential autotuning system, SPIRAL,
which targets signal processing algorithms starts with formulas and transforms them to generate the space of
possible versions [131, 168]. SPIRAL then does empirical search, looking for the best-performing version.

Although there has been much work on autotuning for linear algebra [22, 166], existing experimental sys-
tems typically focus on the autotuning of the basic linear algebra operations, and do not manipulate formulas.
Building autotuning systems around the manipulation of formulas has several advantages. One is that, with such
systems, it is possible to extend programming languages with formulas. This has great potential for programmer
productivity.

The Ph.D. dissertation of Alexandre Duchateau [59] describes a system, HYDRA, which starts with linear
algebra equations and uses data partitioning to generate several solvers for the equation. Like SPIRAL, HYDRA
then applies empirical search to identify the most efficient of all the generated solvers. To illustrate how Hydra
operates, consider first an extremely simple equation such as X = A ∗ B, where A and B are known, square,
n×n matrices and X is the unknown. Clearly, solving this equation is tantamount to carrying out matrix-matrix
multiplication, but we must represent it as an equation because that is the type of input that HYDRA accepts.

By partitioning A and B, we can generate different ways of finding X . For example, if A is partitioned
in the vertical direction into the two submatrices, A(1 : n/2, :) and A(n/2 + 1 : n, :), which we represent in
our notation as A{1} and A{2} and B is not partitioned, the original equation could be transformed into two
equations X{1} = A{1}∗B and X{2} = A{2}∗B. On the other hand, if B is partitioned along the horizontal
direction into the two submatrices, B(:, 1 : n/2) and B(:, n/2 + 1), the original equation can be translated into
four equations X{i, j} = A{i} ∗ B{j}, with i, j = 1, 2. Thus, each way of partitioning the matrices produces
a different way of solving the equation. In this case, all resulting equations are the same as the original equation
except that the sizes are smaller.
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This process of partitioning can be repeated recursively. In theory, we could go all the way until the resulting
equations only involve scalars, but this would typically not be a good idea. We assume, instead, that there is an
implementation of matrix-matrix multiplication that can be used to solve the final equations. This implemen-
tation does not have to be sophisticated since the partitioning strategy would naturally introduce locality and
parallelism. The equations can be solved in parallel since they are independent from each other.

When introducing parallelism, HYDRA sometimes must enforce a partial order of execution. Consider the
equation L ∗X ∗ U −X = C, where L is lower triangular, U is upper triangular and X is the unknown. If the
matrices are partitioned into 2× 2 submatrices, HYDRA transforms the original equation into four equations:

1. L{1, 1} ∗X{1, 1} ∗ U{1, 1} −X{1, 1} = C{1, 1}

2. L{2, 1} ∗X{1, 1} ∗ U{1, 1}+ L{2, 2} ∗X{2, 1} ∗ U{1, 1} −X{2, 1} = C{2, 1}

3. L{1, 1} ∗X{1, 1} ∗ U{1, 2}+ L{1, 1} ∗X{1, 2} ∗ U{2, 2} −X{1, 2} = C{1, 2}, and

4. L{2, 1} ∗X{1, 1} ∗U{1, 2}+ L{2, 2} ∗X{2, 1} ∗U{1, 2}+ L{2, 1} ∗X{1, 2} ∗U{2, 2}+ L{2, 2} ∗X{2, 2} ∗
U{2, 2} −X{2, 2} = C{2, 2}

To solve the second and third equations, equation 1 must be solved first. To solve equation 4, the other three
must be solved first. HYDRA was implemented and evaluated for a shared-memory multiprocessor with serial
MKL routines used as the basis for the computation.

7.2.3 Automatic Selection of Block Shapes

The kernels of several important applications take the form of stencil computations. For these computations,
data partitioning is of great importance for performance on all classes of machines. Consequently, in collabora-
tion with Intel’s Jean-Pierre Giacalone, Robert Kuhn, and Yang Ni, we studied automatic partitioning strategies
for stencil computations on multicores. The main objectives were to improve performance and energy efficiency.

When there are multiple consecutive applications of stencil computations as in the code

p a r a l l e l f o r ( i n t i =1 : n ) A[ i ] = . . .
p a r a l l e l f o r ( i n t i =2 : n−1) . . . = A[ i −1]+A[ i ]+A[ i +1]

there could be a significant number of cache misses, depending on how the iterations are scheduled and how
many processors are used for the execution of the two loops. Furthermore, for correctness, a barrier is typically
assumed at the end of the first loop, which further hinders performance.

To avoid both of these problems, the computation can be organized as depicted in Figure 7.3-(a), where each
processor computes redundantly the array elements it needs for successive application of the stencil computa-
tion. The array elements that are used in the redundant computations are shown darker. The problem with this
approach is the need to do redundant computations. The Ph.D. thesis of Xing Zhou [174] introduced a strategy
that implements the overlapped tiling in a hierarchical fashion (Figure 7.3-(b)), to attenuate the effect of this re-
dundancy. The strategy was implemented on top of an experimental OpenCL compiler developed at Intel Labs.
Its effect was evaluated using multicores. Several other block selection strategies are studied in Zhou’s Ph.D.
thesis.

7.3 Lessons Learned
The three projects discussed above had positive outcomes. The evaluations [14, 72] show the significant

programmability advantage of the proposed notation over conventional notations such as OpenMP and MPI.
While ease of programming affects performance, the impact can be reduced by refactoring the code manually or
automatically [65]. The HYDRA autotuning system produces in several cases parallel codes that match and even
outperform the performance of manually-written MKL codes [58]. Finally, the automatic blockshape selection
techniques led to significant performance improvements over the unoptimized versions [175].
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(b) 2-level hierarchically overlapped tiles

Figure 7.3: Overlapped tiling and hierarchically overlapped tiles.

7.4 Future Work
There are numerous open problems related to each of the three projects discussed in this paper. A particularly

important direction is to merge the work on autotuning with that of high-level notations. In this way, it would
be possible to include equations and other formulas in the code. This would not only improve readability and
portability but also help automatic optimization.

7.5 Key Papers and Other Material
We include two papers in this book. The first one is “Hydra: Automatic Algorithm Exploration from Linear

Algebra Equations” from CGO 2013 [58]. The other is “Hierarchical Overlapped Tiling” from CGO 2012 [175].



Chapter 8

Deterministic-by-default Parallel Programming

8.1 Problem Addressed
Parallelism is needed to utilize modern hardware, but it introduces numerous correctness challenges. Parallel

programs can suffer from problems such as data races, atomicity violations, insufficient ordering synchroniza-
tion, and deadlocks. The first three problems all lead to unintentional nondeterminism, i.e., producing different
observable results in the different executions for the same input. Moreover, these classes of concurrency er-
rors are often difficult to reproduce and debug after they occur, because they are often schedule-dependent and
non-deterministic. For large production software, where debugging, testing and maintenance are expensive and
challenging tasks, reproducibility of results – obtaining the same externally visible results for every execution
on a given input – is essential for reasoning about the correctness of software. For parallel programming to
become ubiquitous, therefore, it is essential that concurrency errors that produce unintentional nondeterminism
be eliminated or made extremely unlikely to occur.

In practice, most algorithms are deterministic, and their sequential reference implementations are determin-
istic as well. It is highly inefficient and unproductive to write such algorithms in a parallel notation (language or
library) that allows non-deterministic, schedule-dependent behavior due to programming bugs and then expect
programmers to find and eliminate those bugs. We expect programmers would have much higher productivity if
the parallel notation guaranteed the absence of such bugs in the first place, i.e., guaranteed deterministic results.

A purely deterministic programming notation would likely be too restrictive, however. Some parallel algo-
rithms permit non-deterministic results, i.e., different results for a given input. Examples include branch-and-
bound search (where any solution that meets a certain cost criterion is acceptable), some parallel graph algo-
rithms (where there are multiple ways of extracting subgraphs with a particular property, e.g., spanning tree),
and large internet servers (which service large numbers separate requests from external users). Such algorithms
do not expect a guarantee of determinism, and there may be no sequential equivalent, but the developers can
still benefit from other strong guarantees. Moreover, such algorithms are commonly combined with more con-
ventional deterministic parallel algorithms in the same program. Deterministic parallelism may be encapsulated
within a larger non-deterministic parallel structure (e.g., parallel physics simulations within a non-deterministic
multi-player game), or vice versa (e.g., a non-deterministic branch-and-bound optimization followed by a deter-
ministic post-processing of the results, all performed as a step of a larger deterministic simulation).

8.2 Contributions
One major focus of our research has been techniques to enable disciplined parallel programming models that

guarantee the absence of concurrency errors, rather than requiring complicated debugging after the fact.
A key outcome of our work has been to define what guarantees a disciplined parallel programming model

should provide. First, the model should enable the programmer to distinguish explicitly between determinis-
tic and non-deterministic parallel constructs, so that it is clear to both other programmers and to programming
tools where non-deterministic results are intentional and acceptable. Second, the model should guarantee de-
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terministic results with sequential equivalence for all portions of a program that do not include an explicit non-
deterministic parallel construct. Third, for programs with nondeterministic constructs, the programming model
should guarantee data race freedom and also guarantee atomicity with strong isolation for the entire program,
even when using nondeterministic constructs. Collectively, we refer to these guarantees as “determinism-by-
default.” These guarantees are stronger than any previously existing parallel programming notation we know of
that supports both deterministic and non-deterministic parallel algorithms.

Our second key contribution has been to show that the above guarantees are not only possible, but can be
achieved with a purely static type system for a large class of fork-join parallel programs, even in an expressive
object-oriented base language such as Java. We have implemented this type system as an extension of Java
we call Deterministic Parallel Java (DPJ), which guarantees determinism-by-default to conforming parallel ap-
plications. We have also explored a pure logical annotation language, called ACCORD, that allows annotating
programs written in existing languages (such as standard Java), and provides automatic mechanisms to use these
annotations to prove the program race-free and deterministic [92]. Moreover, we have developed Annotations
for Safe Parallelism (ASP), an annotation language and checker for C/C++ programs that combines the ideas be-
hind DPJ and ACCORD, which aims to bring determinism-by-default to very large scale real-world applications
(containing multiple millions of lines of code). One of the major challenges to achieving that is automatically
inferring the required annotations with little input from the programmer.

Our third key contribution has been a hybrid static-dynamic scheduling strategy we call Tasks With Effects
(TWE) that provides nearly the full determinism-by-default guarantees (except for certain deadlocks) to a much
broader class of programs with unstructured parallelism. We have implemented TWE as an extension of the DPJ
language, together with a novel scheduler that exploits the structure of effect summaries for scalability.

Our fourth key contribution has been an automatic inference algorithm that infers roughly half of the type
annotations used in the DPJ, ASP and TWE languages fully automatically, given the other half. We are now
extending this inference to nearly the complete set of annotations, and will incorporate it into the ASP system.

The research on the DPJ component of this work won the lead author, Robert Bocchino, an ACM SIGPLAN
Distinguished Dissertation Award. The following subsections describe the contributions in detail.

8.2.1 Deterministic Parallel Java: Strong Static Safety Guarantees

The Deterministic Parallel Java (DPJ) language uses static checking to guarantee determinism-by-default
for programs with well-structured parallelism (nested fork-join, i.e., where task creation and joins are properly
nested) [25, 29]. DPJ requires the programmer to write annotations that partition the heap into named sets of
memory locations called regions, and to specify the effects of each method in terms of the regions read and
written. The DPJ compiler statically verifies that these effect specifications are correct, and the region-based
type annotations are type-safe. It then uses the method effect summaries and region information to infer the
effects of every task, and then to check that no two parallel tasks can have conflicting effects, i.e., that the two
tasks can run safely in parallel. The fork-join assumption is needed solely to infer which tasks may run in parallel
with each other, without expensive interprocedural analysis. The DPJ region annotations and effect summaries
use a flexible hierarchical notation called Region Path Lists (RPLs) to support a wide range of parallel data
access patterns; the RPL notation is key to expressing a wide range of parallel data structures and idioms.

Experiments show that deterministic DPJ programs achieve speedups comparable to equivalent multi-
threaded Java programs with no safety guarantees: in fact, there are no run-time overheads for deterministic
programs. Figure 8.1 shows the speedups for a range of benchmarks; they are relative to an equivalent sequen-
tial algorithm with no parallelism overheads. For three of these benchmarks – Monte Carlo, IDEA encryption
and Barnes-Hut – hand-coded Java threads programs that lack any safety guarantees were available, and the
speedups with DPJ were close to or better than the Java speedups in all three cases. DPJ achieves good speedups
even for highly irregular pointer-based codes such as Barnes-Hut and CollisionTree. Moreover, our experience
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has shown that a wide range of parallel idioms can be expressed in DPJ, such as parallel loops over arrays
(including arrays of pointers to distinct objects), parallel traversals of trees with (non-conflicting) updates, and
parallel divide-and-conquer algorithms with (non-conflicting) in-place array updates. This is the first time that
static checking of such potentially irregular parallel algorithms has been shown to be feasible.1
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Figure 8.1: Speedups for DPJ benchmarks
on a 24-core Dell R900.

One major restriction in DPJ is that it does not support un-
structured parallelism, common in concurrent programs such as
servers and interactive applications. A second restriction is that
algorithms that traverse and update data structures, e.g., arrays
or trees, in parallel cannot restructure those data structures after
they are constructed: they must create new copies, which can
incur unnecessary run-time overhead. Both these limitations
are addressed by the TWEJava language, described below.

DPJ also supports programs where the programmer ex-
plicitly mixes nondeterministic and deterministic parallel con-
structs, by adding atomic blocks for protecting potentially con-
flicting accesses to shared data [28]. DPJ still ensures the full
guarantees of determinism-by-default. In particular, it guar-
antees determinism for all parts of a program that do not en-
counter an explicit non-deterministic parallel construct in some
execution. Also, DPJ guarantees data race freedom and atom-
icity with strong isolation for the entire program, even when
using nondeterministic constructs. Together, these guarantees are the strongest parallelism guarantees we know
of in any parallel programming language that allows both deterministic and non-deterministic semantics.

8.2.2 Tasks With Effects: Supporting Flexible Concurrent Programs

Second, we have developed the Tasks With Effects (TWE) programming model, which enables us to give
nearly all the determinism-by-default safety guarantees for programs that may include arbitrary, unstructured
parallelism and concurrency constructs [77]. TWE also supports more flexible parallel idioms such as restruc-
turing of concurrent data structures while still permitting parallel traversals and updates. Some examples of such
programs are interactive applications and servers that may begin a concurrent task in response to user input or
a client request, programs structured in terms of modules or “actors” that communicate asynchronously, and
programs that may rebalance a binary search tree or permute a parallel array.

The key to allowing arbitrary, unstructured parallelism or arbitrary restructuring of parallel data structures is
to use a run-time scheduler to determine which tasks are safe to run in parallel. In the TWE model, a program is
composed of tasks with effect summaries that are available to the run-time scheduler. The effect summaries are
inferred using some combination of user-specified effect summaries on methods (similar to DPJ programs) or
interprocedural effect inference (similar to the DPJizer project, below). The scheduler ensures that no two tasks
with conflicting effects are run concurrently. By using statically checkable effect specifications on tasks, such
as those used in DPJ, no run-time checks are needed on individual memory accesses. This combination of static
and dynamic elements efficiently guarantees that concurrently-running tasks are isolated from each other, with
non-conflicting memory accesses. This gives a guarantee of data race freedom, and also guarantees atomicity
for portions of tasks that do not create or wait for other tasks.

Our TWEJava language implements this model for Java programs, using the DPJ effect system for the
method and task effect summaries. Experiments show that TWEJava supports more general concurrency struc-

1Automatic parallelization techniques based on interprocedural static analyses such as shape analysis have attempted some of these
before, but they are extremely conservative.
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tures than DPJ or any other language limited to nested fork-join parallelism, while still delivering guarantees
nearly as strong as DPJ. We initially developed a relatively simple TWEJava scheduler that holds all tasks in
a single queue protected by a single lock. This could give reasonable performance for some programs with
relatively few tasks that needed to be scheduled, but its scalability was limited when dealing with codes that
used fine-grained parallelism [77]. We have recently developed a new scheduler that exploits the hierarchical
structure of effect summaries to minimize effect comparisons between tasks. The new scheduler is far more
scalable than the previous one for TWEJava, and gives fairly good speedups (measured up to 80 threads) for
several benchmarks, including the K-Means benchmark which uses fine-grain critical sections.

8.2.3 Logical annotations for safe parallelism using Accord

In the work in ACCORD [92], we have explored building an annotation language for thread contracts, using
which a programmer can annotate a program in a conventional programming language (like standard Java)
in order to prove that the program is race-free and/or deterministic. Intuitively, in the annotation language
ACCORD, every parallel-for loop gets annotated to logically specify precisely the read/write set of locations of
each parallel iteration. Furthermore, each method is also annotated to specify the read/write set of locations
that the method will read and write to. Using these annotations, we can build algorithmic methods, using
logical constraint solvers like SMT solvers, in order to automatically verify whether the annotations imply race-
freedom, by checking whether the read/write sets of each thread is disjoint from the write-set of other threads. In
order to verify that the annotations themselves are correct (i.e., whether the program meets the annotations), we
can either achieve this using sound logic tools for verifying purely sequential programs or resort to incomplete
methods such as testing. Using ACCORD, we have verified a large number of both interesting programs as well
as large programs and showed that the annotation mechanism is very effective in both capturing the concurrency
as well as proving race-freedom. For instance, using ACCORD annotations, we have annotated programs in the
Spec OMP2001 benchmark, which are thousands of lines long, and both proved such programs race-free as well
as discovered races in some programs which have eluded detection for more than 10 years.

8.2.4 Annotations for Safe Parallelism: Scaling to Large Production Software

We have taken the lessons and techniques from both DPJ and ACCORD and are applying them to C++ code at
a much larger scale. We have developed an annotation language called Annotations for Safe Parallelism (ASP),
which can provide nearly2 as strong guarantees as DPJ, for C++ programs parallelized with any language or
library approach that is restricted to nested fork-join parallelism, e.g., TBB, OpenMP, or Cilk.

The key new challenges for ASP are to minimize or eliminate the annotation burden for very large applica-
tions, and to support large reusable parallel libraries. First, the annotation burden of DPJ is not acceptable for
applications of millions of lines of code, because of the number of annotations that would be needed, and also
because they require understanding new and sophisticated language concepts. Second, DPJ focuses on checking
explicitly parallel code but in practice, large software is developed and compiled in modules or libraries, many
of which are used in a parallel client context and may not contain all the parallelism internally (e.g., functions
that are called within a parallel loop). ASP uses module API annotations that describe legal uses of the module
by describing what functions are allowed to be called in a parallel context and under which conditions, and it
can enforce that both the internal library implementation as well as the client code abide by these rules.

We have implemented an ASP annotation checker for C++ by extending the Clang C++ front-end. We use
the rich attribute syntax introduced by the latest C++11 standard to express the region and effect annotations.
Our motivation was that any standards-compliant C++ compiler should be able to parse (and if necessary, ignore)
ASP annotations because it is very hard for software project teams to switch compilers.

2ASP assumes there are no type safety or memory safety errors in the underlying C++ code, and does not attempt to detect or prevent
such errors.
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We are collaborating with engineers at Autodesk to design the ASP checker to support very large Autodesk
libraries and applications. Autodesk has recognized the value of static analysis tools and ASP in particular by
designating it an official internal project and assigning part of the time of three engineers to our joint project.

We currently are using this checker along with a series of default annotation rules in order to check with-
out any manual annotations that global and static variables are not written to unless the function is explicitly
permitted to do so by an annotation. This simple property was important enough to Autodesk that they had
implemented their own checker, Hippocrates. But Hippocrates could not detect modifications to global and
static variables through pointers and aliases, whereas our checker, by using the DPJ region and effects, is able
to track and report those accesses as well. We have provided Autodesk with our checker, and they are in the
process of testing it over large modules of one of their products, evaluating its usefulness. Meanwhile, we are
also experimenting with using ASP on medium- and large open-source applications parallelized with TBB.

8.2.5 Automatic Inference of Region and Effect Annotations

To make it easier to develop large programs using DPJ, we have worked to reduce the need to manually write
annotations. We have developed a tool called DPJizer that can automatically infer the effect specifications of
almost all methods in a DPJ program where the programmer has included only region annotations and not effect
annotations [162]. DPJizer uses an interprocedural analysis to gather constraints on the effect summaries of
individual methods, using information from parallel constructs and from region type annotations. It then uses a
custom constraint solver to attempt to determine a set of method effect summaries that satisfy these constraints; if
it fails to do so, DPJizer marks the chosen parallelism as unsafe with the given region types. DPJizer supports the
full range of DPJ regions and effects, including hierarchical RPLs, region-parameterized arrays, and “wildcard”
RPLs that are necessary for many recursive and divide-and-conquer algorithms.

In the ASP project, we are now extending the inference algorithm in multiple ways. First, we are extending
it to infer region annotations as well as effect annotations, using only the parallel constructs as inputs (since the
goal is to check the correctness of a chosen parallelization of some code). We have developed and prototyped
a preliminary constraint-inference algorithm for combined region and effect inference, using Prolog to encode
and solve the constraints. Second, we are extending the algorithm to support higher-level “intent” annotations
on module interfaces, e.g., an annotation that says a particular library entry point must be “thread-safe,” and
using those to infer the necessary region and effect annotations within the module automatically.

8.3 Lessons Learned
This project has shown that it is feasible to guarantee strong safety properties such as determinism by default

(including determinism, data race-freedom, and strong atomicity) for a wide range of parallel programs using
only static checking of effects. Dynamic effect checking in a scheduler greatly expands the range of programs
that can enjoy nearly as strong safety guarantees. Automated effect inference significantly reduces the burden of
using these mechanisms, and we expect we can reduce this even further by extending the inference capabilities.

8.4 Future Work
We are currently working to optimize the TWEJava run-time scheduler so that good performance and scal-

ability can be achieved in programs that use TWEJava tasks for fine-grained critical sections. We are also
working on task scheduling optimizations in TWEJava’s run-time scheduler, e.g. to optimize locality. We are
also extending the effect inference algorithm in DPJizer to include region and effect inference.

8.5 Key Papers and Other Material
We include two papers: the OOPSLA 2009 paper [25] gives an overview of DPJ, and the PPoPP 2013

paper [77] describes the tasks-with-effects model. All DPJ-related information is available at http://dpj.
cs.illinois.edu.



Chapter 9

MCUDA: CUDA for Multicores

9.1 Problem Addressed
Heterogeneous computing systems are becoming very prevalent in many market segments. The number

of accelerated supercomputers in the Top500-ranked list of supercomputers has been steadily increasing since
2009 [158], and currently occupy half of the top ten spots. The current #1 entry in the Top500 ranking of
supercomputers uses more wide-vector Intel Xeon Phi™accelerator processors than CPU processors [158]. Pro-
cessors marketed towards consumer laptop and workstation systems often integrate heterogeneous CPU and
GPU components on the same silicon die. Correspondingly, there has been a growing adoption of parallel pro-
gramming languages for different parallelism patterns, such as CUDA and OpenCL for data-parallelism, Cilk
for task parallelism, and OpenMP for both task- and loop-level parallelism.

Divergent programming models and architectures are already causing significant costs in software develop-
ment. Optimization is difficult for any architecture, and explicit heterogeneity increases that difficulty even for
a single platform. An application developer must target program segments to the appropriate system compo-
nent, balancing the relative strengths and weaknesses of each, and then optimize each program segment for the
targeted architecture. Also, software typically outlives systems, so even when a specific platform is targeted at
the time of initial development, the software must be continually updated to rebalance the distribution of tasks
among heterogeneous components as it migrates to new platforms. In reality, long-term software development
costs match the development costs for multi-platform support.

When faced with the challenge of targeting multiple heterogeneous systems, developers today typically
make one of two choices. Some accept that each performance-sensitive program component must be capa-
ble of running on any CPU or GPU with high performance. Those developers bear the high cost of writing
high-performance implementations for each architecture class (CPU, GPU, and possibly others) and guarantee
performance on any platform through exhaustive specialization. Other developers lack the motivation or re-
sources to pursue such a high-cost path, and choose instead to target some lowest common denominator among
platforms, usually the CPU. These two choices drain development effort or leave significant performance oppor-
tunities on the table, respectively. The root problem is a lack of performance portability, or the ability to write
a single software implementation that can be targeted to multiple architecture classes with high performance on
all of them.

9.2 Contributions
In this project, we started by developing the MCUDA tool, to implement the CUDA programming model

on CPU processors, demonstrating feasibility for the concept of executing “GPU” programming languages on
CPUs efficiently. The initial goal of the MCUDA project was to find and contribute the missing pieces to an
ecosystem for a specific programming language and enable performance portability in a real and usable way.
As our work continued, the Khronos Group specifically designed OpenCL with portability between GPUs and
CPUs in mind. Yet, despite well-resourced implementations of OpenCL for x86 from both Intel and AMD, the
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emerging OpenCL ecosystem failed to deliver satisfactory performance portability initially, as noted by appli-
cation programmers [143], leading to continued work on “better” programming models [126]. The MCUDA
project therefore took on a second objective: to understand why high-quality language implementations for both
CPU and GPU architectures failed to provide performance portability.

Based on preexisting infrastructure supporting the CUDA language, we first sought to find and remedy any
performance inefficiencies that we could find within the MCUDA tool, to determine the limits of its translation
methodology. Its core methodology involved aggregating many small GPU tasks into a single CUDA thread, us-
ing compiler transformation techniques. The consequences of such an aggregation were the explicit instantiation
of many copies of each CUDA thread’s private variables, and the repeated execution of the entire kernel program
for each unique CUDA thread index. However, there were many “private” variables that always stored the same
value, regardless of CUDA thread index. During the aggregation process, we could identify such variables, and
keep only one copy to hold the value for many CUDA threads. The data-redundancy removal often exposed
computational redundancy across CUDA threads as well. And yet, even with all of this redundancy removal,
there were many cases where the generated code was orders of magnitude slower than well-written C code.

As we worked on compiler optimizations, we also analyzed emerging heterogeneous applications in more
depth. We studied the programming guidelines as published by GPU manufacturers, and the ways in which the
programming community applied those guidelines to their applications. As a result, we created a characterization
of optimization patterns for GPGPU programming, drawn from our informal survey of the GPU Computing
Gems contributions [81, 82], and from a detailed analysis of the Parboil benchmarks. Table 9.1 summarizes our
proposed collection of optimization patterns, and the goals or benefits accomplished by each.

Technique Memory Bandwidth Locality Instruction Load CPU
Contention Demand Utilization Efficiency Imbalance

Tiling X X
Privatization X X
Scatter to Gather Conversion X
Binning X X X X
Regularization X X X
Compaction X
Data Layout Transformation X X
Granularity Coarsening X X X X

Table 9.1: Issues addressed by each optimization pattern.

The programming and optimization principles we observed were very general, and reflected more about
the challenges of targeting massive parallelism and wide SIMD than GPU architectures specifically. These
optimization patterns represent portable performance principles for a variety of parallel architectures, which
have been applied to systems from supercomputers to many-core CPUs. Some of these principles are even
important for sequential workloads, whereas others are only relevant in the context of parallel execution and
contention. While other performance principles specific to GPU architectures were observed, they tended to be
secondary concerns, applied only after the primary principles were exploited fully.

As a result of a deeper understanding of the performance assumptions carried by OpenCL developers, we
developed the next generation of compilation tools for GPU computing languages, this time focusing on OpenCL
for convenient comparison with industry practice. By targeting the C Extensions for Array Notation (CEAN)
from Intel, we were able to address two fundamental issues with the original MCUDA methodology: a lack of
explicit vectorization opportunities, and a misuse of the CPU cache hierarchy. CEAN addressed both of these
issues simultaneously, by delivering memory access orderings that took better advantage of spatial locality, and
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by unleashing the C compiler’s vectorization capabilities from the constraints of unannotated C code. Figure 9.1
shows the improvement over the initial MCUDA methodology for a collection of kernels from the Parboil [153]
and Rodinia [37] benchmark suites. Figure 9.2 shows the same benchmarks, comparing the CEAN methodology
with existing industry implementations.
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Figure 9.1: The performance effects of using vector-based compilation (CEAN) rather than region-based compi-
lation (original MCUDA). The graph shows the change in performance from the baseline MCUDA methodology.
Higher is better for the CEAN target.
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Figure 9.2: The performance effects of using vector-based compilation (CEAN) rather than runtime library
methods of managing work-item synchronization. The graph shows the comparative execution time between
widely-used runtime-based implementations from industry. The results are normalized to the CEAN target
execution time; lower execution times are better.

These kernels are taken from benchmark suites typically used to evaluate GPU performance. The signif-
icant performance gains achieved for several classes of benchmarks and programming patterns highlights just
how much performance portability was absent from the ecosystem prior to our contributions. Developers could
not rely on their GPU-optimized kernels getting reasonable performance on the CPU platforms. In the same
results, a few limitations of the current system are exposed, such as the 2-4x slowdown on GPU FFT Global,
histo main kernel, and compress kernel. These kernels all exhibit meaningful levels of control diver-
gence, which are not handled well by our initial approach to CEAN code generation, as discussed in Section 9.4.

The version of our OpenCL compiler and runtime targeting CEAN is still under development, and has not
yet been publicly released. The initial MCUDA toolset is available for download from the IMPACT website
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under the Illinois Open Source License.

9.3 Lessons Learned
As a result of this research, we have gained the following insights related to heterogeneous computation and

compiler development.
OpenCL was specifically designed with portability between GPUs and CPUs in mind, and both AMD and

Intel released high-quality x86 CPU implementations. Yet the ecosystem fails to deliver satisfactory performance
portability, primarily because a language specification, by itself, is insufficient for establishing performance
portability.

Performance portability requires not only an agreed-on functional language specification, but a clear spec-
ification or convention for expressing a program’s performance-related attributes. In practice, a vendor imple-
menting a language may think first of how the language’s functional components might most naturally map to
the specific architecture. That implementation will then define some best practices for programmers targeting
that architecture through that implementation. The problem is that when the best practices for different plat-
forms diverge, the potential for performance portability is lost. To follow divergent best practices for different
platforms, programmers have no choice but to write specialized implementations for each.

We believe that the OpenCL community is beginning to converge on some unified conventions that can be
exploited for performance portability. The performance convention embodies preferred methods for expressing
data parallelism, task parallelism, spatial locality, and temporal locality, and covers a broad range of application-
level optimizations required by developers. To achieve performance portability, vendor implementations of the
language must determine how to adopt those abstract performance expressions to their architecture, in addition
to obeying the functional specification of the language. We have demonstrated that a CPU implementation of
OpenCL following those guidelines outperforms the currently available implementations, given typical work-
loads written for GPU acceleration. Through our experience executing source code on CPUs and GPUs, we
conclude that the high-level optimization principles applied to these programs were meaningful for a variety of
architectures, and that language implementations can deliver performance portability effectively.

9.4 Future Work
Programming conventions have limitations. There is some measurable cost paid to conform not only to a

language specification but to a particular performance model. Our methodology completely falls back to scalar
code generation when, in an irregular workload, regular control flow cannot be statically guaranteed. We are
currently working on more advanced CEAN code generation methodologies that may be able to recover some
of that lost performance potential.

9.5 Key Papers and Other Material
We include two papers in this book. The first one is “Efficient Compilation of Fine-Grained SPMD-threaded

Programs for Multicore CPUs” from CGO 2010 [151]. It explains the entire core methodology. The other is
“Performance Portability in Accelerated Parallel Kernels”, Technical Report IMPACT-13-01 [152]. It describes
our initial attempts at targeting CEAN.
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Scheduling for Energy Efficiency

10.1 Problem Addressed
Designers of mobile devices face the challenge of providing the user with more processing power while

increasing battery life. In this work, we have looked at the opportunities offered by heterogeneous systems to
address this challenge. In a heterogeneous system, multiple classes of processors with dynamic voltage and
frequency scaling functionality are embedded in the same chip. With such a system, it is possible to maximize
performance while minimizing power consumption if tasks are mapped to the class of processors where they
execute the most efficiently. Thus, we have proposed a scheduling algorithm to determine the scheduling of
tasks in a real-time context on a heterogeneous system-on-a-chip that has dynamic voltage and frequency scaling
functionality. Our algorithm minimizes energy consumption while meeting the deadlines. In addition, to verify
some of the assumptions made in this algorithm, we evaluated performance and energy of a visual object-
detection application running on the heterogeneous Intel Ivy Bridge processor [40]. Different mapping strategies
were evaluated and execution times and energy consumption were measured for each of them.

10.2 Contributions
We highlight two main contributions. The first one (Section 10.2.1) is a scheduling algorithm that takes

advantage of the different types of processors in an heterogeneous device. The second one (Section 10.2.2) is
our experiences when running a vision application in an Ivy Bridge processor.

10.2.1 Scheduling

We propose a new scheduling mechanism that minimizes the energy consumed by streaming computations
under the constraint of a minimum output rate. We assume that there could be multiple classes of processors
embedded in the mobile device and that they have dynamic voltage and frequency scaling (DVFS) functional-
ity. Since the maximum possible frequency is not typically required to achieve the desired output rate, energy
consumption can often be minimized by lowering the voltage and hence the frequency as much as the real time
constraint allows. This minimization process is complicated by three situations. First, only a discrete number
of frequencies are possible in today’s machines. Second, changing the voltage/frequency consumes time, which
means that such changes must be applied judiciously. Third, energy efficiency can be controlled not only by
DVFS but also by choosing the class of processor on which to map each task, since different processors are
efficient for different types of tasks. A GPU will excel in vector operations but will be inferior to a conventional
CPU for applications rich in control flow.

The technique that we propose takes the form of a two-step heuristic that first chooses what class of pro-
cessors to map each task to [163]. To make this decision, we introduce the concept of cross-platform task
heterogeneity, which measures which tasks have a larger variation in execution time based on the type of proces-
sor where they run. Tasks with a higher value of cross-platform heterogeneity are scheduled first, to give them
more choices. Then, after tasks have been assigned to a processor type, a homogeneous scheduling algorithm is
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used to determine the voltage and frequency scaling within each homogeneous subsystem. Our scheduling tech-
niques apply frequency scaling at the granularity of the tasks. This enables us to place the code for frequency
scaling at natural locations.

Our experimental results show that our scheduling algorithm outperforms previous algorithms, such as
Greedy and LR [171]. It has a high success rate at finding a feasible schedule and, for most of the cases we
studied, the resulting schedule is within 5% of the optimal one. It also offers very stable results when the ar-
chitecture heterogeneity and task uniformity vary. Additionally, the memory usage is linear with the size of the
input.

10.2.2 Experimental Results

To verify some of the assumptions we made when developing the scheduling algorithm described in the
previous section, we have run some experiments on a heterogeneous Intel Ivy Bridge processor used for an
Ultrabook. This processor has a 1.7 GHz dual-core and an Intel HD Graphics 4000 with 16 GPU execution
units running at 350 Mhz. For the evaluation, we have chosen an object detection algorithm [51] for finding
objects with a specific shape or appearance in unconstrained visual input. Our object detector uses the ViVid
library 1. ViVid compiles several atomic functions common to many vision algorithms and is representative of
many typical applications on mobile devices that work with the streaming visual input from the camera and are
fairly computationally demanding. As most vision applications (e.g., recognition, tracking, stabilization), Vivid
consists of a pipeline of a small number of kernels. To improve performance and energy efficiency, we optimized
the code and evaluated all the possible mapping strategies. We also evaluated the use of DVFS.

ViVid consists of three main kernels: Blockwise Distance (Filter kernel), Cell Histogram Kernel, and Pair-
wise Distance (Classifier Kernel). Each input frame goes through the three kernels, but there are no dependences
across frames. ViVid was originally written in C and used OpenMP for parallelism. There was also a CUDA
version to run on the NVIDIA GPUs. To run in the GPU of the Ivy Bridge processor, we had to translate the
original C code into OpenCL. Then, each kernel was optimized and executed on both the CPU and the GPU.
We found that while the filter and histogram kernels run faster in the GPU, the classifier runs faster in the CPU.
Similarly, the filter and histogram kernels consume less energy when running in the GPU, while the classifier
consumes less when running in the CPU. It is interesting to notice that these results contradict the general belief
that all these highly-parallel kernels run faster in the GPU. While this statement might be true for larger GPUs,
for the smaller GPUs of heterogeneous systems, both GPU and CPU are necessary.

After understanding the different trade-offs between GPU and CPU for each kernel, the natural question is
how to utilize the heterogeneous system for an application to achieve best performance and energy efficiency. To
answer this question, we evaluated different approaches. The results are shown in Figures 10.1(a) and 10.1(b),
which show the execution time and energy, respectively. CPU and GPU correspond to running all the kernels
in the CPU or in the GPU; specialized corresponds to an execution where the filter and histogram are mapped
to the GPU (where they run faster and are more energy efficient) whereas the classifier is mapped to the CPU
(where it is faster and more energy efficient). In specialized, when the GPU is executing filter or histogram,
the CPU is idle, and when the CPU runs the classifier, the GPU is idle. Overlap corresponds to an execution
similar to software pipelining that can be applied to streaming applications, where parallelism can be exploited
across multiple input images or frames, like multiple frames of a video. In overlap, filter and histogram form the
first stage of the pipeline, operating on a frame in the GPU, while classifier is the second stage of the pipeline,
running on the CPU and operating on the GPU’s results. Note that with overlap, since the CPU’s work takes
around 3 times longer than the GPU, the GPU will be idle for about two-thirds of the execution time. These
strategies underutilize either the CPU or the GPU because of data dependencies. Therefore, one can split the
image between the CPU and the GPU for maximum utilization, shown as split in the figures.

1http://www.github.com/mertdikmen/vivid
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Figure 10.1: Running the full application on the CPU or GPU, or utilizing both using different approaches.

The results in Figure 10.1(a) show that specialized is more than 25% faster than just running on the CPU
(20% faster than the GPU), as one would expect. Split is about 39% faster than CPU. Overlap obtains the best
performance by running the kernels on the best type of processor, but trying to keep them busy by software
pipelining. With respect to energy, the results in Figure 10.1(b) show that specialized and overlap consume the
least energy because they run each kernel where it runs the best. On the other hand, using only the CPU or the
GPU is not energy efficient. Note that split is a very fast method but it consumes much more power also, so it
is not the most energy efficient in the end. Specialized and overlap are 35% and 42% more energy efficient than
the GPU-only method, respectively. They are also 19% and 28% more energy efficient than split, respectively.

Our performance is superior or similar to recent works using much more capable discrete GPUs [18, 129,
173]. However, notice that real-time vision applications need to run at a certain number of frames per second.
For instance, we can run at around 40 frames per second (fps) with overlap and 31 fps with split, while 10 fps
might be enough for many object detection purposes. The extra available computation power can be used for
more analysis or for other applications (e.g., if vision is only the interface for some other purpose). Alternatively,
one might consider DVFS to save energy. However, our results show that the Ivy Bridge processor’s DVFS is
not very effective for these compute-intensive codes. We applied DVFS to our application and could only save
5% of the energy, while sacrificing 9% performance. The reason is that it makes the runtime so much longer
(for compute-intensive codes) that it offsets the power savings. Thus, running the application for a while and
then idling the processor seems to be the best solution for saving energy. In this case, savings will depend on the
sleep and wakeup latencies of the processor in the specific usage. However, we expect DVFS support to improve
significantly in future devices, as vendors consider it in earlier steps of the processor design. This will be very
important for the energy efficiency of many vision applications similar to ours.

10.3 Lessons Learned
Our experimental results show that mapping kernels to the most appropriate device is important and pro-

grammers need to consider the different choices. To that end, we have provided an algorithm that can help
determine the mapping for such a heterogeneous system.

Our experimental results for a vision application with a small number of kernels show that mapping the
kernels to the most efficient device and overlapping the computation of the kernels is the best approach. For
our ViVid application, it is 1.91 times faster and 42% more energy-efficient than a GPU-only solution. It is also
1.26 times faster, and 28% more energy-efficient than an input-splitting method. Notice that even for the few
codes that use GPUs, this approach is not currently used, as most vision codes run significantly faster in the large
discrete GPUs. However, in the case of smaller on-chip GPU, our experimental results show that both CPU and
GPU need to be involved in computation.

We have also observed that DVFS does not help the energy efficiency much in current systems, but we expect
it to be useful for our applications on future machines with better DVFS support.
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10.4 Future Work
We are currently translating other vision applications, such as image recognition and image tracking. One

goal is to understand the optimizations that we need to apply to generate highly-efficient code for both CPU and
GPU. The second goal is to better understand the different scheduling strategies. For instance, we are currently
investigating techniques that can improve the results that we obtained with the overlap execution. With this
strategy, the running times are dominated by the execution time of the slowest stage of the pipeline. New
scheduling techniques that take advantage of the idle time in the shorter stages of the pipeline should reduce
energy consumption.

10.5 Key Papers and Other Material
In this book, we include the paper “Scheduling of Stream-Based Real-Time Applications for Heterogeneous

Systems” from LCTES 2011 [163]. This paper was selected as one of the five Best Papers of the conference. It
was produced in collaboration with Intel researchers Jean Pierre Giacalone and Bob Kuhn.



Chapter 11

Verification and Testing Advances

11.1 Problem Addressed
The currently-dominant programming model for parallel code is that of shared memory, where multiple

threads of computation communicate by reading and writing shared data objects. Multithreaded code is no-
toriously hard to get right, with common bugs including dataraces, atomicity violations, or deadlocks. While
new parallel programming models are emerging, programmers need help right now to develop more reliable
multithreaded code.

Software testing is the most widely-used method for increasing software reliability. Researchers and practi-
tioners have developed a number of automated testing techniques and tools that have been adopted by program-
mers as an aid in developing more reliable code. Some of the techniques and tools most successful in practice
include unit-testing frameworks (such as JUnit or NUnit), regression test selection (which determines what tests
to rerun after making a change in code), and test prioritization (which determines in what order to run the tests
to find bugs faster). The existing approaches work fairly well for sequential code, but unfortunately do not work
nearly as well for multithreaded code.

To significantly improve the testing of multithreaded code, we aimed to develop a set of new techniques
and tools for multithreaded tests. A multithreaded test is a piece of code that creates and executes two or more
threads (and/or invokes code under test that itself creates and executes two or more threads). Executing a test
follows some schedule/interleaving for the execution of the multiple threads (and different schedules can give
different results).

In one approach that we have taken, the key idea is to allow specifying a set of relevant schedules for each
test. Note that even the traditional tests that do not explicitly specify a set of schedules actually do implicitly
specify a set of schedules, namely the set of all possible schedules. We addressed several important challenges
for multithreaded tests: (1) test schedules: how to describe a set of schedules and which schedules from a given
set to explore? (2) test generation: how to automatically generate multithreaded tests, especially schedules for
a given code? (3) regression testing: how to select/prioritize the rerunning of the multithreaded tests when the
code under test changes?

In another approach, called predictive testing, we have tackled the problem of automatically finding par-
ticular interleavings to test the program on that are likely to contain errors. In predictive testing, we take one
arbitrary run of the program under test, and use the execution to predict alternate interleavings that are likely to
expose more errors, and then test those by carefully scheduling the predicted interleavings. We have, over the
years, built a very robust and extensible predictive testing tool called PENELOPE that finds effective interleav-
ings to expose a variety of errors, ranging from dataraces to atomicity violations, deadlocks, and null-pointer
dereferences.
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11.2 Contributions
11.2.1 General Testing of Multithreaded Code

In the area of general testing of multithreaded code, we made several contributions:

• We developed Ballerina [117], a novel technique for automated random generation of efficient multi-
threaded tests that effectively trigger concurrency bugs. As mentioned, a multithreaded unit test creates
two or more threads, each executing one or more methods on shared objects of the class under test. Such
unit tests can be generated at random, but basic random generation produces tests that are either slow or
do not trigger concurrency bugs. Worse, such tests have many false alarms, which require human effort
to filter out. Ballerina makes tests efficient by having only two threads, each executing a single, randomly
selected method. Ballerina increases chances that such simple parallel code finds bugs by appending it to
more complex, randomly generated sequential code. We also proposed a clustering technique to reduce
the manual effort in inspecting failures of automatically-generated multithreaded tests.

• We developed IMUnit [86, 87], a novel approach to specifying and executing schedules for multithreaded
tests. When developers want to enforce a particular schedule for their multithreaded test execution, they
commonly use time delays (e.g., Thread.sleep in Java). Unfortunately, this approach can produce false
positives (tests failing when there is no bug in the code) or negatives (tests passing when they could execute
a bug in the code), and can result in unnecessarily long testing time. We introduced a new language that
allows explicit specification of schedules as orderings on events encountered during test execution. We
developed a tool that automatically instruments the code to control test execution to follow the specified
schedule. We also developed a tool that helps developers migrate their legacy, sleep-based tests into event-
based tests in IMUnit. The migration tool uses novel techniques for inferring events and schedules from
the executions of sleep-based tests.

• We developed CAPP [89], a novel technique that uses information about the changes in software evolution
to prioritize the exploration of schedules in a multithreaded regression test. Successful software evolves
over time as developers add more features, respond to requirements changes, and fix faults. Regression
testing is the most widely-used method for ensuring the validity of evolving software. As regression
test suites grow over time, it becomes expensive to execute them. The problem is exacerbated when test
suites contain multithreaded tests. These tests are generally long running, as they explore many different
thread schedules searching for concurrency faults such as dataraces, atomicity violations, and deadlocks.
While many techniques have been proposed for regression test prioritization, selection, and minimization
for sequential tests, there was not much work for multithreaded code. We implemented CAPP in two
frameworks for systematic exploration of multithreaded Java code, stateful JPF and stateless ReEx [88].

• We developed MuTMuT [68,69], a general framework for efficient exploration that can reduce the time for
mutation testing of multithreaded code. While CAPP addressed code changes in the actual code evolution,
the first step of our work considered code changes in mutation testing. Mutation testing is a method for
measuring and improving the quality of test suites. Given a system under test and a test suite, mutations
are systematically inserted into the system, and the test suite is executed to determine which mutants it
detects. When the test suite does not detect a non-equivalent mutant, the test suite can be improved by
adding a test case that detects that mutant. A major cost of mutation testing is the time required to execute
the test suite on all the mutants. This cost is even greater when the system under test is multithreaded: not
only are test cases from the test suite executed on many mutants, but also each test case is executed, or
more precisely, explored, for multiple possible thread schedules. We presented several techniques within
the general MuTMuT framework.
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• We developed Light64 [118] and InstantCheck [119], two novel approaches for hardware-supported test-
ing of parallel code. Light64 focuses on dataraces, which are common bugs but, unfortunately, check-
ing for races is often skipped in systematic testers because it introduces substantial runtime overhead if
done purely in software. Recent techniques proposed for race detection in hardware require significant
hardware support. In contrast, Light64 has both small runtime overhead and very lightweight hardware
requirements. Light64 is based on the observation that two thread interleavings in which racing accesses
are flipped will very likely exhibit some deviation in their program execution history. InstantCheck fo-
cuses on checking determinism. During code testing, InstantCheck can check whether the code under
test ends up in a deterministic state in various runs. The idea is to compute hashes of the memory state
and compare them for different test runs that have the same input. InstantCheck has a very small runtime
overhead while requiring only a minor hardware extension.

11.2.2 Predictive Testing and the PENELOPE Framework

In the area of predictive testing, we made several advances to predict as well as to test multithreaded code:

• We have developed, over time, a robust and extensible tool called PENELOPE [150] for testing multi-
threaded Java programs. PENELOPE works by automatically transforming Java byte-code to insert moni-
tors and schedulers into the code. The predictive approach calls for three phases: (a) an initial monitoring
phase that monitors precisely the interleaving executed on an arbitrary run of the program, (b) a predic-
tion phase that predicts alternate interleavings that are likely to expose errors of various kinds, and (c) a
rescheduling phase that accurately replays the predicted interleavings. Our tool performs the phases (a)
and (c) above, allowing developers to plug in any prediction tool for Phase (b) so as to build their own
predicting tools [60–62, 149].

• We have built a variety of predicting routines for various generic errors in programs, including dataraces,
atomicity violations, and deadlocks. Furthermore, since there are a large number of interleavings that are
hard for a programmer to consider, several generic errors for sequential programs also manifest in the
concurrent setting, where they manifest themselves only on a small set of interleavings. We have explored
predicting routines for null-pointer dereferences as well [60–62, 149].

• The prediction of alternate interleavings for the various kinds of errors is a hard algorithmic problem. We
have developed techniques based mostly on lock-sets and acquisition histories, the latter being more so-
phisticated information on lock acquisition patterns. The algorithms we build are often extremely efficient
(polynomial time) [61, 149].

• In more recent work, we have also explored techniques based on constraint solvers in order to predict
alternate interleavings, in particular predict interleavings to expose null-pointer dereferences [61]. Here,
using state-of-the-art SMT solvers, we can search for interleavings whose feasibility and accuracy in
exposing bugs are greater [61].

11.3 Lessons Learned
Our results show that the techniques and tools we developed can improve testing of multithreaded code: they

find more bugs and/or find bugs faster than previous techniques, make it easier to write tests, and even automati-
cally generate tests in some cases. While many of the experiments that we have performed used previous-known
bugs to compare techniques, we have also found previously-unknown bugs in popular open-source code (e.g.,
Apache Pool and Log4j Java projects). Some of the bugs we found and reported were already confirmed and
fixed by the developers. These results confirm the widely-held belief that parallel code is prone to bugs, and
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that is it important to develop techniques to find, eliminate, and/or prevent these bugs. As the types of bugs vary
(e.g., dataraces vs. deadlocks), we need a multi-pronged approach with various techniques for these types.

11.4 Future Work
The future work is to continue improving the techniques and tools for testing parallel code. An important

aspect of the future work is to get these tools included in the actual software development process. For example,
Google is currently considering to include our IMUNIT tool [86] in their testing.

11.5 Key Papers and Other Material
We include two papers in this book. The first one is “Improved Multithreaded Unit Testing” from ESEC/FSE

2011 [87]. This paper discusses the IMUnit language for specifying and enforcing schedules in multithreaded
tests. Because multithreaded tests depend on schedules, being able to easily and explicitly specify schedules
enables proper explorations of these schedules. The code released from this project includes the IMUNIT [86]
and REEX [88] tools.

The second paper is “Predicting Null-Pointer Dereferences in Concurrent Programs” from FSE 2012 [61].
This paper, though it concentrates on finding null-pointer dereferences, outlines the general predictive technique
and framework, and the use of SMT solvers, to predict interleavings for various kinds of errors. The PENELOPE

tool has also been released [150].
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Record&Replay and Debugging Architectures

12.1 Problem Addressed
Despite the best efforts of programmers, parallel code often contains concurrency bugs. What is worse,

debugging parallel code is very time consuming. There are at least two reasons for this. First, concurrency bugs
are typically hard to find and isolate. They are often strongly dependent on how the different threads interleave.
Small timing changes often prevent a bug from manifesting again.

A second reason is that there are many different types of concurrency bugs. There is no cost-effective
universal approach to debug all concurrency bugs. Instead, for each type of bug, there are different approaches
and tools. Even for the same bug, there are different approaches depending on the desired effectiveness versus
overhead design point. Examples of concurrency bugs are data races, atomicity violations, and Sequential
Consistency Violations (SCVs). An SCV occurs when the accesses of multiple threads form two or more data
races that overlap in a way that the instructions cannot be ordered in any sequentially-consistent order.

Most of the existing tools and techniques to handle these bugs are software-based. In this chapter, we in-
troduce techniques that, to keep the execution overhead negligible, rely on some hardware structures in the
processor or memory system. Our techniques do not alter the timing of the execution and, therefore, the pro-
grammer sees the same bugs as in a production run.

Unfortunately, even if we do not alter the timing of the execution, it is not guaranteed that a bug will re-
occur in a re-execution. The reason is that machines are typically nondeterministic. Hence, we also introduce
novel architectures to Record and deterministically Replay (R&R) multithreaded applications. Under R&R, as a
parallel program executes, there is special hardware and OS components that record in a log any nondeterministic
event that occurs; then, in a second run, these special components guide and force the execution to follow the
exact same paths. With this hardware and OS support, bugs can be perfectly reproduced.

12.2 Contributions
The main contribution of this project has been the design and construction of a multicore hardware prototype

for R&R called QuickRec [127]. The prototype is built with FPGAs, has a full Linux-based OS, and records and
replays complete Intel-Architecture (IA) applications. It was built jointly with Intel researchers. Moreover, we
have also designed other schemes for R&R [79, 80, 110–112, 128] that introduce novel ideas. In particular, we
have developed the first OS that virtualizes R&R hardware [112].

In addition, we have designed novel architectures for detecting and avoiding other concurrency defects such
as data races [116, 118, 132], atomicity violations [114], sequential consistency violations (SCVs) [115, 136],
and determinism bugs [119] with negligible execution overhead. These techniques do not alter the timing of
parallel application execution.

We have extensively discussed these techniques with Intel architects and worked together with several of
them. Together with Intel, we produced the QuickRec [127] system and several joint papers [79, 127, 128]. Our
work is documented in 16 technical papers [35,36,79,80,110–112,114–116,118,119,127,128,132,136]. They
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include one Communications of the ACM Research Highlight [80] and 11 papers in the ISCA, MICRO, HPCA,
or ASPLOS top conferences.

The following sections give an overview of the QuickRec prototype (Section 12.2.1), additional R&R ar-
chitectures that we designed (Section 12.2.2), and architectures for detecting and avoiding concurrency bugs
(Section 12.2.3).

12.2.1 The QuickRec Prototype

Together with Intel researchers, we designed and built QuickRec [127], the first multicore IA-based prototype
of R&R for multithreaded programs. QuickRec is based on QuickIA, an Intel emulation platform for rapid
prototyping of new IA extensions. QuickRec is composed of a Xeon server platform with FPGA-emulated
second-generation Pentium cores, and Capo3, a full software stack for managing the recording hardware from
within a modified Linux kernel. Figure 12.1 shows different aspects of QuickRec: a photograph of the prototype
(left), the architecture of the processor-emulation platform (center), and an overview of the extended Pentium
core, where circled numbers identify the main CPU touch points (right).
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Figure 12.1: The QuickRec prototype for R&R.

The QuickRec recording system dynamically divides a thread’s execution into regions of consecutive dy-
namic instructions called Chunks. It adds two Bloom filters [23] next to the L1 cache to capture the read and
write sets of the memory accesses in a chunk. Specifically, the line addresses of the locations accessed by loads
and stores are hashed in the Bloom filters and inserted into their respective set (R-set and W-set in the figure)
at retirement and at global observation time, respectively. A thread’s chunk is terminated when the hardware
observes a memory conflict (i.e., a data dependence) with a remote thread. Conflicts are detected in hardware, by
checking the addresses of incoming coherence transactions against addresses in the read and write sets. When a
conflict is detected, the hardware logs a count with the current chunk size into an internal chunk buffer (CBUF),
along with a timestamp that provides a total order of chunks across cores. The chunk-size count is the number
of retired instructions in the chunk. After a chunk is terminated, the read and write sets are cleared, and the
chunk-size count is reset.

CBUF is organized into four entries, where each is as large as a cache line. When a CBUF entry is full, the
hardware flushes it to a dedicated memory region called CMEM. This is done lazily during idle bus cycles to
minimize the performance impact.

There are several subtle issues related to capturing the ordering of instructions. One of them is the fact that
the IA memory model allows a load to retire before a prior store to a different address has committed, hence
ordering the load before the prior store in memory. A second issue is that an instruction may perform multiple
memory accesses before completing execution, and the different memory accesses may end up in two or more
different chunks. QuickRec handles all of these issues.

The Capo3 OS records the inputs to the program’s processes, manages the replay logs, and virtualizes the
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hardware components. It is needed to make the R&R system practical for real IA multicore systems.

12.2.2 Additional R&R Architectures Designed

The DeLorean Model of R&R Based on Chunks. The DeLorean [110] ISCA 2008 paper introduces a new
approach to R&R that provides substantial advances in log size reduction. DeLorean uses a new execution
substrate: one were processors execute large blocks of instructions called chunks. To capture a multithreaded
execution, DeLorean only needs to record chunk sizes and the total order in which chunks from different proces-
sors commit — not individual shared-memory dependences between threads, as was the state of the art before.
This reduces the log size substantially.

In addition, in DeLorean, each processor executes chunks atomically as in the Bulk Multicore architecture
(Chapter 13). As a result, the memory accesses of a processor within a chunk can overlap and reorder. This
allows DeLorean to record execution at the speed of the most aggressive consistency models used today — and
replay at a comparable speed. This is in contrast to the other schemes, which needed conservative memory
consistency models to record. Finally, DeLorean offers different execution modes that provide different trade-
offs between performance and log size.
The Capo OS for Virtualizing R&R. The Capo [112] ASPLOS 2009 paper presents the first set of OS abstrac-
tions and software-hardware interface for practical hardware-assisted R&R. Past R&R work had focused only
on the hardware implementation of the basic primitives for recording and, sometimes, replay. It did not address
key issues such as how to separate software that is being recorded or replayed from software that should execute
without being recorded or replayed, or from other software that should be recorded or replayed separately. Prac-
tical R&R systems require a software component to manage large logs, and a way to mix standard execution,
recorded execution, and replayed execution of different applications in the same machine concurrently.

Capo introduces the abstraction of Replay Sphere, which allows designers to separate the responsibilities of
hardware and software components. A replay sphere is a group of threads (together with their address spaces)
that are recorded and replayed as a cohesive unit. All the threads that belong to the same process must run within
the same replay sphere. It is possible, however, to include different processes within the same replay sphere. To
evaluate Capo, we design and build an implementation of it in Linux.
The Cyrus Advanced R&R System. The Cyrus [79] ASPLOS 2013 paper presents the first hardware-assisted
approach for unintrusive, application-level R&R that explicitly targets high-speed replay. Fast replay is an en-
abling property in R&R systems for debugging, intrusion analysis, and fault tolerance. Application-level R&R
means that only an application (or a set of them) is recorded, rather than the whole machine state. Unintrusive
hardware design is fundamental for acceptance of R&R hardware. It prohibits any big system-level hardware
changes, such as changes to the cache coherence protocol. Since many multiprocessors use snoopy cache coher-
ence, we require that our design is compatible with (and does not modify) snoopy protocols.

Cyrus introduces the concept of an on-the-fly software Backend Pass during recording which, as the log is
being generated, consumes it and transforms it. This pass fixes-up the log, exposes a higher degree of parallelism
for replay, and can also flexibly trade-off replay parallelism for log size.

12.2.3 Architectures for Detecting & Avoiding Concurrency Bugs

We proposed architectures for debugging data races [116, 118, 132], atomicity violations [114], sequential
consistency violations (SCV) [115,136], and non-determinism [119] with negligible execution overhead. These
techniques do not alter the timing of parallel application execution.
Debugging Data Races: SigRace, Light64, and Pacman. SigRace [116] is a novel approach to hardware-
assisted data race detection that overcomes key limitations of previous schemes. Previous hardware-assisted
data race detectors detect races by augmenting the cache state and the coherence protocol. They tag each
cache line with a timestamp or a lockset, perform additional operations on local/external access to the cache,
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and piggyback information on cache coherence protocol messages. Unfortunately, L1 caches and coherence
protocol units are critical hardware structures. In addition, if a line is displaced or invalidated from the cache,
these systems typically lose the ability to detect races involving the line.

SigRace, instead, relies on hardware address signatures. As a processor runs, the addresses of the data that
it accesses are automatically encoded in signatures. At certain times, the signatures are automatically passed to
a hardware module that intersects them to those of other processors. If the intersection is not null, a data race
may have occurred. With SigRace, there are no changes to the cache or the cache coherence protocol messages,
and there are no critical-path operations performed on local/external access to the cache. Moreover, lines can be
displaced or invalidated from caches without affecting SigRace’s ability to detect data races.

Light64 [118] is a novel technique for detecting data races during systematic testing of multithreaded pro-
grams. It encodes execution histories with a hardware hashing module. More details have been presented in
Chapter 11.

Pacman [132] is a scheme to detect Asymmetric data races. An asymmetric data race occurs when at least
one of the racing threads is inside a synchronization-protected critical section. In this case, while the thread (call
it safe) is accessing shared variables inside a critical section, a second thread (call it unsafe) races in, corrupting
the state or reading inconsistent state. The idea behind Pacman is to use the hardware cache coherence protocol
in a multiprocessor to temporarily protect the variables that a thread is accessing in a critical section. The
hardware performs two concurrent actions. One is to record the addresses of (a subset of) the variables that the
safe thread is accessing while executing a critical section. The second is to reject any requests from the unsafe
threads that conflict with these variables, until the safe thread leaves the critical section. We use a hardware
signature to encode such addresses.
Debugging Atomicity Violations: AtomTracker. AtomTracker [114] is a comprehensive approach to infer
Atomic Regions (AR) and to detect AR violations. It is the first scheme to (1) automatically infer generic non-
nested ARs and (2) automatically detect violations of them at runtime with negligible execution overhead. No
programmer input or annotations are needed.

AtomTracker has two parts: one that automatically infers ARs (AtomTracker-I) and one that automati-
cally detects violations of their atomicity (AtomTracker-D). AtomTracker-I infers generic ARs by analyzing
annotation-free memory traces of test runs of the program. AtomTracker-I uses a novel algorithm that works by
greedily joining successive references of a thread into an AR if the other threads do not conflict.

AtomTracker-D takes the set of ARs and detects violations of their atomicity at runtime. AtomTracker-D
uses a new algorithm for atomicity violation detection. It checks if concurrently-executing ARs can be made
to appear to execute in sequence. Moreover, we present a hardware implementation of AtomTracker-D in a
shared-memory multiprocessor that leverages cache coherence state transitions.
Debugging Sequential Consistency Violations: Vulcan and Volition. A Sequential Consistency Violation
(SCV) occurs when the memory operations of a program have executed in an order that does not conform to
any SC interleaving. An SCV is caused by two or more overlapping data races where the dependences end up
ordered in a cycle [144].

With Vulcan [115] and Volition [136], we develop highly-precise approaches to detect SCVs in relaxed-
consistency machines. In addition, they deliver information to debug the SCV, use no other input than the
program executable, and have a negligible execution overhead. They are hardware-only solutions that look
for cycles of inter-thread data dependences at runtime. The idea is to rely on the cache coherence protocol to
dynamically record the observed inter-thread data dependences, while checking whether they form cycles. These
dependences are kept around only for as long as they can participate in a cycle, and are discarded soon after.

Our techniques tag each monitored reference issued by each processor with a per-processor Sequence Num-
ber (SN). Then, they use cache coherence protocol transactions to pass these SNs between processors in a
communication. The hardware checks for a dependence cycle. When a dependence closes a cycle and causes
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an SCV, an exception is raised. This provides valuable information for debugging the SCV. Both schemes work
with realistic multiple-word cache lines.

Vulcan [115] relies on a snoopy-based coherence protocol. Moreover, the design presented only identifies
2-processor SCVs. With Volition [136], we have taken a different approach, focusing on scalability and on
identifying SCV cycles with an arbitrary number of processors. The resulting Volition design is scalable, as it
works with a directory-based cache-coherence protocol and its hardware does not need all-to-all structures.
Debugging Non-Determinism: InstantCheck. InstantCheck [119] is a novel technique that checks determin-
ism in the execution of a multithreaded program with a very small runtime overhead, while requiring only a
minor hardware extension. The idea is to compute a hash of the memory state and compare the hashes of
different runs that have the same input. More details have been presented in Chapter 11.

12.3 Lessons Learned
We have learned several lessons from the QuickRec prototype [127]. The three most relevant are: (1)

The prototype demonstrates that chunk-based recording can be implemented with low-enough implementation
complexity and few-enough touch points to make it attractive to processor vendors; (2) By far, the biggest
challenge in implementing QuickRec R&R is dealing with the idiosyncrasies of the Intel Architecture, including
its memory consistency model and its CISC nature; (3) The main performance overhead is in the software layer,
collecting and managing the input logs; with a slightly-improved software stack, R&R can be used in an “always-
on” manner, enabling a potentially-large number of new R&R uses.

The main lesson in the work on architectures for debugging concurrency bugs is that there are many good
opportunities: simple hardware that adds negligible execution overhead can help debug code from a variety of
bug types without interfering with the timing of the execution. We believe that improving the programmability
of the architecture in this way is an excellent use of transistors.

12.4 Future Work
There are several avenues for future work in hardware-assisted R&R, as discussed elsewhere [127]. In

particular, emphasis should be placed on the replay aspect of R&R. We need approaches that are tolerant of, and
abstract away, the micro-architectural details of the recording platform. Otherwise, proprietary details will stifle
the development of replay support. In addition, we need to develop and demonstrate many uses of the R&R
technology that solve real problems of multicore users. The areas of parallel program development tools and
security aids seem particularly attractive.

Regarding the architectures for debugging concurrency bugs, we note that, currently, there is a different
architectural mechanism for each type of bug. Our future work is to find primitive mechanisms that can be used
for many types of bugs.

12.5 Key Papers and Other Material
We include two papers in this book. One is the ISCA 2013 paper on QuickRec [127], which discusses many

issues that arise when building a real hardware prototype for R&R with a complete Linux-based OS (Capo3).
The source code of Capo3 can be found at http://iacoma.cs.uiuc.edu/capo. The other paper is the ISCA 2009
paper on SigRace [116], which describes and evaluates this new approach for data-race detection. The other
papers cited above have a similar flavor for other environments or types of bugs.



Chapter 13

The Bulk Multicore Architecture for Programmability

13.1 Problem Addressed
Traditionally, parallel architectures have been designed for performance and, recently, for energy-efficient

performance. Given the increasing community of parallel programmers, and the difficulty of programming in
parallel, it is now crucial that the hardware architecture also assists in providing a programmable environment.

In practice, programmability is a difficult metric to define and measure. At the hardware-architecture level,
it implies several things. First, the architecture should be able to attain high efficiency while relieving the pro-
grammer from managing low-level tasks. Second, the architecture should help minimize the chance of (parallel)
programming errors. Finally, the architecture should support a broad software base, and not introduce significant
constraints on the programming model, compiler support, or application structure required.

A second concern as we scale the multicore size is that of hardware complexity. In large multicores, there
are many memory accesses in progress at any given time. However, individual cores are still required to commit
one instruction at a time, in order, providing the architectural state of the processor after every single instruction
— although most likely no other processor or unit in the machine needs it.

The goal of the Bulk Multicore Architecture is to provide a scalable shared-memory substrate that enables a
highly-programmable environment. At the same time, it minimizes complexity and delivers high performance.

13.2 Contributions
The contribution of this project has been the design of the Bulk Multicore Architecture for programmabil-

ity, including its novel basic operation, improvements to make it more scalable and usable, and its innovative
compilation support. We have also developed additional mechanisms for performance and programmability.

The Bulk Multicore delivers a programmable environment through a three-pronged approach. First, data
sharing is managed with a scalable hardware cache coherence based on two novel primitives: continuous Chunks
and Signatures. A Chunk is a group of dynamically-contiguous instructions (e.g., 5,000) that are executed
atomically; a Signature is a register that accumulates hash-encoded addresses using a Bloom filter [23].

Second, to help minimize the chance of parallel-programming errors, the Bulk Multicore provides high-
performance Sequential memory Consistency (SC), and also introduces several novel hardware primitives that
leverage chunks. These primitives enable low-overhead data-race detection, deterministic replay of parallel
programs, and high-speed disambiguation of sets of addresses. These primitives have an overhead low enough
to be ”always on” during production runs.

Third, the Bulk Multicore is a general-purpose architecture, capable of running both novel software as well
as currently-existing software stacks — including those for which performance is paramount.

At the same time, the Bulk Multicore keeps the hardware complexity in check, and delivers high perfor-
mance. Complexity is minimized by operating on chunks as opposed to single instructions and, as we will see,
moving the support for memory consistency away from the core. The higher performance is attained by aggres-
sively reordering instructions and memory accesses inside chunks — both transparently by the hardware, and
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with a purposely-designed compiler layer.
We have extensively discussed the Bulk Multicore architecture with Intel architects. One result of this work

is 11 papers in the top conferences [5–7, 55, 56, 133–135, 160] and journals [159, 161] — some co-authored
by Intel personnel. The basic Bulk Multicore architecture appeared in the Communications of the ACM [159].
Nine of the papers appeared in the ISCA, MICRO, HPCA, or ASPLOS top conferences. One of them received
a 2009 IEEE Micro Top Picks from Computer Architecture Conferences Award [161]. Also, the chunk-based
deterministic replay resulting from Bulk (Section 12) resulted in a hardware prototype developed together with
Intel [127] and was selected as a Research Highlight in the Communications of the ACM [80].

13.2.1 Basic Bulk Architecture

The Bulk Multicore [159] eliminates the need to efficiently support per-instruction in-order commit. The
default execution mode of a processor running a thread is to commit chunks of instructions from the thread at
a time. This continuous “chunked” execution is, by default, a hardware mechanism invisible to the software.
However, the compiler can also exploit it. Chunk execution improves programmability and performance.

Each chunk executes on the processor atomically and in isolation. Atomic execution means that none of the
chunk’s actions are made visible to the rest of the system (processors or main memory) until the chunk completes
and commits. Execution in isolation means that, if the chunk reads a location and, before it commits, a second
chunk in another processor that has written to the location commits, then the local chunk is squashed and must
re-execute. Intuitively, processors continuously execute hardware-initiated transactions.

To execute chunks inexpensively, the Bulk Multicore introduces hardware address signatures. Figure 13.1(a)
outlines a simple signature implementation. The bits of an incoming address go through a fixed permutation to
reduce collisions and are then separated into bit fields Ci. Each field is hashed and accumulated into a bit field
Vj in the register. A signature, therefore, represents a set of addresses.
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Figure 13.1: Signature (a) and operations on signatures (b).

The hardware in each processor automatically accumulates the addresses read and written by a chunk into
a read (R) and a write (W) signature. Then, simple software-invisible functional units operate efficiently on
signatures (Figure 13.1(b)). They perform operations such as intersection, test for null signature, or test for
address membership. Intersection finds the addresses common to two signatures by performing a bit-wise AND
of them. The resulting signature is empty if any of its bit-fields is all zeros. Testing whether an address a is
present in a signature involves encoding a into a signature, intersecting it with the original signature and then
testing the result for an empty signature.

Atomic chunk execution is supported by buffering the state generated by the chunk in the cache. No update
is propagated outside the cache while the chunk is executing. When the chunk completes, it proceeds to commit.
A successful commit involves sending the chunk’s W signature to the subset of sharer processors as indicated by
the directory. The written lines remain dirty in the cache. The W signature carries enough information to both
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invalidate stale lines from the other coherent caches and enforce the isolation of all the concurrently executing
chunks. To enforce the latter, when a processor receives an incoming signature Winc, its hardware intersects
Winc against the local Rloc and Wloc signatures. If any of the two intersections is not null, it means (conser-
vatively) that the local chunk has accessed a data element written by the committing chunk. Consequently, the
local chunk is squashed and restarted.

Figure 13.2 shows an example. Thread T0 executes a chunk that writes variables B and C without sending
invalidations. Signature W0 stores the hashed addresses of B and C. Concurrently, Thread T1 issues reads for
B and C, which (by construction) load the non speculative values of the variables — those before T0’s updates.
When T0’s chunk commits, the hardware sends W0 to T1. At T1, the hardware intersects W0 with the ongoing
chunk’s R1 and W1. If W0 ∩R1 or W0 ∩W1 are not null, T1’s chunk is squashed.

Commit

Thread T1

W1 = sig(T)

Thread T0

ld X
st B
st C
ld Y

W0 = sig(B,C)
R0 = sig(X,Y) Chunk

R1 = sig(B,C)

ld B
st T
ld C

(W0     R1)     (W0     W1)

Figure 13.2: Using signatures to execute chunks atomi-
cally and in isolation.
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Figure 13.3: Compiler-driven chunking for
high performance. In the figure, each ij rep-
resents a set of instructions.

The commit of chunks is serialized across the whole machine. Serialization is enforced by an arbiter module.
W signatures are sent to the arbiter. The arbiter either acknowledges that the chunk can be considered committed
or, if there is another chunk with a conflicting signature currently committing, requests a retry.
Programmability Advantages. Since chunks execute atomically and in isolation, commit in program order
in each processor, and there is a global commit order of chunks, the Bulk Multicore supports SC at the chunk
level — and, therefore, at the instruction level. This makes software development and debugging less painful.
Moreover, it allows the hardware to work well with software correctness tools, since most of them assume SC.

Chunks also free development and debugging tools from having to record or be concerned with individual
loads and stores; they only need to keep per-chunk state. This in turn allows the development of novel hardware
primitives for program development that can be “always on”. For example, we have proposed primitives for
deterministic replay [110] or data-race detection [130]. More obviously, chunks provide support for thread-level
speculation and transactional memory.
Performance Advantages. The Bulk Multicore delivers high performance because its hardware can reorder and
overlap memory access within a chunk. Inside a chunk, fences are no-ops and synchronization instructions do
not limit reordering. This is because the intermediate state of a chunk cannot be observed by any other processor.
Furthermore, if the compiler marks chunk boundaries in the static program, it can perform aggressive code
optimizations within a chunk. Such optimizations may be illegal in conventional processors, but are acceptable
in Bulk as long as, by the time the chunk is about to commit, the final state is correct (Section 13.2.3). The result
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is higher performance than conventional multicores.
Complexity Advantages. The Bulk Multicore reduces complexity by largely decoupling memory-consistency
enforcement from processor structures. Specifically, thanks to the use of chunks, SC enforcement is performed
with simple signature intersections outside of the processor core. Conventional processors, instead, need intru-
sive processor hardware to check that individual local accesses issued speculatively with respect to the memory
consistency model are not observed by other processors [159].

13.2.2 Improving Bulk Scalability and Usability

Distribution of Chunk Commit. The basic Bulk Multicore uses a centralized arbiter for commit, which com-
pares the address signatures of chunks attempting to commit concurrently. In a large multicore, a single arbiter
becomes a bottleneck. To solve this problem, ScalableBulk [133] introduces a highly-overlapped, scalable chunk
commit protocol. This protocol uses the directory modules of a distributed directory protocol as a distributed
arbiter. The commit operation uses no centralized structure, and the committing processor communicates only
with the relevant directory modules. Importantly, multiple chunks from different processors can concurrently
commit even if they communicate with the same directories, as long as their signatures do not overlap.
Support for Simultaneous Multithreaded (SMT) Processors. The basic Bulk Multicore uses single-context
cores. However, SMT cores are especially attractive for Bulk. Specifically, the cost of interaction between the
multiple contexts of the same core is very low. Hence, SMT cores can easily support the concurrent execution
of dependent chunks from different contexts. Consequently, we designed BulkSMT [134], the first SMT design
that supports chunked (or transactional) execution. BulkSMT has three configurations that behave differently
when two threads have a data conflict: Squash-on-conflict squashes one of the threads, Stall-on-conflict stalls
one of the threads until the other commits, and Order-on-conflict records the order of the dependence and will
order the chunk commits in the same order. We also showed how to design a multicore of BulkSMTs.
High-Speed Disambiguation of Sets of Addresses. We extended Bulk with SoftSig [160,161], a small register
file of signatures and corresponding ISA that can be used by the software for code analysis and optimization.
SoftSig allows the programmer or compiler to automatically encode a set of addresses into a signature, and then
check if they overlap with a second set of addresses.

SoftSig provides three primitives. The first one collects the addresses accessed in a code region into a
signature. The second one checks the overlap between a signature and the addresses accessed in a code region.
The third one checks the overlap between the signature and the incoming coherence messages received while
executing a code region. These primitives are the basis of many potential code optimizations.

13.2.3 The Bulk Compilation Support

We developed BulkCompiler [5–7], a compiler that ensures that the Bulk Architecture delivers high perfor-
mance and supports SC. BulkCompiler forms the chunks in an intelligent manner, following two main principles.
The first one is to place chunk boundaries around code that the compiler can optimize. The second one is to
terminate a chunk before a point that is likely to conflict with a concurrently-executing chunk.
Forming a Chunk Around Code that Can Be Optimized. BulkCompiler looks for code regions that it can
optimize aggressively. The optimizations can be illegal under certain conditions, as long as the state is correct
when the chunk is about to commit.

One example is code around low-contention critical sections [7], which are common in Java as synchronized
blocks. BulkCompiler includes one or several of these sections and their surrounding code in the same chunk
(Figure 13.3(a)). Then, each Lock operation is replaced with a spinning loop with plain loads, which checks if the
synchronization variable is taken. All the Unlock operations are removed. Next, BulkCompiler moves the spins
to the top of the chunk — subject to data and control dependences — to better prepare the code for compiler
optimization. Finally, with the synchronizations removed, BulkCompiler uses conventional optimizations to
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aggressively reorder and optimize the code inside the chunk. The resulting code is shown in Figure 13.3(b),
where the overlapping sets of instructions denote the beneficial effects of compiler optimization.

Since the chunk is executed atomically, there is no need to acquire and release any lock. However, the chunk
still needs to check if any lock is taken. A lock can be taken if another thread, after failed attempts to execute its
own chunk, reverted to a non-speculative Safe Version of the code, where it grabbed the lock explicitly. In this
case, when the owner of the lock releases the lock, the spinning chunk will get squashed.

This transformation improves performance in two ways. First, it replaces costly synchronization operations
with cheaper loads. Second, it eliminates the constraints on instruction reordering imposed by synchronizations.
Indeed, even under relaxed memory models, compilers cannot move instructions across synchronizations. After
BulkCompiler removes the synchronizations, BulkCompiler can reorder the code. Hence, BulkCompiler can
attain higher performance than conventional compilers for relaxed-consistency machines while supporting SC.
Terminating a Chunk to Avoid Squashes. BulkCompiler terminates chunks to minimize squashes [5].
Squashes due to data conflicts occur primarily because threads communicate. Hence, BulkCompiler identi-
fies the code locations where threads communicate. It focuses on the first communication in a code region
where two threads may perform multiple communications. We call these operations Squash Hazards [5]. Based
on the common types of Squash Hazards in popular applications, BulkCompiler introduces squash-removing al-
gorithms tailored to them. These algorithms consist of simple code transformations, typically embedded inside
synchronization macros, that create chunk boundaries for minimal squashes [5].
Alias Speculation Using Atomic Region Support. DeAliaser is a BulkCompiler pass that performs alias
speculation [6]. It performs aggressive optimizations inside chunks. Unlike conventional alias analyses, which
need to prove aliasing properties, DeAliaser works with aliasing properties that are true most of the time. It
detects the cases when they are incorrect at runtime, and just rolls back the execution.

DeAliaser adds a few instructions to enable code motion (hoisting and sinking) inside chunks. The result is
optimizations on pointer-intensive code that are currently not possible with conventional compilers.

13.3 Lessons Learned
The main lesson learned is that Bulk’s novel chunk-based execution model has advantages in programmabil-

ity, performance, and complexity reduction. Some of these issues were not obvious at the beginning. Also, these
advantages are attained while supporting existing software — in addition to code generated by BulkCompiler.

A second lesson is that the hardware-supported atomic-region primitive has a high potential for improved
code generation. We are only beginning to understand it, as we use it for optimizing low-contention critical
sections and pointer-intensive code. Many new tools can be built.

A final lesson is that Bloom-filter signatures have a broad use in computer architecture and code optimiza-
tion. They encode address footprints efficiently and can be managed with signature-based functional units.

13.4 Future Work
A key area for future work is building a more extensive software infrastructure for the Bulk Multicore. This

effort includes new code transformations that use chunks, language support for chunk-based execution, and
tailored operating system designs. Another area is designing program development tools that take advantage of
chunk execution to reduce their state or complexity. Finally, we need to understand the benefits of providing SC
execution in the Bulk Multicore and how the programmer can take advantage of it.

13.5 Key Papers and Other Material
We include two papers in this book. The CACM 2009 paper [159] gives an overview of the basic Bulk

Multicore architecture, and discusses programmability, performance, and hardware complexity issues. The
MICRO 2009 paper [7] describes the basic BulkCompiler. Subsequent papers discuss more advanced topics.



Chapter 14

DeNovo: Rethinking Memory Systems for Disciplined Parallelism

14.1 Problem Addressed
Shared-memory is arguably the most widely used general-purpose multicore parallel programming model.

It provides the advantage of a global address space, potentially promising a straightforward adaptation of the se-
quential model. Unfortunately, shared-memory programs are known to be difficult to debug and maintain [102].
Unstructured parallel control, data races, and ubiquitous non-determinism make shared-memory programs hard
to understand, and forfeit safety, modularity, and composability. At the same time, designing performance-,
power-, and complexity-scalable hardware for such a software model remains a major challenge. Directory-
based cache coherence protocols are notoriously complex to verify [1], hard to extend, and hard to scale, and
remain an active area of research (e.g., [76, 138, 172]). More fundamentally, despite decades of research, it
has been difficult to define an acceptable memory semantics (the memory model) for current popular systems,
resulting in a call for rethinking current languages and hardware [2].

The above problems have led some researchers to promote abandoning shared-memory altogether, giving
up on the significant advantages of a global address space [84, 102]. The DeNovo project takes the view that
these problems are not inherent to a global address space paradigm. Instead, they occur due to undisciplined
programming models that use arbitrary reads and writes for implicit and unstructured communication and syn-
chronization. This results in “wild shared-memory” behaviors with unintended data races, non-determinism, and
implicit side effects. The same phenomena also result in complex hardware that must assume that any memory
access may trigger communication, and performance- and power-inefficient hardware that is unable to exploit
communication patterns known to the programmer but obfuscated by the programming model.

There has been a recent surge of research on disciplined shared-memory programming models to address
the software problem (e.g., [4,9,13,19,24,25,28,33,67,73,97,121]). The DeNovo project asks the question: if
software becomes more disciplined, can we build more performance-, power-, and complexity-scalable shared-
memory hardware? Our work shows that the evolving software landscape represents a unique opportunity for
a new multicore architecture paradigm. Compared to conventional hardware driven by “wild shared memory
programming models,” disciplined models can significantly simplify the hardware implementation, reduce com-
munication traffic, and provide comparable or better performance with commensurate energy savings.

14.2 Contributions
DeNovo involved a collaboration with languages and applications researchers. We first briefly describe our

work on disciplined software and applications (details in Chapters 8 and 3), and then our hardware contributions.

14.2.1 Disciplined Shared-Memory Software

As an exemplar of disciplined shared memory models, we initially used the Deterministic Parallel Java (DPJ)
language to drive the DeNovo design. DPJ programs have the following properties [25, 28].
(1) Structured parallel control that clearly demarcates parallel sections of the code (or parallel phases).
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(2) Explicit specification of side effects of parallel sections through a region based type and effects system. The
programmer assigns every object field/array element to a “region” and annotates every method with read and
write “effects,” indicating which (possibly non-contiguous) regions will be read or written in a parallel section.
(3) Guaranteed data-race-freedom and deterministic-by-default semantics. This is achieved by ensuring that
concurrent tasks do not have conflicting effects in deterministic code sections.
(4) Strong safety properties for non-deterministic code sections; e.g., data-race-freedom, strong isolation, and
composition with non-deterministic code sections. This is achieved by ensuring that conflicting accesses in
concurrent tasks are confined to atomic sections and their regions and effects are explicitly annotated as atomic.

The DPJ language design was driven entirely by considerations for concurrency safety in software. Sec-
tions 14.2.3 and 14.2.4 describe how DeNovo uses these properties to enable simpler, faster, and more energy-
efficient hardware. Although much of the DeNovo work has been driven by DPJ, we have recently begun work
on a language-neutral virtual ISA to capture properties that were deemed to be the most important to DeNovo at
the ISA level, thereby decoupling DeNovo from any specific language [3] (Section 14.2.5).

14.2.2 Applications

To ensure DeNovo’s relevance to future real client applications, we collaborated with the AvaScholar project
on key requirements for visual computing. Rapid construction of hierarchical spatial data structures is a common
task in such applications, and the k-D Tree is a commonly used data structure. The highest quality k-D tree
can be constructed using a surface area heuristic (SAH) based optimization; however, parallelizing SAH-based
algorithms was previously thought to be difficult. We developed two parallel algorithms that provided the best
known speedups for precise SAH-based k-D trees [38]. These algorithms make different tradeoffs between the
total work done and the amount of data movement, providing different scalability characteristics.

Our experience with these algorithms inspired key optimizations for DeNovo. They exposed common prob-
lems with object-oriented programming techniques using array-of-struct (AoS) style data structures that make
inefficient use of cache capacity and network bandwidth. One of the algorithms converted some AoS structures
to the more cache and bandwidth friendly struct-of-arrays (SoA) style, but this required considerable program-
ming complexity. This experience motivated hardware strategies in DeNovo that effectively provide AoS to
SoA transformations without requiring software changes (flexible communication granularity in [39] and ongo-
ing work on region caches, where only the required structure fields or regions are transferred and stored).

14.2.3 DeNovo Architecture for Deterministic Codes

We first discuss DeNovo for deterministic codes. Conventional directory coherence protocols ensure reads
return updated values by tracking all current sharers and invalidating them on a write, incurring significant
storage (sharer-list) and network traffic (invalidations and acknowledgments) overhead. These protocols also
have many transient states, making them hard to verify and extend. DeNovo uses software information to
achieve lower overheads and simpler design.

DeNovo observes that coherence requires ensuring (1) a read hit in a private cache never sees “stale” data
and (2) a read miss always knows where to get “up-to-date” data. For the first part (no stale values on a hit),
DeNovo exploits the software knowledge of which regions are written in a parallel phase of the program. Before
a new phase, each core issues a self-invalidation to invalidate any data in its private cache that could have been
written in the previous phase by another core. Data-race-freedom implies that if a core reads some data in
the subsequent phase, no other core could have concurrently written that data, ensuring a read never returns
a stale value. This eliminates the need for tracking sharer lists in directories and the ensuing invalidation and
acknowledgment messages, significantly simplifying the protocol.

For the second part (locating up-to-date data on a miss), writers “register” themselves (at word granularity)
in a structure similar to the directory, which we call the “registry.” However, unlike directories, the registry does
not need additional storage overhead in the presence of shared last level caches. The registry needs to store
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Figure 14.1: Conceptual Comparison of the Complexity and Network Activities of DeNovo vs. MESI coherence.

either the up-to-date value of the data or the location of only one up-to-date copy of the data – this can be easily
stored in the shared last level data arrays.

Because there are no data races, the DeNovo protocol does not have any transient states – it has exactly three
stable states (invalid, valid, and registered). Figure 14.1 gives a high level illustration for coherence activities
for DeNovo and MESI and the following summarizes the advantages of such a protocol.
Simplicity: To quantify DeNovo’s simplicity, we compared it with a conventional MESI protocol using the
Murphi model checking tool for verification [52]. For MESI, we used the implementation in the Wisconsin
GEMS simulator [107] as an example of a publicly available, state-of-the-art, mature implementation. We found
six bugs in MESI that involved subtle protocol races and took several days to analyze and fix. We found three
bugs in DeNovo that were mostly an incorrect translation from our high-level specification to implementation
and were straightforward to fix. This was surprising since the GEMS MESI protocol was mature and had been
used by many researchers while the DeNovo protocol was new and immature. The debugged MESI showed
15X more reachable states compared to DeNovo, with a verification time difference of 20X (173 seconds for
MESI vs. 8.7 seconds for DeNovo). These results attest to the complexity of the MESI protocol and the relative
simplicity of DeNovo. Further details on our verification effort can be found in [94].
Extensibility: We implemented two optimizations [39]: (1) Direct cache-to-cache transfer: Data in a remote
cache may be sent to another cache without indirection through the registry via producer-prediction. (2) Flexible
communication granularity based on regions rather than cache lines: This decouples the communication gran-
ularity from the address and coherence granularity via a programmer-defined communication space based on
regions. It allows programmers to define sets (regions) of memory locations that should be transferred together
(vs. a contiguous cache line). Neither optimization required adding any new protocol states to DeNovo; since
there are no sharer lists and no transient states, valid data can be freely transferred from one cache to another.
This is in contrast to current protocols that require significant effort to incorporate and verify such optimizations.
Storage overhead: DeNovo incurs no directory storage overhead with shared last-level caches, a source of un-
scalability in current systems. Accounting for some increase in DeNovo’s overhead (e.g., for regions), DeNovo
overhead wins after a few tens of cores and is scalable beyond (constant per cache line).
Performance and energy: In our evaluations, the base DeNovo protocol performed about the same or better
than MESI for a range of applications [39]. Figure 14.2 shows data memory stall time and network traffic,
the two aspects of the execution directly targeted by DeNovo. For each application, the figure shows results
for MESI (as implemented in GEMS), the base DeNovo protocol, and DeNovo with optimizations. DeNovo’s
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memory stall time is always comparable to or better than MESI, with an improvement of up to 77%. The gains
are the most for applications with false sharing (because DeNovo keeps coherence state at word granularity
and hence does not incur false sharing) and AoS style data accesses (because of the flexible communication
granularity optimization). These gains are accompanied by reductions in the cache miss rate (as shown in [39])
and network traffic; we therefore expect commensurate reductions in energy.

The network traffic graph shows that DeNovo reduces traffic significantly in many cases; however, for two
cases, traffic increases because of word granularity registration requests. We added a simple optimization, write
combining, which aggregates individual registration requests for words in a given cache line into a single request
(similar to a combining write buffer). This optimization is included in the bar labeled DeNovo+opt. With all the
optimizations, DeNovo reduces network traffic by up to 71% for the applications studied.

In recent work [148], we have performed a more systematic analysis of network traffic. Our analysis shows
that MESI exhibits much wasted data movement (almost 70% in some cases) which is difficult to eliminate.
DeNovo (after the above optimizations) still incurs some waste (much less than MESI), but has potential to
reduce this waste with further optimizations that we are exploring in ongoing work [148].
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Figure 14.2: Performance of DeNovo vs. MESI.

14.2.4 Beyond Deterministic Codes

So far, we have focused on deterministic codes. Our recent and ongoing work extends DeNovo to cover
more general codes, without sacrificing its advantages.
DeNovoND for disciplined non-determinism: As discussed earlier, DPJ permits disciplined non-determinism
by permitting conflicting concurrent accesses, but constraining them to occur within well defined atomic sections
with explicitly declared atomic regions and effects [28]. We have shown that modest extensions to DeNovo can
allow this form of non-determinism without sacrificing its advantages. The key insight is to use small and simple
hardware Bloom filters to track and communicate only the non-deterministic accesses (i.e., those identified as
atomic) across explicit lock transfers. The locks themselves are implemented using ideas similar to queue-
based locks or QOSB [70], without requiring maintaining sharer’s lists and invalidation messages. The resulting
system, DeNovoND, provides comparable or better performance than MESI for several applications designed for
lock synchronization, and shows 33% less network traffic on average, implying potential energy savings [155].
Lock-free synchronization: We are currently working on characterizing general (lock-free) synchronization
patterns. We expect that a combination of statically specified effects-driven (as in [39]) and dynamic signature-
driven (as in [155]) invalidations can be used to correctly implement such patterns on DeNovo with modest
extensions, while preserving the advantages of no sharer’s list, no transient states, reduced network bandwidth
waste, and the performance benefits of DeNovo. We expect that the ability to correctly implement such general
synchronization patterns will enable us to support most code patterns of interest.
Legacy codes: Although we expect software will become more disciplined (e.g., recent work has even explored
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alternatives for operating systems [16]), we intend to support legacy codes (which will not contain our required
annotations but will obey state-of-the-art memory models such as the Java and C++ models requiring explicit
synchronization). We could handle such codes through a combination of conservative self-invalidations (using
signatures or simply invalidating the entire cache) and an appropriate writethrough policy at synchronization
points. Another alternative is to support such codes temporarily using a small on-chip hardware cache-coherent
cluster. The goal here is to provide a transition path for such codes, and not necessarily the best performance. In
the long-term, we expect legacy software to remain, but only as part of larger, disciplined software. For such a
case, we expect our conservative approach to be more effective; e.g., the use of signatures to drive invalidations
over small code sections may be viable. Determining the best transition path is part of our ongoing work.

14.2.5 Heterogeneous systems

So far we have focused on homogeneous multicores; however, heterogeneity is a natural path for improved
energy efficiency. Key impediments to programmability for such systems include disparate memory systems
and ISAs. We are currently working on applying DeNovo’s approach to unifying the memory systems of het-
erogeneous compute elements found in modern SOCs [3]. DeNovo’s software-driven coherence protocol with
its flexible, region based customization of communication and cache capacity allocation as well as direct cache
to cache transfer strategy maps well to the memory and communication demands of heterogeneous systems.
To address the disparate ISAs, we are working on a common virtual ISA that can capture the needed forms of
parallelism and the information DeNovo requires for its memory system in a language neutral way [3].

14.3 Lessons Learned
We started from the hypothesis that co-designing shared-memory hardware and software would address

imminent issues in hardware complexity and efficiency. Our most important lesson is that our hypothesis holds
not only in the baseline system we initially had in mind, but applies in the same strong way to more general or
fundamentally different (heterogeneous) systems and applications. The following gives more specifics.
(1) Current shared-memory systems exhibit significant inefficiencies, largely from a software-oblivious design.
(2) A software-driven approach is important. Once we had a clear vision of what would be desirable shared-
memory languages and applications, it drove a clear vision for much simpler and efficient hardware.
(3) When taking a software-driven approach, starting from constrained software and then widening the space
worked well. We started with only deterministic software, which helped to isolate what is really important to
implement in hardware and what can be obtained from software. As we added more software complexity, i.e.,
non-determinism, the additional hardware support required was minimal.
(4) Even for heterogeneous systems which have distinctively different system characteristics from conventional
homogeneous multicore systems, our approach seems to apply well.
(5) Overall, a careful software-driven design led to hardware that is simple, fast, and energy-efficient. The
software ideas themselves were motivated to make shared-memory programming easier.

14.4 Future Work
We are currently working on: (1) completing DeNovo support for lock-free synchronization and legacy

codes; (2) applying DeNovo principles to tightly integrate the memory systems for heterogeneous systems for
better programmability and efficiency; (3) using regions to drive cache allocation; (4) applying DeNovo ideas to
main memory; and (5) the language-neutral virtual ISA to capture information required by DeNovo.

14.5 Key Papers and Other Material
We include two papers in this book. The PACT 2011 paper [39] describes the DeNovo architecture for deter-

ministic codes (Section 14.2.3). This work won the best paper award at the conference. The ASPLOS 2013 [155]
paper extends DeNovo to support safe non-determinism, enabling the use of lock based codes (Section 14.2.4).



Chapter 15

Concluding Remarks

Five years of research have allowed us to gain many insights on the technical issues related to the use of multi-
cores. As described in the previous pages, some of the research we have done is already influencing products;
other research, while promising, will require many years to come to fruition. Meanwhile, multicore software
and hardware technology continues to evolve, new market segments continue to rise while others decline, and
new exciting ideas continue to appear.

Application domains for clients are still in flux. The use of multi-modal user interfaces (with voice and
gesture recognition), one of the focus areas of our research, is slowly making headway into cellphones and
tablets — although voice recognition in systems such as Siri is cloud-based. Cameras, including those on
cellphones and tablets, have increasingly sophisticated image-processing capabilities, e.g., for face recognition,
scene recognition, digital red-eye reduction, and image deblurring.

Software frameworks and tools remain disparate, and it seems clear that no single solution is emerging. For
example, multi-modal user interfaces are made available to application developers via toolkits that encapsulate
and hide from them the lower-level image-processing layers. In effect, parallelism is handled by specialists,
while most application developers use embedded domain-specific languages to develop applications.

Multiprocessor computer architectures also continue to evolve. The increased chip densities are used to
integrate full systems on one chip. For example, chips used in smartphones combine general-purpose cores with
specialized components such as GPU, DSP, modem, video, image processor, GPS, and display controller. The
functionality of components other than the general-purpose cores is accessed by application developers through
vendor-provided libraries. Further integration will result in 3-D chips and processing near memory.

In addition, acute energy consumption concerns are affecting architectures. Multicores are becoming het-
erogeneous, enabling different parts of an application to run on the component that supports that part most
efficiently. Since it is feasible to integrate more compute engines than can be simultaneously powered, we may
need to keep different parts of the chip powered down at all times. Alternatively (or in addition), new approaches
such as ultra-low voltage operation will require rethinking the architecture.

Looking forward, continued growth in microprocessor performance will be increasingly dependent on inno-
vations at the architecture level and above. Semiconductor technology cycles will lengthen and the design of
special purpose architectures will become more worthwhile. The future decade is likely to be one of fast change
and market dislocations for the microprocessor industry; it is also likely to be one of fast innovation, offering
renewed opportunities for revolutionary research.

66



Bibliography

[1] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Little Time: Verifying Memory Coherence in the
Cray X1. In International Parallel & Distributed Processing Symposium. IEEE, 2003.

[2] S. V. Adve and H.-J. Boehm. Memory models: A case for rethinking parallel languages and hardware.
Communications of the ACM, 53(8):90–101, 2010.

[3] V. Adve, S. Adve, R. Komuravelli, M. D. Sinclair, and P. Srivastava. Virtual instruction set computing for
heterogeneous systems. In USENIX Workshop on Hot Topics in Parallelism (HotPar), June 2012.

[4] V. S. Adve and L. Ceze. Workshop on Deterministic Multiprocessing and Parallel Programming, U-
Washington, 2009.

[5] R. Agarwal and J. Torrellas. FlexBulk: Intelligently Forming Atomic Blocks in Blocked-Execution Mul-
tiprocessors to Minimize Squashes. In International Symposium on Computer Architecture, pages 33–44,
June 2011.

[6] W. Ahn, Y. Duan, and J. Torrellas. DeAliaser: Alias Speculation Using Atomic Region Support. In
International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 167–180, March 2013.

[7] W. Ahn, S. Qi, J.-W. Lee, M. Nicolaides, X. Fang, J. Torrellas, D. Wong, and S. Midkiff. BulkCompiler:
High-Performance Sequential Consistency through Cooperative Compiler and Hardware Support. In
International Symposium on Microarchitecture, pages 133–144, December 2009.

[8] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN analysis system
for multiprocessing. Journal of Parallel and Distributed Computing, 5(5):617–640, 1988.

[9] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization Sets: A Dynamic Dependence-based Parallel
Execution Model. In Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
85–96, 2009.

[10] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs for parallel
execution. In Symposium on Principles of Programming Languages (POPL), pages 63–76, 1987.

[11] S. P. Amarasinghe, J.-A. M. Anderson, M. S. Lam, and A. W. Lim. An overview of a compiler for scalable
parallel machines. In International Workshop on Languages and Compilers for Parallel Computing, pages
253–272, 1993.

[12] Amazon.com, Inc. Amazon Silk Browser. http://amazonsilk.wordpress.com/, Sept 2011.

[13] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Checking Data Sharing Strategies for Multi-
threaded C. In Conference on Programming Language Design and Implementation (PLDI), pages 149–
158. ACM, 2008.

67



BIBLIOGRAPHY 68

[14] D. Andrade, B. Fraguela, J. Brodman, and D. Padua. Task-parallel versus data-parallel library-based
programming in multicore systems. In International Conference on Parallel, Distributed and Network-
based Processing, pages 101–110, 2009.

[15] C. Badea, M. R. Haghighat, A. Nicolau, and A. V. Veidenbaum. Towards Parallelizing the Layout Engine
of Firefox. In USENIX Workshop on Hot Topics in Parallelism (HotPar), 2010.

[16] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
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Abstract
The k-D tree is a well-studied acceleration data structure for ray tracing. It is used to organize primitives in a scene
to allow efficient execution of intersection operations between rays and the primitives. The highest quality k-D tree
can be obtained using greedy cost optimization based on a surface area heuristc (SAH). While the high quality
enables very fast ray tracing times, a key drawback is that the k-D tree construction time remains prohibitively
expensive. This cost is unreasonable for rendering dynamic scenes for future visual computing applications on
emerging multicore systems. Much work has therefore been focused on faster parallel k-D tree construction per-
formance at the expense of approximating or ignoring SAH computation, which produces k-D trees that degrade
rendering time. In this paper, we present two new parallel algorithms for building precise SAH-optimized k-D
trees, with different tradeoffs between the total work done and parallel scalability. The algorithms achieve up to
8× speedup on 32 cores, without degrading tree quality and rendering time, yielding the best reported speedups
so far for precise-SAH k-D tree construction.

1. Introduction

We foresee an evolution of visual experiences into shared
online visual simulations whose user-generated content (in-
cluding self-scanned avatars) changes dynamically and un-
predictably. Unlike modern videogames, which achieve lush
visual effects through heavy precomputation of predefined
content, the real-time rendering, meshing, and simulation
of dynamic content will require the rapid construction and
update of hierarchical spatial data structures. For example,
these spatial data structures are well known rendering ac-
celerators for both ray tracing [WHG84] and rasterization
[GKM93], and form integral components of recent paral-
lel real time ray tracers [WSS05, CHCH06, SCS∗08, LP08,
GDS∗08]. However, existing parallel algorithms designed to
rapidly build dynamic spatial hierarchies will soon face a se-
rious roadblock as processor parallelism continues to grow.

The previous work summarized in Sec. 2 and the emer-
gent pattern analyzed in Sec. 3 reveal that parallel hier-
archy construction algorithms load balance well when the
frontier of hierarchy nodes needing processing exceed the
number of parallel processors, but struggle with the initial
stages of construction when the hierarchy contains too few
nodes. Some parallel approaches suffer reduced throughput
at these initial levels [Ben06, PGSS06, HMS06], whereas

others use alternative subdivision heuristics that can reduce
hierarchy quality [SSK07,ZHWG08,LGS∗09]. Fig. 1 shows
that as processor parallelism continues to scale up, the num-
ber of initial steps in parallel hierarchy construction grows,
and current subdivision heuristic sacrifices made to maintain
throughput cause increasing degradation in tree quality and
ultimately rendering rates.

This paper presents two new parallel algorithms for im-
proving throughput when constructing these initial upper
levels of a k-D tree. The first algorithm, “nested,” is a depth-
first task parallelization of sequential k-D tree construction
that nests geometry-level parallelism within the node-level
parallelism for these upper level nodes. The second algo-
rithm, “in-place,” builds the upper nodes of the hierarchy
breadth-first, one level at a time, storing in each triangle the
node(s) it belongs to at that level. This reduces geometry data
movement and allows an entire level’s nodes to be computed
across a single data parallel geometry stream.

These new algorithms regain throughput without sacrific-
ing spatial hierarchy quality, as measured by rendering per-
formance gains. They compute a precise surface area heuris-
tic (SAH) that subdivides geometry into regions of small sur-
face area that contain many triangles [GS87, MB90]. Spa-
tial hierarchies formed by subdividing at the spatial me-

c© The Eurographics Association 2010.
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Figure 1: Degradation in hierarchy quality using spatial me-
dian vs. precise-SAH to select splitting planes for the upper
level nodes. The vertical axis indicates the rendering rate in
normalized frames per second for ray tracing the fairy scene
on the Dunnington machine described in Sec. 7 (the perfor-
mance of the best configuration is normalized to a target of
30 fps). The horizontal axis indicates the depth at which cur-
rent parallel kD-tree construction algorithms switch from
using a spatial median to using SAH. This switch occurs
when the depth approximately equals log2 number of proces-
sors. As the number of processors continue to double bian-
nually, the hierarchies generated by existing parallel algo-
rithms eventually degrades rendering performance, whereas
the rendering rate remains constant for our (fully SAH) par-
allel k-D trees.

dian (e.g., the octree) [ZHWG08] or at the object median
(e.g., into children of approximately equal numbers of prim-
itives) [SSK07] can be computed faster than SAH but the
resulting hierarchies render slower than SAH hierarchies, as
shown in Fig. 1 for the spatial median.

Hierarchy quality can be further justified by the rela-
tionship between hierarchy rendering time and construction
time. Recent renderers that focus on real-time direct ray trac-
ing of dynamic content currently experience about a 1:1
rendering-to-construction speed ratio. For these, some ap-
proaches justify a degraded hierarchy quality that increases
the rendering time by a corresponding decrease in hierarchy
construction time, and given a few processors, the upper-
level nodes may not even incur a quality degradation. Such
a relationship might continue as the triangle count grows
but only to a ceiling level on the order of one REYES-
micropolygon triangle per pixel since frame rates and dis-
play resolutions remain fairly constant. As processor par-
allelism nevertheless continues to grow, we will see in-

creased global illumination Monte-Carlo effects and hun-
dreds of rays per pixel which would cause the rendering-
to-construction speed ratio to grow to 100:1 such that even a
1% degradation in rendering rate could not be tolerated by a
hierarchy construction acceleration.

Our implementation is designed to measure the efficiency
and throughput of the parallelism of our approach, as op-
posed to the raw performance of SAH k-D tree construc-
tion and rendering. For example, we compute SAH directly
at the endpoints of triangle extents in each direction, and
do not implement “binned SAH” approximations or “split
clipping” triangle subdivision which would affect raw per-
formance but their impact on scalability results from less
work for binning [WBS07] and similar but greater dynamic
growth in per-level triangles for split clipping. We believe
our parallel construction algorithms are general enough to
permit both enhancements in a production enviroment. We
similarly focus on the construction of k-D trees, but be-
lieve our parallel algorithms can also be adapted to bound-
ing volume hierarchies (BVHs). BVHs can be constructed
and maintained more efficiently [WBS07, WIP08, LGS∗09]
but k-D trees better accelerate ray tracing [Hav00] which
would make them the preferred choice for high rendering-
to-construction speed ratio applications.

Sec. 7 examines the results of our two approaches on a
32-core shared-memory CPU platform for five input mod-
els, indicating scalability of these difficult upper levels up
to depth 8. For these configurations, the algorithms achieve
speedups of up to 8X, with in-place outperforming nested
for two input models and vice versa for the other three. A
deeper analysis of the scalability of the two algorithms re-
veals that while nested performs less work overall, in-place
has better parallel scalability and is likely a better choice for
future machines with larger core counts. To our knowledge,
these results represent the first multicore speedups on the up-
per levels of k-D tree construction using precise SAH, and
the best parallel approach for working with these levels in
general.

2. Related Work

Wald and Havran [WH06] describe an optimal sequential
O(n logn) SAH k-D tree construction algorithm that initially
sorts the geometry bounding box extents in the three co-
ordinate axes, peforms linear-time sorted-order coordinate
sweeps to compute the SAH to find the best partitioning
plane, and maintains this sorted order as the bounding boxes
and their constituent geometries are moved and subdivided.
We describe this algorithm in more detail in Section 4 and
use it as our baseline state-of-the-art sequential algorithm.
Our contribution is to develop a parallel approach that pro-
duces the same k-D tree as this sequential algorithm but at a
much higher level of performance.

Some have accelerated SAH computation by approxima-
tion, replacing the initial O(n logn) sort with an O(n) binned
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radix sort along each axis, and interpolating the SAH mea-
sured only between triangle bins [PGSS06,HMS06,SSK07]
for both sequential and parallel acceleration. Even with a
binned approximate sort, the k-D tree construction cost nev-
ertheless remains O(n logn) since all n of the triangles are
processed for each of the logn levels.

Many have worked on parallel SAH k-D tree construction.
Several versions use a single thread to create the top levels
of the tree until each subtree can be assigned to each core
in a 2- or 4-core system [Ben06, PGSS06, HMS06], limiting
4-core speedup to only 2.5×.

Shevtsov et al. [SSK07] also implemented a 4-core paral-
lel SAH k-D tree builder, but used a parallel triangle-count
median instead of SAH to find splitting planes at the top
levels of the tree, which degraded k-D tree quality by 15%.
They did not report a construction time speedup, but they did
report a 4-core speedup of 3.9 for a construction combined
with rendering, which includes millions of k-D tree traver-
sals. This algorithm was also used for Larrabee’s real-time
ray tracer [SCS∗08], which reports the real-time construc-
tion of a 25MB k-D tree of a 234K triangle scene rendered
with 4M rays and similar scalability for total time-to-render.

Kun Zhou et al. [ZHWG08] built k-D trees on the GPU,
using a data-parallel spatial median algorithm for the upper
levels of the tree, to a level where each node’s subtree could
be generated by each of the GPU’s streaming processors.
Their 128-core GPU version achieved speedups of 6∼ 15×
over a single-core CPU, and of 3∼ 6× over 16-cores of the
GPU for scenes ranging from 11K to 252K triangles. Their
speedups improved for larger models, but their SAH and me-
dian approximations degraded the k-D trees and correspond-
ing rendering times of these larger models, by as much as
10% for scenes over 100K triangles. Like Zhou et al.’s GPU
algorithm, both our nested and in-place algorithms use scan
primitives for data parallelism, but our new algorithms com-
pute SAH precisely at all levels and propagate information
differently from level to level.

Several authors have also examined the construction of
dynamic bounding volume hierarchies. Wald et al. [WBS07]
explore BVH maintenance for dynamic scenes for real-time
rendering, showing them to be faster to construct but slower
to render than similar k-D tree approaches. Wald [Wal07]
describes a binned SAH BVH approach using “horizontal”
and “vertical” parallelism, which resembles the node and ge-
ometry parallelism described in the next section, and reports
CPU bandwidth limitations (as does our results section).

Lauterbach et al. [LGS∗09] constructed a dynamic BVH
on the GPU, using a breadth-first approximated SAH com-
putation using GPU work queues optimized for SIMD pro-
cessing by compaction. Similar to previous k-D tree ap-
proaches, they observe low utilization for the upper-level
nodes and instead sort along a space filling curve to orga-
nize the upper levels into a linearized grid-like structure that
serves effectively as a flattened spatial median tree.

3. Parallel Patterns for k-D Trees

Software patterns emerge from recurring program designs
[GHJV95], and have evolved to include parallel program-
ming [MSM04]. Fig. 2 illustrates patterns for parallel k-D
tree construction that emerge from the analysis of previous
work.
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Figure 2: Parallel k-D Tree Patterns. Each level of the up-
per (green) portion of the tree has fewer nodes than cores,
so multiple cores must cooperate on node creation leading to
a breadth-first stream process that organizes all of the trian-
gles into the current level’s nodes. When the number of nodes
at a level meets or exceeds the number of cores, then each
node’s subtree can be processed per core independently. The
dashed dividing line (orange) where the number of nodes
equals the number of processors descends one level every
1.5 to 2 years, indicating that the upper (green) pattern will
eventually dominate k-D tree construction.

The initial phases of a breadth-first top-down hierarchy
construction consist of cases where large amounts of geom-
etry need to be analyzed and divided among a few nodes.
These cases suggest an approach where scene geometry is
streamed across any number of processors whose goal is
to analyze the geometry to determine the best partition,
and categorize the geometry based on that partition. Previ-
ous serial and parallel versions of this streaming approach
to SAH computation [WH06, PGSS06, HMS06, SSK07] all
share this same pattern at the top of their hierarchies (as
do breadth-first GPU constructions based on median find-
ing [ZHWG08, GHGH08]), which can be efficiently paral-
lelized by the techniques discussed in this paper.

Once the hierarchy has descended to a level whose num-
ber of nodes exceeds the number of cores or threads, then a
node-parallel construction with depth-first traversal per node
becomes appropriate. Here each subtree is assigned to a sep-
arate thread and is computed independently. Even on the
GPU this parallelism is independent in that it needs no inter-
processor communication, though the processes would run
in SIMD lock step. If the subtrees vary in size, then load bal-
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ancing via task over-decomposition/work stealing or other
methods can be employed.

The most recent parallel SAH k-D tree construction al-
gorithms ignore SAH in the top half of the tree, instead us-
ing the triangle count median [SSK07] or the spatial me-
dian [ZHWG08]. We see from Figure 1 that using median
splitting planes for upper levels in a k-D tree degrades tree
quality and rendering times significantly. In contrast, all the
algorithms described in the rest of this paper compute pre-
cise SAH at all levels of the tree for high tree quality and
rendering performance.

4. State-of-the-Art Sequential Algorithm

We begin by summarizing the best known sequential algo-
rithm for precise SAH k-D tree construction [WH06]. Algo-
rithm 1 shows that it finds the best SAH splitting plane for
each node by an axis-aligned sweep across each of the three
axes. It takes as input three pre-sorted lists (one per axis) of
“events” (edges of the axis-aligned bounding box, one pair
per triangle), and an axis-aligned bounding box represent-
ing the space covered by the node. The bounding box of the
root node consists of the per-coordinate minima and maxima
of the triangle vertices. For a descendant node, this bound-
ing box is refined by intersection with the node’s ancestry of
splitting planes.

This single-thread sequential version builds a k-D tree in
depth-first order, as revealed by the tail recursion. It achieves
its O(n logn) efficiency due to its three axial sweeps through
E[axis] that compute SAH for each of the O(n) events for
each of the O(logn) levels of the k-D tree.

The SAH need only be evaluated at each event where the
sweep encounters a new triangle or passes the end of a trian-
gle [Hav00, (p. 57)]. Each event contains three members: its
1-D position along the axis, its type (START or END), and a
reference to the triangle generating the event.

The three event lists E[x],E[y],E[z] are each provided in
position sorted order, and when two events share the same
positions, in type order, where START < END. These three
sorts are a pre-process and also require O(n logn) time.

The algorithm consists of three phases. The first phase,
FINDBESTPLANE, determines the axis, position, and corre-
sponding event index of the splitting plane yielding the low-
est SAH cost over the events in E. FINDBESTPLANE eval-
uates SAH at each event position (redundantly computing
SAH even for coplanar events). The SAH evaluation at each
event utilizes the triangle counts nL,nR to the left and right
of the current splitting plane, which are maintained and up-
dated as the sweep passes each event in each axis’ sorted list.
The SAH computation utilizes constants CI , the cost of ray
intersection, and CT , the cost of traversal. Triangles that in-
tersect the splitting plane are added to both sides. When the
splitting plane sweep passes an END event, one less triangle

Algorithm 1: Sequential k-D Tree Construction
BuildTree(Ex,y,z, �) returns Node
/* E[axis] - sorted events, � - Extent */
C←∞ ; // SAH cost
foreach axis′ ∈ {x,y, z} do

FindBestPlane(E[axis′],�)→ (pos′,C′, i′)
if C′ < C then (C, pos,axis, isplit)← (C′, pos′,axis′, i′)

if C > CI ×|E[axis]| then return Leaf Node
ClassifyTriangles(E[axis], isplit )
FilterGeom(E, pos,axis)→ (EL,ER)
Subdivide � into �L,�R at pos along axis.
NodeL← BuildTree(EL,�L)
NodeR← BuildTree(ER,�R)
return Node(pos,axis,NodeL,NodeR)

FindBestPlane(E[axis],�) returns (pos′,C′, i′)
C′←∞,S← surface area of �, nL← 0,nR← |E[axis]|

2
foreach ei ∈ E[axis] do

if ei.type is END then decr nR
let SL,SR be surface areas of � split at ei.pos
C←CT +CI(nL

SL
S + nR

SR
S ) ; // SAH

if C < C′ then (pos′,C′, i′)← (ei.pos,C, i)
if ei.type is START then incr nL

return (pos′,C′, i′)

ClassifyTriangles(E[axis], isplit )
/* Lbit, Rbit cleared for every4 by prev. sweep */
for i← 0 . . . isplit do

if ei.type is START then set E[axis][i].4 .Lbit

for i← isplit . . . |E[axis]|−1 do
if ei.type is END then set E[axis][i].4.Rbit

FilterGeom(E) returns (EL,ER)
foreach axis ∈ {x,y, z} do

foreach e ∈ E[axis] do
if e.4.Lbit then EL[axis].append(e)
if e.4.Rbit then ER[axis].append(e)

return (EL,ER) // EL,ER sorted

is on its right side, and when it passes a START event, one
more triangle is on its left side.

The next two phases divide the event lists into (not nec-
essarily disjoint) subsets left and right of the splitting plane.
CLASSIFYTRIANGLES sweeps over the triangles, marking
them as left or right, or both if they intersect the splitting
plane. FILTERGEOMETRY divides the event lists into two
portions, duplicating the splitting-plane straddling events,
and maintaining the sorted order of the events for each axis.

5. Nested Parallel Algorithm

As Figure 2 illustrates, an obvious source of parallelism
comes from independent nodes in the tree. Given two chil-
dren of a node, the sub-trees under each child can be built
indepedently (node-level parallelism). The problem with
solely pursuing this approach is the lack of parallelism at
the top levels of the tree. Unfortunately, at the top levels of

80

c© The Eurographics Association 2010.



B. Choi et al. / Parallel SAH k-D Tree Construction

the tree, each node has a larger number of events than at the
bottom; the lack of node-level parallelism at these levels be-
comes a severe bottleneck. To alleviate this problem, we ex-
ploit a second source of parallelism: we parallelize the work
on the large number of events (triangles) within a given node,
referred to as geometry-level parallelism. Thus, our parallel
algorithm nests two levels of parallelism. This is similar to
the nested parallelism popularized by the NESL program-
ming language [BHC∗93, Ble95].

Expressing node-level parallelism is relatively straightfor-
ward in lightweight task programming environments such
as Cilk [BJK∗95] or Intel’s Threading Building Blocks
(TBB) [Int09] that allow recursive creation of light-weight
tasks that are load balanced through a work stealing task
scheduler. (We use TBB for our code.)

Within the computation of each node, we again use light-
weight tasks to parallelize each of the major functions in the
sequential computation (Algorithm 1) – FINDBESTPLANE,
CLASSIFYTRIANGLES, and FILTERGEOM – as follows.

5.1. FINDBESTPLANE

Figure 3 depicts how FINDBESTPLANE works. Given an ar-
ray of events (the top row of boxes, S=START E=END), the
sequential “1 thread” box shows how FINDBESTPLANE in
Algorithm 1 proceeds. The left-to-right sorted axis sweep
maintains a running count of NL and NR, immediately in-
crementing NL for each START event, and decrementing
the next NR for each END event. Recall that some triangles
straddle the splitting plane and are counted in both NL and
NR, and this post-decrement processing of END events ac-
counts for such triangles. The remaining values needed for
SAH evaluation are constants and O(1) surface area compu-
tations. Hence as each event is processed, the current NL,NR
counts generate the current SAH, which is compared against
the previous minimal SAH to determine the minimal SAH
splitting plane at the end of the sweep.
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NL,NR Calculation & SAH

54444322 99876666 99
56788899 22223455 01
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NL
NR

4
7

2
5

2. Push 4
7

6
3

54444322 99876666 99
56788899 22223455 01

1
9

chunk 1 ... chunk n

Events:

NL
NR

NL
NR

NL
NR

NL
NR

NL
NR

 Sequential

 Parallel

Figure 3: Parallel SAH.

We parallelize FINDBESTPLANE using a parallel prefix

style operation [HS86], with three sub-phases: PreScan,
Push, and SAHScan as illustrated in the lower (parallel)
box of Fig. 3. We first decompose the event list into n
contiguous chunks, allocating one chunk per task. For the
PreScan phase, each of n− 1 tasks counts the number of
START and END edges in its corresponding chunk. (The last
chunk need not be PreScanned.) Next, a single thread exe-
cutes the Push phase, adding the total NL,NR of previous
chunks to the current chunk totals, yielding correct NL,NR
values at the beginning of each chunk. (In a typical parallel
prefix, this is also done in parallel, but we did not find that
necessary for the relatively few cores in our system.) For
the final SAHScan phase, each of the n tasks processes its
corresponding chunk, propagating its starting NL,NR values
through the chunk and computing the minimum SAH value
for its chunk. A final (sequential) reduction yields the mini-
mum SAH across all n chunks.

5.2. CLASSIFYTRIANGLES

The CLASSIFYTRIANGLES phase classifies whether a tri-
angle will fall into the left and/or right child of the current
node, depending on its position with respect to the splitting
plane. We can parallelize this phase by sweeping through the
event array corresponding to the splitting plane axis, finding
the corresponding triangle index for the event, and updat-
ing the right or left membership bit of the triangle. This is
conceptually a parallelizable computation across the events;
however, we found that it incurs significant false-sharing
making it not profitable to parallelize. Our experiments re-
ported in Sec. 7, therefore, do not parallelize this phase.

5.3. FILTERGEOM

The FILTERGEOM phase divides (for each of x, y, and z
axes) one big array of events into two smaller arrays, dupli-
cating some entries corresponding to plane straddling trian-
gles, while preserving the sorted ordering from the original.
On the face of it, this splitting with potential duplication of
geometries into two sorted arrays of unknown length may
appear to have limited parallelism (the length of the new ar-
rays is currently unknown because some triangles may need
to be duplicated). However, we can use the same observa-
tions as for parallelizing the FINDBESTPLANE phase here.
We map the above to a parallel prefix style computation
again, performing a parallel PreScan, a short sequential
Push, and a parallel FilterScan. The parallel PreS-
can determines how many triangles in its chunk need to go
to the left and right arrays. The Push accumulates all of the
per-chunk information so that each chunk now knows how
many triangles to its left will enter each of the two new ar-
rays. This gives each chunk the correct starting location in
the new arrays. All chunks can thus proceed in parallel to up-
date their own independent portions of the two new arrays,
creating a fully sorted pair of arrays in parallel in the Fil-
terScan phase. (Note that the information about whether
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an event goes to the left or right new array is obtained from
the Lbit and Rbit flags of the triangle corresponding to the
event, as set in the CLASSIFYTRIANGLES phase.)

6. In-Place Parallel Algorithm

One major drawback of the state-of-the-art sequential Alg. 1
in Sec. 4 is that the division and distribution of triangle and
event lists from a node to its two children require a lot of
data movement. Worse yet, there exists a slight growth in
the aggregate working set size due to triangles intersecting
the splitting plane, which is proportional to the square root
of the number of triangles in the node [WH06]. Since the
parallel version in Sec. 5 essentially follows the structure of
the sequential algorithm, it inherits these problems as well.

In an attempt to eliminate the cost of this data movement,
we developed a new “in-place” algorithm. This algorithm is
based on the insight that, although each node can contain
many triangles, each triangle belongs to a small number of
nodes at any given time during the construction of the top-
levels of the tree. Our experiments revealed that triangles
usually belong to a single node (most don’t intersect splitting
planes) and even in the worst case they belong to no more
than eleven nodes for the tree depth of eight for the inputs
used in this paper.

Our “in-place” algorithm overcomes the expense of data
movement by letting the triangles keep track of which of a
level’s nodes they belong to. This is in contrast to the previ-
ous approach that required nodes to keep track of which tri-
angles they contained. When FILTERGEOM processes each
level, it moves triangle and event data from the parent node
into its two child nodes. In “in-place,” we instead update the
“membership” of each triangle.

Zhou et al. [ZHWG08] employ an analogous strategy of
keeping events (split candidates) in-place during a small
node precise SAH construction phase, but the strategy relies
on a bit mask representation of triangle sets which is only
feasible for small numbers of triangles and is hence only vi-
able for lower level construction. In contrast, our approach
keeps events in-place throughout top level construction as
well.

This new approach has the following implications:

1. The triangle data structure and the axial event elements
are not moved in memory. Instead, the triangle’s “nodes”
membership field is updated.

2. A post-process at the end of k-D tree construction is nec-
essary to produce the output in a desired format, which
involves scanning the entire array of triangles and col-
lecting them into appropriate node containers.

3. Since event elements remain fixed in memory, no re-
sorting of any form is necessary at any stage.

4. Triangles can be more easily organized in a struct-of-
arrays instead of an array-of-structs for a more cache-

friendly memory access pattern. This particular optimiza-
tion is not as easily applicable in the previous nested par-
allel algorithm due to the FILTERGEOM phase that mu-
tates the array structure. The ordering must be preserved
at the object granularity, which is difficult to achieve with
the array of objects in struct-of-arrays format.

5. The in-place algorithm operates one level of the tree at
a time, with sweeps on the entire array (instead of chop-
ping the array into increasingly smaller pieces). This type
of access pattern incurs worse cache behavior but is ar-
guably more amenable to SIMD instructions and GPUs –
this tradeoff remains to be studied since we do not focus
on SIMD or GPUs in this paper.

Event events[6]
Node nodes[]

...
events on X axis

...
events on Y axis

...
events on Z axis

...
trianglesTriangle *tri

Figure 4: Data structures used in the in-place algorithm.

6.1. Algorithm

The algorithm operates on the data structure shown in Fig. 4.
The three axial event arrays hold the events in position sorted
order, and each event includes a pointer to the triangle that
generated it. Each element of the triangle array contains
pointers to the six events it generates, and a list of the current
level’s nodes to which it belongs.

One of the major differences between the nested-parallel
approach in Sec. 5 and the in-place approach is that the lat-
ter is constructed in a breadth-first search manner, which
makes more geometry parallelism available to tasks. The in-
place approach processes the entire triangle stream and up-
dates all the nodes of the current level, whereas the nested-
parallel version switches between geometry processing and
node construction phases. Therefore, it is a good choice for
the geometry-parallel upper levels of k-D tree construction,
and it should terminate when the number of nodes at the cur-
rent level meets or exceeds the number of processing cores.
From that point, subtrees can be constructed independently
in parallel by each processor.

Alg. 2 outlines this approach. Current level’s nodes are
called “live,” and each of them are considered for an SAH-
guided split. It consists of four main phases:

FINDBESTPLANE Expanded from the FINDBESTPLANE

phase in Sec. 5, this phase considers all live nodes in par-
allel instead of just one node. This phase outputs a split-
ting plane for each live node that is not to become a leaf.

NEWGEN This phase extends the tree by one level, creating
two child nodes for each split live node. The decision to
extend the tree is made dynamically since the SAH-based
k-D trees are usually sparse.
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CLASSIFYTRIANGLES This phase updates each triangle’s
node list using the next generation nodes created in NEW-
GEN.

FILL This phase occurs once at the very end of the tree-
building process, outside the main loop. It is essentially a
glue phase that translates the generated tree into the for-
mat of the trees generated by the sequential and the nested
parallel algorithms.

Algorithm 2: Outline of the in-place algorithm.
Data: List of triangles (T) in the scene
Result: Pointer to the root of the constructed kd-tree
live← {root← new kdTreeNode() };
foreach4∈ T do
4.nodes← {root};

while nodes at current level < cores do
// FindBestPlane phase (84.84% of time)
foreach e ∈ E[x]∪E[y]∪E[z] do

foreach node ∈ e.4.nodes do
SAH← CalculateSAH(e, node.extent);
if SAH is better than node.bestSAH then

node.bestEdge← e ;
node.bestSAH← SAH ;

// Newgen phase (0.04% of time)
nextLive← {};
foreach node ∈ live do

if node.bestEdge found then
nextLive += (node.left← new kdTreeNode()) ;
nextLive += (node.right← new kdTreeNode()) ;

// ClassifyTriangles phase (14.60% of time)
foreach4∈ T do

oldNodes←4.nodes ;
clear4.nodes ;
foreach node ∈ oldNodes do

if no node.bestEdge found then
// leaf node
insert4 in node.triangles ;

else
if4 left of node.bestEdge then

insert node.left in4.nodes ;

if4 right of node.bestEdge then
insert node.right in4.nodes ;

live← nextLive;
// Fill phase (0.52% of time)
foreach4∈ T do

foreach node in4.nodes do
insert4 in node.triangles ;

return root

6.2. Parallelization

As shown in Alg. 2, FINDBESTPLANE and CLASSIFY-
TRIANGLES phases together account for virtually all the
build time. Therefore, we focused on parallelizing these two
phases.

As in the nested-parallel algorithm, we employ the paral-
lel prefix operators to compute FINDBESTPLANE. However,
instead of a single pair of nL,nR, we maintain a list of pairs,
one for each live node. In the nested algorithm, the goal of
FINDBESTPLANE was to find one best plane that splits the
given node. However, in the in-place algorithm, the end goal
is to find a best plane for each live node.

CLASSIFYTRIANGLES phase is fully-parallel, since all of
the information needed to update the node membership of
each triangle object is found locally. Therefore, each thread
can operate on a subsection of the triangle array in isolation.

7. Results

Methodology and metrics. We demonstrate the algorithms
using the five test models shown in Fig. 5 for triangle counts
varying from 60K to 1M. We measured the performance of
the geometry parallel construction of the top eight levels of
the tree, which on completion yields 256 subtree tasks that
can be processed independently in parallel.

(a)
Bunny

69,451v

(b)
Fairy

172,669v

(c)
Angel

474,048v

(d)
Dragon

871,306v

(e)
Happy

1,087,474v

Figure 5: Test models with triangle counts. Bunny, Dragon,
and Happy courtesy of Stanford U., Angel courtesy of Geor-
gia Tech, and Fairy courtesy of U. Utah.

We performed experiments on the two machines shown
in Table 1, which we refer to by Intel’s product codename
“Beckton” and “Dunnington.” Both machines run CentOS
5.4. Beckton represents the state of the art, while results
obtained using Dunnington are used to show how the al-
gorithms exploit increased resources on new generations
of machines (e.g., larger caches and memory bandwidth).
We did not utilize Beckton’s hyperthreading capability as
we experimentally concluded that there were no signifi-
cant advantages. We compiled the executables with GCC
4.1.2 with -O3 -funroll-loops -fomit-frame-
pointer flags and linked against Intel TBB 2.2.

We present results in terms of speedup, measured both in
absolute and self-relative terms. Absolute speedup numbers
are measured using, as a 1× baseline, our optimized imple-
mentation of the sequential algorithm (Alg. 1), which out-
performed Manta’s sequential k-D tree builder [SBB∗06].
We report self-relative speedups solely to understand paral-
lel scalability of the algorithms. These use the single-thread
runs of the parallel nested and in-place implementations as
their 1× baseline. These single-thread versions do the same
“work” as the parallel versions, including the unnecessary
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Processor
Xeon E7450 Xeon X7550

(“Dunnington”) (“Beckton”)
Microarchitecture Core Nehalem
Core Count 24 32
Socket Count 4 4
Last-level Shared Cache Size 12 MB (L2) 18 MB (L3)
Frequency 2.4 GHz 2.0 GHz
Memory Bandwidth 1x 9x
Memory Size 48 GB 64GB

Table 1: Experimental Setup

Nested In-Place
Model Best-serial 1-core 32-core 1-core 32-core
Bunny 0.304 0.455 0.068 0.512 0.050
Fairy 0.737 1.10 0.146 1.50 0.116
Angel 2.16 3.09 0.337 6.98 0.387
Dragon 3.75 5.50 0.654 8.63 0.744
Happy 4.67 6.89 0.835 11.8 0.951

Table 2: Running times, in seconds, on Beckton.

prescan portions of the parallelized phases. For reference,
Table 2 lists running times, in seconds, for the best-serial,
nested, and in-place algorithms on the Beckton machine,
which also clarifies the difference between best-serial algo-
rithm performance and one-core parallel algorithm perfor-
mance.

Performance on state-of-the-art machine. Fig. 6 shows the
absolute speedups of nested (left) and in-place (right), mea-
sured on the Beckton machine. Nested achieves nearly 8x
speedup on Angel and in-place reaches 7x on Fairy. These
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Figure 6: Absolute speedup of the nested and in-place par-
allel algorithms for five inputs on the Beckton machine.

represent the best parallel speedup for the upper levels of
precise-SAH k-D tree construction to date.

The absolute speedup plot shows that for smaller Bunny
(scanned) and Fairy (gaming, varying-sized triangle) inputs,
in-place performs better than nested, whereas nested out-
peforms in-place on larger (scanned, uniform-sized trian-
gles) inputs. The performance of both algorithms saturates
as the number of cores increase. Nested gives increasing per-
formance up to 20 threads, whereas in-place gives increas-
ing performance through 24 threads. In fact, nested’s per-
formance degrades significantly from the peak in all cases.
Thus, although nested outperforms in-place for three out of
five cases on the evaluated machine, the results indicate that
in-place is more scalable. We next investigate in more detail
the scalability of the two algorithms and the implications for
future machines.

Scalability and performance on future machines. Fig. 7
shows the self-relative speedup of nested (left) and in-place
(right) over our five inputs. This metric removes the impact
of the increased amount of work done in the parallel algo-
rithms (compared to the best sequential algorithm). By fix-
ing the amount of work done across different thread counts,
it provides us with a deeper insight on how effectively each
algorithm exploits parallelism. The higher the self-relative
speedup, the higher the potential for future larger machines
with more cores to mitigate the cost of the increased work
with increased parallelism. To further understand the effec-
tiveness of the two algorithms in exploiting additional re-
sources in new generations of machines (e.g., larger caches
and memory bandwidth), we show self-relative speedups for
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Figure 7: Self-relative speedup of the nested and in-place
parallel algorithms for five inputs, on the Beckton (solid
lines) and Dunnington (dashed lines) machines.
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both the newer Beckton (solid line) and the older Dunning-
ton (dashed lines) machines.

The figure immediately shows that in-place is more ef-
fective at exploiting parallelism than nested for all inputs on
both machines. Although both algorithms perform better on
the newer machine, in-place is better able to exploit the re-
sources of the newer machine. Fig. 8 quantifies this effect by
showing the ratio of the best speedup of in-place relative to
nested for both machines (> 1 implies that in-place is faster).
The figure clearly shows that for the two inputs where in-
place starts out better on the older machine, its performance
advantage increases further on the new machine. Conversely,
for the cases where nested starts better, its performance ad-
vantage reduces on the new machine. Although in-place per-
formance does not yet catch up with nested on the new ma-
chine for these cases, the following analysis shows that it is
likely that in-place will continue to show higher scalability
than nested in newer machines, potentially outperforming it
for all cases.
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Figure 8: Performance of in-place relative to nested on the
Dunnington and Beckton machines, on all five inputs (> 1
means in-place is better).

The main bottleneck to scalability for nested is its
hard-to-parallelize CLASSIFYTRIANGLES phase. Amdahl’s
law [Amd67] states that the theoretical maximum speedup
attainable using N threads for a program whose parallelize-
able fraction is P is given by 1/((1− P) + (P/N)). Ta-
ble 3 indicates these maximum absolute (and self-relative)
speedups for nested, based on measurements of the fraction
of the execution time spent in CLASSIFYTRIANGLES on the
Beckton machine.

For example, nested achieves close to 8x absolute speedup
on Angel using 20 threads, whereas Table 3 indicates the
theoretical maximum speedup of the nested algorithm is
slightly less than 10.1x using 20 threads. Thus, nested is
already seeing most of its theoretical maximum speedup.
The degradation beyond that point is likely due to the in-
creased communication and parallelization overhead with
larger number of threads that is not mitigated enough by the
increased parallelism.

The in-place algorithm, on the other hand, does not suffer

Input 24 threads 32 threads ∞ threads
bunny 11.5 (14.2) 12.9 (16.5) 21.0 (33.1)

fairy 11.6 (14.4) 13.1 (16.8) 21.6 (34.4)
angel 10.1 (13.5) 11.2 (15.6) 16.7 (29.6)

dragon 9.4 (13.4) 10.3 (15.5) 14.7 (29.3)
happy 9.4 (13.2) 10.3 (15.2) 14.8 (28.1)

Table 3: Theoretical maximum absolute (and self-relative)
speedups achievable by the nested algorithm, based on par-
allelizable fraction on the Beckton machine.

from such a bottleneck since it does not contain any signifi-
cant sequential portion. The performance saturation at larger
core counts seen in in-place is likely due to limited system
resources; e.g., cache size and memory bandwidth. To in-
vestigate this hypothesis, we ran our experiments with all
threads scheduled in as few sockets as possible (the default
scheduler spreads the threads among the sockets) – this had
the positive effect of more cache sharing for smaller input
sizes and the negative effect of reduced available pin band-
width for larger input sizes. We found that the performance
of our algorithms was indeed sensitive to the thread place-
ment, showing both the above positive and negative effects
(detailed results not shown here).

In summary, we believe that higher core counts coupled
with larger caches and memory bandwidth in future ma-
chines will allow in-place to continue seeing performance
improvements. The performance scalability for nested, how-
ever, is likely to be limited by its serial bottleneck.

8. Conclusion

We have presented and analyzed a pair of algorithms de-
signed to address the lack of scalability and/or lack of quality
in the upper levels of spatial hierarchies construction. Using
our prototype implementations, we showed that our two al-
gorithms, nested and in-place, can achieve speedups of up to
8x and 7x, respectively, over the best sequential performance
on a state-of-the-art 32-core cache-coherent shared-memory
machine. To our knowledge, these algorithms provide the
best known speedups for precise SAH-based high quality k-
D tree construction, relative to a sequential case that is better
than the best publicly available code.

Each algorithm outperforms the other on some of our
inputs for the current state-of-the-art machine, but the in-
place approach showed better scalability. Using data ob-
tained from two machines that are a product generation
apart, we show that in-place is more effective in harness-
ing the additional system resources of new machine genera-
tions (e.g., cache size and memory bandwidth) than nested.
We showed that nested is limited in scalability by a sequen-
tial Amdahl’s law bottleneck. Overall, we conclude that the
in-place algorithm has more potential to scale in future gen-
eration multicore hardware.
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An interesting future research topic is a GPU implemen-
tation of the in-place algorithm. The streaming nature of
the in-place algorithm makes it more amenable to a GPU’s
SIMD-style computation model than the nested algorithm’s
inherent recursive approach. We are currently investigating
various ways to map in-place onto a GPU, and are not aware
of any prior work on fully precise SAH based high quality
k-D tree construction on the GPU platform.

Another topic for further research centers around the
bandwidth limitations of hierarchical data structures iden-
tified here and by previous publications, both on CPU and
GPU platforms. We have identified some optimizations for
the current implementations to improve locality, but these
remain to be fully explored.
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T
he National Academy of Engineering recently 
identified 14 grand challenges for engineering in 
the 21st century (www.engineeringchallenges.
org). We believe that the continuing advances 
in ubiquitous sensing, processing, and computing 

provide the potential to tackle two of these 14 grand challeng-
es: specifically, enhancing virtual reality and advancing 
 personalized learning.

INTRODUCTION
Recently, the ubiquity of digital cameras has made a great 
impact on visual communication as can be seen from the explo-
sive growth of visual contents on the Internet and the default 
inclusion of a digital camera on cell phones and laptops. Two 
recent developments in sensing and computing have the poten-
tial to revolutionize visual communication further by enabling 
immersive and interactive capabilities. The first development is 
the emergence of lower-priced, fast, and robust cameras for 
measuring depth [1]. Depth measurements provide a perfect 
complementary information to the traditional color imaging in 
capturing the three-dimensional (3-D) scene. The second devel-
opment is the general-purpose parallel computing platforms 
such as graphics processing units (GPUs) that can significantly 
speedup many visual computing tasks [2] and bring them to the 
real-time realm. These developments and high demand for 
immersive communication present a tremendous opportunity 
for the signal processing field.

[ Minh N. Do, Quang H. Nguyen, Ha T. Nguyen, Daniel Kubacki, and Sanjay J. Patel] 

[ An introduction of the 

propagation algorithm and analysis 

for image-based rendering with 

depth cameras]

 Date of publication: 17 December 2010
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In particular, we envision systems, called remote reality, 
which can record real scenes and render 3-D free-viewpoint 
videos and augment it with virtual reality. Such a system 
can provide immersive and interactive 3-D viewing experi-
ences for personalized distance learning and immersive com-
munication. With recorded 3-D visual information, users can 
freely choose their viewpoints as if each of them had a virtual 
mobile camera. When users want to get a closer look at some 
part of a remote scene, they simply have to move the virtual 
camera to a suitable location. With depth keying, the video 
background can be removed and replaced by other interac-
tive backgrounds. Moreover, 3-D free-viewpoint videos can be 
merged with objects of virtual 3-D worlds. Then users 
become integral parts of a virtual world, which frees them 
from some of the constraints imposed by current telecom-
munication systems.
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The first key problem in 
 remote reality is to find an effi-
cient representation for gen -
erating free-viewpoint 3-D 
videos, because this has major 
impact on subsequent process-
ing, transmitting, and rendering 
steps. Image-based rendering 
(IBR) is the process of synthesizing novel views from preren-
dered or preacquired reference images of a scene [3]. Obviating 
the need to create a full geometric 3-D model, IBR is relatively 
inexpensive compared to traditional rendering while still pro-
viding high photorealism. 

Depth IBR (DIBR) combines color images with per-pixel 
depth information of the scene to synthesize novel views. 
Depth information can be obtained by stereo matching algo-
rithms [4]. However, these algorithms are usually complicat-
ed, inaccurate, and inapplicable for real-time applications. 
Thanks to the recent developments of new range sensors [1] 
that measure time delay between transmission of a light pulse 
and detection of the reflected signal on an entire frame at 
once, depth information can be obtained in real time from 
depth cameras. This makes the DIBR problem less computa-
tionally intense and more robust than other techniques. 
Furthermore, it helps to significantly reduce the required 
number of cameras and transmitting data.

A problem with DIBR techniques is that the resolution of 
depth images from depth cameras is often low, whereas the 
technology for color cameras is more mature. Hence, the 
need for integrating and exploiting the synergy between 
color cameras and depth cameras becomes significant. 
Moreover, because the geometric information in DIBR is 
usually captured in real time from the physical world instead 
of from modeling a synthetic world (which also makes DIBR 
more photorealistic), the obtained data always suffer from 
noise and insufficient sampling effects. Therefore, the need 
for coupling image processing techniques with rendering 
techniques is a must. 

The fusion of depth and color information in DIBR raises a 
fundamental problem of analyzing the effects of different 
input factors on the rendering quality. The answer to this 
problem is crucial for both theoretical and practical purposes; 
we cannot effectively control the rendering quality and the 
cost of DIBR systems without accurate quantitative analysis of 
the rendering quality. 

Finally, the need for processing and integrating acquired 
depth and color videos significantly increases the computa-
tions and is infeasible for real-time applications without 
parallelism, which makes algorithm and architecture code-
sign critical. Besides, since rendering with full geometric 
information (color and depth) has been optimized for GPUs, 
GPUs are considered to be the ideal computing platform for 
the DIBR problem. For these reasons, we should conscious-
ly develop processing algorithms that are suitable for the 
GPU platform.

REVIEW OF EXISTING 
FREE-VIEWPOINT 
RENDERING SOLUTIONS
Many IBR algorithms have 
been proposed to synthesize 
new views from actual acquired 
(referred to as reference) imag-
es of a scene [3]. One earlier 

approach is to use a large number (from tens to more than a 
hundred) of regular color cameras to compensate for the 
lack of geometry [6]–[8]. In such a system, new-view images 
are obtained by simply interpolating in the ray domain. 
However, the use of large number cameras put a heavy bur-
den on the calibration, storage, and transmission tasks. 
Furthermore, the bulky setup required for large number of cam-
eras limits the deployment of such systems.

An alternative approach for IBR is to use explicit depth 
information in addition with color images to synthesize 
novel views. If the per-pixel depth information is available, 
the warping equation [9] can be used to transfer information 
from actual color pixels to the virtual image plane. Zitnick 
et al. [4] demonstrated that high-quality and real-time new-
view rendering can be achieved with depth plus color images 
using a modest number of cameras. However, their system 
requires intensive and off-line stereo matching computation 
to estimate depth information. A generalized framework of 
DIBR for 3-D TV applications was summarized in [10], 
which also includes the issues of compression and transmis-
sion of IBR data.

Assuming that per-pixel color plus depth information is 
available at reference views, several algorithms have been 
recently developed for view synthesis under the DIBR frame-
work [11]–[14]. Generally, these algorithms are based on the 
following steps:

1) Forward warp reference views to the new view.
2) Process warped images to eliminate artifacts due to warp-
ing and noise.
3) Blend several warped images in the new view image 
plane.
4) Inpaint or fill holes due to disocclusion.
The first and third steps are quite straightforward and 

standard. However, with slightly noisy DIBR data, they cre-
ate visible artifacts. Most of these artifacts appear around 
object boundaries. Hence, the second and forth steps are 
crucial in reducing these artifacts. We refer to [14] for a 
detail discussion and comparison of various proposed artifact 
reduction algorithms.

With the recent progress of depth cameras technologies [1], 
the depth information the depth information can be directly 
measured by depth cameras instead of stereo matching. In 
practice, depth cameras often provide the depth images with 
lower resolution and poorer quality than those of the color 
images. Therefore, the combination of several high quality 
color cameras with a few depth cameras becomes an interesting 
setup for IBR.

WE ENVISION SYSTEMS, CALLED 
REMOTE REALITY, WHICH CAN RECORD 
REAL SCENES AND RENDER 3-D FREE-

VIEWPOINT VIDEOS AND AUGMENT IT 
WITH VIRTUAL REALITY.
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One way to increase the 
resolution and enhance the 
quality of depth images is to 
exploit the abundant informa-
tion in high-quality color 
images. Several methods have 
been proposed to tackle this 
issue, including the Markov 
model approach [15] and the iterative bilateral filtering 
 coupling with subpixel estimation [16]. However, these meth-
ods are computationally complex, hence, they are not yet 
 suitable for real-time applications.

While many IBR methods have been proposed, little research 
has addressed the fundamental questions on the impact of vari-
ous configuration parameters on the rendering quality of IBR 
algorithms, such as the number of actual cameras and their geo-
metrical positions as well as their resolution and image quality. A 
mathematical framework to study this problem is the concept of 
the plenoptic function [17] that describes the light intensity pass-
ing through every viewpoint, in every direction for all time, and 
for every wavelength. McMillan and Bishop [18] recognized that 
the IBR problem is to reconstruct the plenoptic function (which 
leads to virtual images) using a set of discrete samples (i.e., actual 
images). Using a simplified domain of the plenoptic function, the 
light field, Chai et al. [19] analyzed the minimum number of 
images necessary to guarantee a given rendering quality.

In the analysis of IBR data, most existing literature 
addresses the Fourier domain because the IBR data exhibit 
fan-type structure in the frequency domain. However, Do et 
al. [20] showed that, in general, the plenoptic is not bandlim-
ited unless the surface of the scene is flat. Another limit of 
the frequency-based approach is that it can not provide local 
analysis of the rendering quality. To address these drawbacks, 
Nguyen and Do [5] analyzed the rendering quality of novel 
views in the spatial domain using the framework of nonuni-
form sampling and interpolation. The mean absolute error 
(MAE) of the rendered images can be bounded based on the 
configuration parameters such as depth and color errors 
(e.g., due to lossy coding), scene geometry and texture, num-
ber of actual cameras and their positions, and resolution.

IMAGE-BASED RENDERING 
WITH DEPTH 
CAMERAS USING THE 
PROPAGATION ALGORITHM
To effectively represent 3-D 
free-viewpoint videos in real 
time using commodity camer-
as, we proposed [21] the 3-D 

propagation algorithm that consists of three main steps (see 
Figure 1). The first two steps are used to propagate the actual 
depth measurements from depth cameras to color cameras 
and use color information to enhance the depth quality. The 
last step—rendering—is the same with the DIBR view synthe-
sis process that is reviewed in the previous section.

The 3-D propagation algorithm allows arbitrary configura-
tions of color and depth cameras in 3-D. In addition, it adapts 
well with any combination of a few high-resolution color cam-
eras and low-resolution depth cameras, which allows perform-
ing low-cost and light DIBR systems. Moreover, the 
propagation of available depth information to color cameras’ 
image planes allow the development of effective algorithms to 
integrate depth and color information.

DEPTH PROPAGATION
Depth information from the depth camera is propagated to every 
color camera’s image plane using the warping equation in [9]. 
Since the depth resolution is usually much smaller than the color 
resolution, and occluded parts of the scene in the depth view are 
revealed in the other views, the propagated depth image usually 
has a large number of missing depth pixels. An example result is 
shown in Figure 2(a). 

COLOR-BASED DEPTH FILLING
In this step, the missing depth pixels in the propagated image are 
efficiently filled using the color image at each color view. The 
block diagram is described in Figure 3. 

OCCLUSION REMOVAL
As shown in Figure 2(a), some background sample points (in 
brighter color) visible in the depth image should be occluded 

Depth Depth
Depth + Color

Depth + Color
Depth +

Color

Depth

C1
Color Camera

C1
Color Camera

V1
Virtual Camera

C2
Color Camera

C2
Color Camera

D1
Depth Camera

(a) (b) (c)

[FIG1] Three main steps in the 3-D propagation algorithm: (a) depth propagation, (b) color-base depth filling, and (c) rendering.

ONE WAY TO INCREASE THE RESOLUTION 
AND ENHANCE THE QUALITY OF 

DEPTH IMAGES IS TO EXPLOIT THE 
ABUNDANT INFORMATION IN HIGH-

QUALITY COLOR IMAGES.
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by the foreground (pixels with darker color) in the propagated 
depth image but are still visible. This significantly degrades 
the interpolation quality. We can remove these occluded pixels 
based on the smoothness of surfaces. If a point A in the propa-
gated depth image is locally surrounded by neighboring points 
whose depth values are s smaller than the depth of A, then A 
is recognized to be occluded by the surface composed of those 
neighbors. In that case, the depth value of A is set to 
unknown. An example result is shown in Figure 2(b).

COLOR-BASED BILATERAL DEPTH FILTERING
The color-based bilateral depth filtering (CBDF) is defined as 
 follows:

 dA5
1

WA
a

B[SA

Gss
1|xA2 xB|2 # Gsr

1|IA2 IB|2 # dB (1)

 WA5 a
B[SA

Gss
1|xA2 xB|2 # Gsr

1|IA2 IB|2 , (2)

where dA, IA, and xA are the depth value, the color value, and 
the 2-D coordinate of point A. SA is set of neighboring pixels of 
A, Gs 1 |x| 2 5 exp 12|x|2/2s2 2  is the Gaussian kernel with vari-
ance s2, and WA is the normalizing term.

The idea of using color differences as a range filter to interpo-
late depth value is based on the observation that whenever a depth 
edge appears, there is almost always a corresponding color edge 
due to color differences between objects or between foreground 
and background. The CBDF also works well with textured surfaces 
since it counts only pixels on that surface which have similar 
color to the interpolated pixel. If surfaces have the same color, the 
color does not give any new information and the CBDF works as a 
simple interpolation scheme such as bilinear or bicubic. 
Therefore, by integrating known depth and color information, the 
proposed CBDF effectively interpolates unknown depth pixels 
while keeping sharp depth edges. An example result after this step 
is shown in Figure 2(c).

DIRECTIONAL DISOCCLUSION FILLING
To fill the disocclusion areas, a filling direction needs to be 
specified. Otherwise, if the filling is performed from all 
 directions, depth edges are spread out. Based on the observa-
tion, as illustrated in Figure 4, which shows that the disocclu-
sion areas are caused by the change of camera position, we 
choose the filling direction as the vector pointing from the 
epipole point (the projection of the depth camera position 
onto the image plane of the color camera) to the center of the 
propagated depth image.

DEPTH EDGE ENHANCEMENT
The sharpness of depth edges is extremely important. In the 
rendering step, a slightly blurred edge may blow up to a sig-
nificant and visually annoying smearing artifact. The pur-
pose of this stage is to correct and sharpen edges in the 

(a) (b) (c) (d)

[FIG2] Steps for the color-based depth filling algorithm. Refer to the section “Color-Based Depth Filling” for a detailed 
description of these steps: (a) propagated depth, (b) occlusion removal, (c) CBDF, and (d) disocclusion and edge enhancement. 

Propagated Depth
at One Color View Occlusion

Removal

Depth-Color
Bilateral
Filtering

Directional
Diocclusion

Filling

Depth Edge
Enhancement

Enhanced Depth

[FIG3] Block diagram of the color-based depth filling step. 

C1 C2

D

[FIG4] Directional disocclusion filling. D, C1, and C2 are the 
camera centers of the depth and two color cameras. Stars 
indicate the epipole points. Black regions indicate the 
disocclusion areas. The arrows indicate the chosen directional 
disocclusion filling.
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propagated depth images at 
color views. The proposed 
depth edge enhancement 
stage includes two parts. 
First, depth edge gradients 
are detected with the Sobel 
operator. Then, pixels with significant edge gradients are 
marked as undetermined depth pixels and their depth val-
ues need to be recalculated. Next, for each undetermined 
depth pixel, a block-based search is used to find the best 
pixel with known depth that matches in the color domain. 
Once the best candidate is chosen, its depth value is 
assigned to the unknown pixel. An example result after this 
step is shown in Figure 2(d).

RENDERING
Finally, depth and color information at each color view are 
propagated into the virtual view using the same technique as 
in the depth propagation step in Figure 1. The occlusion 
removal stage is performed for each propagated view. The 
final rendered images are blended and smoothed with a 
Gaussian filter. Note that most of the unknown color pixels in 
this step are caused by nonuniform resampling since the 

color cameras are intentional-
ly installed in a way to capture 
the whole scene from different 
views and, therefore, reduce 
as much as possible the disoc-
clusion areas. An example 

result after this step is shown in Figure 5.

ERROR ANALYSIS OF DEPTH 
IMAGE-BASED RENDERING
In this section, we present the analysis of the rendering quali-
ty based on the IBR configurations such as depth and color 
estimate errors, the scene geometry and texture, as well as the 
number of actual cameras and their positions and resolution. 
The analysis presented in this section is simplified from the 
results in [5]. We focus on the 2-D setting with no occlusion 
to present the results with better clarity.

PROBLEM SETTING
Figure 6 depicts the studied 2-D scene-camera model. The 
surface of the scene is modeled as a 2-D parameterized curve 
g 1u 2  : 3a, b4 S R2. Each value of u [ 3a, b 4 corresponds to a 
surface point g 1u 2 5 3X 1u 2 , Y 1u 2 4T. The color (or texture) 
“painted” on the surface is the function T 1u 2  : 3a, b4 S R. 
Given a parameterization of the scene, the texture funct -
ion T 1u 2  is independent of the cameras and the scene 
geometry g 1u 2 . 

Using the pinhole camera model, there is a mapping from 
surface points g 1u 2  to image points x5HP 1u 2 , where HP 1u 2  
is the scene-to-image mapping. Given an image point x in the 
image plane, the color at x is f 1x2 5 T 1HP

21 1x 22 . The image of 
the scene at a camera P are discrete samples of the color func-
tion f 1x 2  with sample interval Dx.

We assume that at all actual pixels, both the color and 
the depth, are available. Let eX, eY, and eT be the errors 
(due to measurement or lossy coding) of X 1u 2 , Y 1u 2 , and 
T 1u 2 , respectively. We assume that these estimate errors 
are bounded 

 0 eX 0 # ED,   0 eY 0 # ED,   0 eT 0 # ET.

In the next sections, we will analyze the rendering quality for 
the case where N actual cameras 1Ci , Pi6i51

N  are used to render 
the image at a virtual camera 1Cv , Pv 2 .
MAIN RESULT
In this section, we first give the mathematical definition 
of terms that will be used later in Theorem 1 to bound the 
MAE of the rendered image. As we define, we will also 
provide the physical meaning of the terms to appreciate 
the result.

The multiple-view term of order k is defined as

 Yk5 3
b

a
aa

N

i51
Pi 1u 2b

12k 1Pv 1u 22 kdu. (3)

[FIG5] Background subtraction using propagated depth 
information.

X

Y

Δx

C

x = HΠ (u)

γ (u )u ∈[a, b]

[FIG6] The 2-D scene-camera model. The scene surface is 
modeled as a parameterized curve g 1u 2  for u [ 3a, b 4 ; R. 
The scene-to-image mapping x5HP 1u 2  maps a surface point 
u to an image point x. The texture function T 1u 2  is “painted” 
on the surface. The camera resolution is characterized by the 
pixel interval Dx on the image plane.

THE 3-D PROPAGATION ALGORITHM 
ALLOWS ARBITRARY CONFIGURATIONS 
OF COLOR AND DEPTH CAMERAS IN 3-D.
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This term measures the 
impact of the actual cameras 
on the virtual camera based 
on their relative geometrical 
positions. 

The depth jittering term

 Bv5 sup
u[ 3a,b4, i51,c, N

 
e k k Cv2 Ci k k 2

d 1u 2 2   f ,  (4)

where d 1u 2  is the depth at surface point g 1u 2  to the virtual 
image plane. This quantity measures how geometrically 
 deviated the virtual camera is from the actual cameras.

Based on the above definitions, the following theorem presents 
a bound on the rendering quality of the propagation algorithm. 

Theorem 1 [5]: The MAE of the virtual image using the 
propagation algorithm is bounded by

 MAE #
3Y3

4Y1
Dx

2 7 fvrr 7` 1 ET1 ED Bv 7 fvr 7`. (5)

We note that the first term in (5) is related to the interpola-
tion error in the texture regions. The second term is related to 
the quality of the actual color cameras. The third term mea-
sures the impact of the depth and its estimate. 

INTERPRETATIONS
In this section, we provide interpretations of the result in the 
section “Results.” The idea is to look at each component of the 
error bound in (5) and find its physical meaning and implica-
tions on IBR applications. These interpretations should only be 
considered as “rules of thumb” when designing IBR systems. 
For rigorous analysis, we refer to the original paper [5].

 ■ Rule 1: In texture regions, the density of actual pixels 
counts. It can be shown that Y35O 1N22 2 . Hence, the first 
term in (5) behaves as O 1Dx

2/N 2 2 . In other words, increasing 
the resolution of actual cameras has a similar effect to hav-
ing more actual cameras in texture regions. 

 ■ Rule 2: The impact of the actual camera quality on the 
MAE is linear. It is intuitive to see that the quality of actual 
cameras effect directly to the rendering quality. However, 
the result in (5) also reveals that the rendering quality is 
linearly proportional to the actual camera quality (for both 
color and depth). 

 ■ Rule 3: Use neighboring actual cameras when depth is 
inaccurate. To reduce the impact of depth errors, i.e., the 
third term, two options are available. The first option is 
obvious, to equip with better depth cameras, which is to 
reduce ED. The second option is to reduce Bv, or equivalent-
ly to use information from actual cameras that are close to 
the virtual camera. 

FAST PROCESSING USING 
GENERAL-PURPOSE PARALLEL COMPUTING
A major advantage of the algorithm outlined in the section 
“Image-Based Rendering with Depth Cameras Using 

Propagation Algorithm” is that 
it can be easily mapped onto 
data parallel architectures 
such as modern GPUs. In this 
 section, we briefly describe the 
parallelism of each processing 
step of our algorithm, and the 

high-level mapping onto the Nvidia CUDA architecture for 
GPU-based computing. 

The occlusion removal and CBDF stages are purely par-
allel as each pixel in the desired view can be computed inde-
pendently. In the depth propagation stage, copying the 
depth values in the reference view to appropriate pixels in 
the desired view is more complex from a parallelism per-
spective since, at some pixels, this is not a one-to-one map-
ping. This operation requires some form of synchronization 
to prevent concurrent writes to the same pixel and can be 
accomplished with the use of atomic memory operations, or 
alternatively, with the use of Z-buffering hardware available 
on modern GPUs.

The disocclusion filling stage also has a sequential compo-
nent since calculating unknown depth information is depen-
dent on previously interpolated values. However, this 
dependence exists only on one-dimensional (1-D) lines ema-
nating from the epipole point, and thus the problem can be 
expressed as a parallel set of 1-D filters. First, find the epipole 
point position and categorize into one of eight following sub-
sets: top, bottom, left, right, top left, top right, bottom left, or 
bottom right, corresponding to eight sets of par allel lines for 
every 45° angle. The parallel lines in each set need to pass 
through all pixels in the depth image. For each set of parallel 
lines, all pixel coordinates of each line can be precomputed 
and stored in a lookup table.

The 1-D CBDF is performed with each line proceeding in 
parallel, which can be easily mapped onto the GPU archi-
tecture. The depth edge enhancement stage is simply a 
series of independent window-based operators and, hence, 
is naturally parallel. The final rendering step is quite simi-
lar to the first and second part of the algorithm except for 
the inclusion of a median filter. However, the median filter 
is another window-based operator and, hence, is suitable 
for parallelism. 

Regarding the parallel scalability of our algorithm: our 
experiments show that there is ample data parallelism to 
take advantage of the heavily threaded 128-core modern 
GPU architecture. Our technique scales further with image 
size, and higher resolution images will create additional 
parallel work for future data parallel architectures that 
support still higher degrees of parallelism. Furthermore, 
with the use of additional cameras, the data parallel com-
putational load increases still further, creating additional 
work that can be gainfully accelerated on future data par-
allel architectures.

To check the efficiency of the parallelism, we compare the 
CPU-based implementation and the preliminary GPU-based 

A MAJOR ADVANTAGE OF OUR 
PROPOSED ALGORITHM  IS THAT IT CAN 

BE EASILY MAPPED ONTO DATA PARALLEL 
ARCHITECTURES SUCH AS MODERN GPUs.
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implementation of the depth 
propagation stage and the CBDF 
stage. The experiment was run 
on the platform of Intel Core2 
Duo E8400 3.0 GHz and a 
Nvidia GeForce 9800GT 600 
MHz with 112 processing cores.

Table 1 shows the comparison results of two representa-
tive processing steps in the 3-D propagation algorithm. The 
depth propagation step, as mentioned above, requires 

 memory  synchronization to 
prevent concurrent writes 
and thus limits the effec-
tiveness of multithread. As a 
result, we observe the least 
speedup in the GPU imple-
mentation  compared to the 

CPU implementation. The CBDF step, in contrast, is highly 
parallel and benefits a very large speedup with GPU. Since 
the CBDF step consumes the most computing time in the 
CPU implementation, the mapping from CPU to GPU sig-
nificantly speeds up the overall computing time of the 3-D 
propagation algorithm and has potential to achieve 
 real-time performance.

NUMERICAL EXPERIMENTS
In this section, we provide results from the implementation 
of the above algorithm using actual depth and color cameras. 
For our experiment, we used one PMD CamCube depth cam-
era with a resolution of 204 3 204 and three Point Grey 
Flea2 color research cameras, each with a resolution of 
640 3 480. The cameras were arranged similar to a typical 
teleconference setup. Two color cameras were placed approx-
imately 20 in apart with a depth camera in the middle. A 
third camera was used to provide a ground truth for the vir-
tual camera. Figure 7 shows the setup. Note that these cam-
era are not necessarily on a consistent baseline, which 
demonstrates the greater generality for camera setups. The 
captured scene is of a person approximately 4 ft away from 
the camera setup. Figure 8 shows the input images for the 
algorithm; Figure 8(c) is an example of an image captured by 
the depth camera. This experiment is chosen to demonstrate 
that DIBR can be utilized to correct the eye-gaze problem of 
teleconference systems. 

CALIBRATION
To fuse depth and color information, the cameras are calibrat-
ed using the classical checkerboard calibration technique, 
which is implemented using OpenCV’s camera calibration and 

(a) (b) (c)

[FIG8] Images used as input for the DIBR algorithm. The color images have a resolution of 640 3 480 and the depth image has a 
resolution of 204 3 204. (a) Input left color view, (b) input right color view, and (c) input depth image.

[TABLE 1] TIMING COMPARISON (IN MILLISECONDS) OF 
SEQUENTIAL CPU-BASED AND GPU-BASED IMPLEMENTA-
TIONS FOR THE DEPTH PROPAGATION STAGE AND THE 
CBDF STAGE. THE IMAGE RESOLUTION IS 800 3 600 AND 
THE FILTER KERNEL SIZE IS 11 3 11.

HARDWARE DEPTH PROP. CBDF

CPU INTEL CORE 2 DUO E8400, 
3.0 GHZ

38 1041

GPU NVIDIA GEFORCE 9800 GT, 
600 MHZ

24 14

SPEEDUP 1.6X 74.4X

(a)
(b)

(c) (d)

[FIG7] The real camera setup used in our experiments. The (b) 
depth camera is positioned in the center with a color camera 
approximately 10 in to the left (a) and right (d). The third color 
camera (c) is used as a ground truth for the virtual camera.

AN EFFICIENT REPRESENTATION OF DIBR 
DATA IS IMPORTANT TO FACILITATING 

THE PROCESSING, TRANSMITTING, 
AND RENDERING OF DIBR DATA.
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stereo reconstruction toolbox. For depth camera, the intensity 
image is used for calibration. 

To utilize the propagation equation, it was necessary to cor-
rect for the distortion of each camera. This was also imple-
mented in OpenCV using the distortion coefficients determined 
in the camera calibration. The distortion propagates due to the 
depth enhancements made using the distorted color images. 

RESULTS
A comparison between the rendered virtual view and the 
ground truth virtual view can be seen in Figure 9. Visually, the 
rendered image and the ground truth are very similar. 
Figure 10 shows a closeup comparison of input color views, 
rendered virtual view, and ground truth. We can clearly see the 
value of the DIBR system for providing an eye-gaze corrected 
view for video conferencing. Note that the location of the ren-
dered view can be changed freely and dynamically, for example, 
by following a gaze-tracking system. 

Figure 2 displays a close up of the color-based depth filling 
process detailed in the section “Color-Based Depth Filling.” 
Note how the sparse propagated depth map is enhanced to a 
full depth map using the color information. Figure 5 makes 
evident the edge accuracy of the color-based depth filling. It 
also demonstrates another application of depth information for 
background subtraction. We can correct for eye gaze and 

remove/replace background for video conferencing using the 
same setup and our algorithms.

DISCUSSIONS AND CONCLUSIONS
In this article, we present a brief introduction of our algo-
rithm and analysis for IBR with depth cameras. Our algorithm 
includes various techniques to render virtual images from a 
set of actual color and depth cameras, as well as parallel pro-
cessing for real-time applications. We also give rigorous analy-
sis of the rendering quality based on the camera 
configurations, such as depth, color quality, and geometrical 
positions of the virtual cameras. Our algorithms and analysis 
are general for any camera configuration. The proposed algo-
rithm produces excellent rendering quality, such as correct 
eye gazing, as demonstrated in the experimental results. 

For future work, important open problems are necessary to 
make DIBR applications practical. An efficient representation of 
DIBR data is important to facilitating the processing, transmit-
ting, and rendering of DIBR data. The problem of compressions 
will be in demand for DIBR applications to serve a large num-
ber of users. The key to this problem will be how to use the 
redundancy between color and depth images. This redundancy 
can also be used in the processing and rendering steps. Finally, 
more precise analysis is necessary for DIBR applications to 
effectively control the quality and cost of DIBR applications.

(a) (b)

(c) (d)

[FIG10] Closeup of the eyes to show eye-gaze correction 
using DBIR. (a) Left view, (b) right view, (c) rendered view, 
and (d) ground truth.

[FIG9] A visual comparison between the (a) rendered virtual 
view and (b) the ground truth virtual view.

(a)

(b)
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Maximum Margin GMM Learning for Facial Expression Recognition 

Usman Tariq, lianchao Yang and Thomas S. Huang 

Abstract- Expression recognition from non-frontal faces is a 
challenging research area with growing interest. In this paper, 
we explore discriminative learning of Gaussian Mixture Models 
for multi-view facial expression recognition. Adopting the BoW 
model from image categorization, our image descriptors are 
computed using Soft Vector Quantization based on the Gaussian 
Mixture Model. We do extensive experiments on recognizing six 
universal facial expressions from face images with a range of 
seven pan angles (-45° '" +45°) and five tilt angles (-30° '" 
+30°) generated from the BU-3dFE facial expression database. 
Our results show that our approach not only significantly 
improves the resulting classification rate over unsupervised 
training but also outperforms the published state-of-the-art 
results, when combined with Spatial Pyramid Matching. 

I. INTRODUCTION 

The increasing applications of facial expression recogni

tion, especially those in Human Computer Interaction, have 

attracted a great amount of research work in this area in 

the past decade. However, much of the literature focuses 

on expression recognition from frontal or near-frontal face 

images [1], [2]. Expression recognition from non-frontal 

faces is much more challenging. It is also of more practical 

utility, since it is not trivial in real applications to always 

have a frontal face [3]. Nonetheless, there are only a handful 

of works in the literature working with non-frontal faces. We 

approach towards this problem by proposing an extension to 

the very popular image classification framework based upon 

Bag-of-Words (BoW) models. 

In a typical bag-of-words representation in image classifi

cation, features (raw patches or some other descriptors) are 

first sampled from an image [4]. These feature vectors are 

then quantized into one of the pre-learned visual words. This 

Vector Quantization (VQ) procedure allows us to represent 

each image by a histogram of such words, often known as 

the bag-of-words representation [4]. Various extensions have 

been proposed to the BoW model. For instance, features 

may be softly assigned (Soft Vector Quantization (SVQ)) [5], 

[6] instead of hard quantization, or one may do some other 

pooling operations such as "max pooling" over the feature 

vector assignments [7] instead of "average pooling" in BoW. 

In such a framework, learning the visual words (or a 

descriptor model) and classifier are the two fundamental 
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problems [8]. Most of the existing approaches resort to un

supervised clustering mechanisms to learn the BoW model. 

The goal here, is to keep sufficient information with which 

the original feature can be reconstructed with fidelity, which 

is achieved by minimizing a reconstruction loss. Two such 

examples are K-means and sparse coding [9]. The criterion 

can also be to maximize the data likelihood, such as, learning 

a Gaussian Mixture Model (GMM) for SVQ [5]. However, 

such schemes may not be optimal if classification is the final 

goal. A better strategy would be to incorporate the class 

labels while building such models [8]. This can be done by 

linking the model parameters to the classification loss func

tion [10], [11], which has shown promising improvements 

over the unsupervised counterparts. 

In this paper, we develop a simple yet effective supervised 

learning method of GMM for soft vector quantization (SVQ) 

applied to facial expression recognition. The objective func

tion is smooth and can be easily solved by gradient descent. 

We term the resulting image features as supervised SVQ 

(SSVQ) features. Our extensive experiments on the multi

view face images, generated from the BU-3DFE database 

(Section II) for recognizing expressions, show that our 

approach significantly improves the resulting classification 

rate over the unsupervised training counterpart. Our method 

when, combined with Spatial Pyramid Matching [12], also 

outperforms the published state-of-art results, which were 

achieved with a much more complex model. 

A. Related Works 
Most existing works focus on recognizing six basic ex

pressions that are universal and recognizable across different 

cultures. These include anger (AN), fear (FE), disgust (DI), 

sad (SA), happy (RA) and surprise (SU) [2]. Some of the 

notable works in expression recognition focusing on frontal 

or near-frontal faces include [13], [14], [15], [16], [17], 

[18], [19], [20], [21]. For a comprehensive survey of the 

works in expression recognition please refer to [1] and [22]. 

In the following, we shall briefly review the papers that 

concentrate on non-frontal view facial expression recognition 

along with the papers that deal with supervised training of 

image descriptor models. 

The works on non-frontal view expression recognition can 

be classified based upon the types of features employed. 

Some works use geometric features, e.g., Hu et al. [23] 

and Rudovic et al. [24], [25] use displacement or mapping 

of manually labeled key points to the neutral or frontal 

face views of the same subject. Whereas, some researchers 

extract various low-level features (e.g., SIFT) on pre-labeled 

landmark points and use them for further processing [2]. 



Some of such works include those by Hu et al. [26] and 

Zheng et al. [27]. 

Note that the aforementioned approaches require the facial 

key-points location information, which needs to be pre

labeled. However, in real applications, key-points need to be 

automatically detected, which is a big challenge itself in the 

case of non-frontal faces. To address this issue, there have 

been some attempts which do not require key-point locations; 

they rather extract dense features on detected facesl. The 

prominent examples in this category include works by Moore 

and Bowden [28], [29], Zheng et al. [30] and Tang et al. [31]. 

Moore and Bowden [28], [29] extract LBP features and its 

variants from non-overlapping patches. While, Zheng et al. 

[30] and Tang et al. [31] extract dense SIFT features on 

overlapping image patches. Zheng et al. [30] use regional 

covariance matrices for the image-level representation. Tang 

et al. [31], after dense feature extraction, represent the images 

with super vectors which are learnt based on ergodic hidden 

markov models (HMM). 

It is worthwhile to mention that the BU3D-FE database 

[32] has become the de-facto standard for works in this area. 

Many works use five pan angle views rendered from the 

database (0°, 30°, 45°, 60° and 90°) [26], [23], [27], [28], 

[29]. However, in real-world situations, we have variations 

in both pan and tilt angles. Thus, in more recent works [30], 

[31], people are working with a range of both pan and tilt 

angles. 

The recent years have also seen a growing interest in 

supervised dictionary (descriptor model) learning. Such ap

proaches may be classified into the following four categories 

[8]. 

The first category deals with computing multiple dic

tionaries. The works by Perronnin [33] and Zhang et al. 

[34] come under this category. The second type comprises 

the works which learn dictionaries by modifying an initial 

dictionary under various criteria, for instance by using mutual 

information to merge visual words [35]. Another criteria may 

be the intra-class compactness and inter-class discrimination 

power [36]. However since only the merging process is 

considered, one has to begin with a large enough dictionary 

so that it contains sufficient discriminative power to begin 

with. 

The third category learns a dictionary by working with 

descriptor-level discrimination. However, as noted in [8], this 

assumption is quite strong because of the overlap amongst 

local regions of images from different categories. Some 

example works in this category are [37], [38], [39] and [40]. 

The fourth class of algorithms learn the descriptor mod

els/dictionaries with image-level discriminative criteria. Pre

vious example works in this category include [8] and [10]. 

Our proposed work on SSVQ also falls into this category. 

However, unlike the work in [8], we employ soft assignment 

coding to encode an image with a GMM, which can better 

describe the underlying multi-modal distribution of the local 

1 Extraction of dense features essentially implies computing features on 
an entire image region from overlapping or non-overlapping image patches. 

descriptors. Compared with [10], our algorithm is faster, 

because the coding in [10] needs to solve many Lasso 

problems. For the supervised training, the differentiable 

logistic loss function is used, and thus our objective function 

is differentiable without any conditions, while [8] relies on 

sub-gradient and [10] has to make some assumption for 

computing the gradient. 

Unlike many previous works, our work neither requires 

key-point localization nor needs a neutral face. Our proposed 

method gives significant improvement over unsupervised 

GMM learning. This work also beats the state-of-the-art 

performance in the same experimental setting as [30] and 

[31]. 

In the following, we first describe the BU-3DFE database 

used in this work in Section II. Then we present our 

novel approach for supervised training of GMMs in Sec

tion III. Multi-view expression recognition experiments are 

conducted in Section IV, which is then followed by discus

sion in Section V. Finally, Section VI concludes our paper. 

II. DATABASE 

The database used in this work is the publicly available 

BU3D-FE database [32]. It has 3D face scan and associated 

texture images of 100 subjects, each performing 6 expres

sions at four intensity levels. The facial expressions presented 

in this database include anger (AN), disgust (DI), fear (FE), 

happy (HA), sad (SA) and surprise (SU). Each subject also 

has a neutral face scan. Thus, there are a total of 2500 3D 

faces. The dataset is quite diverse and contains subjects of 

both gender with various races. Interested readers are referred 

to [32] for further details. 

We used an openGL based tool from the database creators 

to render multiple views. We generated views with seven pan 

angles (0°, ±15°, ±30°, ±45°) and five tilt angles (0°, ±15°, 

±300). These views were generated for each subject with 6 

expressions and the highest expression intensity, resulting in 

an image dataset with 5 x 7 x x6 x 100 = 21000 images. 

Some sample images of a subject in various pan and tilt 

angles are shown in Figure 1. 

Face images with different pan and tilt angles 
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Fig. 1. Rendered facial images of a subject with various pan and tilt angles. 



III. SUPERVISED SOFT VECTOR QUANTIZATION (SSYQ) 

We begin our discussion by outlining soft vector quanti

zation (SYQ). We shall then introduce supervised soft vector 

quantization (SSYQ) in Section III-B. 

A. SVQ 

Suppose, S = {[d, cd}�=l is a corpus of training images, 

where [d = {z1, ... , 4) and Cd E {-I, I} are labels. Let 

V = {VI, V2, ... , Vk} be a matrix whose columns represent 

visual words. In this case, for (hard) YQ, the feature vector 

t/ from the dth image can be represented as a K -dimensional 

vector cf'l where, 

d 
{ I if k = argmin llt/- vm I1 2, cf'i [k] = . m 

o otherwIse 

Now given a GMM (with K components and parameters 

S), the posterior of a p-dimensional feature vector :tf is given 

as, K 
p(tfIS) = L 1r:kJV(zf;J.lk,Lk) 

k=l 
In SYQ, we may represent the feature vector :tf as cf'id, 

where, 

cf'id[k] = K
1r:kJV(t/;J.l�,Lk) 

Ej=l1r:jJV(:tf,J.lj,Lj) 
= p(klzf) 

(1) 

(2) 

and JV(t/;J.lj,Lj) is the gaussian pdf evaluated at :tf. 

The image level descriptor can then be represented by a 

histogram, 

B. SSVQ 

(3) 

As outlined earlier, the basic idea here is to reduce the loss 

function in a classifier, given a training set, by modifying the 

image descriptor model (which is a GMM in this case). We 

use logistic regression in our framework. The loss function 

for L2-regularized logistic regression can be given as [41], 

1 D 
L = 2: (wT w) +A L 10g(1 +exp[-cdwT «t>d] ) 

d=l 
(4) 

Here A, is a scalar, pre-selected by cross-validation on the 

training set. The derivative of L w.r.t. J.lk can be written as 

dL D -cdexp[-cdwT«t>d] Td«t>d 
dJ.lk =A fl 1 +exp [ -cdwT«t>d] w 

dJ.lk 
(5) 

To compute the derivative in equation (5), we need to 

compute the derivative for each cf'id, 

(6) 

Note that, 

dcf'id [ dcf'l[k] dcf'l[m] ] T 

dJ.lk ... , dJ.lk 
, . . .  , � ,. . .  ,where m =I- k (7) 

Now consider from equation (1), 

dcf'id[k] d [ 1r:kJV(t/;J.lk>Ld 1 
dJ.lk 

= 
dJ.lk Ef=l1r:jJV(t/;J.lj,Lj) 
dp(kl:tf) 

dJ.lk 
After some derivation we get 

d:��k] = (p(klzf) - (p(klzf))
2
)[tf- J.lkfLkl 

Using equation (2) we get, 

Similarly for the case when m =I- k, we have 

dcf'l[m] d [ 1r:kJV(:tf;J.lm,Lm) 1 � = dJ.lk Ef=l1r:jJV(:tf;J.lj,Lj) 
dp(mlt/) 

dJ.lk 
= -p(klzf)p(mlzf)[zf- J.lkfLkl 

And this essentially implies, 

(8) 

d���] = -cf'l[k]cf'l[m][tf- J.lkfLkl (9) 

Please note that each of the equations (8) and (9) repre

sents a 1 x p vector, where p is the dimension of J.lk. Thus, 

* is a K x p matrix, where K is the number of mixtures 

in tMM. 
Equations (8) and (9) are then used to compute � in 

equation (6). Stochastic gradient descent with online leadIing 

can be used to update J.lk> k E {I, ... ,K} 

where, 

J.l(t+l) 
= J.l(t) _ A,(t) ( dLd) T 

k k dJ.lk 

dLd _cd T ( d� ) 
dJ.lk =A 

1 +exp(cdwT«t>d) 
w 

dJ.lk ' 

A,(t) = 
A, (to) 

In/Nd+ 1 

C. Multi-class SSVQ 

(10) 

(11) 

(12) 

Suppose we have a multi-class problem with M > 2 

classes. Then we can have M regressors, trained in a one

vs-rest (OYR) fashion. The motivation for the OVR setting 

is that it is efficient, requires lesser computation and it 

gives comparable performance when compared with other 

multi-class classifier learning methodologies [41]. Now the 

regressors may be arranged in an M x K matrix W. Thus 

the derivative of the loss function in the multi-class setting 



for a single training sample can be given as (derived from 

equation (11», 

eJLd M -y[i] . ( d<l>d) 
d/lk 

=A� I+exp(Y[i]W[i,Y<l>d)W[I':] d/lk 
(13) 

where, 

y[i] = { +1, if <l>d E it h class 

-1 , otherwise 

W[i,:] = regressor trained on ith class vs rest 

Stochastic gradient descent is then used with online learn

ing to update /lk, k E {I, .. . , K} in a similar fashion as for 

the binary class problem. Finally, equations (1) and (3) are 

used to compute the image level descriptors using the new 

discriminative GMM with updated means, which are then 

used for training and testing. 

The algorithmic framework for the discriminative GMM 

training in SSVQ is given as follows: 

Algorithm 1 Pseudocode for the discriminative GMM train

ing for SSVQ 

Require: A training database, S = {jd,c4}�=l' 
where jd = {zf, ... ,4); A(to); a GMM learnt 

on part of the training set, with parameters 

e = {1rl, ... , 1rK;/lI, ... ,/lK;L.l, ... ,L.K} 
1: n+-O 
2: for t = 1 to Maxlter do 
3: 

4: 

5: 

6: 

7: 

8: 

9: 

for i = 1 to Nd do 
A(t) +- A(tO) 

Vn/Nd+1 
for k = 1 to K do 

,, (t+1) +- ,,(t) _ A(t) ( aLd ) T 
r-k r-k diik 

end for 
n +- n+ 1 

end for 
10: Retrain regressor(s) 

11: end for 

IV. M ULTI-VIEW EXPRESSION RECOGNITION 

EXPERIMENTS AND RESULTS 

We do 5-fold subject independent cross validation on 

multi-view faces with 7 pan angles and 5 tilt angles generated 

from the BU-3DFE database (21,000 images in total). In 
each fold, around 80% images are used for training and 20% 

images for validation. The subjects in the training set do not 

appear in the validation set. The details of the database can 

be found in Section II. 

The images are scaled so that the maximum image dimen

sion has at most 200 pixels. We then extract SIFT features 

on dense sampling grid with 3 pixel shifts in horizontal 

and vertical directions with fixed scale (16 x 16 pixels) 

and orientation (0°). The initial GMMs are also learnt in 

a fold-independent setting, in the traditional unsupervised 

manner, using the Expectation Maximization algorithm. The 

GMM for each fold has 1024 mixtures to balance the 

computational cost and performance. The initial learning 

rate A was set to be a small value (le-6) in stochastic 

learning. To further speed up the algorithm, we reduce the 

SIFT feature dimension to 70 with PCA. The supervised 

GMM parameter updates are only for the means of the 

Gaussian mixtures, although the covariance matrixes can also 

be updated in principle. The optimization is run for twelve 

iterations for early stopping to avoid overfitting. We do not 

use the Spatial Pyramid (SPM) [12] while doing supervised 

training. However, we later combine SSVQ and SPM to 

obtain the final image representation, which achieves the 

state-of-the-art performance. 

Figure 2 shows objective function value (eq. (4» de

creases, averaged for the expression classes, with supervised 

iterations for each of the folds. The last figure also shows 

the average of the five training folds. One can notice that the 

objective value, in general, reduces for all the cases. Figure 

3 shows the data log likelihood with GMM as a function 

of optimization iterations. Interestingly, the log likelihood 

decreases for the five folds alike, meaning the supervised 

iterations are moving the model in a direction which makes 

it more discriminative rather than generative. 
Table I shows how the performance increases with su

pervised training along with comparisons with earlier works 

in the same experimental setting. Tables II, III and IV 

respectively show the confusion matrices for SVQ, SSVQ 

and SSVQ+SPM (with max-pooling). 

Fig. 2. Decrease in objective function value with the supervised iterations 
for each of the training folds and average. The horizontal axis represents the 
number of iterations while the vertical axis represents the objective function 
value 

TABLE I 

COMPARISON IN TERMS OF CLASSIFICATION RATE 

Zheng et al. [30] 68.20% 

Tang et al. [31] 75.30% 
SVQ 63.28% 

SSVQ [ours] 69.81% 
SSVQ+SPM [ours] 76.16% 
SSVQ+SPM (max pooling) [ours] 76.34% 
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Fig. 3. Effect of supervised iterations on data log likelihood. The horizontal 
axis represents the number of iterations while the vertical axis represents 
the data log likelihood 

TABLE II 

CLASSIFICATION CONFUSION MATRIX FOR RECOGNITION 
PERFORMANCE WITH SVQ 

SVQ 

AN 
DI 

Ground FE 
Truth HA 

SA 

SU 

II Predicted I AN I DI I FE I HA I SA I sti 
52.6 14.7 5.9 3.1 21.7 1.9 

13.2 63.2 8.1 4.5 6.3 4.7 

8.1 9.8 47.6 12.8 14.2 7.5 

3.0 3.5 10.0 79.5 2.1 1.9 

23.2 6.9 13.2 3.0 50.7 2.9 

1.8 1.9 5.0 2.7 2.5 86.1 

TABLEm 

CLASSIFICATION CONFUSION MATRIX FOR RECOGNITION 
PERFORMANCE WITH SSVQ 

SSVQ 

AN 
DI 

Ground FE 
Truth HA 

SA 

SU 

II Predicted 

AN I DI I FE I HA I SA I SU 

59.4 1l.5 4.0 1.9 21.5 1.7 

10.9 72.1 5.2 3.2 5.7 2.9 

7.6 7.7 52.9 12.2 11.6 7.9 

0.7 2.2 8.0 85.8 1.6 1.7 

22.2 5.1 10.2 1.9 58.3 2.3 

0.3 1.9 4.1 1.3 1.9 90.3 

TABLE IV 

CLASSIFICATION CONFUSION MATRIX FOR RECOGNITION 
PERFORMANCE WITH SSVQ + SPM (MAX-POOLING) 

SSVQ+SPM(max- 1 1 
pooling) 

AN 
DI 

Ground FE 
Truth HA 

SA 

SU 

II AN 

67.7 
7.5 

7.5 

0.3 

21.2 

0.2 

DI 

8.9 

79.3 
7.5 

0.8 

3.3 

1.1 

Predicted 

FE HA SA SU 

4.2 1.3 17.3 0.7 

5.3 2.8 2.7 2.4 

59.1 9.9 9.5 6.5 

5.6 91.7 0.4 1.2 

7.1 0.7 66.0 1.7 

2.5 1.3 0.6 94.3 

V. DISCUSSION 

As shown, our supervised training not only reduces the 

objective function value on all the folds (Figure 2) but also 

gives a significant increase in testing classification rate of 

6.5% with 12 iterations compared with SVQ (Table I). Note 

that for our SSVQ, the feature vectors are only 1024 dimen

sional. It is particularly desirable to have compact feature 

descriptors when dealing with very large image databases. 

One can also notice from Tables II and III that supervised 

training helps all the expression classes from as low as 4.2% 

for Surprise to as high as 8.9% for Disgust. 

The data log likelihood, on the other hand decreases with 

supervised training, as shown in Figure 3. Although this 

might be expected since the parameter updates are making 

the GMMs more discriminative rather than generative, it 

could also be a sign of overfitting, especially when train

ing examples are limited. In our experiments, we haven't 

observed overfitting within 12 iterations. But it would be 

worthwhile to add the data log likelihood as a regularization 

term in the general form, where the derivation will follow 

section III-B similarly. 

Table IV reports the confusion matrix for the case when 

SSVQ is combined with SPM and max-pooling [7] (instead 

of mean pooling in equation (3)) is used. Here, all the classes 

enjoy much better true recognition rate by incorporating the 

spatial information. Across all the three confusion matrices, 

Surprise, Happy and Disgust are the expressions with the 

highest recognition rates, while Fear is the worst performer. 

This is consistent with some previous works in facial expres

sion recognition, such as [42]. One can also note from Table 

I that the combination of SSVQ and SPM, with either mean 

or max pooling, also achieves state-of-the-art performance, 

although our model is much simpler than [31]. 

VI. CONCLUDING REM ARKS 

Inspired by the BoW model popularly used in image 

categorization, we propose a novel supervised soft vector 

quantization model for facial expression recognition. The 

discriminative training of GMM produces significant per

formance gain compared with the unsupervised counterpart. 

Combining the spatial pyramid, our approach achieves state

of-the-art performance on the BU-3dFE facial expression 

database with simple linear classifier. For future works, 

we will explore supervised training for full GMM param

eters (mean, mixture weights, and covariance matrices) with 

proper regularization. Incorporation of SPM in supervised 

training should also be investigated to make each level of 

SPM more discriminative. The framework is generic and can 

easily be applied to other classification tasks as well, such 

as object recognition, face recognition, speaker identification, 

and audio event recognition. 
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Abstract—This paper proposes a new method for comparing
3D facial shapes using facial level curves. The pair- and segment-
wise distances between the level curves comprise the spatio-
temporal features for expression recognition from 3D dynamic
faces. The paper further introduces universal background mod-
eling and maximum a posteriori adaptation for hidden Markov
models, leading to a decision boundary focus classification al-
gorithm. Both techniques, when combined, yield a high overall
recognition accuracy of 92.22% on the BU-4DFE database in
our preliminary experiments. Noticeably, our feature extraction
method is very efficient, requiring simple preprocessing, and
robust to variations of the input data quality.

I. INTRODUCTION

Expression recognition from 3D facial data is a new and

interesting problem. Several baseline methods have been intro-

duced and gave very promising results [1] and [2]. In another

direction, research has also been done on studying the dynam-

ics of facial expressions in 2D images [3], proving that looking

at sequences of face instances can help improve the recognition

performance. These initiatives give us the awareness that facial

expressions are highly dynamical processes in the 3D space,

and therefore observing the state transitions of 3D faces could

be a crucial clue to the investigation of the inner state of human

subjects.

Recently, this direction is getting more attention with the

introduction of appropriate databases such as the BU-4DFE

database developed at Binghamton University [4]. It is also

inspired by the revolution of inexpensive acquisition devices

such as the consumer 3D cameras. One of the challenges for

expression recognition using data from these low-end devices

is that most of them produce noisy and low resolution depth

images. In such kind of condition, expression recognition

using traditional methods based on tracked facial feature points

can be sensitive to the noise. Moreover, tracking facial feature

points by itself would require more computations and thus

make the systems harder to satisfy the real-time requirement.

This situation shows the urgent need for a robust and efficient

feature representation for 3D facial shapes together with a high

performance classification algorithm to exploit the features for

expression recognition.

In this work, we propose to use a facial level curves

based representation of 3D faces for expression recognition. A

similar representation was applied to face recognition by Samir

and colleagues [5]. To the best of our knowledge, it has not

been used for expression recognition. Besides being powerful

Fig. 1: Framework of expression recognition from 3D dynamic

faces using facial level curves

and robust, one advantage of this representation is that the

level curves can be extracted directly from depth images with

some simple preprocessing steps.

On top of the representation, we introduce a novel method to

measure the distances between the corresponding level curves

of two 3D facial shapes, which are then used as spatio-

temporal features for expression recognition. The method

is based on the Chamfer distances of normalized segments

partitioned from the level curves by an arclength parameterized

function. This feature extraction method does not require

feature point localization, and can deal with low resolution
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depth images. These characteristics make the method very

friendly with low-end acquisition devices and the requirement

of fast processing.

We further introduce universal background modeling and

maximum a posteriori adaptation for hidden Markov models

(HMMs), leading to an HMM-based decision boundary focus

classification algorithm. Combined with the proposed feature

extraction method, this classification algorithm yields a high

overall recognition accuracy of 92.22% on the BU-4DFE

database in our preliminary experiments. The overall pipeline

of our expression recognition framework is depicted in Fig. 1.

This paper is organized as follows. Section II reviews the

related work. The BU-4DFE database used in our experiments

is introduced in Section III. Section IV describes the details

of the proposed feature extraction method, and Section V the

details of the proposed HMM-based decision boundary focus

classification algorithm. In Section VI, the experiments and

results are presented. Finally, Section VII draws the conclusion

and discusses the future work.

II. RELATED WORK

Shape representation and feature extraction for the analysis

of 3D facial data have gained increased attention recently. In

this section, we review some existing approaches that use 3D

face models for facial expression recognition and some shape

representation methods related to ours.

In an intuitive way of analyzing facial expressions, several

works, such as [3], [6] and [7], follow the traditional approach

of using 3D face models to estimate the movements of the

facial feature points. These features are related to the action

units (AUs) and their movements control the emotional states

of the subject.

In a different way, a dense correspondence frame is built

based on a set of predefined landmarks. The arrangement

of the corresponded dense point set is used as the feature

for classification. Mpiperis and colleagues, in [1], use a

correspondence frame built by a subdivision surface model

using a set of predefined feature points. The members of

the 3D correspondence frame are then used as raw features

in a bilinear model which helps separate the identity and

expression factors in 3D static data. A tensor-like model is

built as PCA subspaces, both among people and across the

expressions. With such a relatively simple model, they can

afford to utilize the dense features of thousands of dimensions

and give impressive recognition results.

A dense correspondence can provide very informative fea-

tures of the facial shape but will face the curse of dimen-

sionality. Extracting the geometrical shape features at some

important locations such as the convex parts, high curvatures

areas, and saddle points may reduce the vector size while still

keeping the representation robust. One example is the primitive

label distribution used in a recent work by Yin et al. [2]. Whilst

the feature definitions of the primitive label distribution are

intuitively meaningful and shown to work well on studio data,

the computation of curvatures in general involves numerical

approximation of second derivatives and may be susceptible

to observation noise.

Up to the present, most of the 3D face expression recog-

nition works are based on static data. In a pioneer work that

exploits dynamic data [8], Sun and Yin extract sophisticated

features of geometric labeling and use 2D HMMs as classifiers

for recognizing expressions from 3D face model sequences.

Their method has led to very promising recognition perfor-

mance.

In the aspect of 3D facial shape representations, Samir et

al., in [9], develop an intrinsic mathematical and statistical

framework for analyzing facial shapes for face recognition

based on facial level curves. In that framework, the shape

representation is similar to ours. However, the distance func-

tion used to extract and compare the level curves are signifi-

cantly different. In Samir et al.’s work, they use the geodesic

distances based on an angle function, which are shown to

be relatively invariant to expressions [10] and therefore are

more suitable for face recognition. Instead, in our work, we

propose the localized Chamfer distances which are correlated

with expression changes.

III. DATABASE DESCRIPTION

In our experiments, we utilize the BU-4DFE database [4],

which captures the dynamics of 3D expressive facial surfaces

over a time period. The BU-4DFE database was created at

the State University of New York at Binghamton by Yin

et al. This database consists of 101 subjects, including 58

females and 43 males of different ethnicity: Asian, Black,

Hispanic/Latino, and White. For each subject, there are six 3D

face model sequences corresponding to the six fundamental

facial expressions (namely anger, disgust, happiness, fear,

sadness, and surprise). In each sequence, the face models are

captured at the rate of 25 models per second. Each face model

in a sequence contains the shape and texture of the subject

during an expression period. All expression periods typically

last about 4 seconds (approximately 100 frames).

In total, the database contains 606 face model sequences,

that is more than 60600 face models. Each face model consists

of a cloud of points containing around 35000 vertices and a

texture image with a resolution of 1040× 1329.

The dynamic characteristics of this database is crucial in

describing the intermediate period between the peak of the

emotions and the neutral state, which are apparently very

important for expression recognition. Our algorithm takes

advantage of this property, and the database turns out to be

quite appropriate to verify our algorithm.

IV. FACIAL LEVEL CURVES BASED REPRESENTATION OF

3D SHAPES

Facial level curves are defined to be the planar curves consti-

tuted from a facial surface, which are created by extracting the

points with the same values of a distance function to a center

points [5]. In our approach, the distance function is chosen to

be the height of the points in a normalized coordinate system.

In this section, the method for extracting facial level curves

415



Fig. 2: Facial surface alignment. (a): Raw shape, (b): Aligned

shape

and the method for comparing level curves and sets of level

curves are described in detail.

A. Data preprocessing

Using the height information as the distance function has the

advantages of fast processing time, being convenient with the

input of range images and sensitive to expression changes. The

most important challenge of using this function is the fact that

it is not invariant to viewpoint changes. Therefore, in order to

extract useful features with this distance, we need to perform

several steps of preprocessing, namely pose normalization and

face area extraction, to make sure the features extracted are

unbiased and noise is not introduced by different viewpoints.

Moreover, normalization will help us reduce the effect of

identity variations among different subjects.

The face area and location of the nose and two eyes on

a color image are located by the Pittpatt face detection and

tracking library [11], [12]. This area is back projected to the

3D model to located the facial points in the 3D space. The

outlier points are cut off from the mesh. The clean point cloud

is then aligned so that it will be frontal when looking down

from the z axis and the nose tip (the highest point in a frontal

face) is at the coordinate center. The original and aligned faces

are compared in Fig. 2.

In the next step of normalization, the face model is scaled

down by suitable ratios for all of the three dimensions and

stored in a range image. The purpose of this step is to squeeze

a face model to make it fit in a fixed-size cube which will help

reduce the variation in the geometry of the face. The range

image for every face has now the same horizontal and vertical

sizes. The depth values are scaled so that the depth of the nose

tip has the value 1 and the depth of the eyes have the value 0.4.

This will help provide the correspondence of the levels across

different surfaces. The depth images are then ready to be fed

into the main feature extraction process. A sample result of

the preprocessing step is show in Fig. 3(a).

B. Shape representation

In our framework, a facial shape is represented as a collec-

tion of planar curves obtained by having a plane parallel to

the xy plane moving down along the z axis to cut the aligned

surface. At each level, the intersection of the plane and the

surface is a planar curve. In the experiments, this process is

done by going through various height levels. At the level of

height h, we find all the points with a height in the range of

(h−δ, h+δ), with δ being some predefined constant. This set

of points form a band with the thickness of 2δ. Projecting this

Fig. 3: Range image formation and facial level curves extrac-

tion in Matlab’s jet colormap. (a): Normalized range image

(b): Extracted facial level curves

band to the xy plane and finding a contour through the points,

we have a planar facial curve. A sample of the extracted curves

of a sample face is shown in Fig. 3(b). The curves are then

stored as binary images which has value one at curve points

and zero at others.

Based on the level curve representation of facial surfaces,

the deformation of the face over time is extracted by compar-

ing the faces in two consecutive frames in the sequence. The

method of defining and extracting distances between curves

and faces are described in the next section.

C. Localized Chamfer distances for curve and surface com-
parison

On top of the facial curves based representation method,

several ways to estimate the deformation of 3D faces are

introduced. In [13], Klassen et al. propose to use geodesics

in the preshape space to compare 3D facial curves using

direction functions or curvature functions. Using a similar

shape representation as the one used in our work, Samir et

al. compare two curves by finding the shortest geodesic path

between the curves and use the L2 norm of the curves as the

distance between the two faces [9].

In our work, with the objectives of building the features

which can be extracted efficiently while at the same time

exposing the deformation of the curves at local locations

instead of the global deformation of the entire closed curves.

This inspires us to segregate each facial curve into a set

of small segments at corresponded locations and extract the

deformation of each segment over time. With that intention,

we propose to use the Chamfer distances of curve segments

partitioned by a set of arclength boundaries which we call

localized Chamfer distance. The detail of the partition process

will be addressed next.

Given that a planar curve is simple (i.e. with no self

crossings) and closed, it can be represented by an arclength
parameterized function [13]:

α(s) : [0, 2π] → R2 (1)

.

This function gives the 2D location of the curve points given

the angle between the line connecting them to the coordinate

center and the Ox axis (i.e. the corresponding arc length of

the unit circle).
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Fig. 4: The partitions of facial curves into bins by the arclength

parameterized function. In this case, there are 20 segments

made from a curve

The partition of the curve into n curve segments is done

by breaking the function into n functions with the supports

to be subsets of the main function’s support. Each subset

corresponds to an equal range of arclength s. The curve

segment number i is defined by

αi(s) : [i
2π

n
, (i + 1)

2π

n
) → R2. (2)

This segment partitioning process is equivalent to dividing

a binary image of a curve into n sectors, with each sector

covering an angle of 2π/n radians. The segments are the part

of curves lying in the corresponding sectors. The illustration

of this process in the case of 20 bins is depict in Fig. 4.

In our current method, because we have only one center

point located at the nose tip, the curves are not always simple

and closed, such as the ones drawn in Fig.5. Therefore,

the arclength parameterized map is not stricly a function.

However, we can still use the map in the same manner to

obtain the curve partition with the similar intuitive meaning.

The ultimate way to solve this problem is to use many center

points and choose the suitable ones for different parts of curves

so that they will satisfy the closed and simple requirements.

This improvement will be implemented in the future work.

The comparison between two same-level curves are done

by finding the Chamfer distances of the n pairs of curve

segments and stack them up to form a distance vector. This

vector represents the deformation intensity of the level curve

over time in different directions. The distance vectors of the

curves are further stacked to represent the deformation of the

face. Therefore, at each frame transition we have a raw feature

vector of n × l dimensions where l is the number of curves

used. A sample of two curves being compared is depicted in

Fig. 5

This representation indirectly implies a reference frame for

correspondence. As the faces are now not represented as a

set of points, this type of correspondence does not show the

displacement of one particular point on the facial skin. Instead,

comparing two corresponding curve segments of the same

level and same sector from two consecutive frames shows how

Fig. 5: Comparison between two sample curves. (a): two

curves superimposed on each other(b): one curve superim-

posed on the other’s distance transform image. The white lines

indicate partition boundaries

the facial shape deforms at that relative location in space over

time. Hence, this representation is able to express the shape

deformation in the spatio-temporal realm.

In practical experiments, this representation may face the

curse of dimensionality, due to the size of the distance vectors.

Also, it only represents the deformation at one particular point

in time whereas the current bigger context of the dynamics

can make the feature more expressive. To alleviate those

challenges, we utilize several steps of distance metric learning

on the features which are detailed in the next subsection.

D. Distance metric learning

In our framework, we perform context expansion of the

feature vectors. For each frame, we form an augmented vector

by stacking up the feature vectors of the previous, current and

future frames. This augmented vector is called the context

expanded feature vector of current frame. Context expansion

takes into account the temporal dynamics of the feature

vectors, and is demonstrated to be an important stage for

expression recognition from 3D dynamic faces. After context

expansion, the feature vector has the size of 3× n× l which

span a space of thousands of dimensions. To reduce the

dimensionality we use principal component analysis (PCA),

followed by linear discriminant analysis (LDA). After this

step, the feature vectors are ready to be used in the main

classification algorithm which is described in the next section.

V. DECISION BOUNDARY FOCUS CLASSIFICATION WITH

HIDDEN MARKOV MODELS

In this work, we adopt hidden Markov models (HMMs)

[14] for facial expression classification. An HMM is a doubly

stochastic process which consists of an underlying discrete

random process possessing the Markov property (namely

a Markov chain having a finite number of states) and an

observed random process generated by a set of probabilistic

functions of the underlying Markov chain, one of which is

associated with each state of the Markov chain. At a discrete

time instant, the HMM is assumed to be at a certain state,

and an observation is generated by the probabilistic function

associated with that particular state. The underlying Markov

chain changes its state at every time instant according to some
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state transition probability distribution. Note that within an

HMM, it is only the observations that are seen by an observer,

who does not have any direct knowledge of the underlying

state sequence that generated these observations. HMMs have

been proven to be a natural and effective probabilistic models

for sequential data such as audio, speech and video.

However, due to their generative nature, HMMs may not

perform as well as discriminative models for the classification

purpose when there is insufficient training data. To overcome

this difficulty, we introduce a strategy based on the maximum a

posteriori (MAP) adaptation of a universal background model

(UBM) to generate the individual states of the class-dependent

HMMs. For reasons that will be clear shortly, this strategy

enhances the discriminatory power of the class-dependent

HMMs by focusing on the decision boundaries when applied

to classification tasks.

A. HMM-based facial expression recognition

Without loss of generality, we assume that a 3D facial

expression model sequence is effectively represented by a

sequence of observation vectors O = o1o2 · · ·oT . The joint

probability distribution of O is a generative model which could

have generated O. Let p(O|c) denote the class-dependent

model for facial expression c. The Bayesian or minimum-error-

rate classification rule [15] is given by

c = argmax
c

p(c|O) = argmax
c

p(O|c)p(c) (3)

where p(c) is the prior probability of facial expression c. In

this work, p(O|c) is modeled by an HMM, namely

p(O|c) =
∑

q1q2···qT

[
πc

q1
bc
q1

(o1)
T∏

t=2

ac
qt−1qt

bc
qt

(ot)

]
(4)

The above formulas form the basis of HMM-based facial

expression recognition.

B. The Baum-Welch learning algorithm

To perform HMM-based facial expression recognition, we

need to learn a class-dependent HMM for every facial expres-

sion. An HMM is completely determined by its parameters

λ = {A, B,Π}. Here, A is the state transition probability

matrix whose entries, aij = P (qt = Sj |qt−1 = Si),
1 ≤ i, j ≤ N , specify the probabilities of transition from

state Si to state Sj at time t. B is the state emission

probability matrix whose entries, bjk = P (ot = vk|qt = Sj),
1 ≤ j ≤ N, 1 ≤ k ≤ M , specify the probabilities of emitting

an observation symbol vk given that the model is in state Sj at

time t. Π is the initial state probability matrix whose entries,

πi = P (q1 = Si), 1 ≤ i ≤ N , specify the probabilities of the

model being initially in state Si. For the case of continuous

observations, the entries of the state emission probability

matrix are given by continuous probability density functions,

namely bj(ot) = P (ot|qt = Sj), 1 ≤ j ≤ N . One important

class of continuous probability density functions widely used

for the state emission densities of the continuous-observation

HMM is the Gaussian mixture density functions of the form

bj(ot) =
M∑

k=1

cjkN(ot|μjk, Σjk)

1 ≤ j ≤ N, 1 ≤ k ≤M (5)

where M is the number of Gaussian components, cjk is the kth

mixture weight, and N(ot|μjk, Σjk) is a multivariate Gaussian

density function with mean vector μjk and covariance matrix

Σjk. Since bj(ot) is a valid probability density function, the

following constraints must hold:

cjk ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M (6)
M∑

k=1

cjk = 1, 1 ≤ j ≤ N (7)

The Baum-Welch algorithm [14] for learning the param-

eters of an HMM, λ, given an observation sequence, O =
o1o2 · · · oT , is an iterative re-estimation procedure that in-

creases the log likelihood P (O|λ) monotonically. It is based

on an efficient algorithm known as the forward-backward

algorithm. In the forward algorithm, a “forward” variable,

αt(i), is defined as the probability of the partial observation

sequence up to time t and state Si being occupied at time t

αt(i) = P (o1o2 · · · ot, qt = Si|λ)
1 ≤ i ≤ N, 1 ≤ t ≤ T (8)

The following iterative formulas are used to compute the

α’s efficiently:

α1(i) = πibi(o1), i = 1, 2, · · · , N (9)

αt(j) =

[
N∑

i=1

αt−1(i)aij

]
bj(ot)

j = 1, 2, · · · , N, t = 2, 3, · · · , T (10)

In the backward algorithm, a “backward” variable, βt(i), is

defined as the probability of the partial observation sequence

from time t + 1 to T given that the state Si is occupied at

time t

βt(i) = P (ot+1ot+2 · · · oT |qt = Si, λ)
1 ≤ i ≤ N, 1 ≤ t ≤ T (11)

Likewise, the following iterative formulas are used to effi-

ciently compute the β’s:

βT (j) = 1, j = 1, 2, · · · , N (12)

βt(i) =
N∑

j=1

aijbj(ot+1)βt+1(j)

i = 1, 2, · · · , N, t = T − 1, T − 2, · · · , 1(13)

Starting with random initialization (or initialization with a

smarter scheme) of the model parameters λ, the Baum-Welch

algorithm proceeds as follows:
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(1) Re-estimation of the new model parameters λ̂:

π̂i =
α1(i)β1(i)∑N

j=1 α1(j)β1(j)
(14)

âij =
∑T−1

t=1 αt(i)aijbj(ot+1)βt+1(j)∑T−1
t=1 αt(i)βt(i)

(15)

ĉjk =
∑T

t=1 γt(j, k)
∑T

t=1

∑M
k=1 γt(j, k)

(16)

μ̂jk =
∑T

t=1 γt(j, k)ot∑T
t=1 γt(j, k)

(17)

Σ̂jk =
∑T

t=1 γt(j, k)(ot − μ̂jk)(ot − μ̂jk)T

∑T
t=1 γt(j, k)

(18)

where 1 ≤ i, j ≤ N, 1 ≤ k ≤M , and

γt(j, k) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

cjkN(ot|μjk, Σjk)
∑M

m=1 cjmN(ot|μjm, Σjm)
(19)

(2) Test of convergence: If ‖λ̂ − λ‖2 < θ (a threshold), the

Baum-Welch algorithm converges. Otherwise, set λ = λ̂
and go to step (1).

Note that in the above Baum-Welch re-estimation formulas,

γt(j, k) can be viewed as the posterior probability that the

observation ot was generated from state Sj and accounted for

by the kth component of the Gaussian mixture density of state

Sj , given the current model parameter λ.

C. Universal background modeling and maximum a posteriori
adaptation

The Baum-Welch algorithm is a maximum likelihood learn-

ing technique for learning the model parameters of an HMM

given a set of training observation sequences. Given a suffi-

cient amount of training data, the Baum-Welch algorithm can

be used to learn high-quality HMMs. However, in situations

where there is insufficient training data available for learning

an HMM, the Baum-Welch algorithm is likely to lead to a

poorly estimated model. This is known as the over-fitting

problem, which is a general property of maximum likelihood

estimation techniques. To overcome this difficulty, we intro-

duce universal background modeling. Universal background

modeling was originally proposed for biometric verification

systems which use a universal background model (UBM) to

represent the general and person-independent feature charac-

teristics to be compared against a model of person-specific fea-

ture characteristics when making an accept or reject decision.

For example, in a speaker verification system, the UBM is a

speaker-independent Gaussian mixture model (GMM) trained

with speech samples that come from a large set of speakers,

which is used when training the speaker-specific model by

acting as the prior model in MAP parameter estimation [16].

Under the context of HMMs, the UBM is obtained as follows.

We first pool the separate training data for learning the

individual HMMs together to form an aggregated training

data set. This aggregated training data set is normally large

enough that we can assume that it is likely to capture sufficient

variations in the population of the data. We then use the Baum-

Welch algorithm to learn a single global HMM based on the

aggregated training data set. We call this single global HMM

learned on the aggregated training data set the UBM, as this

single global HMM is supposed to represent the probability

distribution of the observations drawn from the population of

the data. The UBM is in general a well-trained and robust

model, from which we can derive particular individual HMMs

specific to small amounts of training data using the MAP

adaptation technique for HMMs, as described in detail next.

An HMM that is adapted from the well-trained UBM with a

small amount of training data is proven to be far more robust

than an HMM that is learned directly with the same small

amount of training data using the Baum-Welch algorithm.

The rational behind universal background modeling and

adaptation is as follows: In the Bayesian or minimum error

classification rule, an optimal decision boundary is formed by

the posterior probability distributions of two classes, which

may be computed from the class-dependent likelihood proba-

bility distributions of the two classes, respectively. There may

be a lot of fine structures in the class-dependent likelihood

probability distribution of either class, and normally we require

a lot of training data to learn these fine structures. However, as

far as the classification problem is concerned, only the regions

of the class-dependent likelihood probability distributions near

the decision boundary are important. The fine structures of the

class-dependent likelihood probability distributions which are

away from the decision boundary are of no use. Therefore, it

is a waste of the precious training data to try to learn these fine

structures all over, and more disastrously, the fine structures

(both near and away from the decision boundary) will never

be properly learned if the available training data is insufficient.

The introduction of universal background modeling allows

us to learn the fine structures irrelevant to the classification

problem using a large aggregated training data set, and focus

on the regions near the decision boundary by learning the fine

structures within these regions using small amounts of training

data.

The concept of universal background modeling is related to

the more elegant Bayesian learning theory [17]. In Bayesian

learning, a prior probability distribution is imposed on the

model parameters, which will be adjusted as more and more

evidence is present. The UBM may be considered as a prior

model corresponding to the prior probability distribution of the

model parameters. Bayesian learning is a powerful learning

paradigm which has many advantages over maximum likeli-

hood learning. However, it is computationally very expensive.

Universal background modeling serves as a good trade-off

point between full Bayesian learning and maximum likelihood

learning.

In the Baum-Welch algorithm, when we re-estimate the

parameters of the Gaussian mixture state emission densities,

ĉjk, μ̂jk, Σ̂jk, 1 ≤ j ≤ N, 1 ≤ k ≤ M , instead of starting

with randomly initialized parameters, we start with a UBM

with parameters c̄jk, μ̄jk, Σ̄jk, 1 ≤ j ≤ N, 1 ≤ k ≤ M . In the

following, we will drop the index ranges to avoid cluttering the
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equations by assuming that 1 ≤ j ≤ N, 1 ≤ k ≤ M, 1 ≤ t ≤
T . For each observation vector ot, we compute the posterior

probability of ot being generated by state Sj and Gaussian

component k of the UBM

γt(j, k) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

c̄jkN(ot|μ̄jk, Σ̄jk)
∑M

m=1 c̄jmN(ot|μ̄jm, Σ̄jm)
(20)

Based on these posterior probabilities, we compute the data

sufficient statistics

n(j, k) =
T∑

t=1

γt(j, k) (21)

μ(j, k) =
1

n(j, k)

T∑

t=1

γt(j, k)ot (22)

S(j, k) =
1

n(j, k)

T∑

t=1

γt(j, k)oto
T
t (23)

where n(j, k) can be interpreted as the (fractional) number

of observation vectors for which the state Sj and Gaussian

component k of the UBM are responsible. Notice that the

model sufficient statistics given by the UBM are

ñ(j, k) = T c̄jk (24)

μ̃(j, k) = μ̄jk (25)

S̃(j, k) = Σ̄jk + μ̄jkμ̄T
jk (26)

The MAP adaptation technique generates a new set of suf-

ficient statistics by interpolating the data and model sufficient

statistics, namely

n̂(j, k) = ρ(1)n(j, k) + (1− ρ(1))ñ(j, k) (27)

μ̂(j, k) = ρ(2)μ(j, k) + (1− ρ(2))μ̃(j, k) (28)

Ŝ(j, k) = ρ(3)S(j, k) + (1− ρ(3))S̃(j, k) (29)

where the interpolation coefficients, ρ(1), ρ(2), ρ(3), are smartly

adaptive to the amount of available training data according to

the following empirical formula

ρ(l) =
n(j, k)

n(j, k) + r(l)
, l = 1, 2, 3 (30)

with r(l) being a tunable constant specified by the user.

The new set of sufficient statistics is now used for re-

estimating the model parameters

ĉjk = n̂(j, k)/T (31)

μ̂jk = μ̂(j, k) (32)

Σ̂jk = Ŝ(j, k)− μ̂jkμ̂T
jk (33)

We call the above algorithm the UBM adapted Baum-Welch

(UBM-BW) algorithm, in which the re-estimation formulas

for the Gaussian mixture state emission densities are replaced

by the above MAP adaptation formulas. Note that in the

second iteration of the algorithm, the newly adapted Gaussian

mixture state emission densities will replace the UBM in the

re-estimation formulas. From then on, the estimated Gaussian

Algorithm 1 The UBM adapted Baum-Welch algorithm

1: Input: the UBM b̄j(ot), training data O = o1o2 · · · oT .

2: Initialization: Π, A.

3: Set bj(ot) = b̄j(ot), 1 ≤ j ≤ N .

4: Repeatedly perform parameter re-estimation using Equa-

tions (14), (15), and (20)-(33) until convergence.

5: Output: final parameter estimates Π, A, B.

mixture densities at a current iteration will serve as a prior

model for the next iteration. The UBM-BW algorithm is

summarized in Algorithm 1.

It is worth mentioning that in Equation (30), when the

number of observation vectors for which state Sj and Gaussian

component k are responsible is small, i.e., n(j, k) ≈ 0, ρ(l)

approaches 1/r(l). In this case, the model sufficient statistics

will dominate the new sufficient statistics, and hence the new

model parameters will remain close to those of the prior model

(e.g. the UBM). When the number of observation vectors for

which state Sj and Gaussian component k are responsible is

large, i.e., n(j, k) → ∞, ρ(l) approaches 1. In this case, the

model sufficient statistics will vanish from the interpolation

formulas, and the new sufficient statistics consist of only the

data sufficient statistics. This is exactly the case of the original

Baum-Welch algorithm.

VI. EXPERIMENTS

To demonstrate the effectiveness of our proposed methods,

we perform expression recognition from 3D dynamic faces

based on the data of 60 subjects from the BU-4DFE database.

Due to the time constraint, we choose to conduct preliminary

experiments on three most commonly seen expressions: hap-

piness, sadness, and surprise.

All the 3D face models are preprocessed and stored as depth

images of size 200×200 pixels, which are similar to the output

of consumer depth cameras. The depth dimension is scaled to

the range [0, 1]. As the lengths of the sequences are not always

the same, we choose to keep 100 frames in each sequence. The

feature vectors of sequences with lengths greater than 100 are

trimmed at both sides whilst the shorter ones are zero padded.

In the facial level curve extraction phase, the step size

between the curve levels is chosen to be 0.02 and the band size

is 0.02. This means that all the points are used and distributed

into one of 50 bands, ranging from 0 to 1 in depth. The

bands are flattened out and stored as binary images. In the

binary images, the number of points in the bands are different

and sometimes the contours are discontinuous. We did some

more morphological operations such as thinning and bridging

to correct these issues.

On these binary images, we extract the distances between

pairs of same-level curves at consecutive frames using the

Chamfer distance of curve segments partitioned by arclength

parameterized function. The number of sectors are chosen to

be 20, and we compare the curves of 30 highest levels. After

stacking up the distances, we have raw feature vectors of 600
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dimensions. After context expansion, the feature vector dimen-

sion becomes 1800. We then perform PCA and LDA on the

context expanded feature vectors. At the PCA step, we keep

100 first principal components. At the following LDA step,

because of the small number of classes, we propose a special

treatment: we divide every sequence into 5 subsequences of

20 frames each. The first subsequences of all sequences are

labeled as 1, the last ones of all are labeled as 2, and all

other subsequences are labeled based on the class labels of

their parent sequence (e.g. 1-1,1-2,1-3). With this strategy, we

expand the number of classes from 3 to 11. Using these finer

artificial classes, LDA reduces the dimension of the feature

vectors to 10. These 10D features vectors are now ready to be

used for classification.

We randomly partition the 60 subjects into 10 sets, each

containing 6 subjects. The experiment results are based on

10-fold cross validation, where at each round, 9 of the 10

folds (54 subjects) are used for training while the rest (6

subjects) are used for test. The recognition results of 10 rounds

are then average to give a statistically significant performance

measure of the algorithm. At each round, we first train a UBM,

having 5 states and 16 Gaussian mixtures, with all the data

for the 54 training subjects, regardless of the expressions.

Once the UBM is trained, we adapt the UBM to the data

for the 54 training subjects specific to the expressions, and

generate three expression-dependent HMMs, one for each of

the three expressions, namely happiness, sadness, and surprise.

The Bayesian or minimum error rate classifier based on the

adapted expression-dependent HMMs, as described in section

V, is then used for expression recognition.

The results of our preliminary experiments show that the

overall recognition accuracy is as high as 92.22%, with the

highest performance obtained for the happiness expression:

95.00%. The confusion matrix is shown in table I. Note that

our experiment results are very preliminary, as we have not

had time to explore all the design choices. Nonetheless, these

preliminary results clearly demonstrate the effectiveness of

our proposed feature extraction and classification methods for

expression recognition from 3D dynamic faces.

TABLE I: Confusion matrix.

Happy Sad Surprise

Happy 0.95 0.0333 0.0167

Sad 0.0167 0.9167 0.0667

Surprise 0 0.1 0.9

VII. CONCLUSION AND DISCUSSION

In this paper, we propose to use a facial level curves based

representation of 3D facial shapes for expression recognition

from 3D dynamic faces. We introduce a novel method for

measuring the deformation of shapes in 3D face models. This

method allows us to efficiently extract robust spatio-temporal

local features. These features, when combined with an HMM-

based decision boundary focus classification algorithm as a

result of universal background modeling and maximum a

posteriori adaptation, can yield very high performance on low

resolution depth images.

With these promising preliminary results, our future work

will be to quantitatively evaluate the robustness of the pro-

posed features to noisy data captured from low-end consumer

devices and to implement the benchmark test for the compu-

tation cost. These tasks will give us more clues to improve the

algorithms. Besides, we will explore the idea of using many

partition center points instead of a single one to assure that all

facial level curves are simple in some coordinate system. We

will investigate other distance functions such as the ones based

on shape geodesics. The algorithms can also be parallelized

and therefore are possible to be further sped up using multi-

core processors to cater the needs of large-scale applications.
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ABSTRACT

Mobile web browsing is slow. With advancement of
networking techniques, future mobile web browsing
is increasingly limited by serial CPU performance.
Researchers have proposed techniques for improving
browser CPU performance by parallelizing browser al-
gorithms and subsystems. We propose an alternative
approach where we parallelize web pages rather than
browser algorithms and subsystems. We present a pro-
totype, called Adrenaline, to perform a preliminary eval-
uation of our position. Adrenaline is a server and a web
browser for parallelizing web workloads. The Adrenaline
system parallelizes current web pages automatically and
on the fly – it maintains identical abstractions for both
end-users and web developers.

Our preliminary experience with Adrenaline is en-
couraging. We find that Adrenaline is a perfect fit for
modern browser’s plug-in architecture, requiring only
minimal changes to implement in commodity browsers.
We evaluate the performance of Adrenaline on a quad-
core ARM system for 170 popular web sites. For one ex-
periment, Adrenaline speeds up web browsing by 3.95x,
reducing the page load latency time by 14.9 seconds.
Among the 170 popular web sites we test, Adrenaline
speeds up 151 out of 170 (89%) sites, and reduces the
latency for 39 (23%) sites by two seconds or more.

1 INTRODUCTION

Web browsing on mobile devices is slow, yet recent
reports from industry show that performance is criti-
cal [11, 19]. Google and Microsoft reported that a 200ms
increase in page load latency times resulted in “strong
negative impacts”, and that delays of under 500ms sec-
onds “impact business metrics” [16].

One source of overhead for web-based applications
(web apps) is the network [18]. Engineers have attempted
to mitigate this source of overhead with increased net-
work bandwidth, prefetching, caching, content delivery
networks, and by ordering network requests carefully.

A second and increasing source of overhead for web
apps is the client CPU [6, 10]. Web browsers combine
a parser (HTML), a layout engine, and a language en-
vironment (JavaScript), where the CPU sits squarely on
the critical path [3, 7, 12]. Even though the serial per-
formance of mobile CPUs continues to increase, the
constraints on mobile device form factors and battery
power imposes fundamental limitations on further im-
provement.

Component % of CPU 4 cores 16 cores

V8 16% 1.13 1.17
X & Kernel 17% 1.14 1.19

Painting 10% 1.08 1.10
libc+Qt 25% 1.23 1.31

CSS 4% 1.03 1.04
Layout/Render 22% 1.20 1.27

Other 6% 1.05 1.06

Table 1: Breakdown of CPU time spent on web brows-
ing. The last two columns predict the ideal speed ups
with Amdahl’s law, assuming that either 4 or 16 cores
are available.

Recent work proposes exploiting parallelism to
improve browser performance on multi-core mobile
platforms [5, 15], including parallel layout algo-
rithms [3, 12], and applying task-level parallelism to the
browser [9]. These special cases, however, only speed
up web apps that make heavy use of specific features,
like cascading style sheets (CSS), or they are limited to
the tasks that the browser developers identify ahead of
time. Unfortunately, years of sequential optimizations,
the sheer size of modern browsers, and the fundamen-
tally single-threaded event-driven programming model
of modern browsers make it challenging to generalize
this approach to refactor today’s browsers into parallel
applications.

Our position is that browser developers should fo-
cus on parallelizing web pages. By taking a holistic
approach, we anticipate an architecture that can work
on a wide range of existing commodity browsers with
only a few minor changes to their implementation, rather
than a major refactoring of existing browsers or a re-
implementation of these mature and feature-rich appli-
cations.

To back up our position, we present the design for
Adrenaline, a prototype system that attempts to speed
up web apps for multi-core mobile devices, like smart
phones and tablets. Adrenaline consists of two com-
ponents, a server-side preprocessor and a client (i.e.,
browser) that renders pages concurrently on the mobile
device. The Adrenaline server decomposes existing web
pages on the fly into loosely coupled sub pages, or mini
pages. The Adrenaline browser processes mini pages in
parallel. Each mini page is a “complete” web page that
consists of HTML, JavaScript, CSS, and so on, running
in a separate process. Therefore, the Adrenaline browser
can download, parse, and render this web content in
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Adrenaline Server
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Aggregated Display
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DOM Synchronization

Adrenaline Browser Internet
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Figure 1: Workflow of Adrenaline when accessing wikipedia.org. In this figure, each of the numbers, 1-4, show the
four mini pages Adrenaline uses for this web page. The Adrenaline server acts as a proxy between the Adrenaline
browser and the Internet. It fetches the web page, optimizes and decomposes it into mini pages, then sends them
back to the Adrenaline browser. The Adrenaline browser downloads and renders mini pages in parallel using multiple
processes. To preserve the proper visual and programmatic semantics, the Adrenaline browser aggregates the displays
for all mini pages, forwards DOM and UI events between mini pages, and synchronizes DOM interactions. Solid lines
between the Adrenaline browser and the Adrenaline server show the mappings of mini pages.

parallel while still using a single-threaded and mature
browser on the client.

2 WHY ADRENALINE?
To support our position, we present the performance
characteristics of web browsing workloads to estimate
potential performance improvements from parallelizing
web browser subsystems.

We picked 170 web pages from the 250 most popular
web sites according to Alexa [1], and mirrored them on
our local network. We ran a QtWebkit-based browser and
loaded each web page 20 times on a quad-core, 400 MHz
ARM Cortex-A9 platform (refer to Section 6 for detailed
set up), and instrumented its execution with OProfile [14]
to derive the time spent on different components in the
browser.

Table 1 categorizes the CPU time spent on web
browsing into six components: (1) the V8 JavaScript en-
gine [8] (V8), (2) The Linux kernel and X server (X &
Kernel), (3) Qt Painting and rendering (Painting), (4) libc
and other components in Qt (libc+qt), (5) CSS Selection
(CSS), (5) WebKit layout and rendering (Layout/Ren-
der), (6) everything else (Other). Table 1 also shows the
ideal speed-ups based on Amdahl’s law when the plat-
form has 4 or 16 cores, assuming each component can be
parallelized completely.

Table 1 shows two findings: (i) no single component
dominates the execution time, and (ii) potential gains
from component-level task parallelism are moderate (up
to 1.31x speed-ups for 16 cores).

These results suggest that browser developers should

look at system-level ways to exploit parallelism in web
browsing – parallelizing a single component results in
limited speed-ups. For example, Meyerovich et al. re-
ported a 80x speed up for their parallel layout algo-
rithm [12], yet when other researchers implemented a
similar scheme in Firefox their results showed a more
modest speed up (1.6x), even on a layout-dominated
web site [3]. It is challenging to estimate the overall
speedup from parallelizing each component, in partic-
ular, because redesigning a component for task-level
parallelism provides benefits beyond the exploiting the
concurrency of the algorithm: the component becomes
thread-safe, and therefore its execution may overlap with
other components. The overlap is bounded by the web
specifications and page structure, thus providing addi-
tional evidence that web page decomposition is required
to achieve the full potential of browser parallelization.

3 THE ADRENALINE ARCHITECTURE

This section describes the overall Adrenaline architec-
ture. Figure 1 shows the workflow when a user accesses
wikipedia.org with the Adrenaline browser. First, the
browser issues a request to the Adrenaline server. Sec-
ond, the Adrenaline server fetches the contents of the
web page, optimizes and decomposes it into mini pages.
Third, the browser downloads, parses, and renders each
of these mini pages in separate processes running in par-
allel. The browser is responsible for properly aggregating
content into a single display, synchronizing global data
structures, and propagating DOM and UI events to main-
tain correct web semantics. In this figure, the server de-
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composes the wikipedia.org page into four mini pages
and the browser runs four processes in parallel to render
the page.

This architecture offers four unique advantages com-
pared to other techniques for parallelizing web browsers.
First, Adrenaline is a data parallel system. It parallelizes
web pages, rather than specific components in web
browsers. Conceptually all components in a web browser
can now be executed in parallel. Second, decomposition
reduces the total amount of work from some tasks, par-
ticularly layout and rendering because of smaller work-
ing sets for each mini page. Third, careful decomposi-
tion could potentially remove serialization bottlenecks.
Specifically, Adrenaline isolates JavaScript into a sin-
gle mini page to allow tasks such as layout and ren-
dering in other mini pages to run concurrently. Fourth,
pre-processing the pages on the Adrenaline server cre-
ates opportunities to shift computation from the client to
the server.

This architecture does also introduce two sources of
overhead that the Adrenaline system must overcome.
Fundamentally, the architecture places a proxy in be-
tween the Adrenaline browser and the Web. This ad-
ditional component will add latency for individual net-
work connections when compared to connecting to web
sites directly. In addition, this architecture uses more re-
sources on the mobile device through its use of multiple
processes. Despite these inherent sources of overhead,
the Adrenaline browser speeds up the overwhelming ma-
jority of sites we tested, as we demonstrate in Section 6.

4 DESIGN CHALLENGES

Designing the Adrenaline system presents three key
challenges. First, Adrenaline has to generate web apps
that look the same from the user’s perspective. Second,
Adrenaline has to ensure that the semantics of web apps
remains the same, from the web developer’s perspective.
Third, Adrenaline has to minimize the overhead induced
by this multi-process architecture.

In this section, we discuss our techniques for main-
taining visual compatibility, JavaScript and DOM com-
patibility, and techniques to reduce synchronization over-
head. In Section 5, we describe our server-side algorithm
for decomposing web pages.

4.1 Visual compatibility
The Adrenaline browser is designed to be visually com-
patible with traditional mobile browsers, and to maintain
identical side effects when the user interacts with a page.
In the Adrenaline browser, a main page is responsible for
this compatibility.

The main page assembles other mini pages in its dis-
play, and captures all external UI events. It is also re-
sponsible for rerouting events to mini pages. Figure 2

Main Page 
Mini Page 

linkClickHandler() { 
    // process event 
} 

Mouse 
Event 

DOM onclick 

Aggregate display 

Figure 2: Event routing. This figure shows how
Adrenaline handles a mouse click on a link. All data is
forwarded through Adrenaline’s inter-process communi-
cation (IPC) channels.

Foo = getElementById(’Bar ’);

getElementById(id) {
foreach(m in minipages)

if(m->contains(id)) { // Merge
n = createNode(fetchDOM ());
m->parent ->replaceChild(n, m);

}
· · ·

}
<div>

<p> <p id="Bar"> · · · <p> <p id="Bar">

(1)

(2)
(3)

(4)

(5)

Figure 3: Merging a mini page. During merging,
Adrenaline (1) issues a request to the remote mini page
that (2) reads, (3) serializes, and (4) returns the results
back to the main page. Then (5) the main page inserts
the remote DOM into its own DOM before terminating
the remote mini page.

shows an example of Adrenaline’s event routing mecha-
nisms. Consider the case where a user clicks on a link in a
mini page. First, the main page routes the mouse event to
the corresponding mini page based on the location of the
mouse pointer. After the mini page processes the mouse
event and determines that the click was on a link, the
mini page wraps it into a onclick DOM event, like a
traditional browser would. Then, the mini page forwards
the DOM event to the main page where the JavaScript
event handler runs.

4.2 JavaScript and DOM compatibility
Adrenaline has to preserve the semantics of JavaScript
in order to run legacy web apps correctly. The problem
becomes challenging if JavaScript is distributed across
multiple mini pages. Therefore, the current implementa-
tion of Adrenaline chooses to put all JavaScript into one
process (i.e., the main page) as a solution.

When JavaScript code accesses remote DOM states,
it merges mini pages into the main page on demand.
A common example is that the JavaScript code calls
getElementById() to get a reference for a DOM ele-
ment. In Figure 3, the first line of JavaScript runs in the
main page and gets a reference to the element Bar. The
Adrenaline browser runs this code, and once it finds out
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that the element Bar resides in a remote mini page, it
asks the remote mini page to serialize its entire DOM
and to send it back to the main page. The main page then
inserts the remote mini page’s DOM into its own DOM
and terminates the remote mini page. After the main page
merges a mini page, it can access the DOM states locally
that used to reside in the mini page, and JavaScript exe-
cution can proceed.

Although Adrenaline runs all JavaScript in a single
mini page, this architecture still has significant benefits
for web pages where the JavaScript code accesses only
a subset of the DOM. For these types of web pages the
Adrenaline browser can process the DOM elements not
accessed by JavaScript in separate mini pages, in paral-
lel, without blocking on JavaScript execution like a tra-
ditional browser would.

The architecture of Adrenaline could introduce
races when rendering web pages, but the Adrenaline
browser handles these cases correctly. When traditional
web browsers encounter JavaScript code, they exe-
cute the code with the current state of the DOM. In
the Adrenaline browser each mini page builds up its
own DOM structure in parallel, so when JavaScript
code executes, the Adrenaline browser has to ensure
that JavaScript accesses the correct DOM state. The
Adrenaline browser inspects the program counter and
call stack to ensure correctness. We omit the details here.

4.3 Minimizing synchronization overhead
JavaScript code calls getElementById() to get a ref-
erence for a specific DOM element, thus calls to
getElementById() must check against each mini page
for the requested element. The Adrenaline server com-
putes a Bloom filter [4] for all elements in each mini
page, and sends the filters along with the main page.
The main page only sends inter-process requests to mini
pages that can possibly contain the element (whose cor-
responding Bloom filters will have positive results), thus
saving inter-process communication.

This is a safe optimization because a Bloom filter can
only have false positives but not false negatives, meaning
that an element is absent in the set if the testing result of
Bloom filter is negative.

5 THE ADRENALINE SERVER

From a high level, the Adrenaline server renders the web
page, and extracts information about the rendered web
page (e.g., element sizes, bounding boxes, and where el-
ements are located visually on the page). It uses this in-
formation as inputs to a heuristic algorithm to decompose
the page into mini pages. After the Adrenaline browser
loads the page, it provides feedback to the server, such as
any unanticipated DOM merges, to help the server adjust
future decomposition of the same page.

In general, the algorithm tries to balance three main
constraints. First, Adrenaline tries to keep JavaScript
code and the DOM elements that the JavaScript code ac-
cesses in the same mini page to avoid merge operations.
Second, Adrenaline uses only a continuous segment of
the original DOM in mini pages to help simplify the im-
plementation of merging. Third, Adrenaline ensures that
mini pages occupy non-overlapping visual blocks (rect-
angles) to simplify mini page display and event handling.

In addition to decomposing pages, the Adrenaline
server also optimizes mini pages and sends extra in-
formation to the browser. For example, the Adrenaline
server customizes CSS rules for each individual mini
page, and provides the Adrenaline browser with hints
about resources that the page includes to enable pre-
fetching.

Due to space limitations, we omit the full details of
the Adrenaline decomposition algorithm and the full de-
tails of the server-side optimizations we perform on mini
pages.

6 EXPERIENCE WITH ADRENALINE

We implemented the Adrenaline server as a HTTP proxy
that fetches web pages and decomposes them on the
fly automatically. This architecture mirrors closely the
server-side architecture for other mobile browsers, like
Opera mini, Skyfire, and Amazon Silk [2, 13, 17].

The Adrenaline browser uses the WebKit rendering
engine and the V8 JavaScript engine. We use the Qt
Toolkit to implement the platform specific portions of the
browser. Mini pages are implemented as browser plugins
in Adrenaline to reuse existing mechanisms to maintain
visual compatibility. Our changes were rather minimal,
and we believe that the same techniques are applicable
to commodity browsers.

To test the performance of our prototype and to test
the efficacy of the basic Adrenaline approach, we ran
the Adrenaline browser on a CoreTile Express A9x4
ARM development board. The board has a quad-core
Cortex-A9 CPU running at 400MHz and 768MB of
DDR2 RAM. We tested Adrenaline on 170 of the most
popular web sites (according to Alexa), and we com-
pared against an unmodified version of a WebKit-based
browser (which is called QtBrowser in later sections). To
isolate the effects our our algorithms we mirror the web
pages on our local network and connect to the server via
a FastEthernet connection.

Our preliminary experience with Adrenaline is en-
couraging. Overall, Adrenaline reduces the page load la-
tency by 1.75s on average, where industry considers a
0.5 second latency reduction as meaningful [11, 16, 19].
Adrenaline improves the page load latency time by 1.54x
on average across the entire workload. For one exper-
iment, Adrenaline speeds up web browsing by 3.95x,
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reducing the page load latency time by 14.9 seconds.
Among the 170 popular web sites we tested, Adrenaline
speeds up 151 out of 170 (89%) sites, and reduces the
latency for 39 (23%) sites by two seconds or more.

7 CASE STUDY: WIKIPEDIA

This section describes a case study for the perfor-
mance characterization of the Wikipedia entry for the
Nokia page. We instrument the execution of both the
Adrenaline browser and the QtBrowser with OProfile to
collect run-time statistics.

Figure 4 describes the high-level performance char-
acteristics of this case. Adrenaline reduces the page load-
ing time by 11.7 seconds.

The case study contains a timeline graph and a work-
load graph. The timeline graph plots the total page load-
ing time for QtBrowser and for Adrenaline. The top-most
bar represents the total page load latency for QtBrowser.
The shaded bars below represent the page load latency
of the Adrenaline main page and mini pages. Thus, the
total page load latency for the Adrenaline browser is de-
termined by the shaded bar that completes last. For com-
parison, we load each mini page individually with Qt-
Browser and report its execution time with the corre-
sponding white bar.

The workload graph classifies the workload of the
two browsers into six disjoint categories: (1) the V8
JavaScript engine (V8), (2) The Linux kernel (Kernel),
(3) Qt Painting and rendering (Painting), (4) CSS Se-
lection (CSS), (5) WebKit sans CSS Selection (WK w/o
CSS), and (6) libc and other components in Qt (libc+Qt).
These six categories consume most of the CPU time. The
execution time of each of these six components is nor-
malized with respect to the total time spent by the Qt-
Browser to load the original page. For comparison, the
workload graph stacks the execution of all Adrenaline
processes into one bar even though their execution over-
laps in the system.

The timeline graph in Figure 4 shows that the
Adrenaline server decomposes the page into three pages,
and the Adrenaline browser is able to render them in par-
allel. This page is large enough for Adrenaline to harvest
a sufficient amount of independent work for each mini
page.

Parallelism by itself, however, does not fully explain
why Adrenaline is so much faster than QtBrowser. The
workload graph shows that there is almost a 3x reduction
for both CSS and WK without CSS. For CSS, the decom-
position brings in two benefits: (1) the Adrenaline server
speeds up CSS for Mini Page 1 and 2 through inlining
CSS rules. (2) CSS selection runs on fewer elements in
the main page (30% of the original page), reducing the
total amount of work.

Case I: http://en.wikipedia.org/wiki/Nokia
Latency: QtBrowser: 16.7s, Adrenaline: 4.99s
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Figure 4: Performance analysis for http:
//en.wikipedia.org/wiki/Nokia.

For WK without CSS, analysis reveals that the execu-
tion time reduction can be attributed to layout and render-
ing primarily. The decomposition enables the main page
to treat both Mini Page 1 and Mini Page 2 as “black-
boxes” during layout and rendering. The main page is
no longer responsible for rendering elements inside mini
pages, as the mini pages running are responsible for ren-
dering them, which happens in parallel. For layout, the
main page has fewer elements to layout, since it only
needs to layout the remaining elements plus the contain-
ers of mini pages. Relayout, which the browser could
trigger during loading in response to various events, is
also simplified for the same reason: the rendering of in-
dividual elements in mini pages is deferred to the mini
pages themselves and happens in parallel.

8 SUMMARY AND FUTURE WORK

In this paper, we advocated that browser develop-
ers should think about parallelizing web pages, rather
than individual components of web browsers. Based on
our initial experience with Adrenaline, we believe that
Adrenaline can improve significantly the performance of
web browsing on mobile devices.
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We plan to further investigate the performance of
Adrenaline under more realistic network conditions and
hardware configurations. In addition, we plan to explore
more heuristics on page decomposition, as well as pro-
viding APIs for web developers to express page-level
parallelism. Finally, we plan to apply Adrenaline to a
larger set of web sites to evaluate our techniques more
comprehensively.
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ABSTRACT
Parallel programming is hard. The industry leaders hope to
convert the hard problem of using parallelism into the easier
problem of using a parallel library. Yet, we know little about
how programmers adopt these libraries in practice. Without
such knowledge, other programmers cannot educate them-
selves about the state of the practice, library designers are
unaware of API misusage, researchers make wrong assump-
tions, and tool vendors do not support common usage of
library constructs.

We present the first study that analyzes the usage of par-
allel libraries in a large scale experiment. We analyzed 655
open-source applications that adopted Microsoft’s new par-
allel libraries – Task Parallel Library (TPL) and Parallel
Language Integrated Query (PLINQ) – comprising 17.6M
lines of code written in C#. These applications are devel-
oped by 1609 programmers. Using this data, we answer 8 re-
search questions and we uncover some interesting facts. For
example, (i) for two of the fundamental parallel constructs,
in at least 10% of the cases developers misuse them so that
the code runs sequentially instead of concurrently, (ii) devel-
opers make their parallel code unnecessarily complex, (iii)
applications of different size have different adoption trends.
The library designers confirmed that our findings are useful
and will influence the future development of the libraries.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Object-
oriented constructs

General Terms
Measurement, Experimentation
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Multi-core; empirical study; parallel libraries; C#.
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1. INTRODUCTION
The computing hardware industry has resorted to multi-

core CPUs in order to keep up with the previous prediction
of Moore’s law. While the number of transistors will keep
doubling, the multicore revolution puts pressure on software
developers to use parallelism if they want to benefit from fu-
ture hardware improvements. At the time, this seemed like
a huge gamble: will software developers embrace parallelism
in their applications? A few years after the irreversible con-
version to multicore, we can finally answer such questions.

Parallel programming is hard. In the desktop comput-
ing, the dominant paradigm is thread-based parallelism on
shared-memory systems. Under this paradigm, parallel pro-
gramming is regarded as the art to balance conflicting forces:
making code thread-safe requires protecting accesses to shared
variables through synchronization, but this in turn reduces
the scalability of parallel applications. Parallelism can also
obfuscate the intent of the original sequential code [6]. De-
spite books on parallel programming and API documenta-
tion of parallel constructs [2, 10, 14–17], parallel program-
ming education is lagging behind. Developers miss exam-
ples [32] of successful applications that use parallelism.

The industry leaders hope to convert the hard problem of
using parallelism into the easier problem of using a parallel
library. Microsoft provides Task Parallel Library (TPL) [15],
Parallel Language Integrated Query (PLINQ) [23], Collec-
tions.Concurrent (CC) [3] and Threading [33] for .NET lan-
guages (e.g., C#). Java developers uses java.util.concurrent
package. Intel provides Threading Building Blocks (TBB) [34]
for C++. Despite syntactic differences, these libraries pro-
vide similar features such as scalable concurrent collections
(e.g., ConcurrentDictionary), high-level parallel constructs
(e.g., Parallel.For), and lightweight tasks. Their runtime
systems also provides automatic load balancing [37]. De-
spite the recent surge in the number of these libraries, we
know little about how practitioners adopt these libraries in
practice.

We present the first empirical study that answers ques-
tions about parallel library usage in-depth and on a large
scale. We analyzed 655 open-source applications that adopted
Microsoft’s new TPL and PLINQ libraries. In this corpus,
we studied the usage of all four .NET parallel libraries (both
old and new). These applications are hosted on Github [8]
and Microsoft’s CodePlex [4], and they comprise 17.6M non-
blank, non-comment lines of code written in C# by 1609 pro-
grammers. We implemented a semantic analysis that uses
type information to collect precise statistics about parallel
constructs.



Using this data, we are able to answer several questions.
Q1: Are developers embracing multi-threading? Our data

shows that 37% of all open-source C# applications in the
most active code repositories use multi-threading. Out of
these applications, 74% use multi-threading for concurrency
and 39% use it for parallelism.

Q2: How quickly do developers start using the new TPL
& PLINQ libraries? TPL and PLINQ have been released
nearly 2 years ago (in April 2010). However, we found sig-
nificant differences between the times when developers start
using these libraries. We found that applications of different
size have a different adoption tipping point. We also found
that more applications are becoming parallel, and existing
parallel applications are becoming more parallel.

Q3: Which parallel constructs do developers use most
often? 10% of the API methods account for 90% of the li-
brary usage, thus newcomers can focus on learning a smaller
subset of the parallel libraries.

Q4: How do developers protect accesses to shared vari-
ables? Locks are still the most used synchronization con-
struct, but developers use a wide variety of alternatives.

Q5: Which parallel patterns do developers embrace? Out
of the six widely-used parallel patterns that we analyzed,
loop parallelism is the most common.

Q6: Which advanced features do developers use? We
found that developers rarely use optional parameters such
as customized task schedulers, aggregate exception handling,
controlling the level of parallelism, etc.

Q7: Do developers make their parallel code unnecessar-
ily complex? We found that developers sometimes use more
powerful task constructs instead of the equivalent but sim-
pler task constructs, even though they never use the extra
power. Thus they make their code less readable and more
verbose than it needs to be.

Q8: Are there constructs that developers commonly mis-
use? We found that for two of the fundamental parallel
constructs, in at least 10% of the cases developers misuse
them: the code runs sequentially instead of concurrently.

Our study has several practical implications. First, it is
a tremendous resource for educating developers. The most
common way to learn a new library is to study relevant
examples of the API. Newcomers can start learning the APIs
that are most widely used (see Q1 and Q3), and we can
point them to the kinds of applications that are most likely
to use the libraries (Q2). Newcomers should avoid common
misuses (Q8) and constructs that unnecessarily increase the
code complexity and the likelihood of errors (Q7). Our study
also educates developers by showing real-world examples of
parallel patterns (Q5).

Second, designers of these libraries can learn how to make
the APIs easier to use (Q6). They can learn from observing
which constructs do programmers embrace (Q3), and which
ones are tedious to use or error-prone (Q8).

Third, researchers and tool vendors can focus their efforts
on the constructs that are commonly used (Q3) or tedious
or error-prone to use (Q8). For example, the refactoring
community can decide which refactorings to automate. The
testing and verification community can study the synchro-
nization idioms that programmers use (Q4).

This paper makes the following contributions:

• To the best of our knowledge, this is the first empirical
study to answer questions about parallel library usage
on a large-scale, using semantic analysis.

• We present implications of our findings from the per-
spective of three different audiences: developers, li-
brary designers, and researchers.

• The tools and data are publicly available, as a tremen-
dous education resource: http://LearnParallelism.NET

2. BACKGROUND

2.1 Parallel programming in .NET
We first give a brief introduction to parallel program-

ming in .NET framework. The earlier versions provide the
Threading library which contains many low-level constructs
for building concurrent applications. Thread is the primary
construct for encapsulating concurrent computation, and
ThreadPool allows one to reuse threads. Synchronization con-
structs include three types: locks, signals, and non-blocking.

.NET 4.0 was enhanced with higher-level constructs. The
new TPL library enables programmers to introduce task par-
allelism in their applications. Parallel, Task, and TaskFac-

tory classes are the most important constructs in TPL.
Task is a lightweight thread-like entity that encapsulates

an asynchronous operation. Using tasks instead of threads
has many benefits [15] - not only are tasks more efficient,
they also abstract away from the underlying hardware and
the OS specific thread scheduler. Task<> is a generic class
where the associated action returns a result; it essentially
encapsulates the concept of a “Future” computation. Task-

Factory creates and schedules tasks. Here is a fork/join task
example from the passwordgenerator [28] application:

for (uint i = 0; i < tasks.Length; i++)
tasks[i] = tf.StartNew (() => GeneratePassword(

length , forceNumbers , ...), _cancellation.Token
);

try{ Task.WaitAll(tasks , _cancellation.Token); } ...

The code creates and spawns several tasks stored in an ar-
ray of tasks (the fork step), and then waits for all tasks to
complete (the join step).

Parallel class supports parallel loops with For and ForEach

methods, and structured fork-join tasks with Invoke method.
The most basic parallel loop requires invoking Parallel.For

with three arguments. Here is a usage example from the
ravendb [30] application:

Parallel.For(0, 10, counter => {... ProcessTask(
counter , database , table)} )

The first two arguments specify the iteration domain, and
the third argument is a C# lambda function called for each
iteration. TPL also provides more advanced variations of
Parallel.For, useful in map/reduce computations.

.NET also provides the CC library, which supports sev-
eral thread-safe, scalable collections such as ConcurrentDic-

tionary.
.NET 4.0 provides a fourth parallel library, the Paral-

lel Language-Integrated Query (PLINQ) library, which sup-
ports a declarative programming style. PLINQ queries op-
erate on IEnumarable objects by calling AsParallel(). Here
is an example from the AppVisum [24] application:

assembly.GetTypes ().AsParallel ()
.Where(t => t.IsSubclassOf(typeof(ControllerBase)))
.Select(t => new ...)
.ForAll(t => controllersCache.Add(t.Name , t.Type));

After the AsParallel, the data is partitioned to worker
threads, and each worker thread executes in parallel the fol-
lowing Where, Select, and ForAll.



Figure 1: Number of applications that use Thread-
ing, TPL, PLINQ or CC libraries.
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2.2 Roslyn

The Microsoft Visual Studio team has recently released
Roslyn [31], as a community technology preview, with the
goal to expose the compiler-as-a-service through APIs to
other tools like code generation, analysis, and refactoring.
Roslyn has components such as Syntax, Symbol Table, and
Binding and Flow Analysis APIs.

The Syntax API allows one to parse the structure of a
program. While a C# file can be syntactically analyzed in
isolation, we cannot ask questions such as ”what is the type
of this variable”. The type may be dependent on assembly
references, namespace imports, or other code files. To fur-
ther improve the analysis, we use the Symbol and Binding
APIs to get semantic information such as type information,
compiler options (e.g., targeting .NET 4.0). We used Syn-
tax, Symbol and Binding APIs to parse our corpus data and
statically analyze the usage of concurrent constructs.

3. METHODOLOGY
In this section we briefly describe the set of applications,

the experimental setup, and the analysis infrastructure.

3.1 Corpus of Data
We analyze all open-source C# applications from two

repositories, CodePlex [4] and Github [8]. We chose these
two repositories because according to a recent study [19],
most C# applications reside in these two repositories. Code-
plex is Microsoft’s code repository, and Github is now the
most popular open source software repository, surpassing
Google Code and SourceForge.

From these repositories, we want to filter those applica-
tions that use TPL, PLINQ, CC, and Threading libraries.
For this, we implemented a tool, Collector. Next we ex-
plain how Collector works.

Collector downloaded all C# applications that contain
at least one commit after April 2010, the release date of TPL
and PLINQ. In the Git community, developers often fork an
application and start making changes in their own copies.
Sometimes, the main application might merge changes from
the forked applications, but many times the forked applica-
tions start evolving independently. Collector ignores all
forked applications. It also ignores the “toy applications”,
i.e., the ones that have less than 1000 non-comment, non-
blank lines of code (SLOC). We discard such applications
because many are just experimentally written by develop-
ers who learn a new construct, and they do not represent
realistic usage of production code.

After eliminating applications that do not compile due to
the missing libraries, incorrect configurations, etc, we had
7778 applications targetting .NET 4.0. From these, we want
to select the applications that truly use the parallel libraries.
For example, 648 applications imported the TPL library, but
only 562 actually invoke functions from the TPL libraries.
Thus, Collector removed the applications that import but
never invoke any parallel library construct. Table 1 shows
2855 applications that truly use the parallel libraries.

Figure 1 shows that some applications use only one library,
while other applications use these four libraries together.
The TPL or PLINQ applications that also use Threading
does not imply that these applications use threads. Thread-
ing library also provides synchronization constructs, and
they are used in conjunct with TPL and PLINQ. The 2200
applications that only use the Threading library use multi-
threading with explicit threads and thread pools. We ex-
cluded applications that use the Threading library to only
insert delays and timers.

In the rest of the paper, we will focus on the applications
that adopted the new parallel libraries, TPL and PLINQ. In
this corpus, we also study the usage of Threading and CC.
After all the filters, Collector retained 655 applications
(shown within the gray area inside Fig. 1), comprising 17.6M
SLOC, produced by 1609 developers. The only exception is
our research question Q1 (the adoption of multi-threading),
where we take into account all applications in Fig. 1.

We analyze all these 655 applications, without sampling,
and these applications are from the most widely used C#
repositories. This makes our findings representative.

3.2 Analysis Infrastructure
We implemented another tool, Analyzer, that performs

the static analysis and gathers statistical usage data. We run
Analyzer over each application from our corpus data. For
each of these applications, Analyzer inspects the version
from the main development trunk as of Jan 31st, 2012. The
only exception is Q2 (the trends in adoption), where we
analyze monthly code snapshots.

We implemented a specific analysis for each question using
Roslyn’s API. Since two projects in an application can share
the same source file, Analyzer ensures that each source
file is counted only once. Also, a .NET project can import
system libraries in source format, so Analyzer ignores any
classes that reside in the System namespace. This ensures
that we are not studying the usage patterns in Microsoft’s
library code, but we study the usage only in the applications’
code. When we discuss each empirical question, we present
the static analysis that we used in order to collect the results.

4. RESULTS
Q1: Are developers embracing multi-threading?

As seen in Table 1, 37% of the 7778 applications use at
least one of the four parallel libraries, which means they use
some form of multi-threading. When we take into account
only the category of large projects, 87% use multi-threading.

Why do programmers use multi-threading? Sometimes,
multi-threaded code is a functional requirement. For ex-
ample, an operating system with a graphical user interface
must support concurrency in order to display more than one
window at a time. Sometimes it is more convenient to write
multi-threaded code even when it runs on a uniprocessor ma-
chine. For example, online transaction processing, reactive,



Table 1: Corpus Data
Type Small (1K-10K) Medium (10K-100K) Large (>100K) Total

# Applications compilable and targetting .NET 4.0 6020 1553 205 7778
# Multi-threaded Applications 1761 916 178 2855
# Applications adopted new libraries (TPL, PLINQ) 412 203 40 655

event-driven code is easier to express with threads. In such
scenarios developers use multi-threading for concurrency.

However, other times developers use multi-threading to
improve a non-functional requirement such as performance.
For this, they use multiple threads that run on multicore
machine, thus they use multi-threading for parallelism.

Out of the applications that use multi-threading, 74%
use it for concurrency and 39% use it for parallelism. Fig-
ure 2 shows the distribution. Some applications using multi-
threading for both concurrency and parallelism

Next we manually analyzed the top 50 applications that
highly use parallelism. We aim to find the killer applications
for parallelism. We list their domain and how many applica-
tions we found from each domain: developer tools (7), data
mining (7), multimedia (6), graphics (6), games (5), cloud
computing (5), finance (3), database (3), networking (3),
social media (2), office productivity (2), web server (1).

Program Analysis: To find whether an application uses
multi-threading for concurrency or for parallelism, Ana-
lyzer first tabulates the usage of the multi-threading con-
structs (e.g., Thread, Task, Parallel.For, etc.) from each
library in each application. Some constructs are clearly
intended for concurrency (e.g., FromAsync, TaskCompletion-

Source, UI event dispatching thread) or for parallelism (e.g.,
Parallel.For, all PLINQ constructs). Other constructs (e.g.,
Thread, Task) can be used for either concurrency or paral-
lelism. A typical usage scenario is to spawn threads in the
iterations of a for loop. If the main thread waits for the
child threads to finish, it means that the intent of the pro-
grammer is to have the threads execute at the same time,
thus it is an example of parallelism. If the main thread does
not wait for the child threads, it means that the intent is
to have the threads be in progress, which is an example of
concurrency. Thus, Analyzer checks whether the spawned
constructs are waited or joined in the calling context.

Figure 2: Concurrency vs. Parallelism
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Many applications have embraced multi-threading,
however many of them use it for concurrency

rather than parallelism.

Q2: How quickly do developers start using the new
TPL & PLINQ libraries?

In the rest of the paper we move away from the applica-
tions that only use the Threading library and will focus on
the 655 applications that adopted the new libraries (in the
gray area in Fig. 1). Microsoft released the new libraries
along with .NET 4.0 in April 2010. We want to find out
how long it takes for developers to start using such libraries.

To analyze such adoption trends, from the set of 655 appli-
cations that eventually use TPL/PLINQ we select the subset
of applications that exist in the repository as of April 2010.
This subset comprises of 54 applications. If we had ana-
lyzed all TPL/PLINQ applications, regardless of their start-
ing date, then as time goes by, we would see an increased
number of constructs due to adding more applications.

For each of these 54 applications, we analyze monthly
snapshots. In total, we analyze 31.9MLOC, comprising 694
different versions.

Figure 3 shows the number of applications that use at least
one construct in each month. We split the 54 applications
according to the size of their source code (small, medium,
large). This prevents the trends in the small applications
to obscure the trends in the larger applications (notice the
different vertical scale in Fig 3). The results show that more
applications are using the libraries as time goes by.

Figure 4 shows the average number of constructs per appli-
cation. Here is an example of how we compute this number
for the month of June 2010 for small applications. There
are 24 constructs and 9 applications that use TPL at this
time, so the average usage per application is 24/9 = 2.6. In
April 2010 the average usage for small and medium applica-
tions is not zero because these applications were using the
“developer preview release” of the libraries.

Looking at both Fig. 3 and 4, we can notice a very different
adoption rate among the three sizes of applications. If we
look for the “tipping point” [9], i.e., the point in time when
there is a major increase in the adoption rate (noticeable by
a steep gradient of the slope), we can notice very different
trends. The small applications are the early adopters of new
libraries (2-3 months after the release), medium applications
adopt around 4-5 months, and large applications are late
adopters (8-9 months after the release).

Figures 3 and 4 show complementary data: the former
shows that more applications are becoming parallel, whereas
the latter shows that each application is becoming more par-
allel, i.e., it uses more parallel constructs.

Figure 5 shows the average number of Threading con-
structs per application does not decrease over time. This
makes sense because most of the synchronization constructs
are in the Threading library. Also, one can notice that
compared with the TPL/PLINQ average density, Thread-
ing density is higher; this makes sense because the latter
library has lower-level constructs.

Program Analysis: To find whether an application ex-
ists in April 2010, Collector looks at the creation date
of each application, as listed in Github or Codeplex. After
determining the set of 54 applications, our script checks out
the source code snapshot for each month from April 2010 to
February 2012. Then, for each snapshot, Analyzer collects
usage details of TPL/PLINQ libraries. In the next question
(Q3) we provide more information on how Analyzer col-
lects usage details for one single snapshot.
�

�

�

�

Applications of different size adopt the new
parallel libraries differently.



Figure 3: Number of (a) small-, (b) medium-, (c) large-size applications that use TPL/PLINQ
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Figure 4: Average number of TPL/PLINQ constructs per application for (a) small-, (b) medium-, (c) large-
size applications.
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Q3: Which parallel constructs do developers use
most often?

Table 2 tabulates the constructs that developers used most
often from the TPL, Threading, PLINQ, and CC libraries.
For example, lets drill down inside the TPL library and see
the usage of class Task. Its methods account for 23% of
all method call sites for the TPL library. One particular
method, Start, has 243 call sites in 92 different applications.
These call sites account for 18% of all call sites for methods
from Task class.

Among these 4 libraries, they define 138 classes containing
1651 methods (counting constructors and overloaded meth-
ods). In table 2 we show combined usage for overloaded
methods (e.g., we combine all 17 overloaded StartNew meth-
ods into one single method). Analyzer collects usage de-
tails for each of these methods. Due to the space limitations,
we only tabulate the most used classes and methods for each
library. The companion website [36] presents a complete
fine-grained view.

The data shows that among the 1651 methods, some meth-
ods are used much more frequently than othes. For example,
10% of the methods are used 90% of the times. 1114 meth-
ods are never used. While similar trends are expected for
any rich library APIs, it is important that we find the widely
used APIs so that developers can focus on these.

We now discuss some of the findings for each library.
TPL: As shown in Table 2, Parallel, Task, and TaskFac-

tory are the TPL classes most commonly used. When it
comes to creating tasks, developers prefer to use the factory
method TaskFactory.StartNew rather than invoking the task
constructor. Task<> (i.e., the “Future” construct) is used
nearly half as many times as Task.

Threading: WaitHandle is an abstract class for synchro-
nization primitives, e.g., semaphore, mutex, so it is the sec-
ond most popular class after Thread, the main class of the
library.

Concurrent Collection: ConcurrentDictionary, a thread-
safe implementation of HashMap is the most widely used.

Program Analysis: To accurately detect usage of a par-
ticular method, Analyzer needs type and binding informa-
tion. Analyzer needs to know not only the name of the
method, but also the type of the receiver object and the

type of the arguments, and where does a method bind. This
lets the analysis differentiate between t.start() when t is
an instance of Thread, and the cases when t is an instance of
a business class defined by the application. Because Ana-
lyzer uses the Symbol and Binding services of Roslyn, our
reported usage numbers are 100% precise. Other empirical
studies of library usage [1,11,35] have only used syntactical
analysis, which can limit the accuracy of the results.�
�

�
�

Parallel library usage follows a power-law
distribution: 10% of the API methods account for

90% of the total usage.

Q4: How do developers protect accesses to shared
variables?

Table 3 shows the type of synchronization, the name of the
library constructs, how many times each construct was em-
ployed, and what is the usage frequency in comparison with
other constructs within the same type of synchronization.
Table 3 list all five kinds of synchronization constructs. lock

and volatile accesses are language features, Task.Wait is a
method of TPL, implicit synchronization constructs are from
CC, and the rest of all is from Threading. To compute the
number of implicit synchronization constructs, we sum the
number of call sites for each API method that has implicit
synchronization in its implementation. Notice that lock is
by far the most dominant construct followed by Volatile

accesses.
Program Analysis: To count one usage of a lock, An-

alyzer tries to match a pair of lock acquire and release
operations. When one of the acquire or release operations
is used more often than the other, we take the minimum
number of these operations. Similarly, a pair of signal and
wait operations count as one occurrence.

Finding accesses to volatile variables takes most of the
analysis running time. Using the binding information, An-
alyzer looks up the definition of each accessed variable and
field and checks whether it is volatile variable or field.�
�

�
�

While locks are still very popular, developers use a
wide variety of other synchronization constructs.



Figure 5: Average number of Threading constructs per application for (a) small-, (b) medium-, (c) large-size
applications.
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Figure 6: Distribution of Task Continuation Options
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Q5: Which parallel patterns do developers embrace?
Using the classification from the .NET Parallel Program-
ming book [2], we analyzed the usage of six parallel patterns.
Table 4 tabulates the usage of these patterns. The second
column reports the popularity of task vs. data parallelism.
The third column provides the names of patterns within each
category, and the fourth column gives a brief explanation of
the pattern. Last two columns show the number of indi-
vidual instances of patterns, and the popularity percentage
within its category.

Program Analysis: To automatically detect these pat-
terns, we developed heuristics. We also randomly sampled
from the inferred patterns to ensure that the reported pat-
terns are inferred correctly. Because these patterns have
several syntactical variations, it is very hard to detect all in-
stances of patterns. Thus, the numbers that we report may
be under-estimated, but not over-estimated.

For instance, to detect fork/join tasks pattern, Analyzer
tries to match pairs of statements that create tasks and
statements that wait for tasks completion. Our heuristic is
to match such pairs intra-procedurally, not inter-procedurally.
Although this heuristic correctly labels many cases, it fails
to label a pattern that creates tasks in one method and waits
for completion in another method.

Second, to detect data parallelism, Analyzer collects
Parallel.For, Parallel.ForEach and AsParallelmethod calls.
Since these method calls are perfect examples of data paral-
lelism, we do not need to use heuristics. Loops that iterate
over collections and launch a task to process each element
are also counted by Analyzer as data parallelism.

Next we describe how Analyzer finds aggregation pat-
terns. In a parallel aggregation pattern, the parallel loop
uses unshared, local variables, that are combined at the
end to compute the final result. Analyzer searches for
Parallel.ForEach and Parallel.For method calls that use a
ThreadLocal object as a parameter. This is the parameter
that encapsulates the unshared variable. As for PLINQ’s
code, Analyzer checks whether the AsParallelmethod calls
are followed by Sum, Aggregate, Min, etc. methods.

Finally, we illustrate how Analyzer detects tasks that
dynamically spawn other tasks, e.g., in a recursive divide-

and-conquer algorithm. Starting from a task’s body, it an-
alyzes the method invocations inside. If one of these invo-
cations calls recursively the method which encapsulates the
starting task, Analyzer labels it a dynamic task pattern.

�

�

�

�

Regular data parallelism is the most used parallel
pattern in practice.

Q6: Which advanced features do developers use?
Now we focus on the most important parallel classes, Par-

allel and Task. Their methods take optional arguments
related to performance and exception handling. Since these
optional arguments distinguish TPL from other parallel li-
braries (e.g., TBB or Java’s ForkJoinTask), we wonder if
developers use them.

Parallel Class: Parallel class has Invoke, For, and ForE-

ach methods. These methods can take an optional argu-
ment, ParallelOptions. With ParallelOptions, one can in-
sert a cancellation token, limit the maximum concurrency,
and specify a custom task scheduler. Of 852 method calls of
Parallel class, only 3% use ParallelOptions.
Similarly, For and ForEach methods calls can take an op-

tional ParallelLoopState which enables iterations to signal
events (e.g., interrupt) to other iterations. Of 852 calls, only
3% use ParallelLoopState.
Task Class: When creating tasks, a developer can spec-

ify the execution order or the granularity of the task with
an optional argument TaskCreationOptions. However, only
12% of task creation method calls use TaskCreationOptions.

Another advanced feature, TaskContinuationOptions, spec-
ifies the behavior for a task that is created as a continuation
of another task. 28% of the continuation tasks use TaskCon-

tinuationOptions. Figure 6 tabulates the distribution of var-
ious continuation options.

Program Analysis: Because TaskCreationOptions and
TaskContinuosOperations are enums, Analyzer also visits
field accesses.�

�

�

�

The advanced features and optional arguments are
rarely used in practice.



Table 2: Usage of TPL, Threading, PLINQ, and CC classes and their methods. The third column shows the
percentage of usages of a class in comparison with usages of all classes from the library. The fourth column
lists the main parallel methods in the parallel class. The fifth column shows the number of call sites for
each method. The sixth column shows the percentage of usage of a method from one parallel class. The last
column shows how many applications use this method.

Library Class Name % in Library Method Name # Call Sites % in Class # Apps

TPL

TaskFactory 30 StartNew 1256 72 286
FromAsync 121 7 32

Task 23

ContinueWith 372 28 122
Wait 273 20 110
Start 243 18 92
Constructor 225 17 82
WaitAll 172 13 91

Parallel 14
For 450 53 102
ForEach 365 43 133
Invoke 37 4 23

Task<TResult> 11
ContinueWith 536 86 113
Constructor 85 14 40

Threading

Thread 17

Start 985 32 212
Constructor 937 30 206
Join 382 12 101
Abort 294 10 82

WaitHandle 11 WaitOne 1585 81 206
Close 176 9 46

Interlocked 10
CompareExchange 580 34 95
CompareExchange 518 31 126

ThreadPool 5 QueueUserWorkItem 814 90 125

PLINQ ParallelEnumerable 100

AsParallel 221 24 150
Select 136 15 46
Where 62 7 30
ForAll 61 7 29

CC

ConcurrentDictionary 72 Constructor 883 32 140
TryGetValue 458 17 83

ConcurrentQueue 13 Enqueue 194 38 63
Constructor 178 35 70

BlockingCollection 7
Add 85 30 25
Constructor 78 28 25

Q7: Do developers make their parallel code unneces-
sarily complex? TPL provides some high-level constructs
that allow developers to implement parallel code more con-
cisely. These constructs decrease the number of lines of code
and makes the parallel code easier to read, thus improving
code quality.

Consider the example below, taken from backgrounded [25]
application. It illustrates fork-join task parallelism.

The code on the bottom is the equivalent of the code on
the top. It is much simpler to read because it uses Paral-

lel.Invoke, a higher-level construct.

var runDaemons = new Task(RunDaemonJobs , ..token);
.....
var runScheduledJobs = new Task(RunScheduledJobs , ..

token);
var tasks = new[] {runDaemons , ..., runScheduledJobs

};
Array.ForEach(tasks , x => x.Start());
Task.WaitAll(tasks);




Parallel.Invoke(new ParallelOptions(CancellationToken
=.. token),
RunDaemonJobs , ..., RunScheduledJobs);

Analyzer found that in 63 out of 268 regular fork/join
task parallelism, the programmers could have used Paral-

lel.Invoke, which would have reduced the complexity of the
parallel code.

for (int i = 1; i <= threadCount; i++)
{

var copy = i;
var taskHandle = Task.Factory.StartNew (() =>

DoInefficientInsert(server.Database.
Configuration.ServerUrl , copy));

tasks.Add(taskHandle);
}
Task.WaitAll(tasks);




Parallel.For(1,threadCount , (i)=> DoInefficientInsert
(server.Database.Configuration.ServerUrl , i));

Analyzer found 189 for/foreach loops that launch tasks
inside. Launching tasks inside a for loop is not only increas-
ing the number of lines of code, but is also error-prone. In
the code example above from ravendb [30], the programmer
needs to make sure the iteration variable i is local to each
task, otherwise the reading/writing accesses would exhibit
data-races. 55 out of 189 cases could have used Parallel.For

or Parallel.ForEach.



Table 3: Usage of Synchronization Constructs
Type % in Types Name # % in Type # Apps

Locking 39

lock (language feature) 6643 89 361
ReaderWriterLockSlim 258 3 68
Monitor - Enter/Exit 245 3 66
Mutex 94 1 46
Semaphore 75 1 23
ReaderWriterLock 65 1 24
SpinLock 31 0.4 11
SemaphoreSlim 20 0.3 10

Non-Blocking 26
Volatile Accesses 3212 65 152
Interlocked Methods 1696 34 126
Thread.MemoryBarrier 50 1 15

Implicit 21 CC Operations 4021 100 283

Signaling 9

ManualResetEvent 671 38 150
AutoResetEvent 647 37 102
Monitor - Wait/Pulse 168 10 31
ManualResetEventSlim 167 10 37
CountdownEvent 58 3 9
Barrier 33 2 6

Blocking 5
Thread.Join 382 38 101
Thread.Sleep 350 35 132
Task.Wait 273 27 110

Table 4: Usage of Parallelism Patterns.

Main
Pattern

% Pattern
Name

Brief explaination # %

Data
68 Regular parallel loops with For, ForEach, and PLINQ 954 92

Parallelism Aggregation parallel dependent loops (map reduce algorithms) 82 8

Task
32

Regular regular fork&join tasks 268 56
Futures task dependency on results 155 32

Parallelism Pipeline assembly line parallelism with BlockingCollection 41 8
Dynamic dynamically created tasks 18 4

There might be many other patterns of accidental com-
plexity. We focused on two of them based on our own ob-
servations and discussions with the library designers.

Program Analysis: To detect tasks that could have used
the Parallel.Invoke, Analyzer filters those tasks that are
created and are also waited upon immediately.c More pre-
cisely, Analyzer checks that the main thread does not ex-
ecute other statements between the statements that create
and wait for tasks. It also checks that there are no dependen-
cies among the created tasks, e.g., tasks are not linked with
continuations like ContinueWith. In addition, Analyzer also
discards the fork-join tasks that use TaskCreationOptions

since Parallel.Invoke does not provide such a feature.�
�

�
�

Despite the fact that parallel programs are already
complex, developers make them even more

complex than they need to be.

Q8: Are there constructs that developers commonly
misuse?

Parallel.Invoke(params action) is a construct that exe-
cutes in parallel the actions passed as arguments. It is a
fork-join with blocking semantics: the main thread will wait
until all actions specified as arguments have finished. Our
analysis found that 11% of all usages of Parallel.Invoke take

one action parameter in different applications. Consider the
example from the gpxviewer [27] application:

Parallel.Invoke (() => i.ImportGPX(null , GPXFile));

Notice that in this case there is only one single action to be
performed, and the main thread will block until this action
has finished. In this case, the parallelism has no effect: the
code executes sequentially, ImportGPX followed by the main
thread. Developers might erroneously believe that ImportGPX
will execute in parallel with the main thread, when in fact
it doesn’t.

When we look at PLINQ code, the AsParallel method
converts an Enumerable into an ParallelEnumerable collec-
tion. Any method called on such a parallel enumeration will
execute in parallel. We found 27 cases in 19 applications
(representing 12% of all AsParallel usages) where develop-
ers misuse a parallel enumeration as the iteration source of
a sequential for or foreach loop. Consider the example from
the profit [29] application:

foreach (var module in Modules.AsParallel ())
module.Refresh ();

Notice that despite AsParallel being placed at the end of
the Modules collection, there is no operation performed on
the “parallel” Modules. The foreach proceeds sequentially.
Developers might erroneously believe that the code runs in
parallel, when in fact it runs sequentially.



Program Analysis: To answer misusage questions, An-
alyzer encodes the erroneous usage patterns. For example,
it searches for calls to Parallel.Invoke with one single ar-
gument, where the argument is an Action object (e.g., a
method name or a lambda expression). For the PLINQ mis-
usage, Analyzer searches for expressions where AsParallel

is the last subexpression. We then manually analyze whether
it is present in for or foreach loop whose iteration does not
create any threads.�
�

�
�

Misuse of parallel constructs can lead to code with
parallel syntax but sequential execution.

5. IMPLICATIONS
There are several implications of our study. We organize

them based on the community for which they are relevant.

5.1 Developers
Q1 (adoption): Becoming proficient with a new program-

ming model requires a long-term commitment. Developers
without parallel programming experience might ask them-
selves: should we learn how to use parallel libraries, or
should we avoid them because they are a passing fad. Our
data shows that 37% of all applications use the multi-threaded
paradigm, so many developers will not be able to completely
avoid multi-threaded programming. Sooner or later, most
programmers will have to become familiar with this model.

Q2 (trends in adoption): Learning how to use effectively
a library requires studying examples of the library API in
real code. Where can developers find such examples? Our
data shows that smaller applications are the early adopters
of the parallel libraries. In addition, these applications have
a much higher density of parallel constructs per thousand of
SLOC. Looking in Fig 4, we can divide the average number
of parallel constructs by 1K, 10K, 100K for small, medium,
and large applications respectively. The average density is
5h, 1.2h, and .6h respectively. When taking into account
the effort to understand unknown code, developers are bet-
ter off looking for examples in small applications.

Q3 (usage): We notice a power-law distribution: 10% of
the API methods are responsible for 90% of all usages. If
we look at the classes, 15% of classes are responsible for
85% of all usages. This is good news for developers who are
just learning parallel libraries: they can focus on learning a
relatively small subset of the library APIs and still be able
to master a large number of parallelism scenarios.

5.2 Library Designers
Q3 (usage): Surprisingly lower usage numbers like the

ones for PLINQ can highlight the APIs that need better
documentation and more advertisement on mailing lists, de-
veloper forums, etc.

Q4 (synchronization): Designers of concurrent data struc-
tures and synchronization constructs are always asking them-
selves on what to focus. Table 3 shows that developers are
more likely to use the faster synchronization constructs. For
example, ReaderWriterLockSlim is used four times more often
than the slower ReaderWriterLock.

Q6 (advanced features): Library designers pay special at-
tention to making the APIs easier to use. This involves
making the syntax for the common case more concise. We

observed in Figure 6 that programmers prefer to create new
tasks attached to the parent task (40% are AttachedToPar-

ent). So, library designers could make this the default be-
havior for nested tasks. Similarly, 80% of times when devel-
opers used ParallelOptions they only specify one single op-
tion, MaxDegreeOfParallelism. Library designers may make
this an argument to Parallel class methods instead of en-
capsulating it in ParallelOptions.

Additionally, 60% of the times developers overwrite MaxDe-

greeOfParallelism; they make it equal with the number of
processors found at runtime. This means that developers are
not happy about the degree of parallelism chosen by .NET.
TPL architects should consider making the number of pro-
cessors the default value for the max degree of parallelism.
Stephen Toub, who is one of the main architects of TPL,
confirmed our suggestion.

Q8 (misusage): Library designers can also remove the
constructs that are error-prone. We found that developers
are not aware that Parallel.Invoke is a blocking operation,
so they invoke it with one single action parameter (which
results in executing the code sequentially). Library designers
may consider removing Parallel.Invoke version that takes
only one action parameter.

5.3 Researchers
Q1 (adoption): Since we list the domains and the applica-

tions that use parallelism most heavily, the researchers can
use them to create benchmarks for parallel programming.

Q4 (synchronization): Researchers that work on ensur-
ing correctness (e.g., data-race detection) should notice from
Table 3 that developers use a wide variety of synchroniza-
tion constructs. Thus, data-race detectors should also model
these other synchronization constructs.

.NET parallel libraries provide more than 20 synchroniza-
tion constructs divided into 5 different categories. It is diffi-
cult for developers to select the most appropriate one. Each
construct has tradeoffs, depending on the context where it
is used. This is an opportunity for developing intelligent
tools that suggest which constructs developers should use in
a particular context.

Q7 (complexity): Researchers in the refactoring commu-
nity can get a wealth of information from the usage patterns.
For example, developers should use higher-level constructs
to manage the complexity of the parallel code: 24% of fork-
join tasks can be converted to Parallel.Invoke, which re-
duces many lines of code. Refactorings that allow program-
mers to improve the readability of their parallel code have
never been automated before, but are invaluable.

6. THREATS TO VALIDITY
Construct: Are we asking the right questions? We are

interested to asses the state of the practice w.r.t. usage of
parallel libraries, so we think our questions provide a unique
insight and value for different stakeholders: potential users
of the library, designers of the library, researchers.

Internal: Is there something inherent to how we col-
lect and analyze the usage that could skew the accuracy of
our results? Microsoft’s Roslyn, on which we built our pro-
gram analysis, is now in the Community Technology Preview
and has known issues (we also discovered and reported new
bugs). For some AST nodes, we did not get semantic infor-
mation. We printed these nodes, and they are not parallel
constructs, thus they do not affect the accuracy.



Second, the study is only focusing on static usage of par-
allel constructs, but one use of a construct (i.e., a call site)
could correspond to a large percentage of execution time,
making it a very parallel program. Likewise, the opposite
could be true. However, we are interested in the devel-
oper’s view of writing, understanding, maintaining, evolv-
ing the code, not on the performance tools’ view of the code
(i.e., how much of the total running time is spent in multi-
threaded code). For our purpose, a static usage is much
more appropriate.

Third, do the large applications shadow the usage of con-
structs in the smaller applications? Tables 2 and 3 provide
the total tally of constructs across all applications and there
is a possibility that most usages come from a few large ap-
plications. To eliminate this concern, the last column in the
two tables list the number of applications that use each kind
of construct. Due to lack of space, we do not present the
mean, max, min, standard deviation in the paper, but they
are available on the companion website [36].

Fourth, static analysis offers limited insight in the perfor-
mance of parallel applications. While the real purpose of
using parallel libraries is to improve performance, we can
not estimate this based solely on static analysis.

External: Are the results generalizable to other pro-
gramming languages, libraries, and applications? First, de-
spite the fact that our corpus contains only open-source
applications, the 655 applications span a wide range from
tools, IDEs, games, databases, image processing, video en-
coding/decoding, search engines, web systems, etc., to third
party libraries. They are developed by different teams with
1609 contributors from a large and varied community. Still,
we cannot be sure whether this usage is representative for
proprietary applications.

While we answer the questions for the C# ecosystem, we
expect they can cross the boundary from C# to Java and
C++. For example, we expect such empirical studies that
reveal pain-points and common errors in using parallel li-
brary APIs to be useful to the TBB/C++ and j.u.c./Java
designers since these libraries provide very similar abstrac-
tions. Furthermore, C# with .NET is used on wide range of
platforms – desktop, server, mobile, and web applications.

Reliability: Can others replicate our study? A detailed
description of our results with fine-grained reports and anal-
ysis tools are available online [36].

7. RELATED WORK
There are several empirical studies [1, 11, 13, 35] on the

usage of libraries or programing language features. These
studies rely only on syntactic analysis. To best of our knowl-
edge, ours is the first large-scale study that uses both syn-
tactic and semantic analysis, thus increasing the accuracy of
the usage statistics.

Robillard and DeLine [32] study what makes large APIs
hard to learn and conclude that one of the important factors
is the lack of usage examples. Our current study provides
lots of usage examples from real code which can hopefully
educate newcomers to the parallel library.

Monperrus et al. [18] study the API documentation of
several libraries and propose a set of 23 guidelines for writing
effective API documentation.

Dig et al. [7] and Pankratius et al. [21] analyzed concurrency-
related transformations in a few Java applications. Our cur-
rent study does not look at the evolution of concurrent ap-
plications, but at how developers use parallel libraries.

Pankratius [20] proposes to evaluate the usability of par-
allel language constructs by extending the Eclipse IDE to
record usage patterns and then infer correlations using data
mining techniques.

Other empirical studies on the practice of multicore pro-
gramming [5] focused on identifying the contented resources
(e.g., shared cache) that adversely impact the parallel per-
formance. Our fourth research question identifies a wide va-
riety of synchronization constructs that impact performance.

In the same spirit like our paper, Parnin et al. [22] study
the adoption patterns of Java generics in open-source ap-
plications. While some of our research questions specifically
address adoption patterns (Q1 and Q2), the remaining ques-
tions provide an extensive exploration into the practice of
using parallel libraries.

Others [12] have studied the correlation between usage of
the MPI parallel library and productivity of the developers.

The closest work to ours is done by Weslley et al. [35]
on the usage of concurrent programming constructs in Java.
They study around 2,000 applications and give some coarse-
grain usage results like the number of synchronized blocks
and the number of classes extending Thread. In contrast,
our study looks at every parallel construct in the parallel
libraries, and we also look at how these constructs form pat-
terns and structures. Although they analyze the usage of
very few constructs, their results are not accurate due to
missing type information because they only perform lexi-
cal analysis. Also, their count of the constructs’ usage can
be misleading. For example, they measure the usage of
java.util.concurrent by counting statements that import
the library. In our study, there are many applications that
import TPL but never invoke any construct. For example,
there is an application, DotNetWebToolkit [26], that imports
TPL 111 times but invokes TPL just once.

8. CONCLUSION
Parallelism is not a passing fad; it is here for the foresee-

able future. To encourage more programmers to embrace
parallelism, we must understand how parallel libraries are
currently used. Our empirical study on the usage of mod-
ern parallel libraries reveals that programmers are already
embracing the new programming models. Our study pro-
vides tremendous education value for developers who can
educate themselves on how to correctly use the new par-
allel constructs. It also provides insights into the state of
the practice in using these constructs, i.e., which constructs
developers find tedious and error-prone. Armed with this
information, library designers and researchers can develop
effective tools and techniques to better match the current
practice and transform it.

More studies are needed if we want to fully understand the
state of the practice, and we hope that our study inspires
follow-up studies.
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ABSTRACT
It is common for object-oriented programs to have both mu-
table and immutable classes. Immutable classes simplify
programing because the programmer does not have to rea-
son about side-effects. Sometimes programmers write im-
mutable classes from scratch, other times they transform
mutable into immutable classes. To transform a mutable
class, programmers must find all methods that mutate its
transitive state and all objects that can enter or escape
the state of the class. The analyses are non-trivial and the
rewriting is tedious. Fortunately, this can be automated.

We present an algorithm and a tool, Immutator, that en-
ables the programmer to safely transform a mutable class
into an immutable class. Two case studies and one con-
trolled experiment show that Immutator is useful. It (i) re-
duces the burden of making classes immutable, (ii) is fast
enough to be used interactively, and (iii) is much safer than
manual transformations.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Design, Management

Keywords: Program transformation, immutability

1. INTRODUCTION
An immutable object is one whose state can not be mu-

tated after the object has been initialized and returned to
a client. By object state we mean the transitively reachable
state. That is, the state of the object and all state reachable
from that object by following references.

Immutability makes sequential programs simpler. An im-
mutable object, sometimes known as a value object [17], is
easier to reason about because there are no side-effects [7].
Applications that use immutable objects are therefore sim-
pler to debug. Immutable objects facilitate persistent stor-
age [2], they are good hash-table keys [12], they can be
compared very efficiently by comparing identities [2], they
can reduce memory footprint (through interning/memoiza-
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tion [12,14] or flyweight [8]). They also enable compiler opti-
mizations such as reducing the number of dynamic reads [16].
In fact, some argue that we should always use immutable
classes unless we explicitly need mutability [3].

In addition, immutability makes distributed programming
simpler [2]. With current middleware technologies like Java
RMI, EJB, and Corba, a client can send messages to a dis-
tributed object via a local proxy. The proxy implements an
update protocol, so if the distributed object is immutable
then there is no need for the proxy.

Moreover, as parallel programming becomes ubiquitous in
the multicore era, immutability makes parallel programming
simpler [9,13]. Since threads can not change the state of an
immutable object, they can share it without synchroniza-
tion. An immutable object is embarrassingly thread-safe.

However, mainstream languages like Java, C#, and C++
do not support deep, transitive immutability. Instead, they
only support shallow immutability through the final, read-
only, and const keywords. This is not enough, as these key-
words only make references immutable, not the objects ref-
erenced by them. Thus, the transitive state of the object
can still be mutated.

To get the full benefits of immutability, deep immutability
must therefore be built into the class. If a class is class
immutable, none of its instances can be transitively mutated.
Examples in Java include String and the classes in the Number

class hierarchy.
It is common for OO programs to contain both mutable

and immutable classes. For example, the JDigraph open-
source library contains MapBag and ImmutableBag. MapBag is in-
tended for cases where mutation is frequent, and Immutable-

Bag where mutations are rare.
Sometimes programmers write an immutable class from

scratch, other times they refactor a mutable class into an
immutable class. The refactoring can be viewed as two re-
lated technical problems:

1. The conversion problem consists of generating an im-
mutable class from an existing mutable class.

2. The usage problem consists of modifying client code to
use the new immutable class in an immutable fashion.

This paper solves the conversion problem. To create an
immutable class from a mutable class (from here on referred
as the target class), the programmer needs to perform sev-
eral tasks. The programmer must search through the meth-
ods of the target class and find all the places where the
transitive state is mutated. This task is further complicated
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by polymorphic methods and mutations nested deep inside
call chains that may extend into third party code.

Moreover, the programmer must ensure that objects in
the transitive state of the target class do not escape from
it, otherwise they can mutated by client code. Such escapes
can happen through return statements, parameters, or static
fields. Finding objects that escape is non-trivial. For exam-
ple, an object can be added to a List that is returned from
a method, causing the object to escape along with the List.

Furthermore, once the programmer found all mutations,
she must rewrite mutator methods, for example by convert-
ing them to factory methods. She must also handle objects
that enter or escape the class, for example by cloning them.

In 346 cases we studied these code transformations re-
quired changing 45 lines of code per target class, which is
tedious. Furthermore, it required analyzing 57 methods in
the call graph of each target class to find mutators and
entering/escaping objects. Because this analysis is inter-
procedural and requires reasoning about the heap, it is non-
trivial and error-prone. In a controlled experiment where
6 experienced programmers converted JHotDraw classes to
immutable counterparts, they took an average of 27 minutes,
and introduced 6.37 bugs per class.

To alleviate the programmer’s burden when creating an
immutable class from a mutable class, we designed an algo-
rithm and implemented a tool, Immutator, that works on Java
classes. We developed Immutator on top of Eclipse’s refactor-
ing engine. Thus, it offers all the convenience of a modern
refactoring tool: it enables the user to preview and undo
changes and it preserves formating and comments. To use
it the programmer selects a target class and chooses Gener-

ate Immutable Class from the refactoring menu. Immutator

then verifies that the transformation is safe, and rewrites
the code if the preconditions are met. However, if a precon-
dition fails, it warns the programmer and provides useful
information that helps the programmer fix the problem.

At the heart of Immutator are two inter-procedural anal-
yses that determine the safety of the transformation. The
first analysis determines which methods mutate the transi-
tive state of the target class. The second analysis is a class
escape analysis that detects whether objects in the transi-
tive state of the target class state may escape. Although
Immutator transforms the source code, the analyses work on
bytecode and correctly account for the behavior of third-
party Java libraries.

There is a large body of work [1,18–20] on detecting whether
methods have side effects on program state. Previous analy-
ses were designed to detect any side effect, including changes
to objects reachable through method arguments and static
variables. In contrast, our analysis intersects the mutated
state with the objects reachable through the this reference.
Therefore, it only reports methods that have a side effect on
the current target object’s state.

Similarly, previous escape analyses [4, 24] report any ob-
ject that escapes a method, including locally created objects.
Our analysis only reports those escaping objects that are
also a part of the transitive state of the target class.

This paper makes the following contributions:

Problem Description While there are many approaches
to specifying and checking immutability this is, to the
best of our knowledge, the first paper that describes
the problems and challenges of transforming a mutable
class into an immutable class.

Transformations We present the transformations that con-
vert a Java class to an immutable Java class.

Algorithm We have developed an algorithm to automat-
ically convert a mutable class to an immutable class.
The algorithm performs two inter-procedural analyses;
one that determines the mutating methods, and one
that detects objects that enter or escape the target
class. Based on information retrieved from these and
other analyses our algorithm checks preconditions and
performs the mechanical transformations necessary to
enforce immutability.

Implementation We have implemented the analyses and
code transformations in a tool, Immutator, that is inte-
grated with the Eclipse IDE.

Evaluation We ran Immutator on 346 classes from known
open-source projects. We also studied how open-source
developers create immutable classes manually. Ad-
ditionally, we designed a controlled experiment with
6 programmers transforming JHotDraw classes manu-
ally. The results show that Immutator is useful. First,
the transformation is widely applicable: in 33% of the
cases Immutator was able to transform classes with no
human intervention. Second, several of the manually-
performed transformations are not correct: open-source
developers introduced an average of 2.1 errors/class,
while participants introduced 6.37 errors/class; in con-
trast, Immutator is safe. Third, on average, Immutator

runs in 2.33 seconds and saves the programmer from
analyzing 57 methods and changing 45 lines per trans-
formed class. In contrast, participants took an average
of 27 minutes per class. Thus, Immutator dramatically
improves programmer productivity.

Immutator as well as the experimental data can be down-
loaded from: http://refactoring.info/tools/Immutator

2. MOTIVATING EXAMPLE
We describe the problems and challenges of transforming

a mutable class into an immutable class using a running ex-
ample. Class Circle, shown on the left-hand side of Fig. 1,
has a center, stored in field c, and a radius, stored in field r.
There are several methods to modify or retrieve the state.
The programmer decides to transform this class into an im-
mutable class, since it makes sense to treat mathematical
objects as value objects.

Transforming even a simple class like Circle into an im-
mutable class, as shown on the right-hand side of Fig. 1,
is non-trivial. First, the programmer must find all the mu-
tating methods. Method setRadius on line 19 is a direct
mutator, and is easy to spot because it assigns directly to a
field. Method moveTo(int, int) on line 27 is a mutator too.
However, the code on line 30 does not change the value of
c directly, but instead changes the object that c references.
Therefore, this method mutates the transitive state of Cir-

cle. Method moveBy on line 34 is another mutator that does
not mutate the object directly. Instead, it mutates state
indirectly by calling moveTo(Point). Finding all mutators
(transitive and indirect) is complicated by long call chains,
polymorphic methods, aliases, and third-party library code.

Furthermore, the programmer must locate all the places
where an object enters or escapes the target class. Con-
sider a client that creates a Point object and passes it to
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1 public c lass Ci r c l e {
2 private Point c = new Point (0 , 0 ) ;
3 private int r = 1 ;
4
5
6
7
8
9

10
11
12
13
14
15 public int getRadius ( ) {
16 return r ;
17 }
18
19 public void setRadius ( int r ) {
20 this . r = r ;
21 }
22
23 public void moveTo( Point p) {
24 this . c = p ;
25 }
26
27 public void moveTo( int x , int y ) {
28
29
30 c . s e tLocat i on (x , y ) ;
31
32 }
33
34 public void moveBy( int dx , int dy ) {
35 Point cente r = new Point ( c . x+dx , c . y+dy ) ;
36 moveTo( cente r ) ;
37
38 }
39
40 public Point getLocat ion ( ) {
41 return c ;
42 }
43 }

1 public f ina l c lass ImmutableCircle {
2 private f ina l Point c ;
3 private f ina l int r ;
4
5 public ImmutableCircle ( ) {
6 this . c = new Point (0 , 0 ) ;
7 this . r = 1 ;
8 }
9

10 private ImmutableCircle ( Point c , int r ) {
11 this . c = c ;
12 this . r = r ;
13 }
14
15 public int getRadius ( ) {
16 return r ;
17 }
18
19 public ImmutableCircle setRadius ( int r ) {
20 return new ImmutableCircle ( this . c , r ) ;
21 }
22
23 public ImmutableCircle moveTo( Point p) {
24 return new ImmutableCircle (p . c l one ( ) , this . r ) ;
25 }
26
27 public ImmutableCircle moveTo( int x , int y ) {
28 ImmutableCircle t h i s =
29 new ImmutableCircle ( this . c . c l one ( ) , this . r ) ;
30 t h i s . c . s e tLocat i on (x , y ) ;
31 return t h i s ;
32 }
33
34 public ImmutableCircle moveBy( int dx , int dy ) {
35 Point cente r = new Point ( c . x+dx , c . y+dy ) ;
36 ImmutableCircle t h i s = moveTo( cente r ) ;
37 return t h i s ;
38 }
39
40 public Point getLocat ion ( ) {
41 return c . c l one ( ) ;
42 }
43 }

Figure 1: Immutator converts a mutable Circle (left pane) into an immutable class (right pane).

moveTo(Point). Since the client holds a reference to the
point, it can still mutate the object through the retained
reference. The programmer may not have access to all ex-
isting and future client code so she must conservatively as-
sume that the target class can be mutated through entering
and escaping objects. Therefore, to enforce deep immutabil-
ity, the programmer must find all the places where objects
enter the target class (line 23–24) or escape (line 41), and
clone them. However, the programmer should avoid exces-
sive cloning and only clone where absolutely required.

Even for this simple example, the transformation requires
inter-procedural analysis (line 30 and 36), which must take
pointers into account (line 30). Our approach combines the
strength of the programmer (the higher-level understand-
ing of where immutability should be employed) with the
strengths of a tool (analyzing many methods and making
mechanical transformations).

Immutator automatically handles the rewriting (Section 4)
and analysis (Section 5) required to make a class immutable.

3. IMMUTATOR
We implemented our algorithm for Generate Immutable

Class as a plugin in the Eclipse IDE. To use Immutator, the
programmer selects a class and then chooses the Generate

Immutable Class option from the refactoring menu. Before
applying the changes, Immutator gives the programmer the

option to preview them in a before-and-after pane. Then
Immutator makes the class deeply immutable.

Our algorithm transforms the target class in-place. How-
ever, the tool makes a copy of the target class and then
transforms this copy. This provides the programmer with
two variants of the same class: a mutable and an immutable
one. The programmer decides where it makes sense to use
one over the other.

However, the programmer can not use the deeply im-
mutable version if the class is to be used in client code
that relies on structural sharing of mutable state. Consider
a Graph that contains mutable Node objects. The seman-
tics of the Graph class ensure that several nodes can share
the same successor node. If the programmer made Graph

immutable, Immutator would change mutator methods like
addEdge(n1,n2) to clone the entering nodes, thus transform-
ing the graph into a tree. On the other hand, structural shar-
ing of immutable objects does not contradict with deep-copy
immutable semantics. If the Graph contained immutable Node

objects, then Immutator would not clone Node objects, thus
preserving the sharing semantics of the original class.

Before transforming the target class, Immutator checks that
it meets four preconditions, and reports failed preconditions
to the programmer. The programmer can decide to ignore
the warnings and proceed, or cancel the operation, fix the
root cause of the warnings and then re-run Immutator.
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3.1 Transformation Preconditions
Immutator checks the following preconditions:

Precondition #1 The target class can only have super-
classes that do not have any mutable state.

Precondition #2 The target class can not have subclasses
as these can add mutable state to the target objects.

Precondition #3 Mutator methods in the target class must
have a void return type and must not override meth-
ods in superclasses. This is because Immutator rewrites
mutator methods to return new instances of the target
class and must use the return type for this. Methods
in Java can only return one value and it is not allowed
to change the return type when overriding a method.

Precondition #4 Objects that enter or escape the tran-
sitive state of the target class must either already im-
plement clone, or the source code of their classes must
be available so that a clone method can be added.

While these preconditions may seem restrictive, we believe
that value classes are likely to meet them. For example, soft-
ware that follows the command-query separation principle
(methods either perform an operation, or return a value) will
not have mutators with non-void return types, thus meeting
precondition 3. Furthermore, preconditions 1 and 2 are lim-
itations of the current implementation, and not inherent to
the approach. We leave for future work to refactor a whole
class hierarchy.

4. TRANSFORMATIONS
This section describes the transformations that Immutator

applies to the target class. We will use the motivating ex-
ample introduced in Fig. 1 to illustrate the transformations.

Make fields and class final First, Immutator makes
all the fields of the class final. Final fields in Java can
only be initialized once, in constructors or field initializers.
Immutator also makes the target class final. This prevents it
from being extended with subclasses that add mutable state.

Generate constructors Immutator adds two new con-
structors (line 5 and 10). The first constructor is the default
constructor and it does not take any arguments. This con-
structor initializes each field to their initializer value in the
original class or to the default value if they had none. The
second constructor is a full constructor. It takes one initial-
ization argument for each field, and is private as it is only
used internally to create instances.

4.1 Convert Mutators into Factory Methods
Since the fields are final, methods can not assign to them.

Immutator converts mutator methods into factory methods
that create and return new objects with updated state.

We call a method a mutator if it (i) assigns to a field in
the transitive state of a target class instance, or (ii) invokes
a method that is a mutator method.

Convert direct mutators Setters are a common type
of mutator in object-oriented programs. Lines 19–21 on the
right-hand side of Fig. 1 show the transformation of setRa-

dius to a factory method. Immutator changes (i) the return
type to the type of the target class, and (ii) the method body
to construct and return a new object, created using the full
constructor. The constructor argument that is assigned to

the r field is set to the right-hand-side of the assignment
expression. The arguments for the other fields (e.g., c) are
copied from the current object. Thus, the factory method
returns a new object where the r field has the new value,
while the other fields remain unchanged.

However, not all mutators are simple setters. Some con-
tain multiple statements, while others mutate fields indi-
rectly by calling other mutators. moveBy, on line 34–38,
demonstrates both of these traits. It contains two state-
ments, and it mutates c indirectly by calling moveTo.

The right-hand side shows how Immutator transforms moveBy
into a factory method. It introduces a new local reference,
called _this, to act as a placeholder for Java’s built-in this

reference. After _this is defined at the first mutation, Immu-

tator replaces every explicit and implicit this with _this.
Furthermore, for every statement that calls a mutator,

Immutator assigns the return value of the method (which is
now a factory method) back to _this. Thus, the rest of the
method sees and operates on the object constructed by the
factory method. Finally, the _this reference is returned.

An interesting property of this technique is that it shifts
the mutations from the target object to the _this reference.
That is, instead of mutating the object pointed to by this, it
mutates the state of _this. Ideally, Immutator would reassign
back to this, but in Java the built-in this reference can not
be assigned to. Therefore, Immutator replaces it with the
mutable place-holder _this.

Convert transitive mutators Consider the moveTo(int,

int) method on line 27–32. Although this method never
assigns to the c field, it still mutates c’s transitive state
through the setLocation method. Immutator notices that the
method setLocation does not belong to the target class, but
to java.awt.Point in the GUI library. Therefore, Immutator

can not rewrite setLocation into a factory method.
As before, Immutator creates the _this reference, and re-

turns it at the end of the method. Furthermore, Immutator

clones c, so that the mutation does not affect the original
object referenced by this. The cloned c is passed as an ar-
gument to the new Circle, which is assigned to _this. Since
_this.c now refers to a clone of the original this.c, we can
allow the mutation through setLocation.

4.2 Clone the Entering and Escaping state
Another way the transitive state of the target object can

be mutated is if client code gets hold of a reference to an
object in its internal state, and then mutates it outside of
the target class. This can happen in two ways: (i) through
objects that are entering the target class (e.g., Point p on
line 24), or (ii) through objects that are escaping the target
class (e.g., c on line 41).

An object enters the target class if it is visible from client
code, and is assigned to a field in the transitive state of
the target class. For example, the client code could call
moveTo(Point) and then mutate the point through the re-
tained reference.

We define a target class escape as an escape from any of its
methods, including constructors. An escape from a method
means that an object that is transitively reachable through
a field of the target class is visible to the client code after the
method returns. For example, on line 41, the object pointed
to by c escapes through the return statement, and can then
be mutated by client code. Escapes can also occur through
parameters and static fields
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If an object enters or escapes then current or future client
code may perform any operations on it, and Immutator must
conservatively assume that it will be mutated.

Immutator handles entering and escaping objects by insert-
ing a call to the clone method to perform a deep copy of the
object in question, as seen on the right-hand side of line 24
and 41. However, if the entering or escaping object is itself
immutable, Immutator does not clone it. The current imple-
mentation considers the following classes to be immutable:
the target class, String, Java primitive wrapper classes (e.g.,
Integer), and classes annotated with @Immutable.

When Immutator needs to use a clone method that does
not exist, it generates a clone stub and reports this to the
user, who must implement the stub.

Immutator avoids excessive cloning. For example, it could
have inserted a clone call in the private constructor on line
11, but this would have caused unnecessary cloning. Instead,
Immutator calls clone sparsely, at the location where objects
enter or escape, or where the target class is transitively mu-
tated (e.g., on line 30).

Moreover, Immutator ensures some structural sharing [11],
by not adding calls to clone objects that enter from an-
other instance of the same class. For example, when the
transformed setRadius method is called, a new instance of
ImmutableCircle is created (line 20 on the right-hand side).
However, only the r field is mutated, while the c field (the
center) remains the same. Since the old circle will not mu-
tate the center, and since the center is not visible from the
outside, the new circle does not have to clone it. The result
is that the two circles share a part of their state.

5. PROGRAM ANALYSIS
In the previous section we discussed the transformations

to make an existing class immutable. In order to perform
these transformations Immutator first analyzes the source code
to establish preconditions and to collect information for the
transformation phase.

Immutator does not perform a whole-program analysis, but
only analyses the target class and methods invoked from it.
Thus, the analysis is fast and can be used interactively.

At the heart of Immutator are two analyses. The first de-
tects mutating methods so that these can be converted to
factory methods. The second detects objects that enter or
escape the target class so that they can be cloned. Both
analyses work on a representation generated from byte code,
and can therefore analyze third-party library code.

5.1 Analysis Data Structures
Immutator creates several data structures that are neces-

sary for the program analyses. It constructs both of these
data structures using the WALA analysis library [23] as a
starting point.

The first data structure is a call graph (CG) starting from
every non-private method of the target class. The call graph
is used to find mutators as well as entering/escaping objects.
For each node in the callgraph Immutator also constructs a
control flow graph (CFG) that is used later to find transitive
mutations and to build a points-to graph.

In addition to the control-flow structures, Immutator builds
a points-to graph (PTG). Points-to analysis establishes which
pointers (or references in Java terminology) point to which
storage locations. We model the heap storage locations as
object allocation sites.

p

this

c

Circle

center

Circle:2 circle

c Point

Point

client moveTo

1 public void c l i e n t ( ) {
2 C i r c l e c i r c l e = new Ci r c l e ( ) ;
3 Point cente r = new Point (5 , 5 ) ;
4 c i r c l e .moveTo( cente r ) ;
5 }

6 public c lass Ci r c l e {
7 // . . .
8 public void moveTo( Point p) {
9 this . c = p ;

10 }
11 }

Figure 2: An example points-to graph

An example of the points-to graphs that Immutator cre-
ate is illustrated using a simple client program in Fig. 2.
The graph contains two types of nodes: references, depicted
graphically as ellipses, and heap-allocated objects depicted
as rectangles. The explicit formal arguments of a method
are placed on the border of its bounding box. Directed edges
connect references to the objects they point to. For example,
the object created on line 2 is represented by the rectangle
Circle:2, and the reference it is assigned to on the same line
is represented by the circle ellipse. This object has a field
c, which is constructed in the field initializer of class Circle.
References are connected to their objects by directed edges.
The points-to graph only captures relations between refer-
ences and objects, and does not include scalar primitives.

Notice that the assignment on line 9 creates an alias be-
tween the references c and p. This is represented in the
points-to graph as a dashed arrow, and is called a deferred
edge. A deferred edge means that c can point to any objects
that p can point to. We also use deferred edges to represent
the relations between formal and actual arguments since
Java is a pass-by-value language where actuals are copied
into the formals.

Immutator constructs this points-to graph using an inclusion-
based (Andersen-style) points-to analysis. The analysis is
partly flow-sensitive with respect to local variables as it is
computed from an SSA representation of the source code. It
is also context-insensitive since it does not take the calling
context into account.

Note that Immutator constructs additional nodes that do
not exist in the program when they are needed to complete a
method summary. One such example is the Circle allocation
site and its c field in the moveTo method. When Immutator

creates the summary for moveTo, the this reference is not
connected to any allocation sites. Therefore, Immutator con-
structs additional object and field nodes in order to add the
deferred edge that represents the assignment of p to c.

5.2 Detecting Transitive Mutators
The goal of this analysis is to find the methods that are

mutating the transitive state of the target object, either di-
rectly or indirectly by calling another mutator method.

Fig. 3 shows the pseudocode of the algorithm for detecting
mutator methods. The algorithm takes as input the set M of
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Input: M ← Set of Methods in CG,
MTC ← Methods in Target Class,
PTG← Points-to Graph

Output: MUT // Set of mutator methods

// Step 1: Find the transitive state of the target class
TARG← ∪m∈MTC(transitiveClosure(this, PTG))

// Step 2: Find transitive mutators
for each m in M do

for each fieldAssignments <o.f = expr> do
if o can reach TARG through deferred edges in
PTG then

MUT ←MUT ∪m

// Step 3: Find indirect mutators
for each m in M , in reverse topological order do

for each m′ in callees(m) do
if m′ ∈MUT then

MUT ←MUT ∪m

Figure 3: Detecting transitive and indirect mutators

methods in the call graph, the set MTC of methods declared
in the target class, and the points-to graph presented in
Section 5.1. The output of the algorithm is a set MUT of
mutator methods.

In Step 1, the algorithm finds the objects and fields that
represent the transitive state of the target class. To do so,
the algorithm computes the transitive closure of the this

references of the target class, i.e, all nodes in the points-to
graph reachable from this. These nodes, called TARG, are
the set union of all nodes reachable from the this reference
in target class methods.

In Step 2, the algorithm finds all transitive mutating meth-
ods. These include mutators inside and outside (e.g., setLo-
cation(), called on line 30) the target class. The algorithm
visits every field assignment instruction in all the target class
methods, as well as methods invoked from the target class.
For each assignment it checks whether the left-hand side of
the assignment is a reference node that may point to one of
the objects in the transitive state of the target class. If it
can, this means that the instruction assigns to the transi-
tive state of the target class, and the algorithm marks the
method as a direct mutator.

In Step 3, the algorithm propagates mutation summaries
from direct mutators backwards through the call graph. If
method m calls m′ and m′ is a mutator, then m becomes
a mutator too. To do this, the analysis visits, in reverse
topological order (post-order), the methods in the call graph
and merges the mutation summaries of the callees with the
summaries of the callers.

5.3 Detecting Escaping and Entering Objects
The goal of this analysis is to find mutable objects that

enter or escape the target class. These objects can be mu-
tated by a client, thus mutating the transitive state of the
target class. Therefore, the analysis finds and clones them.

The algorithm detects entering/escaping objects that are
mutable and assigned/fetched to/from the transitive state
of the target class.

Fig. 4 shows the pseudocode of the algorithm for detecting
entering or escaping objects. The algorithm takes as input

Input: API ← Set of non-private methods in Target Class
MTC ← Methods in Target Class,
PTG← Points-to Graph,

Output: ESC // Set of Escaping Objects
ENT // Set of Entering Objects

// Step 1: Find the transitive state of the target class
TARG← ∪m∈MTC(transitiveClosure(this, PTG))

// Step 2: Find the transitive closure of the outside nodes
OUT ← ∪m∈API(transitiveClosure(actuals, PTG)

∪ transitiveClosure(returns, PTG)
∪ transitiveClosure(statics, PTG))

// Step 3: Find the escaping objects
for each deferred edge e ∈ PTG do

if (e.source ∈ OUT ) && (e.sink ∈ TARG) then
ESC ← ESC ∪ e.sink

// Step 4: Find the entering objects
for each deferred edge e ∈ PTG do

if (e.source ∈ TARG) && (e.sink ∈ OUT ) then
ENT ← ENT ∪ e.source

Figure 4: Detecting entering and escaping objects

the points-to graph presented in Section 5.1. The output of
the algorithm are two sets: ENT containing objects that en-
ter the target class, and ESC containing objects that escape
the target class.

In Step 1, the algorithm finds the nodes that form the
transitive state of the target class. The transitive state,
denoted by the TARG set, is the transitive closure of the
this reference of every method in the target class.

In Step 2, the algorithm finds the nodes that are outside
of the target class, but that interface with it. Since these
are the nodes through which client code interacts with the
target class, they are also the nodes that objects can enter
or escape through. We call these nodes the boundary nodes,
as they are at the boundary of the target class.

The boundary nodes are:

• actual arguments passed to non-private (API) methods

• references returned from non-private methods

• static reference fields.

The algorithm computes the transitive closure of bound-
ary nodes, and labels the resulting set OUT .

In Step 3, the algorithm finds the escaping objects. Es-
caping objects are the objects in the transitive state of the
target class that can be seen from methods outside the tar-
get class. To find these objects, the algorithm visits all the
deferred edges that start in OUT and end in TARG. We
are only interested in the edges that end in TARG, because
we only care about escaping objects in the transitive state
of the target class. For such edges, the algorithm adds the
sink target node to the ESC set.

Fig. 5(a) shows an example of an escaping object. It shows
the points-to graph for the getLocation method, with an
additional node representing the return statement. We color
the transitive state of the target class (which is the transitive
closure of this) with orange. We then color the outside
nodes with blue. In this example, the only boundary node is
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return

this

c

Circle
public Point getLocat ion ( ) {

return c ;
}

(a) Example of an object escaping from getLocation

p

this

c

Circle

Point

actual public void moveTo( Point p) {
this . c = p ;

}

(b) Example of an object entering through moveTo

Figure 5: Detecting escaping and entering objects

the return node, and its transitive closure includes c. Notice
that c is colored with both blue and orange. This means c

escapes because it can be seen from the outside (it is blue),
and it is part of the transitive state of the class (it is orange).

In Step 4, the algorithm finds the entering objects. En-
tering objects are objects that are visible outside the target
class methods, and that can be seen from the target class.
To find these objects, the algorithm visits all the deferred
edges that start in TARG and end in OUT . We only visit
edges that start in TARG, because we only care about the
entering objects that are assigned to a field in the transitive
state of the target class. For such edges, the algorithm adds
the sink outside node to the ENT set.

Fig. 5(b) shows an example of an entering object. It shows
the points-to graph for the moveTo method. As before, the
transitive state of the target class is colored orange, and
the transitive closure of the boundary nodes (i.e., the actual
argument) are blue. The actual parameter is a part of the
transitive state of the target class (it is orange), and it can
be seen from the outside (it is blue). Therefore, objects may
enter through it.

For pedagogical reasons, we chose simple examples to il-
lustrate escaping and entering objects. In the codes illus-
trated in Fig. 5(a) and 5(b), it is very easy to spot the en-
tering/escaping objects. However, in many cases they are
more difficult to find, especially if objects enter or escape
through containers, or escape through parameters. Section 7
shows an example of a state object escaping through an it-
erator container. The open-source developer overlooked this
escaping object, but Immutator correctly finds it.

6. DISCUSSION
There are cases when the programmer wants only partial

immutability. For example, the programmer wants some
fields to be excluded from the immutable state of the class
(e.g., a Logger field), or some fields to be shallowly im-
mutable. Or the programmer does not want to clone the en-
tering/escaping objects (e.g., for performance reasons), but
rather to document contracts. These are trivial extensions
to Immutator and require no additional analysis.

Currently, Immutator handles most of the complexities of
an object-oriented language like Java: arrays, aliases, poly-
morphic methods, and generics. It models arrays as an al-
location site with just one field, which represents all the
array elements. Although this abstraction does not allow
Immutator to distinguish between array elements, it allows
Immutator to detect objects that enter or escape through ar-
rays. Immutator disambiguates polymorphic method calls by
computing the dynamic type of the receiver object using the
results of the points-to analysis described in Section 5.1. Im-

mutator also preserves the generic types during the rewriting.

Limitations Since Immutator analyzes bytecode, it cor-
rectly handles calls to third-party libraries. However, if the
program invokes native code, Immutator can not analyze it.
Also, like any practical refactoring tool, Immutator does not
handle uses of dynamic class loaders or reflection.

Future work We plan to solve the usage problem, i.e.,
updating the client code to use the transformed class in an
immutable fashion.

Additionally, we will relax some of the constrains imposed
by the current preconditions, to allow Immutator to transform
more classes. For example, we could completely eliminate
the requirement that the target class has no superclass/sub-
class (P1/P2), by allowing Immutator to transform a whole
class inheritance hierarchy at once. Similarly, we could elim-
inate the requirement that mutators have a void return type
(P3). Immutator could, for example, return a Pair object
which encapsulates both the old return type, and the newly
created object. Immutator would then have to change the
callers of such methods to fetch the appropriate fields.

7. EVALUATION
To evaluate the usefulness of Immutator we answer the fol-

lowing research questions:

Q1: How applicable is Immutator?

Q2: Is Immutator safer than manual transformations?

Q3: Does it make the programmer more productive?

All these questions address the higher level question “Is
Immutator useful?” from different angles. Applicability mea-
sures how many classes in real-world programs can be di-
rectly transformed, i.e., they meet the preconditions. Cor-
rectness ensures that the runtime behavior is not modified
by the transformation. Productivity measures whether au-
tomation saves programmer time.

7.1 Methodology
We use a combination of three empirical methods, one

controlled experiment and two case studies, that comple-
ment each other. The experiment allows us to quantify the
programmer time and programmer errors, while the case
studies give more confidence that the proposed algorithm
and experiment findings generalize to real-world situations.

Case Study #1 (CS1) We ran Immutator on all classes
in 3 open-source projects, a total of 346 concrete classes.
Table 1 shows the projects that we used: Jutil Coal 0.3,
jpaul 2.5.1 and Apache Commons Collections 3.2.1.

We do not suggest that every class in a project should be
immutable. That is not for a tool to decide. Rather, we
evaluate how well the transformation works over all classes
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proj. SLOC tests classes analyzed edits/ time/ passed preconditons failed preconditons
methods class2 class classes mutator enter escape classes P1 P2 P3 P4

jutil 4,605 70 70 3,397 43 2.09 s 32 39 12 19 34 3 16 10 24
jpaul 5,661 42 54 2,471 33 2.16 s 21 25 11 2 26 4 11 9 9
apache 26,323 13,009 222 12,857 50 2.44 s 57 29 16 13 156 24 90 64 63
Total 36,589 13,122 346 18,725 45 2.33 s 110 93 39 34 216 31 117 83 96

Table 1: Results of applying Immutator to 3 open-source projects

without imposing a selection criteria that could limit the
generalization of the findings.

Case Study #2 (CS2) We also conducted case stud-
ies of how open-source programmers implement immutabil-
ity. To find existing immutable classes in real-world projects
we used two code search engines: krugle (www.krugle.org),
and Google (www.google.com/codesearch). We searched
for Java classes whose name contains the word ‘Immutable’
and classes whose documentation contained the word ‘Im-
mutable’. These are classes that are likely to be immutable,
and the documentation of these classes confirmed that the
developers intended them to be immutable. We also searched
for classes implementing an Immutable interface, a convention
used in some open-source projects. In cases when we found
errors in their immutable classes, we contacted the develop-
ers to ask for clarification.

Controlled Experiment We asked 6 experienced pro-
grammers (with an average of 7 years of Java programming)
to manually transform for immutability 8 classes from the
JHotDraw 5.3 framework. JHotDraw is an open-source 2D
graphics framework for structured drawing editors.

We gave each programmer a 1-hour tutorial on making
classes immutable, and then we asked them to transform
one or two JHotDraw classes and report the time. We used
classes from the Figure class hierarchy that made sense to be-
come immutable. Since the Figure classes are part of a deep
class inheritance hierarchy, we told the participants to treat
the target class as if it was the only class in the hierarchy, i.e.,
to change only the target class. No programmer got a class
larger than 400 LOC. We also used Immutator to transform
the same classes (we relaxed the first two preconditions),
and we compared the results against a golden-standard.

To answer the applicability question, we wrote a statistics
tool that applied the transformation to all classes in each
project from CS1. For classes that did not pass all precon-
ditions, the tool collected the failed preconditions. Since we
ran Immutator in automatic mode, it only applied the trans-
formation to classes that passed all preconditions. In inter-
active mode, Immutator could have transformed more classes,
after the programmer addressed failed preconditions.

To answer the correctness question, we ran extensive test
suites before and after all transformations from CS1. We
only used projects that had extensive tests to help us confirm
that the transformation did not break the systems. We also
carefully inspected a few classes that we chose randomly.

To be able to run existing test suites, we wrote a tool
that generates a mutable adapter between the immutable
classes and the tests. The adapter has the same interface
as the original class, but contains a reference to an instance
of the immutable class. When a test calls a mutator, the
adapter invokes the corresponding factory method of the
immutable instance, and assigns the returned object to the
reference. Our generated adapters were not adequate for
9% of the case study classes, due to not supporting static
instance fields. Additionally, due to exceptions raised by

our current implementation, we failed to analyze 20 of the
classes in CS1. These were excluded from the reported data.

Furthermore, to compare correctness of manual versus
tool-assisted transformation, we carefully analyzed the im-
mutable classes that were produced manually in the second
case study (CS2) and in the controlled experiment.

To answer the productivity question, we used Immutator to
transform all the classes in Table 1 that met the precondi-
tions. For each class, we report the number of methods that
Immutator analyzed, as well as the number of source changes.
We further broke this down into the total number of lines
that had edits, the number of mutators that had to be con-
verted to factory methods, and the number of entering or
escaping objects that had to be cloned. We also report the
time Immutator spent analyzing and transforming the code.
For the controlled experiment, we asked each programmer
to report the time spent to analyze and transform a class.

7.2 Results
To be useful, Immutator must be applicable, correct, and

must increase programmer productivity.

7.2.1 Applicability
Table 1 shows that 33.74% of the classes in CS1 meet the

preconditions without requiring any modification from the
programmer. Out of the classes that failed preconditions,
most are due to superclasses containing mutable state (P2),
entering/escaping objects (P4), and mutators with non-void
return values (P3).

However, keep in mind that a programer would not select
all classes, but rather the ones that provide benefit. We
hypothesize that such classes are more likely to meet the
preconditions. Even in cases when classes do not meet all
preconditions, Immutator enables the programmer to identify
issues with the push of a button.

7.2.2 Correctness
For each project in CS1, we ran the full test suite before

and after the transformations. The transformations did not
cause any new failures.

Table 2 shows that even expert programmers make er-
rors when creating immutable classes. The last set of three
columns show how many entering or escaping objects the
open-source programmers forgot to clone, and how many
mutating methods they still left in the immutable class.

We confirmed with the open-source developers that our
findings indicate genuine immutability errors in their code,
and that developers meant those classes to be deeply im-
mutable. Most agreed that their implementation choice was
an incorrect design decision or was made for the sake of per-
formance. Furthermore, the JDigraph developers took our
patch and fixed the errors.

Table 3 shows the data for the controlled experiment. Pro-

2Does not include the adapter class

68



project immutable class programmer errors

mutator enter escape

JDigraph ImmutableBag - 1 -

FastNodeDigraph - 2 -

HashDigraph - 2 -

ArrayGrid2D - 2 -

MapGrid2D - 2 -

WALA ImmutableByteArray - 1 -

ImmutableStack - 2 3

j.u.c.3 ImmutableEntry - 2 2

Guava ImmutableEntry - - 2

peaberry ImmutableAttribute - - 1

Spring ImmutableFlow-

AttributeMapper 2 2 -

Table 2: Immutability errors in open-source projects

grammers made errors similar with the ones in CS2. How-
ever, the density of errors was higher: 6.37 errors/class. The
manual inspection of the immutable classes generated by our
prototype implementation revealed 4 bugs. None of these
were inherent to the algorithm.

7.2.3 Productivity
Table 1 shows that Immutator saved the programmer from

editing 45 lines of code per target class on average. More
important, many of these changes are non-trivial: they re-
quire analyzing 57 methods in context to find transitive mu-
tations, entering and escaping objects. In contrast, when
using Immutator, the programmer only has to initiate the
transformation. On average, Immutator analyzes and trans-
forms a class in 2.33 seconds using a Macbook Pro 4.1 with
a 2.4 GHz Core 2 Duo CPU. Compared to the time taken
to manually transform a class in the controlled experiment,
27 minutes, this is an improvement of almost 700x.

8. RELATED WORK
Specifying and checking immutability There is a

large body of work in the area of specifying or checking im-
mutability [16,22,26].

Pechtchanski and Sarkar [16] present a framework for spec-
ifying immutability constraints along three dimensions: life-
time (e.g., the whole lifetime of an object, or only during a
method call), reachability (e.g., shallow or deep immutabil-
ity), and context. Immutator enforces deep immutability for
the whole lifetime of an object, on all method contexts.

Tschantz and Ernst [22] present Javari, a type-system ex-
tension to Java for specifying reference immutability. Ref-
erence immutability means that an object can not be mu-
tated through a particular reference, though the object could
be mutated through other references. In contrast, object
immutability specifies that an object can not be mutated
through any reference, even if other instances of the same
class can be. Zibin et al. [26] build upon the Javari work
and present IGJ that allows both reference and object im-
mutability to be specified. Class immutability specifies that
no instance of an immutable class may be mutated. Refer-
ence immutability is more flexible, but weaker than object
immutability, which in turn is weaker than class immutabil-
ity. Immutator enforces class immutability.

3java.util.collections

JHotDraw SLOC time programmer errors

class [min] mutator escape enter

EllipseFigure 104 17 1 - 5

ArrowTip 145 15 - - -

ColorEntry 97 16 - - 1

ImageFigure 154 20 2 - 4

LineConnection 344 53 2 1 2

FigureAttributes 204 24 1 1 1

TextFigure 381 45 7 2 6

PertFigure 311 30 10 - 5

Total 1740 220 23 4 24

Table 3: Results of the controlled experiment

These systems are very useful to document the intended
usage and to detect violations of the immutability constraints.
But they leave to the programmer the tedious task of remov-
ing the mutable access. In contrast, Immutator performs the
tedious task of getting rid of mutable access, by converting
mutators into factory method, and cloning the state that
would otherwise escape.

Supporting program analyses Components of our
program analyses have previously been published: detecting
side-effect free methods [1,18–20] and escape analysis [4,24].
Our analyses detect side effects and escapes only on state
that is reachable from the target class.

Side-effect analysis [1, 18–20] uses inter-procedural alias
analysis and dataflow propagation algorithms to compute
the side effects of functions. There are two major differ-
ences between these algorithms and Immutator’s analysis for
detecting mutators. First, the search scope is different. Our
algorithm detects side-effects to variables that are part of the
transitive state of the target class, whereas previous work
determines all side-effects (including side effects to method
arguments that do not belong to the transitive state). Con-
sider the method drawFrame from TextFigure in JHotDraw:

public void drawFrame ( Graphics g ) {
g . setFont ( fFont ) ;
g . s e tCo lo r ( ( Color ) ge tAt t r ibute ( ”TextColor ” ) ) ;
g . drawString ( fText , . . . ) ;

}

The previous algorithms would determine that drawFrame

is a mutator method, because it has side effects on the graph-
ics device argument, g.

However, if Immutator transforms TextFigure then drawFrame

will not mutate the transitive state of the target class, thus
eliminating the need to clone the graphics device.

Second, our algorithm distinguishes between (i) methods
in the target class that directly or indirectly assign to the
fields of the target class and (ii) methods outside the target
class (potentially in libraries) that do not assign to target
class’ fields, but mutate these fields transitively. Immuta-

tor converts the former mutators into factory methods, and
rewrites the calls to the latter methods into calls dispatched
to a copy of this (e.g., see the this receiver in Fig. 1, lines
28–29). This enables Immutator to correctly transform code
that invokes library methods.

Escape analysis [4,24] determines if an object escapes the
current context. So far, the primary applications of this
analysis has been to determine whether (i) an object allo-
cated inside a function does not escape and thus can be
allocated on the stack, and (ii) an object is only accessed
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by a single thread, thus any synchronizations on that object
can be removed. There are three major differences between
these algorithms and Immutator’s escape analysis. First, our
algorithm detects escaped objects that belong to the tran-
sitive state of the target class. Second, our algorithm is
designed to be used in an interactive environment. Thus,
it does not perform an expensive whole program analysis,
but only analyzes the boundary methods of the target class.
Third, in addition to escaping objects, our algorithm also
detects entering objects.

Refactoring The earliest refactoring research focused on
achieving behavior-preservation through the use of pre- and
post-conditions [15] and program dependence graphs [10].
Traditionally, refactoring tools have been used to improve
the design of sequential programs. The more recent work has
expanded the area with new usages. We have used refactor-
ing [5, 6] to retrofit parallelism into sequential applications
via concurrent libraries. In the same spirit, Wloka et al. [25]
present a refactoring for replacing global state with thread
local state. Schäfer et al. [21] present Relocker, a refactoring
tool that lets programmers replace usages of Java built-in
locks with more flexible locks. Our transformations for class
immutability makes code easier to reason about and enables
parallelism by prohibiting changes to shared state.

9. CONCLUSIONS
Programmers use immutability to simplify sequential, par-

allel, and distributed programming. Although some classes
are designed from the beginning to be immutable, other
classes are retrofitted with immutability. Transforming mu-
table to immutable classes is tedious and error-prone.

Our tool, Immutator, automates the analysis and transfor-
mations required to make a class immutable. Experiments
and case studies of manual transformations, as well as run-
ning Immutator on 346 open-source classes, show that Immuta-

tor is useful. It is applicable in more than 33% of the stud-
ied classes. It is safer than manual transformations which
introduced between 2 and 6 errors/class. It can save the pro-
grammer significant work (analyzing 57 methods and editing
45 lines) and time (27 minutes) per transformed class.

Acknowledgments
This research was partially funded by Intel and Microsoft
through the UPCRC Center at Illinois, and partially sup-
ported by NSF grant 0833128. The authors would like to
thank Vikram Adve, John Brant, Nick Chen, Ralph John-
son, Darko Marinov, Edgar Pek, Cosmin Radoi, Manu Srid-
haran, and anonymous reviewers for providing helpful feed-
back. Danny thanks Monika Dig, his greatest supporter.

10. REFERENCES
[1] J. P. Banning. An efficient way to find the side effects

of procedure calls and the aliases of variables. In
POPL, pages 29–41, 1979.
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Abstract
Hydra accepts an equation written in terms of operations on
matrices and automatically produces highly efficient code to
solve these equations. Processing of the equation starts by
tiling the matrices. This transforms the equation into either a
single new equation containing terms involving tiles or into
multiple equations some of which can be solved in parallel
with each other.

Hydra continues transforming the equations using tiling
and seeking terms that Hydra knows how to compute or
equations it knows how to solve. The end result is that
by transforming the equations Hydra can produce multi-
ple solvers with different locality behavior and/or different
parallel execution profiles. Next, Hydra applies empirical
search over this space of possible solvers to identify the most
efficient version. In this way, Hydra enables the automatic
production of efficient solvers requiring very little or no cod-
ing at all and delivering performance approximating that of
the highly tuned library routines such as Intel’s MKL.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Performance, Algorithms, Parallelism

Keywords Automatic Derivation, Linear Algebra

1. Introduction
Years of research have led to very powerful algorithms to
solve linear algebra on all classes of machines. The algo-
rithms and implementation strategies used for sequential
systems differ from those used for parallel systems. For this
reason, implementations that were developed for sequential
machines may not be the ideal place to start when looking
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towards parallel solutions to a problem since some of the se-
lections made to obtain efficient sequential codes may have
to be changed in order to obtain as good parallel version.

Loss of information. Typically, a program is developed
starting with an examination of the problem. Then, an al-
gorithm to solve it is devised and refined with certain ob-
jectives in mind. We can assume that the goal was to min-
imize complexity while ensuring good numerical behavior.
And while minimizing the complexity of an algorithm usu-
ally translates into less computation and thus faster sequen-
tial programs, this is not always the most important consid-
eration for modern machines where locality and parallelism
are of crucial importance. For parallel systems in particular,
one should focus on minimizing execution time, reducing
power consumption or a combination of these. Thus finding
and exposing the independence of the computation becomes
an important factor which is sometimes more important than
minimizing the quantity of computation.

The next step is the implementation of the algorithm.
Given that compilers often fail to generate optimal programs,
programmers that aim at maximum performance will often
apply transformations on their code to help the compiler in
its optimization process to the point where it can become
difficult to recognize what the code is doing. For example,
Figure 1 presents a simple triply nested loop that performs a
matrix multiplication. Figure 2 is the same code, after appli-
cation of a set of source optimization: tiling, scalar promo-
tion, loop unrolling and loop interchange. The code now has
3 additional loops with larger strides, the innermost loop has
two statements operating on scalars and single dimension ar-
rays instead of three double dimension arrays. While these
transformations may optimize sequential performance on a
specific machine, they may hide parallelism to a paralleliz-
ing or vectorizing compiler or even from the programmer.

We thus make the argument that, when possible, parallel
programs should be written starting at the problem specifi-
cation rather than with a sequential implementation or algo-
rithm.

Tuned parallel code generation.In this paper, we de-
scribe a system that automatically derive parallel codes from



for(int i = 0 ; i < N ; i++)
for(int j = 0 ; j < N ; j++)
for(int k = 0 ; k < N ; k++)

c[i][j] += a[i][k] * b[k][j];

Figure 1. Matrix multiplication baseline

for(int ii = 0 ; ii < N ; ii+=B){

for(int jj = 0 ; jj < N ; jj+=B){
for(int kk = 0 ; kk < N ; kk+=B){

for(int i = ii ; i < ii + B ; i++){
for(int k = kk ; k < kk + B ; k++){
c_i = c[i];

a_ik = a[i][k];
b_k = b[k];

for(int j = jj ; j < jj+B ; j+=2){
c_i[j] += a_ik * b_k[j];
c_i[j+1] += a_ik * b_k[j+1];

}
}

}
}

}
}

Figure 2. Optimized Matrix Multiplication

high level descriptions of linear equations. This description
includes the expressions in the mathematical equation, and
information on the operands. Working from this equation,
the system defines parameters to characterize a class of par-
allel solutions using a divide and conquer approach, then
explores this space of solutions to determine the best. Our
system’s output is a collection of equations connected by a
dependence graph that describes a solution to the original
equation.

Outline. The rest of this paper is organized as follows.
Section 2 describes the system. and Section 3 elaborates on
the generator component that is at the core of our contri-
bution. Section 4 presents results obtained on some matrix
problems. Section 5 discusses related work and finally Sec-
tion 6 describes our conclusions.

2. Overview of Hydra
Hydra is a code generator that starts from a mathematical
description of matrix linear equations to solve, and gener-
ates parallel codes for multi-core architectures. The steps in-
volved in this generation are described in Figure 3. The input
is the description of the equation to solve and a collection of
routines with their associated signatures. The signature iden-
tifies the form of the equation to be solved and the nature of
the terms. For example, the signature

LT ·UNK = MT

represents an equation of the formL ·X = M with X an un-
known (denotedUNK) andL a lower triangular matrix (de-
notedLT). Relying on algebraic properties and on the shape
of the matrices, Hydra applies a divide-and-conquer strategy
to automatically generate different recurrent formulations of

the initial problem. This crucial step is presented in the fol-
lowing section. As a result, multiple formulations are gener-
ated, they differ in terms of parallelism, computation grain
and data locality.

To identify the fastest version produced by the generator,
each one is executed on the actual target multi-core machine.
This requires the target system to be available and some
input data sets for the problem to solve. An alternative to
this auto-tuning approach would be to rely on performance
prediction [10] and keep for testing only the versions with
the best performance prediction, or even remove the need
for any execution. This possibility is not addressed in this
paper. For input data sets, we assume that the user provides
sample data sets or data generators. For dense linear algebra,
the determining factor of performance is the size of the input
data. It is thus important that the data provided matches the
size or size range of the data with which the program would
be used afterwards. The rest of this section describes the
different components and their roles in more details.

Description Generator Version Predictor

ExecutionDriver

Implementation

Figure 3. System graph

Our mathematicaldescription languagecan represent
matrix equations to solve. The only required information
beyond the actual equation is the shapes of the matrices
involved (e.g. triangular, symmetric matrices).

For a class of problems which can be said arenatively
supported, no additional information is required. In other
words, it is not necessary to provide an algorithm to solve
these problem. Figure 4 presents a full example with the de-
scription of a discrete triangular Sylvester equation (DTSY).

The input consists in:

• An equation on matrices. Basic matrix operations can
be handled. So far, only addition, substraction, multi-
plication are supported in our current implementation.
The matrices used in the equation are each described
by their shapes, using the keywordsSquare, Upper

Triangular, Lower Triangular and by their nature
with the keywordUnknown. Matrices are assumed to be
known by default, i.e. part of the input.

• The optional description of a library function, a kernel,
that can be executed to solve this problem. Hydra can use
this function for the base case of the recursion.

• An optional list of equations corresponding to other prob-
lems with the kernels to solve them; This list can be used
by Hydra to solve subproblems of the initial problem.



%% Operands
X: Unknown Square Matrix
A: Upper Triangular Square Matrix

B: Lower Triangular Square Matrix
C: Square Matrix

%% Equation

A ·X ·B−X =C

%% Parameters

@name sylvester
@codelet sylsolv

@operands A B C

Figure 4. Discrete Triangular Sylvester Equation descrip-
tion

The main component is theGenerator. The generator
has a set of native transformation rules that it applies on
equations. In particular, it transforms a single equation into
a set of equations, in order to generate divide-and-conquer
solutions to the problem. The results are task graphs that
represent different possible implementations. The generator
is further described in section 3.

In the future, aPredictor filter could be inserted between
the generator and the empirical evaluation step. This compo-
nent could increase the number of valid algorithms and im-
plementation that can be evaluated in a fixed amount of time.
Performance prediction is a difficult problem, but analysis
of the generated task dependence graph can be performed to
build bounds on achievable performance. The graphs width
and the length of the critical path are examples of metrics
that can be used to such end.

The Code Generator / Executioncomponent performs
empirical evaluation of the different versions. It first con-
verts the task graph into code, using the StarPU[1] runtime
scheduler API, compiles it and runs it on sample data to
measure appropriate metrics (e.g. execution time, memory
usage, power consumption, . . . ). Performance data are sent
forth to the driver component. Sample data or data genera-
tors must be provided. Although in the current version, the
output is selected based on a single data set, it is easy to
extend the system so that it could generate input dependent
libraries, that select a version as a function of characteristics
of the input data, which in the case of dense linear algebra
would be the size of the matrices and vectors.

If a codelet implementation is missing to translate a
graph, a message is generated, presenting both the equa-
tion and its signature. Hydra can be used as an interactive
development tool.

Finally, theDriver manages the process. In the simplest
case, which is the one currently implemented, it restricts the
search to a subset of all possible tilings of the equation,
keeping track of the fastest version, applying successive
recursive decompositions and stopping the generator once
all cases have been tested. But it can also implement machine
learning techniques to reduce the search space and improve
filtering poor versions out.

3. Generator
The generator is Hydra’s main component. It accepts the
high level description of an equation, breaks it into multi-
ple equations operating on smaller matrices, and possibly
repeats this process by further breaking the generated equa-
tions. Along the way, the generators builds a task depen-
dence graph specifying the necessary order in which these
equations must be solved.

The generator operates on one equation at a time and
on the dependence graph. At the beginning, the dependence
graph has a single node representing the initial equation.
At each step, the generator expands an equation by tiling
its operands and then adjusting the dependence graph to
incorporate the new equations and remove the one that was
expanded.

Example 1: Consider the equationM = L ·X with M a
known matrix,L a known lower triangular matrix andX
an unknown matrix. A way to expand this equation, is to
convert each operand into a tiled array with two tiles along
each dimension. Therefore, from

(
M00 M01

M10 M11

)
=

(
L00 0
L10 L11

)
·

(
X00 X01

X10 X11

)

we obtain the following four equations.

M00 = L00 ·X00 (1)
M01 = L00 ·X01 (2)
M10 = L10 ·X00+L11 ·X10 (3)
M11 = L10 ·X01+L11 ·X11 (4)

The dependence graph associated with the initialM =
L ·X equation is a single node. For the equations resulting
from the expansion the dependence graph has four nodes,
one per equation. We label the nodes with the numbers given
to each equation above. The graph has two arcs. One from
node (1) to node (3) becauseX00 must be computed by
solving equation (1) before equation (3) can be solved for
X10 and another from node (2) to node (4) becauseX01 is
needed to solve equation (4).

Example 2: Figure 5 illustrates the behavior of the gen-
erator for equationL ·X ·U−X =C. The first column of the
the flow diagram, illustrates the initial steps followed by the
generator. At the beginning, the original equation is avail-
able and the associated dependence graph is empty. Next,
in a process we callderivation, the equation is expanded
into four new equations while the dependence graph stays
unchanged (i.e. empty). Finally, a process that we calliden-
tification generates a dependence graph linking the newly
generated equations.

The last column of the figure, illustrates a step further
down the road. An equation, the one labeled (4), has been se-
lected for expansion. It is expanded into four new equations,
and the identification step generates a dependence graph for



Figure 5. Generator overview with example

those new equations as well as integrates it into the larger
dependence graph that represents the problem.

Termination of the generator can be decided by charac-
teristics of the dependence graph, or by a recursion depth
when all the operators have been tiled to the same granular-
ity. In Example 2 we assume that termination happens after
all equations have been expanded twice (recursion depth of
two).

3.1 Equation Expansion or Derivation

Equation expansion is the process by which different al-
gorithms are generated by the system. Different ways of
tiling and different depths of recursion produce different
algorithms. The first step of expansion, described in sec-
tion 3.1.1, is to make sure that tiling is done in the right
way. There would typically be numerous ways of tiling the
operands and this defines the exploration space from where
the final version of the solver will be selected. Section 3.1.2
describes how a solution is generated for one point in the
exploration space.

3.1.1 Validity of tiling

The first step in the process of deriving an equation is to par-
tition the operands of this equation into tiles. When consid-
ering matrix operations, one cannot arbitrarily partitionthe
operands. Since we partition the operands in order to per-
form symbolic execution of the operation, a few basic rules
must hold. e.g. when multiplying two matrices A and B, the
number of columns of A must be equal to the number of
rows of B. A blocking that does not conserve those rules is
considered invalid and shouldn’t be considered.

Instead of generating all possible tilings and then check-
ing their validity, we ensure that only useful tilings are gen-
erated. To do so, we use the matrix operation properties to
build a set of relations between the operand dimensions and
only generate tilings satisfying those relations. Block and
matrix sizes are at this point completely symbolic.

The shapes of the operands may also guide how block-
ing is applied to generate new equations with recognizable
shapes. For example, we may want to block a triangular ma-
trix so that it contains triangular matrices on the diagonal.

Figures?? to ?? illustrate the first step of the process.
Where we propagate the operands’ dimensions. For this ex-
ample, we look at equationA ·X ·B−X =C.

First (figure ??) the system creates the operation tree
assigning a tuple (x,y) to each operand where x and y are
the number of blocks per column and row respectively (see
figure 7). Real operands correspond to the leaves and the root
of the tree, they are named in the original equation. Virtual
operands are inner nodes of the tree and have no name in the
original equation.

We then look at the virtual operands to assign them a tuple
of dimensions. Knowing the dimensions of two operands of
a matrix operation, we can deduce the dimensions of the
result. i.e. the product of am×n-matrix by a n×l -matrix
will produce am×l -matrix. For example (figure??) we can
assign the tuple(xA,yX) to the node that is the result of the
product of A by X.

Now that all operands (real and virtual) have been as-
signed a set of dimensions, the system will examine each op-
erational node in the tree and create the set of equations (1).
For example, when looking at the node that represents the
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Figure 6. Operation Tree
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Figure 7. An operand’s tiling dimensions

product of A.X by B. The number of columns of the left
hand operand has to be equal to the number of lines of the
right operand. That leads to equationyA = xX.

From equationsyA = xX, yX = xB, xA = xX, yB = yX ,
xC = xX , andyC = yX we get two sets of constraints on the
number of tiles per dimension.

{xA = yA = xX = xC}

{xB = yB = yX = yC}
(1)

Exploring all possible tilings of the problem is now re-
duced to finding two values and assigning them to their re-
spective sets of variables.

3.1.2 Tiling

To derive the equation the system first partitions (tiles) its
operands. It relies on the properties of matrix operations.
Once the operands have been partitioned, we use symbolic
execution of tiled operations to generate new sets of equa-
tions.

An important aspect of our system is how the operands’
shapes are used to identify the unnecessary computation.
0-blocks (a matrix block that only contains 0 values) are
absorbing elements for the matrix multiplication (i.e. 0·X =
0) and identity elements for matrix addition (i.e. 0+X = X),
thus computation involving 0-blocks can be simplified.

Figure 8. Original equation with operand shapes

Figure 9. Tiling operands

Figure 10. Expansion generates new equations

Figure 11. Removing 0 operands

Figures 8 to 11 illustrates an example of such block par-
titioning. In 11 the bottom two equations have been simpli-
fied since it is known from the shape information that block
A(1,0) is all zeros.

3.2 Identification and Dependence Graph
Computation

Once a collection of new equations is created by tiling the
operands (section 3.1), the generator proceeds to identify



the tasks described by those equations, and generate the
dependence graph between those tasks. In this section, we
describe how to achieve this.

3.2.1 Building Dependences

The crucial step in building the dependence graph is deter-
mining what is the input and output of each one of the equa-
tions. The input to Hydra identifies matrices whose values
that are known at the outset. As discussed in Section 2, these
are the matrices not annotated with theUnknown keyword in
the input to the system. These matrices are placed by Hydra
in the input setto the equations where they appear. Also all
tiles of these known matrices and vectors are assumed to be
input to the equations where they appear. All other operands
are initially placed in theoutput setof the equations.

Example 3:Let us consider again the equationM = L ·X
from Example 1.

Because matricesM andL are known, we have that ma-
tricesLi j andMi j for i, j ∈ {0,1} are also known, and be-
cause matrixX is unknown we have that matricesXi j for
i, j ∈ {0,1} are unknown.

And here are a couple of input/output set examples :

Equation Input set Output set

M00 = L00 ·X00 {M00,L00} {X00}
M10 = L10 ·X00+L11 ·X10 {M10,L10,L11} {X00,X10}

Algorithm 1 describes the process used to build the de-
pendence graph for a newly created set of equations. The
algorithm first (line 2) selects anunidentified equationfrom
E. Then (line 3) it removese from E converting in this way
e into an identified equation. An equatione is selected if
the system contains a kernel capable of solving the equation.
This means that there is a kernel that accepts as input all ma-
trices in the input set of the equation, solves the equation,
and returns values for each of the matrices in the output set
of the equation.

Algorithm 1 Building the dependence tree
1: while E 6= /0 do
2: Selecte in E % See section 3.2.2
3: E← E \ {e}
4: for all o∈ e.out putdo
5: for all d ∈ E do
6: if o∈ d.out putthen
7: T← T ∪{(e;d)}
8: d.out put← d.out put\ {o}
9: d.input← d.input∪{o}

All the matrices in the output set ofe can, after identifi-
cation, be considered as inputs to any of the equations inE.
To reflect that fact, the loop on line 4 finds every equation in
E that hase’s output matrices in their own output set (until
this point, those variables were unknown to every equation
using them) and transfers it to their input set. In addition,

a dependence edge is added between equatione and every
equation that uses matrices from its output set. Section 3.2.2
discusses the details of this process of selection.

OnceE is empty, every equation has been identified and
added to the dependence graph. The process is then over.

Example 4:Let us consider one more time the equation

M = L ·X,

whereM is a known matrix,L is a known lower triangular
matrix andX is an unknown matrix. Each matrix is parti-
tioned once along each dimension. The following equations
are generated and added to setE with their associated input
and output sets.

Equation Input set Output set

(1) M00 = L00 ·X00 {M00,L00} {X00}
(2) M01 = L00 ·X01 {M01,L00} {X01}
(3) M10 = L10 ·X00+L11 ·X10 {M10,L10,L11} {X00,X10}
(4) M11 = L10 ·X01+L11 ·X11 {M11,(4)10,L11} {X01,X11}

Equation (1) can clearly be solved using a triangular
solver, but equation (3) cannot be solved until (1) has been
solved because the value ofX0,0 is needed for its solution.
Also, equation (2) can be solved, but equation (4) must
wait for the solution to equation (2). When equation (1) is
selected, the matrixX00 becomes a known variable. Since
equation (3) hasX00 in its output set, a dependence edge is
created between (1) and (3)T = T∪{((1)→ (3))}. And the
input and output sets are updated. In addition, (1) is removed
from E.

Other arcs in the dependence graph (those corresponding
to incoming and outgoing arcs from the equation before ex-
pansion) can be trivially added since all that is needed is to
connect elements in the output set in one equation to ele-
ments in the input set of other equations. The reason is that,
except for newly expanded equations (which as mentioned
above may have an incorrect number of matrices in the out-
put set), the input and output set of all equations are properly
defined.

Equation Input set Output set

(2) M01 = L00 ·X01 {M01,L00} {X01}
(3) M10 = L10 ·X00+L11 ·X10 {M10,L10,L11,X00} {X10}
(4) M11 = L10 ·X01+L11 ·X11 {M11,L10,L11} {X01,X11}

3.2.2 Selection

The selection of an equation to add to the dependence tree
is performed following algorithm 2.

This process consists in identifying which equations are
solvable and thus can be added to the dependence graph.

First (line 1), we look for an equation that matches the
original problem. This is done by direct comparison of the
equation’s signature to the signature of the original problem.
Signatures are explained in detail in section 3.2.3.

If no such equation is found (line 4), we examine the
equations looking for one that can be massaged into a match
of the original problem. This is achieved by simplification
of the equations signature, if an equation’s signature can
be made to match the main equation’s signature then they



Algorithm 2 Equation Selection
Require: SetE of equations

1: for all e∈ E do
2: if e.signature= main.signaturethen
3: return e
4: for all e∈ E do
5: if |e.out put|= |main.out put| then
6: if simplification(e.signature,main.signature)then
7: e← expand(e)
8: return e
9: for all e∈ E do

10: if |e.out put|= 1 and solvable(e) then
11: return e
12: print Error

are equivalent if some pre-processing computation is per-
formed. For example, the equationL ·X + B = M with L
lower triangular andX unknown does not match the signa-
tureLT ·UNK = MT, but if we expand that into two equa-
tions: (1)R= M−B and (2)L ·X = M where (1) is a pre-
processing step, we would get a match.

On line 7, the equation is replaced by a subgraph that
contains the pre-processing steps and the new equation that
matches the original. Simplification rules are explained in
section 3.2.3 and the expansion step is explained in section
3.2.4.

Finally, if no equation is found that matches the original
or can be made to match the original, we look for simple
equations that produce a single output and are directly solv-
able (e.g. a matrix multiplication of the form Unknown =
Known * Known)

Example 5: In the first selection step in Example 4, both
M00 = L00 ·X00 andM01 = L00 ·X01 are possible candidates.
Both equations match the original problem : i.e. the product
of a lower triangular matrix by an unknown equaled to a
known matrix.

3.2.3 Signatures and Simplification

We define an equation’s signature as the combination of the
operations it contains and the shapes of its operands.

Let the following abbreviations stand:

• LT : Known Lower Triangular Matrix

• UT : Known Upper Triangular Matrix

• MT : Known Matrix of Unspecified shape

• UNK : Unknown matrix

• UNK LT : Unknown Lower Triangular matrix

• UNK UT : Unknown Upper Triangular matrix

For example, for LU decomposition (L ·U = A) the sig-
nature is :

UNK LT ·UNK UT = MT

The signature is used to identify the nodes. In particular
to identify when the new generated equations are instances
of the original problem on smaller data sets.

For the purpose of identification, simplification rules are
defined on an equation’s signature.

A few examples are :

• MT +MT ⇒ MT

• MT ·MT ⇒ MT

•
. . .MT = MT ⇒ . . .= MT−MT

The rules presented have variants for each combination
of shapes for the matrices. e.g.

• LT ·LT ⇒ MT

• LT +LT ⇒ LT

Example: Consider the equationL ·X +X ·U = M with
M a known matrix,L a known lower triangular matrix,U a
known upper triangular matrix andX and unknown matrix.
Each operand is blocked twice in each dimension.

The signature of the original problem isLT ·UNK +
UNK ·UT = MT

Consider the derivated equation

L00 ·X01+X00 ·U01+X01·U11 = M01

at a stage whereX01 is the only output. The equation signa-
ture is thus

LT ·UNK+MT ·MT +UNK ·UT = MT

and does not match the signature of the original problem.

LT ·UNK+MT ·MT +UNK ·UT = MT

⇔ LT ·UNK+MT +UNK ·UT = MT

⇔ LT ·UNK+UNK ·UT = MT−MT

⇔ LT ·UNK+UNK ·UT = MT

After simplification, the signature matches the original
problem.

3.2.4 Expansion

The expansion function allows to translate the simplifica-
tions applied on an equation’s signature into tasks. Every
simplification step applied on the signature is applied on the
actual operands of the equation, generating a graph of simple
solvable equations that lead to the new equation matching
the original problem.

Example: Consider the equation and the simplification
process described in the example in section 3.2.3.

LT ·UNK+MT ·MT L00 ·X01+X00 ·U01
+UNK ·UT = MT +X01 ·U11 = M01

⇔ LT ·UNK+MT +UNK ·UT = MT T0 = X00 ·U01
L00 ·X01+T0+X01 ·U11 = M01

⇔ LT ·UNK+UNK ·UT = MT−MT
⇔ LT ·UNK+UNK ·UT = MT T0 = X00 ·U01

T1 = M01−T0

L00 ·X01+X01 ·U11 = T1



For each simplification step that reduces the number of
operands, the corresponding operation is added to the nodes
equation set.

The set of operations corresponding to BLAS functions
are built-in Hydra, that is able to match them automatically.
In the previous example,T0 =X00·U01 thus matches a matrix
multiply kernel.

4. Results
Starting from different linear problems on matrices and
sequential kernels, Hydra generates automatically parallel
codes solving these problems and resorting to these kernels.
The task graph generated by Hydra is scheduled dynamically
with StarPU runtime system [1].

In the following experiments, all sequential kernels used
are from Intel MKL library [6]. In order to evaluate the
capabilities of Hydra in terms of parallel code generation,we
compare performance between the sequential MKL version
with the best parallel version generated by Hydra for any
given problem size. Besides, we compare the performance
with the parallel MKL version. All our experiments were
conducted on a 32-core (64 threads) platform composed of
four 8-core Intel L7555 CPUs with 64GB of memory.

Figure 12 presents the results for the matrix multiplica-
tion. Here the decomposition obtained through Hydra cor-
responds to a block matrix multiplication. Note that these
block matrix multiplications are not performed in-place, Hy-
dra generates copies for each tile, improving here locality.
We observe that the best parallel code generated by Hydra
consistently outperforms the MKL parallel version of the
matrix multiplication, for matrix sizes over 4000.
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Figure 12. Matrix Matrix Multiplication: X = A*B

For the triangular solver, Figure 13 shows performance
speed-ups compared to the sequential MKL and comparison
with the parallel version. Performance of Hydra remains
within roughly 10% of the parallel MKL performance. A
more detailed analysis in Figure 14 shows the influence of
the number of blocks on performance: tiling matrices in 10
by 10 blocks brings the best speed-up or large matrices.

Table 1 shows that for a blocking factor of 10, there
are 1000 tasks created, the maximum number of tasks ex-
ecutable at the same time during the course of the execution
is 90 (this is the width of the graph) and 255 copies of blocks
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Figure 13. Triangular Solver : L*X = C
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Figure 14. Exploring blocking factors for the triangular
solver : L*X = C.

Blocking factor Tasks Max Parallelism Copies
2 8 2 11
4 64 12 42
5 125 20 65
8 512 56 164
10 1000 90 255
16 4096 240 648

Table 1. Triangular Solver: Characteristics of the different
versions generated by Hydra, according to the blocking fac-
tor.

are performed. The high number of copies compared to the
number of computational tasks may account for some per-
formance loss.
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Figure 15. Triangular Sylvester:AXB−X =C



Figure 16. CTSY task graph for 2 by 2 blocking

Figure 15 show the speed-up of Hydra best code com-
pared to the sequential MKL version. On a 32-core machine,
the speed-up over 40 can be explained by the fact that Hy-
dra decomposes the triangular Sylvester problem into sub-
problems that have a higher sequential efficiency than MKL
CTSY (such as matrix multiplication). Thus, the speed-up
results from both the parallelization of the computation and
from the use of efficient kernels. The task graph obtained for
a 2 by 2 blocking of CTSY is shown in Figure 16. Square
tasks are copy tasks, darker rounded tasks are smalled in-
stances of CTSY and the others are various BLAS-3 opera-
tions. The method generated by Hydra to solve CTSY corre-
sponds to the one described by Jonssonet al. [7].

Moreover, we observe that the parallel MKL version of
CTSY has the same performance as the sequential one. This
shows here all the benefits of Hydra: from sequential kernels
and the initial formulation of the problem, we are able to
generate automatically, with no efforts in manual code tun-
ing, a parallel version of CTSY.
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Figure 17. LU Factorization: L*U = A

Finally, Figure 17 shows performance for LU factoriza-
tion. While the parallel MKL LU outperforms the code gen-
erated by Hydra, we note that the performance of Hydra con-
sistently grows with the problem size.

5. Related Works
The field of autotuning software generation tries to answer
the problem of generating high performance libraries that
are portable across platforms. The necessity comes from the

fact that compilers often fail to produce the best possible
executable from a normal source code, forcing programmers
to manually develop codes that are only optimized for the
specific machine it was developed for. Many projects have
tackled this problem in different fields, proving the validity
of exhaustive search to produce high performance library
generators.

ATLAS [9] is a system that exhaustively searches a space
of code transformations to find optimal implementations of
matrix multiplications and other BLAS operations on a tar-
get machine.

The Spiral [8] project is the closest to what is proposed
in this document. Spiral is a system to automatically gener-
ate high performance libraries for Digital Signal Processing
(DSP). It offers a language and set of operators to specify
linear transforms for DSP, from which their automatic gen-
eration system can derive different algorithms and in the end
implementations. They also use exhaustive search to evalu-
ate performance and select the best implementation among
all the versions generated by the system.

Our proposed system, differs from Spiral by its targeted
domain and from ATLAS in that its main focus on exposing
task parallelism. However, both projects offer insights inthe
different techniques that can be applied to guide the process
of exhaustive search through empirical execution of different
implementations.

The Flame [3] project advocates goal-oriented program-
ming. It offers a platform to develop algorithms in a system-
atical way to formally prove they achieve their goal. Flame
offers a framework to write iterative algorithms, while we try
to start from a problem and automatically derive algorithms
recursively using a divide-and-conquer approach. Besides,
the code generation approach presented here, relying on the
dynamic scheduling of a parallel task graph, differs from the
path chosen by Flame. Recent work from Fabregat-Traver
and Bientinesi [4] proposes an approach close to ours for
finding algorithmic solutions to matrix equations from their
mathematical expression. However, they do not explain how
the code is generated nor present any performance figures.

Finally, work by Barthouet al. [2] on auto-tuning at
source code level produce good results on matrix multipli-



cation, but suffered on more complex problems. The explo-
ration space for source to source transformation has to be de-
fined by the user through pragmas. For complex transforma-
tions, such as the ones leading to the task graphs produced by
Hydra, the sequence of pragmas required would by difficult
to identify, even by an expert. Besides, multiple implemen-
tations of a same algorithm can become radically different,
advocating for looking at problems at a higher level.

6. Conclusion
Hydra is a parallel code generator for a class of linear al-
gebra problems. It starts from the high-level expression of
the equation to solve and generates multiple versions of par-
allel task graphs solving the problem, for multi-core archi-
tectures. The essential idea of Hydra is to use a divide-and-
conquer approach to find an algorithmic solution to the ini-
tial description of the problem. While the recursive decom-
position could lead to scalar problems, we choose to rely
on existing highly optimized sequential libraries for the res-
olution of small enough problems. Moreover, we resort to
dynamic scheduling techniques in order to avoid load bal-
ancing issues.

We have shown that this approach is able to generate par-
allel codes with no development effort: the user only needs
to specify the equation to solve and provide sequential ker-
nels. Moreover, following an auto-tuning approach, the mul-
tiple versions generated by Hydra are combined into a code
with performance comparable to those of Intel parallel MKL
functions, even outperforming for matrix multiplication and
Sylvester triangular system resolution the parallel functions
of Intel MKL library.

For future works, we plan to generalize Hydra for the
generation of parallel codes for heterogeneous architectures.
Indeed, one advantage of using a dynamic scheduler such
as StarPU [1] is its capacity to handle systems with both
CPUs and GPUs. The decision of whether to run the kernel
on a CPU or an accelerator is made by the runtime system.
The runtime also handles all necessary data transfers. It
only requires to provide CPU and GPU versions for all
kernels (for instance MKL [6] and PLASMA [5] libraries).
Moreover, Hydra offers the opportunity to generate parallel
task graphs with non-uniform granularity, through different
blocking sizes. Such graphs would then have coarser grain
execution paths biased towards GPU execution and finer
grain paths, better suited for multicore execution.
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ABSTRACT
This paper introduces hierarchical overlapped tiling, a trans-
formation that applies loop tiling and fusion to conventional
loops. Overlapped tiling is a useful transformation to re-
duce communication overhead, but it may also generate a
significant amount of redundant computation. Hierarchical
overlapped tiling performs overlapped tiling hierarchically
to balance communication overhead and redundant compu-
tation, and thus has the potential to provide better perfor-
mance.

In this paper, we describe the hierarchical overlapped tiling
optimization and its implementation in an OpenCL compil-
er. We also evaluate the effectiveness of this optimization
using 8 programs that implement different forms of stencil
computation. Our results show that hierarchical overlapped
tiling achieves an average 37% speedup over traditional tiling
on a 32-core workstation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—Parallel Programming

General Terms
Algorithms, Languages, Performance

Keywords
Loop tiling and fusion, compiler optimization, stencil com-
putation

1. INTRODUCTION
1.1 Overlapped Tiling
Numerous techniques for the tiling of iteration spaces have
been proposed. The goal of tiling is to for improve data lo-
cality [27, 28, 1, 2, 24, 9, 22], or contribute to the scheduling

of parallel computation [26, 29, 6, 10, 30]. A complemen-
tary transformation, loop fusion can be used to decrease loop
overhead and enhance locality [17, 20].

In this paper, we discuss transformation by tiling and fusion
of stencil computation. Consider the code in Figure 1-(a).
Although this figure shows a natural representation of the
computation, the pair of loops may cause unnecessary cache
misses, depending on how they are scheduled. If the loops
are scheduled in the order specified by the code, the second
loop will incur frequent cache misses. To increase locality,
and also coarsen the granularity of the parallel tasks, the
programmer can tile and fuse the loops, as shown in Fig-
ure 1-(b). The resulting code requires an explicit barrier
to guarantee correctness, because of the data dependences
between neighboring tiles of iterations (during iteration t of
the outer loop, j consumes data produced by adjacent tiles
of loop i, namely tiles t−1 and t+1 or just one of them at the
boundaries). Notice that locality would improve if the same
task executes the corresponding i and j tiles in the code of
Figure 1-(b). However, good locality is only possible if array
A can be kept in cache memory when the execution moves
from the first to the second loop. If, however, the array A is
larger than the total cache of the processors executing the
loops, the traditional loop fusion and tiling transformation
applied in Figure 1-(b) will not benefit from locality, because
all the iterations of the i loop must complete before the j
loop executes. Besides the difficulties for achieving locality
of naive tiling, the parallelization transformation may do a
suboptimal job because of the barrier introduced. On some
architectures, barriers are expensive synchronization opera-
tions, and could additionally cause load imbalance. Further-
more, the transformation from Figure 1-(a) to Figure 1-(b)
is not possible in some languages, such as OpenMP and
OpenCL [14], which do not allow global barriers inside data
parallel constructs.

To remove the synchronization and enhance locality, the
code can be transformed into the form shown in Figure 1-(c).
In this case, each iteration of the outer loop t produces all
the data it needs so that its iterations (which correspond to
tiles) are independent from each other. This is achieved be-
cause each iteration performs redundant computation. The
result is a code without the BARRIER and with increased
locality.

In the example in Figure 1-(c) loop i produces A[max(0, t ∗
T − 1) : min(N, (t + 1) ∗ T )] in each iteration of the outer
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paral le l for ( int i = 0 : N−1)
A[ i ] = . . . ;

paral le l for ( int j = 0 : N−1)
. . . = A[ j −1] + A[ j ] + A[ j +1] ;

(a) Original loops

paral le l for ( int t = 0 : N/T)
for ( int i = t∗T; i < min(N, ( t+1)∗T; i++)

A[ i ] = . . . ;
BARRIER;
for ( int j = t∗T; j < min(N, ( t+1)∗T; j++)

. . . = A[ j −1] + A[ j ] + A[ j +1] ;
}

(b) Traditional tiling and fusion

paral le l for ( int t = 0 : N/T) {
for ( int i = max(0 , t∗T−1) ;

i < min(N, ( t+1)∗T+1) ; i++)
A[ i ] = . . . ;

for ( int j = t∗T; j<min(N, ( t+1)∗T) ; j++)
. . . = A[ j −1] + A[ j ] + A[ j +1] ;

}

(c) Overlapped tiling

Figure 1: A simple tiling example for parallel loops

loop, that is, T + 2 elements, 2 more than the number of
elements of A computed by loop i in Figure 1-(b). In total
the N/T executions of loop i in Figure 1-(c) produce T+2

T
∗

N elements, so this loop performs T+2
T

∗ N − N = 2∗N
T

more iterations than the corresponding loop of Figure 1-(b).
We call the transformation leading to a loop of the form of
Figure 1-(c) overlapped tiling.

Figure 2-(a) shows a code snippet which represents a typi-
cal stencil computation. Pairs of consecutive executions of
the inner loop form a pattern similar to that of the two
inner loops in Figure 1-(a). If we apply overlapped tiling
repetitively and fuse all K executions of the inner loop, it is
possible to execute the outer loop without using any barrier.
The number of consecutive loops fused is the depth of the
transformation. In this example, the fusion depth is K. The
total amount of redundant computation usually grows with
the value of depth. Figure 2-(b) shows the area of overlap.
The triangles that bracket each tile represent the redundant
computation.

1.2 Hierarchical Overlapped Tiling
While overlapped tiling removes synchronization and en-
hances locality, it usually suffers from substantial amount
of redundant computation. As the fusion depth increases,
more synchronizations can be removed, but there is also an
increase in the total amount of redundant computation (the
shadowed triangle areas in Figure 2-(b)). Hence, we propose
the use of hierarchical overlapped tiling to balance communi-
cation overhead and redundant computation. Figure 3 con-
trasts overlapped tiling with hierarchical overlapped tiling.

The example assumes 8 consecutive loops executing on a 4-
way/8-core multicore system where the two cores on each
processor share the last level cache. Figure 3-(a) shows the
result of overlapped tiling across the eight cores while Figure
3-(b) shows the result of applying overlapped tiling hierar-

for ( int k = 0 ; k < K; k++) {
paral le l for ( int i = 0 : N−1)

B[ i ] = A[ i −1] + A[ i ] + A[ i +1] ;
swap (A, B) ;

}

(a) Code snippet of K consecutive loops in a stencil code

…

Tile t Tile t+1

i

i-1
i+1

Loop K-2

Loop 0

Loop K-1

(b) Overlapped tiling

Figure 2: Overlapped tiling of K loops

Loop
0
1
2
3
4
5
6
7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

K=8

(a) Overlapped tiling

Local

Barriers

Loop
0
1
2
3
4
5
6
7

Processor 0 Processor 1 Processor 2 Processor 3

Core 2 Core 3

Processor 1

K=8

K’=2

(b) 2-level hierarchical overlapped tiling

Figure 3: Comparison of overlapped tiling and hier-
archical overlapped tiling on a 4-way/8-core multi-
core system, where each processor contains 2 cores
on chip that share the last level cache.

chically. In Figure 3-(b), overlapped tiling is first applied
across the four processors. Within each processor, pairs of
consecutive loops are fused. This forces a local barrier be-
tween each pair of loops (loop0 and loop1, loop2 and loop3,
and so on). This barrier, however, only synchronizes the
two cores on each processor and therefore its cost should
be relatively low. Within each processor, overlapped tiling
is applied to enable the parallel execution of pairs of loops
across the two cores without the need for a barrier. Com-
pared to overlapped tiling, the total amount of redundant
computation (the shadowed triangle areas between differ-
ent processors and the smaller shadowed triangles between
neighboring cores) caused by the 2 levels of tiling is much
smaller. This reduction of the redundant computation is
the main source of the performance benefit of hierarchical
overlapped tiling over plain overlapped tiling.

In this paper we describe the compiler implementation of
the hierarchical overlapped tiling optimization. Automating
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the transformation in a compiler simplifies the task of the
programmer during code development and porting. This
paper makes the following contributions:

• The introduction of a new tiling transformation called
hierarchical overlapped tiling.

• The description of its implementation in an OpenCL
compiler with the support of Cetus [12] and the Omega
library [13] for OpenCL programs which implements
the proposed transformation.

• An evaluation of the effect of the techniques on sten-
cil computation. Our experimental results show that
hierarchical overlapped tiling is effective and achieves
significant speedups when compared to the traditional
loop fusion and tiling transformation.

The rest of the paper is organized as follows: Section 2
gives a quantitative analysis of overlapped and hierarchical
overlapped tiling; Section 3 describes our compiler imple-
mentation; Section 4 discusses the environmental setup for
the experimental evaluation; Section 5 shows our experimen-
tal results; Section 6 discusses our related work; Section 7
presents the conclusions.

2. ANALYTICAL MODELING
This section gives a quantitative analysis of overlapped tiling
and hierarchical overlapped tiling.

2.1 Integer Tuple Set and Relation
We use the notion of iteration space to describe and ana-
lyze the transformation introduced here. A d-dimensional
integer tuple x⃗ = [x0, x1, ..., xd−1] is a vector of d integers.
Constraints in the form of equations and inequalities can
be used to describe sets of integer tuples. For example,
the set S0 = {[1, 1], [1, 2], ..., [1, N ]} can be represented as
{[i, j] : i = 1 ∧ 1 ≤ j ≤ N}.

We assume that the arithmetic expressions in the equations
and inequalities are affine and the terms are integers. Logi-
cal operators ¬, ∧ and ∨, and the existential and universal
quantifiers ∃ and ∀ are also needed to describe the set of
integer tuples. The representations we use are known as
Presburger formulas [15]. In our implementation, these ex-
pressions are manipulated using the Omega Library [13].

We also represent integer tuple relations with rules described
by Presburger formulas. For example the relation T =
{[i, j] → [x, y] : i − 1 ≤ x ≤ i ∧ j − 1 ≤ y ≤ j + 1} when
applied to the previous S0 yields the following set:

T (S0) = {[x, y] : 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ N + 1}

Note that given a relationR the size and shape of the original
set S and that of R(S) for a relation R can be different. The
union ∪ of two relations T1 and T2 is defined as:

T1 ∪ T2 = T, if ∀S, T1(S) ∪ T2(S) = T (S)

2.2 Terminology
ConsiderK consecutive parallel loops loop0, loop1, ..., loopK−1.
Assume that the k-th loop loopk (0 ≤ k < K) has the form
shown Figure 4.

paral le l for ( int i⃗ = [i0, i1, ..., iD−1] ∈ I0 ) { // loop0

. . .
}
paral le l for ( int i⃗ = [i0, i1, ..., iD−1] ∈ I1 ) { // loop1

. . .
}

. . .

paral le l for ( int i⃗ = [i0, i1, ..., iD−1] ∈ Ik ) { // loopk

. . . = A0
k[f⃗

0
k (⃗i)] ;

. . . = A1
k[f⃗

1
k (⃗i)] ;

. . .

. . . = A
Lk−1

k [f⃗
Lk−1

k (⃗i)] ;

B0
k[g⃗

0
k (⃗i)] = . . . ;

B1
k[g⃗

1
k (⃗i)] = . . . ;

. . .

B
Mk−1

k [g⃗
Mk−1

k (⃗i)] = . . . ;
}

. . .

paral le l for ( int i⃗ = [i0, i1, ..., iD−1] ∈ IK−1 ){// loopK−1

. . .
}

Figure 4: A sequence of K parallel loops

Without loss of generality, we assume the body of loopk
contains read access to Lk D′-dimensional arrays A0

k, A
1
k,

..., A
Lk−1
k and write access to M arrays B0

k, B
1
k,...,B

Mk−1
k

which are also D′ dimensional. We assume that no A array
overlaps with a B array. To simplify discussion we assume
A0

k = A1
k = ... = A

Lk−1
k = Ak and B0

k = B1
k = ... =

B
Mk−1
k = Bk. There are Lk references to Ak on the RHS

of the first Lk assignment statements in the body of the

loop: Ak[f⃗
0
k (⃗i)], Ak[f⃗

1
k (⃗i)], ..., Ak[f⃗

Lk−1
k (⃗i)], with f⃗ l

k : ZD →
ZD′

, 0 ≤ l < Lk. There are Mk references to elements of Bk

on the LHS of the last Mk statements: Bk [⃗g
0
k (⃗i)], Bk [⃗g

m
k (⃗i)],

..., Bk [⃗g
Mk−1
k (⃗i)], with g⃗mk : ZD → ZD′

, 0 ≤ m < Mk.

We compute 3 sets for loopk: Ik, the iteration space; Rk,
the set of subscripts of Ak; and Wk the set of subscripts of
Bk:

Rk = {r⃗} =

Lk−1∪
l=0

{[r0, r1, ..., rD′−1] : r⃗ = f⃗ l
k (⃗i) ∧ i⃗ ∈ Ik}

Wk = {w⃗} =

Mk−1∪
m=0

{[w0, w1, ..., wD′−1] : w⃗ = g⃗mk (⃗i) ∧ i⃗ ∈ Ik}

We define Ck for the consuming relation as the relation from
Ik to Rk, Ck(Ik) = Rk, and Pk for the producing relation,
as the relation from Wk to Ik, Pk(Wk) = Ik. Ck and Pk

represent the access pattern of the loop body. We use Ck

and Pk to describe the different tiling transformations.

2.3 Overlapped Tiling
In this subsection we describe the overlapped tiling loop
transformation.

Performing loop fusion and tiling for a sequence of loops of
the form shown in Figure 4 is equivalent to finding Q parti-
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tions (tiles) I0k , I
1
k , ..., I

Q−1
k of the iteration space Ik of each

loopk. Similar to the definition of Rk and Wk discussed in
the last subsection, we define Rq

k as the set of array element
indices of A for tile Iqk , and W q

k to denote the set of array
elements indices of B for tile Iqk . So, we have:

Rq
k = Ck(I

q
k), Iqk = Pk(W

q
k ) or W q

k = P−1
k (Iqk)

Traditional loop fusion and tiling, such as the code shown in
Figure 1-(b), produce orthometric tiles. Since the tiles are
a partition of the iterations space, we have:

Iq1k ∩ Iq2k = ϕ, q1 ̸= q2

However, with overlapped tiling the sum of the size of the
tiles Iqk can be larger than the size Ik. We define the dif-
ference as the amount of redundant computation RCk per-
formed by loopk:

RCk = |I0k |+ |I1k |+ ...+ |IQ−1
k | − |Ik| ≥ 0

In traditional loop fusion and tiling, the tiles of the different
loops can be unrelated thanks to the barriers. However,
in overlapped tiling the data read in an iteration tile must
be produced within the same tile to eliminate the need of
synchronization. To simplify the discussion, we assume that
the data flow in the sequence of fused loops loop0, loop1, ...
loopK−1 forms a linear chain, which means that Ak+1 = Bk

for all k. Under this assumption, it is necessary that Rq
k+1 ⊆

W q
k in overlapped tiling and to avoid unnecessary work we

set Rq
k+1 = W q

k . Hence the corresponding tiles Iqk+1 and Iqk
of neighboring loops are related as follows:

Rq
k+1 = Ck+1(I

q
k+1) = P−1

k (Iqk) = W q
k ⇒

Iqk = Pk(W
q
k ) = Pk(R

q
k+1) = Pk(Ck+1(I

q
k+1)) (1)

Equation 1 shows that the tiles of loopk are determined by
the tiles of loopk+1. Equation 1 provides the procedure to
perform overlapped tiling: given an arbitrary partition of
tiles for the last loop loopK−1, the tiles of previous loops
loopk (0 ≤ k < K) can be determined iteratively; then all
the corresponding tiles from the different loops are fused to
build the new loop body.

Consider the code in Figure 2-(a) as an example to perform
overlapped tiling. After unrolling, there will be a sequence
of K loops. Since every loopk in Figure 3-(a) is the same,
we have:

I0 = I1 = ... = IK−1 = I = {[i] : 0 ≤ i < N}
C0 = C1 = ... = CK−1 = C = {[i → x] : i− 1 ≤ x ≤ i+ 1}

P0 = P1 = ... = PK−1 = P = {[x → i] : i = x}

Initially, we assign the following tiling partition for the last
loopK−1:

IqK−1 = {[i] : q ×N/Q ≤ i < (q + 1)×N/Q}

which simply evenly partitions the iteration space, IK−1,
where the size of each tile is |IqK−1| = N/Q.

Next, the previous loops can be tiled using Equation 1 (to
simplify the discussion, the boundaries are ignored):

|IqK−2| = |PK−2(CK−1(I
q
K−1))| = |P (C(IqK−1))|

= |{[i] : q ×N/Q− 1 ≤ i < (q + 1)×N/Q+ 1}|
= N/Q+ 2 = |IqK−1|+ 2

|IqK−3| = |P (C(IqK−2))| = N/Q+ 4 = |IqK−2|+ 2

...

|Iq0 | = |P (C(Iq1 ))| = N/Q+ 2× (K − 1) = |Iq1 |+ 2

Therefore:

|Iqk | = |P (C(Iqk+1))| = N/Q+ 2× (K − 1− k)

RCk = (

Q−1∑
q=0

|Iqk |)− |Ik| = 2×Q× (K − 1− k)

The total amount of redundant computation RC is defined
as the sum of the redundant computation of each loopk:

RC =

K−1∑
k=0

RCk = Q×K × (K − 1) (2)

RC is a monotonic function of the number of tiles Q and the
number of loops to fuse K. According to Equation 2, for the
example shown in Figure 2-(a), we can see the trend: the
amount of redundant computation RC increases with both
Q and K. Although this observation is derived from the
specific example, it is easy to see that the trend is true in
general. Compared with traditional loop fusion and tiling,
where synchronization is necessary, overlapped tiling saves
the overhead of K − 1 barriers. Suppose the average over-
head of each barrier is ts, and the average computation time
for each iteration in the original code is tc, the overhead
difference between overlapped tiling over traditional tiling
is:

∆Overhead = ts × (K − 1)− tc ×RC/Q (3)

2.4 Hierarchical Overlapped Tiling
According to the analysis in the last subsection, coarse grain
tiles (and thus small number of tiles) reduce the amount of
redundant computation in overlapped tiling. However, too
few tiles would reduce the amount of parallelism. Similarly,
reducing the number of fused loops also reduces the amount
of redundant computation, but at the expense of the addi-
tional synchronization required between loops.

The goal of hierarchical overlapped tiling is to adapt to the
memory hierarchy of the target machine. Consider a mul-
ticore system with Np processors, where each processor has
Nc cores sharing the last level cache. It is expected that
the average overhead of synchronization of processors shar-
ing a cache (t′s) will be significantly smaller than that of
synchronizing cores on different processors (ts) that need to
communicate through main memory and/or bus.

ts/t
′
s ≫ 1 (4)

Based on the above observation, we proceed as follows: first,
we perform coarse-grain tiling for processors; then perform
overlapped tiling within the tile that is assigned to each
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processor, and generate sub-tiles for each core of the proces-
sor. During this 2-level tiling, the parameters for overlapped
tiling are determined separately for each level.

For simplicity, we assume that the total number of tiles,
Q, generated by the plain overlapped tiling discussed in the
previous subsection is equal to the number of cores: Q =
Np × Nc. During the first level tiling of the hierarchical
overlapped tiling, only Np tiles are generated, so the total
amount of redundant computation introduced in this level
is:

RC1 = RC(Np,K) = Np ×K × (K − 1)

After the first level tiling, each processor q is assigned a
coarse-grain tile: Iq0 , I

q
1 , ..., I

q
K−1 (0 ≤ q < Np). The tile for

each processor is implemented as a sequence of inner-loops,
whose boundaries are defined by the constraints discussed
at the beginning of Section 2.1. Then, overlapped tiling can
be applied within each tile. However, since the sub-tiles are
going to be mapped to cores of the same processor, it is ex-
pected that the overhead of synchronization of cores within
the same processor, t′s will be significantly smaller than the
synchronization between cores across processors, ts. As a
result, for each tile in the second level of tiling the number
of fused loops (fusion depth) can be smaller. Although this
increases the amount of synchronization, it also reduces the
amount of redundant computation. Suppose the second lev-
el of tiling only fuses K′ consecutive loops each time and
K′ < K, then the amount of redundant computation for
each processor in the second level tiling would be:

RC2 = RC(Nc,K
′) = Nc ×K′ × (K′ − 1) (5)

Therefore, the total amount of redundant computation of
2-level overlapped tiling is:

RC′ = RC1 +Np ×RC2

= Np ×K × (K − 1) +Np ×Nc ×K′ × (K′ − 1)

=
Q

Nc
×K × (K − 1) +Q×K ′ × (K′ − 1)

= Q×K × (K − 1)× (
1

Nc
+

K′ × (K′ − 1)

K × (K − 1)
)

≈ RC × (1/Nc + (K′/K)2)

Furthermore, additional K/K′ local synchronization opera-
tions are introduced during the second level of tiling. This
adds an extra latency of t′s × K/K′. Hence the overhead
difference between 2-level overlapped tiling and traditional
tiling is:

∆Overhead′ = ts × (K − 1)− t′s ×K/K′ − tc ×RC′/Q

≈ ts × (K − 1)− t′s ×
K

K′ −
tc
Q

×RC × (
1

Nc
+ (

K′

K
)2)

= ts × (K − 1− t′s
ts

× K

K′ )−
tc
Q

×RC × (
1

Nc
+ (

K′

K
)2)

As mentioned before, t′s is much smaller than ts (Equation
4). Thus, if K′ is appropriately chosen, ∆Overhead′ can be
made larger than ∆Overhead as defined in 3, which shows
the potential benefit of hierarchical overlapped tiling.

kernel void ke rne l ( global f loat ∗A,
global f loat ∗B) {

int i = g e t g l o b a l i d (0 ) ;
B[ i ] = A[ i −1]+A[ i ]+A[ i +1] ;

}

(a) OpenCL kernel code

cl mem mem A, mem B, ∗p1=&mem A, ∗p2=&mem B;
. . . ;
for ( int k = 0 ; k < K; k++) {

c lSetKerne lArg ( kerne l , 0 , s izeof ( cl mem ) , p1 ) ;
c lSetKerne lArg ( kerne l , 1 , s izeof ( cl mem ) , p2 ) ;
s i z e t g l o b a l wo r k s i z e [ ] = {N} ;
new evt=( c l e v en t ∗) mal loc ( s izeof ( c l e v en t ) ) ;
clEnqueueNDRangeKernel ( queue , kerne l , 1 ,NULL,

g l oba l wo rk s i z e ,NULL, 1 , event , new evt ) ;
event = new event ;
swap (p1 , p2 ) ;

}

(b) OpenCL host code

Figure 5: OpenCL code example

3. IMPLEMENTATION
3.1 OpenCL
An OpenCL program consists of two classes of components:
host code and kernel code. The host code contains the con-
trol logic and usually runs on a general purpose processor,
while the kernel code contains most of the computation and
executes on the target device, such as an accelerator. The
host code is a C/C++ program with OpenCL API invoca-
tions. The kernel code is written in OpenCL C, which is
a subset of C99 with extensions. OpenCL kernels resem-
ble C procedures. During execution, the host code compiles
the kernel code. This dynamic runtime compilation makes
OpenCL programs portable across different devices.

OpenCL kernels follow the SPMD execution model. The
host code specifies the work item organization of each k-
ernel, where a work item is the unit of scheduling. Work
items are grouped into work groups. The work groups and
the work items within each work group have N dimensions
(N ≤ 3). Each work group is represented by an N -tuple
work group ID (which can be accessed during execution us-
ing get_group_id()), and each work item also has an N -
tuple work item IDs. The functions (get_global_id()) and
(get_local_id()) can be used to access the global or local
work item ID respectively.. The work item ID defines an
N -dimensional index space. Thus, we can conceive the ex-
ecution of a sequence of OpenCL kernels as a sequence of
parallel loops. For example, the OpenCL code in Figure 5
is equivalent to the code in Figure 2-(a).

3.2 Implementation Overview
We implemented the hierarchical overlapped tiling optimiza-
tion to evaluate its effectiveness. A diagram representing our
experimental system is shown in Figure 6. The dashed ar-
rows represent offline data flow while solid arrows represent
runtime data flow. The system contains three major compo-
nents: a delayed compilation mechanism, an offline analyzer
and the optimizer. The offline analyzer is implemented as
a pass of Cetus [12]. The optimizer is a source-to-source
translator which reads the original kernel code and gener-
ates OpenCL code, which is fed to the OpenCL runtime.
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Both, the offline analyzer and the optimizer use the Omega
library [13] to perform the integer tuple space computations.
In addition, the analyzer uses the Omega Library to gener-
ate loops from the integer tuple sets.

Kernel

Code

Host

Code

Kernel

Summary

Computation

Device

Offline

Analyzer

Delayed

Compilation

Mechanism

Optimizer

Transformed

Kernel

Figure 6: Framework of the automatic transforma-
tion tool.

3.3 Delayed Compilation Mechanism
In our framework, each OpenCL kernel execution (or in-
stance) is seen as a parallel loop. This view combines in-
formation from the host code (the iteration space) and the
OpenCL kernel code (the body of the loop). The framework
applies overlapped tiling or hierarchical overlapped tiling to
a sequence of kernel invocations. To fully automate the pro-
cess, two problems must be solved: 1) The dynamic compi-
lation unit in OpenCL is kernel, but overlapped tiling fuses
across kernel boundaries. Therefore, some form of global
analysis is needed. 2) The optimal value of the transforma-
tion parameters usually depend on the iteration space, which
is the work size of an OpenCL kernel. However, in OpenCL
the work size is specified by the host code, and sometimes
the values of the work size can only be resolved after compil-
ing the kernel code. In order to solve these two problems, we
designed and implemented a delayed compilation mechanis-
m. It postpones the compilation process (which should be
done in clBuildProgram() in the standard OpenCL APIs)
of the kernel code until a sufficient number of kernels have
been created and enqueued by the host code. In order to
enable the reuse of the standard compilation process, our
delayed compilation mechanism is implemented as wrapper
functions.

Our delayed compilation mechanism works as follows: when
the host code invokes clEnqueueNDRangeKernel() to push
a kernel instance into the command queue, the kernel in-
stance is actually held within a pending_kernel object in
the pending queue. Each pending kernel carries with it the
work size and arguments specified by the host code. The
kernel will not be compiled until:

1. a synchronization point is found during execution of
the host code; this usually means that the results of
the pending kernels are needed to continue execution,
or

2. the number of pending pending kernels exceeds a given
threshold.

Each time the compilation process is triggered, the optimiz-
er will be invoked to select some kernels from the pending
queue to apply the appropriate transformation. After com-
pilation, the transformed kernel generated by the optimizer

is executed. This way, the transformation is transparent to
the programmer.

3.4 Offline Analyzer
As mentioned before, the consuming relation Ck and produc-
ing relation Pk represent the access pattern of loopk. Since
we view each OpenCL kernel as a parallel loop, we can also
use consuming and producing relations to represent the ac-
cess pattern of the kernel code (the body of the loop). Com-
puting consuming and producing relations requires travers-
ing the syntax tree of the kernel code to collect every global
memory reference, which might be an expensive operation.
If symbolic variables are allowed in the constraints of inte-
ger tuple relations, it is possible to compute the consuming
and producing relations of each kernel offline to reduce the
overhead of the online compilation.

The algorithm to compute consuming and producing rela-
tions makes use of symbolic range propagation [7]. This
produces a conservative approximation to the range of pos-
sible values of every variable used to compute array ranges.
The output of the offline analyzer is the summary for each
Kernelk, which contains the consuming relation CA

k or pro-
ducing relation PA

k of every global array A accessed by the
kernel body.

3.5 Optimizer
When the compilation process is triggered by the delayed
compilation mechanism, the optimizer tries to apply the
overlapped tiling transformation on the pending kernels. Open-
CL programs can be configured for in-order execution or out-
of-order execution. In in-order execution mode, kernels are
executed in the same order that they are enqueued, while
in out-of-order execution mode, the scheduler of OpenCL
runtime is free to reorder kernels as long as the partial or-
der specified by the programmer is respected. Fusion can be
applied to a sequence of loops if the runtime is configured
for in-order execution or to the topological sort of a partial
order if the runtime is configured for out-of-order execution.

The optimizer uses the producing/consuming relations dis-
cussed in Section 2 to represent the dependence of kernel
instances. The discussion in Section 2 only considers the sit-
uation when all the data consumed by a loop are produced
by its predecessor. However, many programs do not confor-
m to this simplification. We say that there is a producer-
consumer relation between two kernels X and Y : if and
only if kernel X is an ancestor of kernel Y (in terms of the
partial execution order enforced by event objects) and the
elements produced by kernel X are consumed by kernel Y .
We say that X is Y ’s producer and Y is X’s consumer. The
goal is to guarantee that for each tile, the producer kernel
produces all the data (array elements) that the consumer
kernel needs. According to the code in Figure 5, kernel
instances Kernel0, Kernel2, ..., Kernel2n, ... read mem_A

and write mem_B, while Kernel1, Kernel3, ..., Kernel2n+1,
... read mem_B and write mem_A. Hence the producers of
Kernelk include Kernelk−2n∀n ≤ k/2. This is denoted as
Producer(k) = {k − 2n|∀n = 1, 2, ..., ⌊k/2⌋}.

We can represent producing/consuming relations in terms
of data dependences. If we view the OpenCL code in Figure
5 to be equivalent to a doubly nested loop like in Figure 2-
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(a), there are read-after-write dependences from iterations
(k − 2n + 1, i) and (k − 2n + 1, i ± 1) to iterations (k, i),
n = 1, 2, ..., ⌊k/2⌋. So the dependence vectors are (2n−1, 0)
and (2n − 1,±1), which correspond to be direction vectors
(<,=) and (<, ∗). With the distance vectors or direction
vectors, loop transformations can be performed as described
in [3] On the other hand, the dependence vectors can be
computed through producing/consuming relations of kernel
instances.

Although we could use the dependence information, what
we need for the transformation is only the data flow between
kernels, which can be naturally represented by producing/-
consuming relations. Thus, the analysis in the optimizer
uses the producing/consuming relations instead of data de-
pendences.

3.5.1 Tiling Algorithm
To apply the overlapped tiling optimization to the sequence
of kernels, we first compute the symbolic tiles for each kernel,
and then the actual size of the tiles is determined.

Input: Consuming and producing relations Ck and Pk

for each Kernelk
Output: Tilek for each Kernelk
Initialization: Tilek = ∅, for each Kernelk

KernelK−1 = the last kernel in a topological order;
Kernel0 = the first kernel in the same topological order;
TileK−1 = {[id0, ..., idD−1] : s0 ≤ id0 < s0 + len0∧

... ∧ sD−1 ≤ idD−1 < sD−1 + lenD−1};
for(each Kernelk in KernelK−1, .., Kernel0

in reversed topological order)
for(each array A that is an argument read by Kernelk)

for(each Kernelk′ which is an ancestor of Kernelk)

Tilek′ = Tilek′ ∪ PA
k′ (C

A
k (Tilek));

Figure 7: Algorithm for symbolic tiling

Symbolic Tiling. Figure 7 shows a simplified algorithm
for tiling. We assume a collection of K kernels (kernel0,
kernel1, ..., kernelK−1). The basic idea of this algorithm is,
starting from the last kernel in topological order (kernelK−1),
traverse backwards the consumer-producer chain to deter-
mine all the data that must be computed inside each tile,
so that no inter-tile communication or synchronization is
needed.

Tilek is a set of integer tuples where each element represents
a work item ID in the resulting tile for Kernelk. At the be-
ginning, the tile for the start kernel T ileK−1 is initialized
with {[id0, ..., idD−1] : s0 ≤ id0 < s0 + len0 ∧ ... ∧ sD−1 ≤
idD−1 < sD−1 + lenD−1} in which si and leni are variables
whose values will be determined later. We assume without
loss of generality that the work items for KernelK−1 are
organized into D-dimensional objects. The output of this
algorithm is the symbolic tile Tilek for each kernel, which
contains symbol variable si and leni in the constraints. The
symbolic tiling algorithm can be used by the plain over-
lapped tiling and the hierarchical overlapped tiling, since
it requires neither the work size nor the tile boundaries as
input.

Determining Tile Size. With the symbolic tile for each
kernel, we can estimate the memory footprint of each tile.
For each global array A, a superset of the elements read (RA)

or written (WA) within a tile can be computed as follows:

RA =

K−1∪
k=0

CA
k (T ilek), WA =

K−1∪
k=0

PA
k

−1
(Tilek)

If we only count global array elements 1, the size of memory
footprint is FP =

∑
A |RA ∪WA|. FP is a function of the

tile length (len), the number of kernels to fuse (K) and the
work size of KernelK−1 (IK−1). Given K and IK−1, the tile
size can be determined by finding a value of len that satisfies
the constraint below, to guarantee that the footprint of each
tile fits in cache:

FP = FP (len,K, IK−1) < Eff Cache

Eff Cache is the effective size of the target level of cache.
For plain overlapped tiling, Eff Cache is set to be a frac-
tion of the shared last level cache on each processor; for the
second level of hierarchical overlapped tiling, IK−1 should
be the tile size generated by the higher level tiling and
Eff Cache is determined by the size of the private cache
(L1 or L2). For other architecture such as GPUs, Eff Cache
is determined by the size of the local storage.

Determining the Loop Fusion Depth K. The discus-
sion in the last subsection assumes that the number of ker-
nels to fuse (K) is known. As discussed in Subsection 2.3,
the amount of redundant computation introduced by plain
overlapped tiling (Equation 5) and hierarchical overlapped
tiling is a function of the loop fusion depth K. We provide
two ways to specify the value of K: (1) the programmer
specifies the value of K as an input parameter; (2) the value
of K can be determined based on the performance feedback
obtained using training inputs.

When using the second method for plain overlapped tiling,
we define ∆RC(k) = RC(k) − RC(k − 1), which is the re-
dundant computation increment when adding Kernelk for
fusion. We find that usually ∆RC(k) is a monotonically
nondecreasing function, e.g., for the code in Figure 2-(a)
discussed in Subsection 2.3, ∆RC(k) = 2 × Q × (k − 1).
Thus, in order to obtain the maximum ∆Overhead (Equa-
tion 3) of overlapped tiling over traditional tiling, we should
stop adding new kernels when the following become true:

tc ×∆RC(k)/Q ≥ ts or ∆RC(k)/Q ≥ ts/tc (6)

In the above inequality, ts is platform dependent, while tc
is application dependent. We assume that it is possible to
profile the value of ts/tc with a representative input data.
Then, for adaptive tuning, the optimizer keeps adding new
kernels from the pending queue to be transformed until in-
equality 6 becomes true; at that point, the number of kernels
added is the desired value of K.

For hierarchical overlapped tiling, tuning must be done for

1Our current implementation only considers the global
memory space, since the main data structures of the pro-
grams we evaluated are in global memory space. However,
to be accurate, objects in the local memory space such as lo-
cal memory objects and stack variables should also be taken
into account.
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each level of tiling to determine K and K′ separately, with
different average cost of synchronization (ts or t′s).

Create Thread-local Buffers. For some architectures
such as GPGPUs, different OpenCL address spaces __global,
__local and __private are mapped to physical storages
with different speeds. Thus, it is beneficial for performance
to create thread-local buffers and promote working data in-
to faster storages. For multicore platforms with transparent
caches, the different OpenCL address spaces are all mapped
to main memory and therefore the use of these address s-
paces does not impact performance. However, since different
tiles compute redundantly some of the array elements, the
data for each tile must be privatized for correctness.

For each work item we create a local buffer for each array
A of size |RA ∪ WA|, so that the thread-local buffers are
large enough to hold every element of the array base A ac-
cessed by each tile. In our implementation, we only create
buffers of regular shape, e.g., for 2D data we always create
a rectangular area for the thread local buffer which cover-
s every element accessed by the work item. This strategy
simplifies the loop boundary control and array element index
translation of the generated code, but can introduce more
redundant computation when the dependences are irregular.

3.6 Other Implementation Issues
In order to avoid recompilation by our delayed compilation
mechanism, we implemented a cache to hold previous com-
pilation results. Each compilation result (compiled code of
transformed kernel) is indexed by the sequence of kernel
names, and the value of the tiling-related arguments of each
kernel. An argument is tiling-related only if it is involved
in any constraints of the consuming or producing relation
of the kernel of which it is an argument. For instance, the
argument A in Figure 5 is not tiling-related. Thanks to the
compilation cache, if the same sequence of kernels occurs
more than once during execution, previous compilation re-
sults can be accessed to avoid recompilation. For OpenCL
programs with stable repetition units, such as stencil code,
the total number of compilation passes can be reduced to 1
or 2: one for the steady state, the other for the epilog if it
exists. If the OpenCL program does not have a stable rep-
etition pattern, the total compilation time could increase.
But if the OpenCL programs run on a heterogeneous plat-
form with multiple computation devices, it is possible to
overlap the transformation and compilation with the kernel
execution.

For stencil programs which iteratively execute the same k-
ernel, delayed compilation has an effect similar to loop un-
rolling, which may results in code explosion and hurt instruc-
tion locality (and hence dramatically increase instruction
cache misses) when the fusion depth is large. To avoid code
explosion, our implementation includes a pattern matching-
based ”re-rolling” pass where the generated code only con-
tains two loops: an outer loop, whose iteration count is the
number of loops being fused, and an inner loop, with a vari-
able number of iterations that depends on the value of the
induction variable of the outer loop.

4. EVALUATION ENVIRONMENT
4.1 Target platform

We evaluate the efficiency of the proposed transformation
on an SMP workstation with 4 Intel Xeon L7555 processors
running at 1.87GHz. Each processor has 8 cores, sharing
a 24MB unified L3 cache on chip. Each core contains a
256KB private L2 cache and 32KB L1 D-cache. SMT is
disabled for each core, so there is one hardware thread per
core. After transformation, the OpenCL code is compiled
using an experimental OpenCL compiler from Intel Labs.

4.2 Benchmarks
For the evaluation we use 8 benchmarks: 1D/2D/3D-Jacobi,
PathFinder, Poisson, Biharmonic, HotSpot and Cell. The
first 3 benchmarks (1D/2D/3D-Jacobi) are Jacobi iterations
for synthetic linear systems; PathFinder uses dynamic pro-
gramming to find a minimum weighted path; Poisson is a
numerical solver of the poisson equation, calculating the
Laplace operator [5] over a 2D grid with the 5-point sten-
cil. Biharmonic is the numerical PDE solver calculating the
Biharmonic operator [5] over a 2D grid with a 13-point s-
tencil. HotSpot implements a chip temperature estimation
model[11]. Cell [4] is a 3D game of life. For each application,
the operation in the body of the stencil loop is implemented
as an OpenCL kernel. The inputs of the benchmarks are
listed in Table 1.

Data Problem Points
Dimension Size of Stencil

1D-Jacobi 1 64K 3
2D-Jacobi 2 256x256 9
3D-Jacobi 3 64x64x64 27
PathFinder 1 100K 3
Poisson 2 256x256 5

Biharmonic 2 256x256 13
HotSpot 2 512x512 9

Cell 3 60x60x60 27

Table 1: Benchmarks

For some stencil programs, such as Jacobi, the number of
steps of the outer loop depends on a convergence test. This
requires a synchronization between kernel code and host
code that prevents loop fusion. To enable the overlapped
and hierarchical overlapped tiling optimizations we modified
the code so that the convergence test (and as result the syn-
chronization) only occurs every 1024 iterations. The total
iterations number for the benchmarks without convergence
test is 16,384.

We use pthread_setaffinity_np() to set the appropriate
affinity for each worker thread to guarantee that the threads
executing the sub-tiles within the same tile communicate
through a shared cache for hierarchical overlapped tiling.

5. EXPERIMENTAL EVALUATION
In this Section, we present our experimental results. Sec-
tion 5.1 presents the main results, Section 5.2 discusses pa-
rameter sensitivity, and Section 5.3 discusses compilation
overhead.

5.1 Performance Overview
Figure 8 shows the performance speedup of traditional tiling,
overlapped tiling and hierarchical overlapped tiling relative
to the original OpenCL code. Since OpenCL only support-
s 2 levels of work item organization, a 2-level hierarchical
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overlapped tiling is used for each benchmark. For over-
lapped tiling and hierarchical overlapped tiling, the figure
shows the speedup for the best value of the loop fusion
depth K, as shown in Table 2 (and discussed in the next
Section). In general, the performance of hierarchical over-
lapped tiling is always better than that of plain overlapped
tiling, and overlapped tiling is always better than that of
traditional tiling, with the exception of Cell and 3D-Jacobi.
For Cell and 3D-Jacobi, the performance curves of the three
tiling transformations are very similar. The reason is that
their main data structure is 3-dimensional and the amount
of redundant computation grows quartically with the fusion
depth K. Therefore, there are not many opportunities for
overlapped tiling and hierarchical overlapped tiling. In our
experiments, overlapped tiling and the 2-level hierarchical
overlapped tiling achieves an average speedup of 18% and
37% over traditional tiling, respectively.
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Figure 8: Speedup of traditional tiling, overlapped
tiling and hierarchical overlapped tiling over the o-
riginal openCL code.

5.2 Parameter Sensitivity
Loop Fusion Depth for the First Level of Tiling. Fig-
ure 9 shows the performance of overlapped and hierarchical
overlapped tiling as the value of the loop fusion depth K
changes. For overlapped tiling, there is only one value of
K; for 2-level hierarchical overlapped tiling, K is the loop
fusion depth for the first level of tiling, while K′ is the val-
ue of loop fusion depth for the second level of tiling (K′ is
kept constant at 2 for the experiments in Figure 9). As dis-
cussed in Subsection 2.3 and 2.4, K, determines the amount
of redundant computation introduced by overlapped and hi-
erarchical overlapped tiling, and thus the overall speedup
over traditional tiling.

In Figure 9, lines a, b and c show the speedup of traditional
tiling, overlapped tiling, and 2-level hierarchical overlapped
tiling over the original OpenCL code, respectively. In ad-
dition, we manually modified the overlapped tiling code to
remove the redundant computation (hence, there are race
conditions and the results of the executed code are not guar-
anteed to be correct), and its performance is shown by Line
d. OpenCL standard does not support a global barrier across
work item groups, which is required for traditional tiling
(See Figure 1-(b)); thus, the barriers used for traditional
tiling (Line a in Figure 9) are barriers that we implemented
with low level primitives. However, overlapped tiling and
2-level hierarchical overlapped tiling only require synchro-
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Line a: Traditional Tiling
Line b: Overlapped Tiling
Line c: 2-level Hierarchical Overlapped Tiling
Line d: Tile & Fuse without Overlap
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(a) 1D-Jacobi (b) 2D-Jacobi
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(c) 3D-Jacobi (d) PathFinder
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Figure 9: Evaluating the performance overlapped
tiling and hierarchical overlapped tiling by scaling
fusion depth K.

nization within the work item groups, which is supported
by the OpenCL standard. The discrepancy between over-
lapped tiling and Line d shows the overhead of the redundant
computation introduced by overlapped tiling; the difference
between traditional tiling and Line d shows the synchroniza-
tion overhead saved by fusing the kernels. In Figure 9 we
can see that Line d typically grows as the loop fusion depth

215



K increases. This is because the number of syncrhonization
operations removed grows with the depth. If we do not count
the cost of the redundant computation introduced, the per-
formance benefit is always positive (if RC = 0, ∆Overhead
in Equation 3 always increases when K increases). In fact,
Line d defines the upper bound of performance for over-
lapped and hierarchical overlapped tiling.

For the two 1D benchmarks (1D-Jacobi and PathFinder),
both plain overlapped tiling and hierarchical overlapped tiling
can achieve significant speedup over traditional tiling, be-
cause the growth rate of redundant computation for over-
lapped tiling is low. For the 2D benchmarks (2D-Jacobi,
Poisson, Biharmonic and HotSpot) the growth rate of the re-
dundant computation is higher than for the 1D benchmarks.
Thus, the interval of benefit (the values of fusion depthK for
which lines b or c are above line a) of the 2D benchmarks is s-
maller than that of the 1D benchmarks for both, overlapped
and hierarchical overlapped tiling. The figure also shows
that the interval of benefit of hierarchical overlapped tiling
is always bigger than that of plain overlapped tiling. With-
in the 2D benchmarks, Biharmonic shows the least speedup
with overlapped tiling over traditional tiling. This is because
the stencil of Biharmonic depends on 13 neighboring points
versus 9 for 2D-Jacobi, 5 for Poisson, and 5 for Hotspot
(see Table 1). As a result, the redundant computation of
Biharmonic grows faster than that of the other 2D bench-
marks. However, hierarchical overlapped tiling still achieves
speedup over traditional tiling. Since the input data of Cell
and 3D-Jacobi are 3-dimensional, the amount of redundant
computation increases so fast that there is no opportunity
for overlapped tiling.

When comparing hierarchical overlapped tiling versus over-
lapped tiling the plots in Figure 9 show that hierarchical
overlapped tiling performs better as the value of loop fu-
sion depth K increases (the only exception occurs with the
3D benchmarks where all 3 tiling mechanisms behave the
same), because the growth rate of redundant computation
is lower for hierarchical overlapped tiling than for plain over-
lapped tiling. Hierarchical overlapped tiling is less sensitive
to the value of K than overlapped tiling because, as men-
tioned above, the beneficial region of hierarchical tiling is
larger than that of overlapped tiling.

The adaptive fusion mechanism described in Subsection 3.5
uses inequality 6 and the value of ts/tc profiled with a s-
maller input set to determine the choice of the loop fusion
depth K value. Our results show that the optimal values
for K found using the adaptive mechanism are the same as
the ones found using the empirical search in Figure 9, and
shown in Table 2.

Loop Fusion Depth for the Second Level of Tiling.
Compared to the loop fusion depth K for the first level tiling
of hierarchical overlapped tiling, the tuning of loop fusion
depth K′ for the second level tiling is more involved. This is
partially because the performance of the second level tiling
depends on the first level of tiling. Figure 10 shows the
performance of hierarchical overlapped tiling for 1D-Jacobi
and PathFinder with different pairs ofK andK′. We can see
thatK′ = 2 is the best choice for PathFinder; but there is no
obvious optimal value for 1D-Jacobi. Thus, manual tuning

Hierarchical
Overlapped Tiling Overlapped Tiling

1D-Jacobi K = 32 K = 64
2D-Jacobi K = 8 K = 16
3D-Jacobi K = 2 K = 2
PathFinder K = 32 K = 64
Poisson K = 8 K = 16

Biharmonic K = 4 K = 8
HotSpot K = 4 K = 16

Cell K = 1 K = 2

Table 2: Loop Fusion depth K determined by the
adaptive mechanism.

may be required to find the optimal fusion depth K′ for the
second level of hierarchical overlapped tiling. However, the
performance impact of the second level tiling is significantly
smaller than that of the first level tiling. For instance, when
K′ is set to 2, the average performance loss is less than 5%
compared to the best K′.
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(a) 1D-Jacobi (b) PathFinder

Figure 10: Fusion depth K′ for the second level of
hierarchical overlapped tiling.

Input Size. Figure 11 shows the speedup of hierarchical
overlapped tiling over plain overlapped tiling for the different
benchmarks, as the input size increases. The speedups are
computed using the best value of K. The figure shows that
hierarchical overlapped tiling performs better than overlapped
tiling for the 2D-benchmarks. It also shows, that the perfor-
mance difference between hierarchical overlapped tiling and
plain overlapped tiling becomes smaller as the input data
size increases. This is because since the total number of
worker threads remains constant, the tile size is determined
by the input data size. With smaller tiles, the redundant
computation has a higher impact; thus, overlapped tiling is
less efficient, while hierarchical overlapped has more oppor-
tunities to reduce the overheads introduced by the redun-
dant computation. With larger tiles, the redundant compu-
tation has less impact, and as a result, there is less difference
between overlapped and hierarchical overlapped tiling. For
the 3D benchmarks 3D-Jacobi and Cell, since the amoun-
t of redundant computation grows so fast, the optimal K
for both plain overlapped tiling and hierarchical overlapped
tiling is less than 2, so there is no obvious performance dis-
crepancies between the two schemes.

5.3 Compilation Overhead
Since our tool transforms OpenCL kernel code at runtime,
the overheads introduced need to be considered. The over-
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Figure 11: Speedup of hierarchical overlapped tiling
over plain overlapped tiling with different input
sizes. The horizontal axis is the input size for each
benchmark.

head consists of two parts: The OpenCL runtime that trans-
forms the kernel code and the execution of the Omega Li-
brary. The compilation cache described in Subsection 3.6
can help reduce both parts of the runtime overhead: if the
sequence of kernels selected for optimization are the same as
a previous sequence, no compilation needs to be done. For
the benchmarks used in this paper, the OpenCL runtime
compilation needs to be invoked at most twice, one for the
steady state and another for the epilog. Figure 12 shows
the compilation times of overlapped tiling and hierarchical
overlapped tiling, normalized to the compilation time of the
original program. On average, overlapped tiling requires
37% more compilation time, while hierarchical overlapped
tiling costs about 60% more.
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Figure 12: Compile time for overlapped tiling and
hierarchical overlapped tiling, normalized to the
compile time of the original OpenCL code.

6. RELATED WORK
Loop tiling is a traditional but effective optimization for
performance. Numerous optimizations based on the tiling
of iteration spaces have been proposed for improving data
locality [27, 28, 1, 2, 24, 9, 22], or exploiting parallelism [26,
29, 6, 10, 30].

The closest work to our overlapped tiling is that of Krish-
namoorthy et al.[16]. Their approach uses the polyhedral
model of computation and manipulates regular data depen-
dencies. Other works such as Ripeanu et al. [23] and Meng
et al. [21] describe performance models to predict the op-
timal amount of redundant computation for stencil compu-
tation in a grid environment with message passing or for
GPUs, respectively. However, no fully automated tool for
overlapped tiling is discussed in these papers. Our work us-
es producer/consumer relations to represent dependence of
kernel instances, and the transformation tool designed and

implemented in this paper is fully automated and transpar-
ent to OpenCL programs. The most important difference
between our work and existing work is the hierarchical over-
lapped tiling transformation proposed in this paper. The
overhead of redundant computation is the main drawback
of the overlapped tiling approach; by applying overlapped
tiling hierarchically, we can decrease this overhead.

Bondhugula et al. design and implement Pluto [8], which
can automatically transform loops for parallelism and lo-
cality based on the polyhedral model. Their transforma-
tion techniques includes only traditional tiling; overlaps be-
tween tiles are not considered. Tang et al. implemented the
Pochoir compiler [25], which automates a trapezoidal de-
composition for stencil code. However, their decomposition
algorithm does not consider overlap, either.

Other publications that discuss how to take advantage of the
hierarchy of the hardware include Liu et al. [19], that pro-
posed a cache hierarchy-aware tile scheduling technique to
maximize data reuse; and Leung et al. [18] that implement a
C-to-CUDA compiler which performs hierarchical decompo-
sition for multiple GPUs. The techniques presented in these
papers are orthogonal to our proposed transformation. In
fact, their techniques and ours could be combined.

7. CONCLUSION
In this paper, we propose a new transformation, hierarchi-
cal overlapped tiling. By creating hierarchical overlapping
tiles, we reduce communication overhead among tiles while
introducing smaller amount of redundant computation com-
pared to plain overlapped tiling. We implemented the pro-
posed transformations for OpenCL programs. Experimental
results show that on average overlapped tiling and hierar-
chical overlapped tiling achieves 18% and 37% speedup over
traditional tiling, respectively.
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Abstract
Today’s shared-memory parallel programming models are
complex and error-prone. While many parallel programs are
intended to be deterministic, unanticipated thread interleav-
ings can lead to subtle bugs and nondeterministic semantics.
In this paper, we demonstrate that a practicaltype and ef-
fect systemcan simplify parallel programming byguarantee-
ing deterministic semanticswith modular, compile-time type
checking even in a rich, concurrent object-oriented language
such as Java. We describe an object-oriented type and effect
system that provides several new capabilities over previous
systems for expressing deterministic parallel algorithms. We
also describe a language called Deterministic Parallel Java
(DPJ) that incorporates the new type system features, and
we show that a core subset of DPJ is sound. We describe an
experimental validation showing that DPJ can express a wide
range of realistic parallel programs; that the new type system
features are useful for such programs; and that the parallel
programs exhibit good performance gains (coming close to
or beating equivalent, nondeterministic multithreaded pro-
grams where those are available).
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Language Constructs and Features—Concurrent Program-
ming Structures

General Terms Languages, Verification, Performance

Keywords Determinism, deterministic parallelism, effects,
effect systems, commutativity

1. Introduction
The advent of multicore processors demands parallel pro-
gramming by mainstream programmers. The dominant model
of concurrency today, multithreaded shared memory pro-
gramming, is inherently complex due to the number of possi-
ble thread interleavings that can cause nondeterministic pro-
gram behaviors. This nondeterminism causes subtle bugs:
data races, atomicity violations, and deadlocks. The parallel
programmer today prunes away the nondeterminism using
constructs such as locks and semaphores, thendebugsthe
program to eliminate the symptoms. This task is tedious,
error prone, and extremely challenging even with good de-
bugging tools.

The irony is that a vast number of computational algo-
rithms (though not all) are in factdeterministic: a given input
is always expected to produce the same output. Almost all
scientific computing, encryption/decryption, sorting, com-
piler and program analysis, and processor simulation algo-
rithms exhibit deterministic behavior. Today’s parallel pro-
gramming models force programmers to implement such al-
gorithms in a nondeterministic notation and then convince
themselves that the behavior will be deterministic.

By contrast, a deterministic-by-default programming
model [9] can guaranteethat any legal program produces
the same externally visible results in all executions with a
particular inputunlessnondeterministic behavior is explic-
itly requested by the programmer in disciplined ways. Such a
model can make parallel application development and main-
tenance easier for several reasons. Programmers do not have
to reason about notoriously subtle and difficult issues such
as data races, deadlocks, and memory models. They can start
with a sequential implementation and incrementally add par-
allelism, secure in the knowledge that the program behavior



will remain unchanged. They can use familiar sequential
tools for debugging and testing. Importantly, they can testan
application only once for each input [19].

Unfortunately, while guaranteed determinism is available
for some restricted styles of parallel programming (e.g., data
parallel, or pure functional), it remains a challenging re-
search problem to guarantee determinism for imperative,
object-oriented languages such as Java, C++, and C#. In such
languages, object references, aliasing, and updates to muta-
ble state obscure the data dependences between parts of a
program, making it hard to prove that those dependences
are respected by the program’s synchronization. This is a
very important problem as many applications that need to be
ported to multicore platforms are written in these languages.

We believe that atype and effect system[27, 26, 12, 30]
is an important part of the solution to providing guaranteed
deterministic semantics for imperative, object-orientedlan-
guages. A type and effect system (or effect system for short)
allows the programmer to give names to distinct parts of
the heap (we call themregions) and specify the kind of ac-
cesses to parts of the heap (e.g.,read or write effects) in dif-
ferent parts of the program. The compiler can then check,
using simple modular analysis, that all pairs of memory ac-
cesses either commute with each other (e.g., they are both
reads, or they access disjoint parts of the heap) or are prop-
erly synchronized to ensure determinism. A robust type and
effect system with minimal runtime checks is valuable be-
cause it enables checking at compile time rather than run-
time, eliminates unnecessary runtime checks (thus leadingto
less overhead and/or less implementation complexity), and
contributes to program understanding by showingwherein
the code parallelism is expressed – and where code must
be rewritten to make parallelism available. Effect annota-
tions can also provide an enforceable contract at interface
boundaries, leading to greater modularity and composabil-
ity of program components. An effect system can be supple-
mented with runtime speculation [23, 51, 38, 31, 50] or other
runtime checks [43, 20, 47, 6] to enable greater expressivity.

In this paper, we develop a new type and effect system for
expressing important patterns of deterministic parallelism in
imperative, object-oriented programs. FX [33, 27] showed
how to use regions and effects in limited ways for determin-
istic parallelism in a mostly functional language. Later work
on object-oriented effects [26, 12, 30] and object owner-
ship [16, 32, 14] introduced more sophisticated mechanisms
for specifying effects. However, studying a wide range of
realistic parallel algorithms has shown us that some signifi-
cantly more powerful capabilities are needed for such algo-
rithms. In particular, all of the existing work lacks general
support for fundamental parallel patterns such as parallel
updates on distinct fields of nested data structures, parallel
array updates, in-place divide and conquer algorithms, and
commutative parallel operations.

Our effect system can support all of the above capa-
bilities, using several novel features. We introduceregion
path lists, or RPLs, which enable more flexible effect sum-
maries, including effects on nested structures. RPLs also
allow more flexible subtyping than previous work. We in-
troduce anindex-parameterized array typethat allows ref-
erences to provably distinct objects to be stored in an ar-
ray while still permitting arbitrary aliasing of the objects
through references outside the array. We are not aware of
any statically checked type system that provides this capabil-
ity. We define the notions ofsubarrays(i.e., one array that
shares storage with another) andpartition operations, that
together enable in-place parallel divide and conquer opera-
tions on arrays. Subarrays and partitioning provide a natural
object-oriented way to encode disjoint segments of arrays,in
contrast to lower-level mechanisms like separation logic [35]
that specify array index ranges directly. We also introducean
invocation effect, together with simplecommutativity anno-
tations, to permit the parallel invocation of operations that
may actually interfere at the level of reads and writes, but
still commute logically, i.e., produce the same final (logical)
behavior. This mechanism supports concurrent data struc-
tures such as concurrent sets, hash maps, atomic counters,
etc.

We have designed a language calledDeterministic Paral-
lel Java (DPJ) incorporating these features. DPJ is an ex-
tension to Java that enforces deterministic semantics via
compile-time type checking. Because of the guaranteed de-
terministic semantics, existing Java code can be ported to
DPJ incrementally. Furthermore, porting to DPJ will have
minimal impact on program testing: developers can use the
same tests and testing methodology for the ported parallel
code as they had previously used for their sequential code.

The choice of Java for our work is not essential; simi-
lar extensions could be applied to other object-oriented lan-
guages, and we are currently developing a version of the lan-
guage and compiler for C++. We are also exploring how to
extend our type system and language to provide disciplined
support for explicitly nondeterministic computations.

This paper makes the following contributions:

1. Novel features.We introduce a new region-based type
and effect system with several novel features (RPLs,
index-parameterized arrays, subarrays, and invocation
effects) for expressing core parallel programming pat-
terns in imperative languages. These features guarantee
determinism at compile-time.

2. Formal definition. For a core subset of the type system,
we have developed a formal definition of the static and
dynamic semantics, and a detailed proof that our system
allows sound static inference about noninterference of ef-
fects. We present an outline of the formal definition and
proof in this paper. The full details are in an accompany-
ing technical report [10] available via the Web [1].



3. Language Definition. We have designed a language
called DPJ that incorporates the type and effect system
into a modern O-O language (Java) in such a way that
it supports the full flexibility of the sequential subset of
Java, enables incremental porting of Java code to DPJ,
and guarantees semantic equivalence between a DPJ pro-
gram and its obvious sequential Java version. We have
implemented a prototype compiler for DPJ that performs
the necessary type checking and then maps parallelism
down to the ForkJoinTask dynamic scheduling frame-
work.

4. Empirical evaluation. We study six real-world parallel
programs written in DPJ. This experience shows that DPJ
can express a range of parallel programming patterns;
that all the novel type system features are useful in real
programs; and that the language is effective at achieving
significant speedups on these codes on a commodity 24-
core shared-memory processor. In fact, in 3 out of 6
codes, equivalent, manually parallelized versions written
to use Java threads are available for comparison, and the
DPJ versions come close to or beat the performance of
the Java threads versions.

The rest of this paper proceeds as follows. Section 2 pro-
vides an overview of some basic features of DPJ, and Sec-
tions 3–5 explain the new features in the type system (RPLs,
arrays, and commutativity annotations). Section 6 summa-
rizes the formal results for a core subset of the language.
Section 7 discusses our prototype implementation and evalu-
ation of DPJ. Section 8 discusses related work, and Section 9
concludes.

2. Basic Capabilities
We begin by summarizing some basic capabilities of DPJ
that are similar to previous work [33, 30, 26, 14, 15]. We re-
fer to the example in Figure 1, which shows a simple binary
tree with three nodes and a methodinitTree that writes
into themass fields of the left and right child nodes. As we
describe more capabilities of DPJ, we will also expand upon
this example to make it more realistic, e.g., supporting trees
of arbitrary depth.

Region names.In DPJ, the programmer uses named re-
gions to partition the heap, and writes method effect sum-
maries stating what regions are read and written by each
method. Afield region declarationdeclares a new namer
(called afield region name) that can be used as a region
name. For example, line 2 declares namesLinks, L, andR,
and these names are used as regions in lines 4 and 5.1 A field
region name is associated with the static class in which it
is declared; this fact allows us to reason soundly about ef-

1 As explained in Section 3, in general a DPJ region is represented as a
region path list(RPL), which is a colon-separated list of elements such as
Root:L:L:R that expresses the nested structure of regions. When a simple
namer functions as a region, as shown in this section, it is short for Root:r.

1 class TreeNode<region P> {

2 region Links, L, R;
3 double mass in P ;

4 TreeNode<L> left in Links;
5 TreeNode<R> right in Links;
6 void setMass(double mass) writes P { this.mass = mass; }

7 void initTree(double mass) {
8 cobegin {

9 /* reads Links writes L */
10 left.mass = mass;

11 /* reads Links writes R */
12 right.mass = mass;
13 }

14 }
15 }

Figure 1. Basic features of DPJ. Type and effect annota-
tions are italicized. Note that methodinitTree (line 7) has
no effect annotation, so it gets the default effect summary of
“reads and writes the entire heap.”T r e e N o d e < R o o t >d o u b l e m a s s R o o tT r e e N o d e < L > l e f t C h i l d L i n k sT r e e N o d e < R > r i g h t C h l l d L i n k sT r e e N o d e < L >d o u b l e m a s s LT r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k s T r e e N o d e < R >d o u b l e m a s s RT r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k s

Figure 2. Runtime heap typing from Figure 1

fects without alias restrictions or interprocedural aliasanal-
ysis. A field region name functions like an ordinary class
member: it is inherited by subclasses, and outside the scope
of its defining class, it must be appropriately qualified (e.g.,
TreeNode.L). A local region declarationis similar and de-
clares a region name at local scope.

Region parameters.DPJ provides class and method re-
gion parameters that operate similarly to Java generic pa-
rameters. We declare region parameters with the keyword
region, as shown in line 1, so that we can distinguish them
from Java generic type parameters (which DPJ fully sup-
ports). When a region-parameterizedclass or method is used,
region arguments must be provided to the parameters, as
shown in lines 4–5. Region parameters enable us to create
multiple instances of the same class with their data in differ-
ent regions.

Disjointness constraints.To control aliasing of region
parameters, the programmer may write a disjointness con-
straint [14] of the formP1 # P2, whereP1 andP2 are pa-
rameters (or regions written with parameters; see Section 3)
that are required to be disjoint. Disjointness of regions is
fully explained in Section 3; in the case of simple names,
it means the names must be different. The constraints are
checked when instantiating the class or calling the method.
If the disjointness constraints are violated, the compileris-
sues a warning.

Partitioning the heap.The programmer may place the
keywordin after a field declaration, followed by the region,



as shown in lines 3–5. An operation on the field is treated
as an operation on the region when specifying and check-
ing effects. This effectively partitions the heap into regions.
See Figure 2 for an illustration of the runtime heap typing,
assuming the root node has been instantiated withRoot.

Method effect summaries.Every method (including all
constructors) must conservatively summarize its heap effects
with an annotation of the formreads region-list writes
region-list, as shown in line 6. Writes imply reads. When
one method overrides another, the effects of the superclass
method must contain the effects of the subclass method.
For example, if a method specifies awrites effect, then all
methods it overrides must specify that samewrites effect.
This constraint ensures that we can check effects soundly
in the presence of polymorphic method invocation [30, 26].
The full DPJ language also includeseffect variables[33], to
support writing a subclass whose effects are unknown at the
time of writing the superclass (e.g., in instantiating a library
or framework class); however, we leave the discussion of
effect variables to future work.

Effects on local variables need not be declared, because
these effects are masked from the calling context. Nor must
initialization effects inside a constructor body be declared,
because the DPJ type and effect system ensures that no other
task can accessthis until after the constructor returns. Read
effects onfinal variables are also ignored, because those
reads can never cause a conflict. A method or construc-
tor with no externally visible heap effects may be declared
pure.

To simplify programming and provide interoperability
with legacy code, we adopt the rule that no annotation means
“reads and writes the entire heap,” as shown in Figure 1. This
scheme allows ordinary sequential Java to work correctly,
but it requires the programmer to add the annotations in
order to introduce safe parallelism.

Expressing parallelism. DPJ provides two constructs for
expressing parallelism, thecobegin block and theforeach
loop. Thecobeginblock executes each statement in its body
as a parallel task, as shown in lines 8–13. Theforeach

loop is used in conjunction with arrays and is described in
Section 4.1.

Proving determinism.To type check the program in
Figure 1, the compiler does the following. First, check
that the summarywrites P of methodsetMass (line 6)
is correct (i.e., it covers all effect of the method). It is,
because fieldmass is declared in regionP (line 3), and
there are no other effects. Second, check that the paral-
lelism in lines 8–13 is safe. It is, because the effect of
line 10 isreads Links writes L; the effect of line 12 is
reads Links writes R; andLinks, L, andR are distinct
names. Notice that this analysis is entirely intraprocedural.

3. Region Path Lists (RPLs)
An important concept in effect systems isregion nesting,
which lets us partition the heap hierarchically so we can ex-
press that different computations are occurring on different
parts of the heap. For example, to extend the code in Fig-
ure 1 to a tree of arbitrary depth, we need a tree of nested re-
gions. As discussed in Section 4, we can also use nesting to
express that two aggregate data structures (like arrays) are in
distinct regions, and the components of those structures (like
the cells of the arrays) are in distinct regions, each nestedun-
der the region containing the whole structure.

Effect systems that support nested regions are generally
based on object ownership [16, 14] or use explicit declara-
tions that one region is under another [30, 26]. As discussed
below, we use a novel approach based on chains of elements
calledregion path lists, or RPLs, that provides new capabil-
ities for effect specification and subtyping.

3.1 Specifying Single Regions

The region path list (RPL) generalizes the notion of a simple
region namer. Each RPL names a singleregion, or set of
memory locations, on the heap. The set of all regions parti-
tions the heap, i.e., each memory location lies in exactly one
region. The regions are arranged in a tree with a special re-
gionRoot as the root node. We say that one region isnested
under(or simply under) another if the first is a descendant of
the second in the tree. The tree structure guarantees that for
any two distinct namesr andr′, the set of regions underr
and the set of regions underr′ have empty intersection, and
we can use this guarantee to prove disjointness of memory
accesses.

Syntactically, an RPL is a colon-separated list of names,
called RPL elements, beginning withRoot. Each element
after Root is a declared region namer,2 for example,
Root:A:B. As a shorthand, we can omit the leadingRoot. In
particular, a bare name can be used as an RPL, as illustrated
in Figure 1. The syntax of the RPL represents the nesting
of region names: one RPL is under another if the second is
a prefix of the first. For example,L:R is underL. We write
R1 ≤ R2 if R1 is underR2.

We may also write a region parameter, instead ofRoot,
at the head of an RPL, for exampleP:A, whereP is a param-
eter. When a class with a region parameter is instantiated
at runtime, the parameter is resolved to an RPL beginning
with Root. Method region parameters are resolved similarly
at method invocation time. Because a parameterP is always
bound to the same RPL in a particular scope, we can make
sound static inferences about parametric RPLs. For example,
for all P, P:A ≤ P, andP:A 6= P:B if and only if A 6= B.

Figure 3 illustrates the use of region nesting and class
region parameters to distinguish different fields as well as
different objects. It extends the example from Figure 1 by

2 As noted in Section 2, this can be a package- or class-qualified name such
asC.r; for simplicity, we user throughout.



1 class TreeNode<region P> {

2 region Links, L, R, M, F;
3 double mass in P:M ;

4 double force in P:F ;
5 TreeNode<L> left in Links;
6 TreeNode<R> right in Links;

7 void initTree(double mass, double force) {
8 cobegin {

9 /* reads Links writes L:M */
10 left.mass = mass;

11 /* reads Links writes L:F */
12 left.force = force;
13 /* reads Links writes R:M */

14 right.mass = mass;
15 /* reads Links writes R:F */

16 right.force = force;
17 }
18 }

19 }

Figure 3. Extension of Figure 1 showing the use of region
nesting and region parameters.T r e e N o d e < R o o t >T r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k sT r e e N o d e < L >d o u b l e m a s s L : Md o u b l e f o r c e L : F T r e e N o d e < R >d o u b l e m a s s R : Md o u b l e f o r c e R : F

. . .
. . . . . .L : * v s . R : * * : Mv s .* : F

Figure 4. Graphical depiction of the distinctions shown in
Figure 3. The* denotes any sequence of RPL elements; this
notation is explained further in Section 3.2.

adding aforce field to theTreeNode class, and by making
theinitTreemethod (line 7) set themass andforce fields
of the left and right child in four parallel statements in a
cobegin block (lines 9–16).

To establish that the parallelism is safe (i.e., that lines
9–16 access disjoint locations), we place fieldsmass and
force in distinct regionsP:M andP:F, and the linksleft
andright in a separate regionLinks (since they are only
read). The parameterP appears in both regions andP is
bound to different regions (L andR) for the left and right sub-
trees, because of the different instantiations of the parametric
typeTreeNode for the fieldsleft andright. Because the
namesL andR used in the types are distinct, we can distin-
guish the effects onleft (lines 10–12) from the effects on
right (lines 14–16). And because the namesM andF are
distinct, we can distinguish the effects on the different fields
within an object i.e., lines 10 vs. 14 and lines 12 vs. 16, from
each other. Figure 4 shows this situation graphically.

3.2 Specifying Sets of Regions

Partially specified RPLs.To express recursive parallel algo-
rithms, we must specify effects onsets of regions(e.g., “all
regions underR”). To do this, we introducepartially speci-
fied RPLs. A partially specified RPL contains the symbol*

1 class TreeNode<region P> {

2 region Links, L, R, M, F;
3 double mass in P:M ;

4 double force in P:F ;
5 TreeNode<P:L> left in Links;
6 TreeNode<P:R> right in Links;

7 TreeNode<*> link in Links;
8 void computeForces() reads Links, *:M writes P:*:F {

9 cobegin {
10 /* reads *:M writes P:F */

11 this.force = (this.mass * link.mass) * R_GRAV;
12 /* reads Links, *:M writes P:L:*:F */
13 if (left != null) left.computeForces();

14 /* reads Links, *:M writes P:R:*:F */
15 if (right != null) right.computeForces();

16 }
17 }
18 }

Figure 5. Recursive computation showing the use of par-
tially specified RPLs for effects and subtyping.

(“star”) as an RPL element, standing in for some unknown
sequence of names. An RPL that contains no* is fully spec-
ified.

For example, consider the code shown in Figure 5. Here
we are operating on the sameTreeNode shown in Figs. 1
and 3, except that we have added (1) alink field (line
7) that points to some other node in the tree and (2) a
computeForces method (line 8) that recursively descends
the tree. At each node,computeForces follows link to
another node, reads themass field of that node, computes the
force between that node and this one, and stores the result in
theforce field of this node. This computation can safely be
done in parallel on the subtrees at each level, because each
call writes only theforce field of this, and the operations
on other nodes (throughlink) are all reads of themass,
which is distinct fromforce. To write this computation, we
need to be able to say, for example, that line 13 writes only
the left subtree, and does not touch the right subtree.

Distinctions from the left.In lines 11–15 of Figure 5,
we need to distinguish the write tothis.force (line 11)
from the writes to theforce fields in the subtrees (lines
13 and 15). We can use partially specified RPLs to do this.
For example, line 8 says thatcomputeForces may read all
regions underLinks and write all regions underP that end
with F.

If RPLsR1 andR2 are the same in the firstn places, they
differ in placen + 1, and neither contains a* in the first
n + 1 places, then (because the regions form a tree) the set
of regions underR1 and the set of regions underR2 have
empty intersection. In this case we say thatR1:* andR2:*

are disjoint, and we know that effects on these two RPLs
are noninterfering. We call this a “distinction from the left,”
because we are using the distinctness of the names to the left
of any star to infer that the region sets are non-intersecting.
For example, a distinction from the left establishes that the
region setsP:F, P:L:*:F, andP:R:*:F (shown in lines 10-
15) are disjoint, because the RPLs all start withP and differ
in the second place.



Distinctions from the right.Sometimes it is important to
specify “all fieldsx in any node of a tree.” For example, in
lines 10–15, we need to show that the reads of themass fields
are distinct from the writes to theforce fields. We can make
this kind of distinction by using different namesafter the
star: ifR1 andR2 differ in thenth place from the right, and
neither contains a* in the firstn places from the right, then
a simple syntactic argument shows that their region sets are
disjoint. We call this pattern a “distinction from the right,”
because the names that ensure distinctness appear to the right
of any star. For example, in lines 10–15, we can distinguish
the reads of*:M from the writes toP:L:*:F andP:R:*:F.

More complicated patterns.More complicated RPL pat-
terns likeRoot:*:A:*:B are supported by the type system.
Although we do not expect that programmers will need to
write such patterns, they sometimes arise via parameter sub-
stitution when the compiler is checking effects.

3.3 Subtyping and Type Casts

Subtyping.Partially specified RPLs are also useful for sub-
typing. For example, in Figure 5, we needed to write the type
of a reference that could point to aTreeNode<P>, for any
binding toP. With fully specified RPLs we cannot do this,
because we cannot write a type to which we can assign both
TreeNode<L> andTreeNode<R>. The solution is to use a
partially specified RPL in the type, e.g.,TreeNode<*>, as
shown in line 7 of Figure 5. Now we have a type that is flex-
ible enough to allow the assignment, but retains soundness
by explicitly saying that we do not know the actual region.

The subtyping rule is simple:C<R1> is a subtype of
C<R2> if the set of regions denoted byR1 is included in the
set of regions denoted byR2. We writeR ⊆ R2 to denote set
inclusion for the corresponding sets of regions. IfR1 andR2

are fully specified, thenR1 ⊆ R2 impliesR = R2. Note that
nesting and inclusion are related:R1 ≤ R2 implies R1 ⊆
R2:*. However, nesting alone doesnot imply inclusion of
the corresponding sets. For example,A:B ≤ A, butA:B 6⊆ A,
becauseA:B andA denote distinct regions. In Section 6 we
discuss the rules for nesting, inclusion, and disjointnessof
RPLs more formally.

Figure 6 illustrates one possible heap typing resulting
from the code in Figure 5. The DPJ typing discipline ensures
the object graph restricted to theleft andright references
is a tree. However, the full object graph including thelink

references is more general and can even include cycles, as
illustrated in Figure 6. Note how our effect system is able to
prove that the updates to different subtrees are distinct, even
though (1) non-tree edges exist in the graph; and (2) those
edges are followed to do possibly overlapping reads.

Type casts.DPJ allows any type cast that would be legal
for the types obtained by erasing the region variables. This
approach is sound if the region arguments are consistent.
For example, givenclass B<region R> extends A<R>,
a cast fromA<r> to B<r> is sound, because either the ref-
erence isB<r>, or it is not any sort ofB, which will cause

T r e e < R o o t : L >d o u b l e f o r c e R o o t : L : Fd o u b l e m a s s R o o t : L : MT r e e < R o o t : L : L > l e f t L i n k sT r e e < R o o t : L : R > r i g h t L i n k sT r e e < * > l i n k L i n k s

T r e e < R o o t >d o u b l e f o r c e R o o t : Fd o u b l e m a s s R o o t : MT r e e < R o o t : L > l e f t L i n k sT r e e < R o o t : R > r i g h t L i n k sT r e e < * > l i n k L i n k s T r e e < R o o t : R >d o u b l e f o r c e R o o t : R : Fd o u b l e m a s s R o o t : R : MT r e e < R o o t : R : L > l e f t L i n k sT r e e < R o o t : R : R > r i g h t L i n k sT r e e < * > l i n k L i n k s
Figure 6. Heap typing from Figure 5. Reference values are
shown by arrows; tree arrows are solid, and non-tree arrows
are dashed. Notice that all arrows obey the subtyping rules.

a ClassCastException at runtime. However, a cast from
Object to B<r1> is unsound and could violate the deter-
minism guarantee, because theObject could be aB<r2>,
which would not cause a runtime exception. The compiler
allows this cast, but it issues a warning.

4. Arrays
DPJ provides two novel capabilities for computing with
arrays: index-parameterized arraysand subarrays. Index-
parameterized arrays allow us to traverse an array of object
references and safely update the objects in parallel, while
subarrays allow us to dynamically partition an array into
disjoint pieces, and give each piece to a parallel subtask.

4.1 Index-Parameterized Arrays

A basic capability of any language for deterministic paral-
lelism is to operate on elements of an array in parallel. For
a loop over an array of values, it is sufficient to prove that
each iteration accesses a distinct array element (we call this
aunique traversal). For a loop over an array of references to
mutable objects, however, a unique traversal is not enough:
we must also prove that any memory locations updated by
following references in distinct array cells (possibly through
a chain of references) are distinct. Proving this property is
very hard in general, if assignments are allowed into refer-
ence cells of arrays. No previous effect system that we are
aware of is able to ensure disjointness of updates by follow-
ing references stored in arrays, and this seriously limits the
ability of those systems to express parallel algorithms.

In DPJ, we make use of the following insight:

Insight 1. We can define a special array type with the re-
striction that an object reference valueo assigned to celln
(wheren is a natural number constant) of such an array
has a runtime type that is parameterized byn. If accesses
through celln touch only regionn (even by following a chain



1 class Body<region P> {

2 region Link, M, F ;
3 double mass in P:M ;

4 double force in P:F ;
5 Body<*> link in Link;
6 void computeForce() reads Link, *:M writes P:F {

7 force = (mass * link.mass) * R_GRAV;
8 }

9 }
10

11 final Body<[_]>[]<[_] > bodies = new Body<[_]>[N]<[_]>;
12 foreach (int i in 0, N) {
13 /* writes [i] */

14 bodies[i] = new Body<[i]>();
15 }

16 foreach (int i in 0, N) {
17 /* reads [i], Link, *:M writes [i]:F */
18 bodies[i].computeForce();

19 }

Figure 7. Example using an index-parameterized array.

of references), then the accesses through different cells are
guaranteed to be disjoint.

We call such an array type anindex-parameterized array.
To represent such arrays, we introduce two language con-
structs:

1. An array RPL elementwritten[e], wheree is an integer
expression.

2. An index-parameterized array typethat allows us to write
the region and type of array celle using the array RPL
element[e]. For example, we can specify that celle

resides in regionRoot:[e] and has typeC<Root:[e]>.

At runtime, if e evaluates to a natural numbern, then the
static array RPL element[e] evaluates to thedynamic array
RPL element[n].

The key point here is that we can distinguishC<[e1]>

from C<[e2]> if e1 ande2 always evaluate to unequal val-
ues at runtime, just as we can distinguishC<r1> fromC<r2>,
wherer1 andr2 are declared names, as discussed in Sec-
tion 3.1. Obviously, the compiler’s capability to distinguish
such types will be determined by its ability to prove the in-
equality of the symbolic expressionse1 ande2. This is pos-
sible in many common cases, for the same reason that ar-
ray dependence analysis is effective in many, though not all,
cases [24]. The key benefit is thatthe type checker has then
proved the uniqueness of the target objects, which would not
follow from dependence analysis alone.

In DPJ, the notation we use for index-parameterized ar-
rays isT[]<R>#i, whereT is a type,R is an RPL,#i de-
clares a fresh integer variablei in scope over the type, and
[i] may appear as an array RPL element inT or R (or
both). This notation says that array celle (wheree is an in-
teger expression) has typeT [i← e] and is located in region
R[i ← e]. For example,C<r1:[i]>[]<r2:[i]>#i speci-
fies an array such that celle has typeC<r1:[e]> and resides
in regionr2:[e]. If T itself is an array type, then nested
index variable declarations can appear in the type. However,
the most common case is a single-dimensional array, which
needs only one declaration. For that case, we provide a sim-

B o d y < R o o t : [ 1 0 ] >d o u b l e f o r c e R o o t : [ 1 0 ] : Fd o u b l e m a s s R o o t : [ 1 0 ] : MB o d y < * > l i n k L i n k. . . . . . . . .1 0 9 0B o d y < R o o t : [ 9 0 ] >d o u b l e f o r c e R o o t : [ 9 0 ] : Fd o u b l e m a s s R o o t : [ 9 0 ] : MB o d y < * > l i n k L i n k
Figure 8. Heap typing from Figure 7. The type of array cell
i is parameterized byi. Cross-links are possible, but if any
links are followed to access other array cells, the effects are
visible.

plified notation: the user may omit the#i and use an un-
derscore () as an implicitly declared variable. For example,
C<[ ]>[]<[ ]> is equivalent toC<[i]>[]<[i]>#i.

Figure 7 shows an example, which is similar in spirit to
the Barnes-Hut force computation discussed in Section 7.
Lines 1–9 declare a classBody. Line 11 declares and creates
an index-parameterized arraybodies with N cells, such that
cell i resides in region[i] and points to an object of type
Body<[i]>. Figure 8 shows a sample heap typing, for some
particular valuen of N.

Lines 12–15 show aforeach loop that traverses the in-
dicesi ∈ [0, n − 1] in parallel and initializes celli with
a new object of typeBody<[i]>. The loop is noninterfer-
ing because the type ofbodies says that cellbodies[i]
resides in region[i], so distinct iterationsi and j write
disjoint regions[i] and[j]. Lines 16–19 are similar, ex-
cept that the loop callscomputeForce on each of the
objects. In iterationi of this loop, the effect of line 16
is reads [i], because it readsbodies[i], together with
reads Link, *:M writes [i]:F, which is the declared
effect of methodcomputeForce (line 6), after substituting
[i] for P. Again, the effects are noninterfering fori 6= j.

To maintain soundness, we just need to enforce the in-
variant that, at runtime, cellA[i] never points to an object
of typeC<[j]>, if i 6= j. The compiler can enforce this in-
variant through symbolic analysis, by requiring that if type
C<[e1]> is assigned to typeC<[e2]>, thene1 ande2 must
always evaluate to the same value at runtime; if it cannot
prove this fact, then it must conservatively disallow the as-
signment. In many cases (as in the example above) the check
is straightforward.

Note that because of the typing rules, no two distinct cells
of an index-parameterizedarray can point to the same object.
However, it is perfectly legal to reach the same object by
following chains of references from distinct array cells, as
shown in Figure 8. In that case, in a parallel traversal over
the array, either the common object is not updated, in which
case the parallelism is safe; or a write effect on the same
region appears in two distinct iterations of a parallel loop, in
which case the compiler can catch the error.

Note also that while no two cells in an index-parameterized
array can alias, references may be freely shared with other



1 class QSort<region P> {

2 DPJArrayInt<P> A in P ;
3 QSort(DPJArray<P> A) pure { this.A = A; }

4 void sort() writes P:* {
5 if (A.length <= SEQ_LENGTH) {
6 seqSort();

7 } else {
8 /* Shuffle A and return pivot index */

9 int p = partition(A);
10 /* Divide A into two disjoint subarrays at p */

11 final DPJPartitionInt<P> segs =
12 new DPJPartitionInt<P>(A, p, OPEN);
13 cobegin {

14 /* writes segs:[0]:* */
15 new QSort<segs:[0]:*>(segs.get(0)).sort();

16 /* writes segs:[1]:* */
17 new QSort<segs:[1]:*>(segs.get(1)).sort();
18 }

19 }
20 }

21 }

Figure 9. Writing quicksort with the partition operation.
DPJArrayIntandDPJPartitionIntare specializations to
int values. In line 12, the argumentOPEN indicates that we
are omitting the partition index from the subarrays, i.e., they
are open intervals.

variables (including cells in other index-parameterized ar-
rays), unlike linear types [26, 12, 13]. For example, if cell
i of a particular array has typeC<[i]>, the object it points
to could be referred to by celli of any number of other ar-
rays (with the same type), or by any reference of typeC<*>.
Thus, when we are traversing the array, we get the benefit of
the alias restriction imposed by the typing, but we can still
have as many other outstanding references to the objects as
we like.

The pattern does have some limitations: for example, we
cannot move an element from positioni to positionj in the
arrayC<[i]>[]#i. However, we can copy the references
into a different arrayC<*>[] and shuffle those references
as much as we like, though we cannot use those references
to update the objects in parallel. We can also make a new
copy of elementi with typeC<[j]> and store the new copy
into positionj. This effectively gives a kind of reshuffling,
although the copying adds performance overhead. Another
limitation is that ourforeach currently only allows regular
array traversals (including strided traversals), though it could
be extended to other unique traversals.

4.2 Subarrays

A familiar pattern for writing divide and conquer recursion
is to partition an array into two or more disjoint pieces and
give each array to a subtask. For example, Figure 9 shows
a standard implementation of quicksort, which divides the
array in two at each recursive step, then works in parallel
on the halves. DPJ supports this pattern with three novel
features, which we illustrate with the quicksort example.

First, DPJ provides a classDPJArray that wraps an ordi-
nary Java array and provides a view into a contiguous seg-
ment of it, parameterized by start positionS and lengthL. In
Figure 9, theQSort constructor (line 3) takes aDPJArray

object that represents a contiguous subrange of the caller’s
array. We call this subrange asubarray. Notice that the
DPJArray object doesnot replicate the underlying array; it
stores only a reference to the underlying array, and the val-
ues ofS andL. TheDPJArray object translates access to
elementi into access to elementS + i of the underlying ar-
ray. If i < 0 or i ≥ L, then an array bounds exception is
thrown, i.e., access through the subarray must stay within
the specified segment of the original array.

Second, DPJ provides a classDPJPartition, represent-
ing an indexed collection ofDPJArray objects, all of which
point into mutually disjoint segments of the original ar-
ray. To create aDPJPartition, the programmer passes a
DPJArray object into theDPJPartition constructor, along
with some arguments that say how to do the splitting. Lines
11–12 of Figure 9 show how to split theDPJArray A at index
p, and indicate that positionp is to be left out of the resulting
disjoint segments. The programmer can access segmenti of
the partitionsegs by sayingsegs.get(i), as shown in lines
15 and 17.

Third, to support recursive computations, we need a slight
extension to the syntax of RPLs (Section 3). Notice that we
cannot use a simple region name, liker, for the type of a
partition segment, because different partitions can divide the
same array in different ways. Instead, we allow afinal

local variablez (including this) of class type to appear
at the head of an RPL, for examplez:r. The variablez

stands in for the object referenceo stored into the variable
at runtime, which is the actual region. Using the object
reference as a region insures that different partitions get
different regions, and making the variablefinal ensures
that it always refers to the same region.

We make these “z regions” into a tree as follows. Ifz’s
type isC<R,. . .>, thenz is nested underR; the first region
parameter of a class functions like theowner parameterin
an object ownership system [18, 16]. In the particular case of
DPJPartition, if the type ofz is DPJPartition<R>, then
the type ofz.get(i) is z:[i]:*, wherez ≤ R. Internally,
theget method uses a type cast to generate aDPJArray of
typethis:[i]:* that points into the underlying array. The
type cast is not sound within the type system, but it is hidden
from the user code in such a way that all well-typed uses of
DPJPartition are noninterfering.

In Figure 9, the sequence of recursivesort calls creates a
tree ofQSort objects, each in its own region. Thecobegin
in lines 13–17 is safe becauseDPJPartition guarantees
that the segmentssegs.get(0) andsegs.get(1) passed
into the recursive parallelsort calls are disjoint. In the
user code, the compiler uses the type and effect annota-
tions to prove noninterference as follows. First, from the
type ofQSort and the declared effect ofsort (line 4), the
compiler determines that the effects of lines 15 and 17 are
writes segs:[0]:*andwrites segs:[1]:*, as shown.
Second, the regionssegs:[0]:* andsegs:[1]:* are dis-



joint, by a distinction from the left (Section 3.2). Finally, the
effect writes P:* in line 4 correctly summarizes the ef-
fects ofsort, because lines 6 and 9 writeP, lines 15 and 17
write undersegs, andsegs is underP, as explained above.

Notice thatDPJPartition can create multiple refer-
ences to overlapping data with different regions in the
types. Thus, there is potential for unsoundness here if
we are not careful. To make this work, we must do two
things. First, ifz1 and z2 represent different partitions of
the same array, thenz1.get(0) and z2.get(1) could
overlap. Therefore, we must not treat them as disjoint.
This is why we put* at the end of the typez:[i]:*
of z.get(i); otherwise we could incorrectly distinguish
z1:[0] from z2:[1], using a distinction from the right. Sec-
ond, if z has typeDPJPartition<R>, thenz.get(i) has
typeDPJArray<z:[i]:*>and points into aDPJArray<R>.
Therefore, we must not treatz:[i]:* as disjoint fromR.
Here, we simply do not include this distinction in our type
system. All we say is thatz:[i]:* ≤ R. See Section 6.3
and Appendix C.2 for further discussion of the disjointness
rules in our type system.

5. Commutativity Annotations
Sometimes to express parallelism we need to look at inter-
ference in terms of higher-level operations than read and
write [29]. For example, insertions into a concurrentSet can
go in parallel and preserve determinism even though the or-
der of interfering reads and writes inside theSet implemen-
tation is nondeterministic. Another such example is comput-
ing connected components of a graph in parallel.

In DPJ, we address this problem by adding two fea-
tures. First, classes may contain declarations of the formm

commuteswithm′, wherem andm′ are method names, in-
dicating that any pair of invocations of the named methods
may be safely done in parallel,regardless of the read and
write effects of the methods. See Figure 10(a). In effect, the
commuteswith annotation says that (1) the two invocations
areatomicwith respect to each other, i.e., the result will be
as if one occurred and then the other; and (2) either order of
invocation produces the same result.

The commutativity property itself is not checked by the
compiler; we must rely on other forms of checking (e.g.,
more complex program logic [52] or static analysis [42, 4])
to ensure that methods declared to be commutative are really
commutative. In practice, we anticipate thatcommuteswith

will be used mostly by library and framework code that is
written by experienced programmers and extensively tested.
Our effect system does guarantee deterministic results for
an application using a commutative operation, assuming that
the operation declared commutative is indeed commutative.

Second, our effect system provides a novelinvocation ef-
fectof the forminvokesm withE. This effect records that
an invocation of methodm occurred with underlying effects
E. The type system needs this information to represent and

1 class IntSet<region P> {

2 void add(int x) writes P { ... }
3 add commuteswith add;

4 }

(a) Declaration ofIntSet class with commutative methodadd

1 IntSet<R> set = new IntSet<R>();
2 foreach (int i in 0, N)

3 /* invokes IntSet.add with writes R */
4 set.add(A[i]);

(b) Usingcommuteswith for parallelism

1 class Adder<region P> {
2 void add(IntSet<P> set, int i)

3 invokes IntSet.add with writes P {
4 set.add(i);

5 }
6 }

7 IntSet<R> set = new IntSet<R>();
8 Adder<R> adder = new Adder<R>();
9 foreach (int i in 0, N)

10 /* invokes IntSet.add with writes R */
11 adder.add(set, A[i]);

(c) Usinginvokes to summarize effects

Figure 10. Illustration ofcommuteswith andinvokes.

check effects soundly in the presence of commutativity an-
notations: for example, in line 4 of Fig. 10(b), the compiler
needs to record thatadd was invoked there (so it can dis-
regard the effects of otheradd invocations)and that the un-
derlying effect of the method waswrites R (so it can verify
that there are no other interfering effects, e.g., reads or writes
of R, in the invoking code).

When there are one or more intervening method calls be-
tween aforeach loop and a commutative operation, it may
also be necessary for a method effect summary in thepro-
gram textto specify that an invocation occurred inside the
method. For example, in Figure 10(c), theadd method is
called through a wrapper object. We could have correctly
specified the effect ofAdder.add as writes P, but this
would hide from the compiler the fact thatAdder.add com-
mutes with itself. Of course we could usecommuteswith for
Adder.add, but this is highly unsatisfactory: it just propa-
gates the unchecked commutativity annotation out through
the call chain in the application code. The solution is to
specify the invocation effectinvokes IntSet.add with

writes P, as shown.
Notice that the programmer-specified invocation effect

exposes an internal implementation detail (i.e., that a par-
ticular method was invoked) at a method interface. However,
we believe that such exposure will be rare. In most cases, the
effectinvokesC.m withE will be conservatively summa-
rized asE (Section 6.1 gives the formal rules for covering
effects). The invocation effect willonly be used for cases
where a commutative method is invoked, and the commu-
tativity information needs to be exposed to the caller. We
believe these cases will generally be confined to high-level
public API methods, such asSet.add in the example given
in Figure 10.



Meaning Symbol Definition
Programs program region∗ class∗ e

Regions region region r

Classes class class C<P> { field∗ method∗ comm∗}
RPLs R Root | P | z |R : r |R : [i] |R : ∗
Fields field T f in Rf

Types T C<R> | T []<R>#i

Methods method T m(T x) E { e }
Effects E ∅ | reads R | writes R |

invokes C.m with E | E ∪E

Expressions e let x = e in e | this.f = z | this.f |
z[n] = z | z[n] | z.m(z) | z | new C<R> |
new T [n]<R>#i

Variables z this | x
Commutativity comm m commuteswith m

Figure 11. Core DPJ syntax.C, P , f , m, x, r, andi are
identifiers, andn is a natural number.Rf denotes a fully
specified RPL (i.e., containing no∗).

6. The Core DPJ Type System
We have formalized a subset of DPJ, calledCore DPJ. To
make the presentation more tractable and to focus attention
on the important aspects of the language, we make the fol-
lowing simplifications:

1. We present a simple expression-based language, omitting
more complicated aspects of the real language such as
statements and control flow.

2. Our language has classes and objects, but no inheritance.

3. Region namesr are declared at global scope, instead of
at class scope. Every class has one region parameter, and
every method has one formal parameter.

4. To avoid dealing with integer variables and expressions,
we require that array indices are natural number literals.

Removing the first simplification adds complexity but raises
no significant technical issues. Adding inheritance raises
standard issues for formalizing an object-oriented language.
We omit those here in order to focus on the novel aspects
of our system, but we describe them in [10]. Removing
simplifications 3 and 4 is mostly a matter of bookkeeping.
To handle arrays in the full language, we need to prove
equivalence and non-equivalence of array index expressions,
but this is a standard compiler capability.

We have chosen to make Core DPJ a sequential language,
in order to focus on our mechanisms for expressing effects
and noninterference. In Section 6.4, we discuss how to ex-
tend the formalism to model thecobegin andforeach con-
structs of DPJ.

6.1 Syntax and Static Semantics

Figure 11 defines the syntax of Core DPJ. The syntax con-
sists of the key elements described in the previous sections
(RPLs, effects, and commutativity annotations) hung upon
a toy language that is sufficient to illustrate the features yet
reasonable to formalize. A program consists of a number of
region declarations, a number of class declarations, and an
expression to evaluate. Class definitions are similar to Java’s,
with the restrictions noted above.

(a) Programs

⊲ program Valid program ⊲ class Valid class definition
⊲Γ Valid environment Γ ⊲ field Valid field

Γ ⊲ method Valid method Γ ⊲ comm Valid commutativity annotation

(b) RPLs

Γ ⊲ R Valid RPL Γ ⊲ R ≤ R′ R underR′

Γ ⊲ R ⊆ R′ R included inR′

(c) Types

Γ ⊲ T Valid type Γ ⊲ T ≤ T ′ T a subtype ofT ′

(d) Effects

Γ ⊲ E Valid effect Γ ⊲ E ⊆ E′ E a subeffect ofE′

(e) Expressions

Γ ⊲ e : T, E e has typeT and effectE in Γ

Figure 12. Core DPJ type judgments. We extend the judg-
ments to groups of things (e.g.,Γ ⊲ field∗) in the obvious
way.

We define the static semantics of Core DPJ with the
judgments stated in Figure 12. The judgments are defined
with respect to an environmentΓ, where each element ofΓ
is one of the following:

• A binding z 7→ T stating that variablez has typeT .
These elements come into scope when a new variable
(let variable or formal parameter) is introduced.

• A constraintP ⊆ R stating that region parameterP is
in scope and included in regionR. These elements come
into scope when we capture the type of a variable used
for an invocation (see the discussion of expression typing
judgments below).

• An integer variablei. These elements come into scope
when we are evaluating an array type or new array ex-
pression.

The formal rules for making the judgments are stated in full
in Appendix A. Below we briefly discuss each of the five
groups of judgments.

Programs. These judgments state that a program and its
top-level components (classes, methods, etc.) are valid. Most
rules just require that the component’s components are valid
in the surrounding environment. The rule for valid method
definitions (METHOD) requires that the method body’s type
and effect are a subtype and subeffect of the return type and
declared effect. These constraints ensure that we can use
the method declaration to reason soundly about a method’s
return type and effect when we are typing method invocation
expressions.

RPLs. These judgments define validity, nesting, and in-
clusion of RPLs. Most rules are a straightforward formal
translation of the relations that we described informally in
Section 3.2. The key rule states that ifR is underR′ in
some environment, thenR is included inR′:* in that en-
vironment:



(INCLUDE-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R ⊆ R′ : ∗

Types. These define when one type is a subtype of an-
other. The class subtyping rule is just the formal statement
of the rule we described informally in Section 3.3:

(SUBTYPE-CLASS) Γ ⊲ R ⊆ R′

Γ ⊲ C<R> ≤ C<R′>

The array subtyping rule is similar:

(SUBTYPE-ARRAY) Γ ∪ {i} ⊲ R ⊆ R′[i′ ← i] T ≡ T ′

Γ ⊲ T []<R>#i ≤ T ′[]<R′>#i′

Here≡ means identity of element types up to the names
of integer variablesi. More flexible element subtyping is
not possible without sacrificing soundness. We could allow
unsound assignments and check for them at runtime (as Java
does for class subtyping of array elements), but this would
require that we retain the class region binding informationat
runtime.

Effects. These judgments define when an effect is valid,
and when one effect is a subeffect of another. Intuitively, “E

is a subeffect ofE′” means thatE′ contains all the effects of
E, i.e., we can useE′ as a (possibly conservative) summary
of E. The rules for reads, writes, and effect unions are
standard [16, 33], but there are two new rules for invocation
effects. First, ifE′ coversE, then an invocation of some
method withE′ covers an invocation of the same method
with E:

(SE-INVOKES-1) Γ ⊲ E ⊆ E′

Γ ⊲ invokes C.m with E ⊆ invokes C.m with E′

Second, we can conservatively summarize the effectinvokes

C.m with E as justE:

(SE-INVOKES-2)
Γ ⊲ invokes C.m with E ⊆ E

Expressions. These judgments tell us how to compute the
type and effect of an expression. They also ensure that the
types of component expressions (for example at assignments
and method parameter bindings) match in a way that guar-
antees soundness. The rules for field and array access and
assignment, variable lookup, and new classes and arrays are
straightforward. In the rule forlet x = e in e′, we typee,
bind x to the type ofe, and typee′. If x appears in the type
or effect of e′, we replace it withR:* to generate a type
and effect for the whole expression that is valid in the outer
scope.

In the rule for method invocation (INVOKE), we translate
the typeTx of the method formal parameter to the current
context by creating a fresh region parameterP included in
the regionR of z’s type. This technique is similar to how
Java handles the capture of a generic wildcard. Note that
simply substitutingR for param(C) in translatingTx would
not be sound; see [10] for an explanation and an example.

Meaning Symbol Definition
RPLs dR Root | o | dR : r | dR : [i] | dR : [n] | dR : ∗
Types dT C<dR>

Effects dE ∅ | reads dR | writes dR |
invokes C.m with dE | dE ∪ dE

Figure 13. Dynamic syntax of Core DPJ.dRf denotes a
fully-specified dynamic RPL (i.e., containing no∗).

We also check that the actual argument type is a subtype
of the declared formal parameter type, and we report the
invocation of the method with its declared effect.

6.2 Dynamic Semantics

The syntax for entities appearing in the dynamic semantics
is shown in Figure 13. At runtime, we have dynamic regions
(dR), dynamic types (dT ) and dynamic effects (dE), cor-
responding to static regions (R), types (T ) and effects (E)
respectively. Dynamic regions and effects are not recorded
in a real execution, but here we thread them through the ex-
ecution state so we can formulate and prove soundness re-
sults [16]. We also have object referenceso, which are the
actual values computed during the execution.

The dynamic execution state consists of (1) a heapH ,
which is a function taking values to objects; and (2) a dy-
namic environmentdΓ, which is a set of elements of the
form z 7→ o (variablez is bound to valueo) or P 7→ dR

(region parameterP is bound to regiondR). dΓ defines a
natural substitution on RPLs, where we replace the variables
with values and the region parameters with regions as speci-
fied in the environment. We denote this substitution on RPL
R asdΓ(R), and we extend this notation to types and ef-
fects in the obvious way. Notice that we get the syntax of
Figure 13 by applying the substitutiondΓ to the syntax of
Figure 11.

An object is a partial function taking field names to object
references. If the function is undefined on all field names,
then we say it is anull object. We use null objects because we
need to track the actual types of null references to establish
soundness. Since the actual implementation does not need to
do this tracking, it can just use the single valuenull. Every
object referenceo ∈ Dom(H) has a type, determined when
the object is created, and we writeH ⊲ o : dT to mean that
the referenceo has typedT with respect to heapH .

We write the evaluation rules in large-step semantics no-
tation, using the following evaluation function:

(e, dΓ, H) → (o, H
′

, dE),

wheree is an expression to evaluate,dΓ andH give the
dynamic context for evaluation,o is the result of the eval-
uation,H ′ is the updated heap, anddE represents the ef-
fects of the evaluation. A program evaluates to referenceo

with heapH and effectdE if its main expression ise and
(e, ∅, ∅)→ (o, H, dE).

Section B of the Appendix states the rules for program
evaluation. The rules are standard for an imperative lan-
guage, except that we record read effects in DYN-FIELD-



ACCESS and DYN-ARRAY-ACCESS and write effects in
DYN-FIELD-ASSIGN and DYN-ARRAY-ASSIGN. Rules
DYN-LET and DYN-INVOKE accumulate the effects of
the component expressions. Note that when we evaluate
new T we eliminate any∗ from T in the dynamic type of
the new reference, e.g.,new C<Root:*> is the same as
new C<Root>; this rule ensures that all object fields are al-
located in fully specified regions. This rule is sound for the
same reason that assigningC<Root> to a variable of type
C<Root:*> is sound.

6.3 Soundness

Our key soundness result is that we can define and check a
static property of noninterference of effect between expres-
sions in the language, such that static noninterference im-
plies dynamic noninterference. Appendix C states the major
steps of the proof in formal terms. We divide the steps into
three groups: type and effect preservation (Section C.1), dis-
jointness (Section C.2), and noninterference of effect (Sec-
tion C.3).We provide further explanation and a full proof in
our technical report [10].

Type and effect preservation.In Section C.1, we assert
some preliminary definitions and the preservation result. A
dynamic environmentdΓ is valid (Definition 1) if the types
and RPLs appearing on the right of its bindings are valid,
and it is internally consistent. A heapH is valid (Defini-
tion 2) if the reference stored in every object field or array
cell of H is consistent with the declared type of the field or
cell, translated todΓ. A dynamic environmentdΓ instanti-
atesa static environmentΓ (Definition 3) if the bindings to
variables indΓ are consistent with the bindings to the corre-
sponding variables inΓ, after translation todΓ.

Theorem 1 establishes that we can use the static types
and effects (Section 6.1) to reason soundly about dynamic
types and effects (Section 6.2). It states that if we type
an expressione in environmentΓ, and we evaluatee in
dynamic environmentdΓ, wheredΓ instantiatesΓ, then (a)
the evaluation takes a valid heap to a valid heap; (b) the static
type ofe bounds the dynamic type of the valueo that results
from the evaluation; and (c) the static effect ofe bounds the
dynamic effect that results from the evaluation.

Disjoint RPLs. In Section C.2, we formally define a dis-
jointness relation on pairs of RPLs (Γ⊲R# R′). The relation
formalizes distinctions from the left and right, as discussed
informally in Section 3.2.Definition 4 formally expresses
how to interpret a dynamic RPL as a set of fully-specified
RPLs (i.e., regions).Definition 5 shows how to associate
every object field and array cell with a region of the heap.
Proposition 1states that disjoint RPLs imply disjoint sets of
fully specified regions, i.e., disjoint sets of locations.Propo-
sition 2 states that at runtime, disjoint fully-specified regions
imply disjoint locations.

Noninterference.In Section C.3, we formally define
a noninterference relation on pairs of static effects (Γ ⊲

E # E′). The rules express four basic facts: (1) reads com-

mute with reads; (2) writes commute with reads or writes if
the regions are disjoint; (3) invocations commute with other
effects if the underlying effects are disjoint; and (4) two in-
vocations commute if the methods are declared to commute,
regardless of interference between the underlying effects.

Theorem 2 expresses the main soundness property of
Core DPJ, which is that the execution order of noninterfering
expressions does not matter. It states that in a well-typed
program, ife and e′ are expressions with typesT andT ′

and effectsE andE′, andE andE′ are noninterfering, then
either order of evaluatinge ande′ produces the same values
o ando′, the same effectsdE anddE′, and the same final
heapH .

The claim is true for dynamic effects from the commuta-
tivity of reads, the disjointness results of Section C.2, and the
assumed correctness of the commutativity specifications for
methods. The claim is true for static effects by the type and
effect preservation property above. See [10] for the formal
proof.

6.4 Deterministic Parallelism

As discussed in Sections 2 and 4, the actual DPJ language in-
cludesforeach for parallel loops andcobegin for a block
of parallel statements. We briefly discuss how to extend the
formalism to model these constructs.

We can easily simulatecobegin by adding a parallel
composition operatore|e′, which says to executee and e′

in the same environment, in an unspecified order, with an
implicit join at the end of the execution. We can simulate
foreach by allowing an induction variablei to appear in
expressions inside the scope of aforeach, mappingi to n

over the index range of theforeach, and evaluating allen

in unspecified order. In both cases we can extend the static
typing rules to say that for any pair of expressionse ande′

as to which the order of execution is unspecified, then the
effects ofe ande′ must be noninterfering.

It follows directly from Theorem 2 that parallel composi-
tion of noninterfering expressions produces the same result
as sequential composition of those expressions. This guaran-
tees determinism of execution regardless of the order of par-
allel execution. The formalization of this property is straight-
forward, and we omit it from our technical report.

7. Evaluation
We have carried out a preliminary evaluation of the language
and type system features presented in this paper. Our evalu-
ation addressed the following questions:

• Expressiveness.Can the type system express important
parallel algorithms on object-oriented data structures?
When does it fail to capture parallelism and why?

• Coverage.Are each of thenewfeatures in the DPJ type
system important to express one or more of these algo-
rithms?



• Performance.For each of the algorithms, what increase
in performance is realized in practice? This is a quan-
titative measure of how much parallelism the type sys-
tem can express for each algorithm (note that the runtime
overheads introduced by DPJ are negligible).

To do the evaluation, we extended Sun’sjavaccompiler
so that it compiles DPJ into ordinary Java source. We built
a runtime system for DPJ using theForkJoinTaskframe-
work that will be added to thejava.util.concurrent
standard library in Java 1.7 [2].ForkJoinTasksupports dy-
namic scheduling of lightweight parallel tasks, using a work-
stealing scheduler similar to that in Cilk [8]. The DPJ com-
piler automatically translatesforeach to a recursive com-
putation that successively divides the iteration space, toa
depth that is tunable by the programmer, and it translates a
cobegin block into one task for every statement. Code using
ForkJoinTaskis compatible with Java threads so an existing
multithreaded Java program can be incrementally ported to
DPJ. Such code may still have some guarantees, e.g., the
DPJ portions will be guaranteed deterministic if the explic-
itly threaded and DPJ portions are separate phases that do
not run concurrently.

Using the DPJ compiler, we studied the following pro-
grams: Parallel merge sort, two codes from the Java Grande
parallel benchmark suite (a Monte Carlo financial simula-
tion and IDEA encryption), the force computation from the
Barnes-Hut n-body simulation [45], k-means clustering from
the STAMP benchmarks [34], and a tree-based collision de-
tection algorithm from a large, real-world open source game
engine called JMonkey (we refer to this algorithm as Col-
lision Tree). For all the codes, we began with a sequential
version and modified it to add the DPJ type annotations. The
Java Grande benchmarks are explicitly parallel versions us-
ing Java threads (along with equivalent sequential versions),
and we compared DPJ’s performance against those. We also
wrote and carefully tuned the Barnes-Hut force computation
using Java threads as part of understanding performance is-
sues in the code, so we could compare Java and DPJ for that
one as well.

7.1 A Realistic Example

We use the Barnes-Hut force computation to show how
to write a realistic parallel program in DPJ. Figure 14 shows
a simplified version of this code. The main simplification is
that theVector objects are immutable, withfinal fields
(so there are no effects on these objects), whereas our actual
implementation uses mutable objects. The classNode repre-
sents an abstract tree node containing a mass and position.
The mass and position represent the actual mass and position
of a body (at a leaf) or the center of mass of a subtree (at an
inner node). TheNode class has two subclasses:InnerNode,
representing an inner node of the tree, and storing an array of
children; andBody, representing the body data stored at the
leaves, and storing a force. TheTree class stores the tree,

1 /* Abstract class for tree nodes */

2 abstract class Node<region R> {
3 region MP; /* Region for mass and position */

4 double mass in R:MP; /* Mass */
5 Vector pos in R:MP; /* Position */
6 }

7

8 /* Inner node of the tree */

9 class InnerNode<region R> extends Node<R> {
10 region Children;

11 Node<R:*>[]<R:Children> children in R:Children;
12 }
13

14 /* Leaf node of the tree */
15 class Body<region R> extends Node<R> {

16 region Force; /* Region for force */
17 Vector force in R:Force; /* Force on this body */
18

19 /* Compute force of entire subtree on this body */
20 Vector computeForce(Node<R:*> subtree)

21 reads R:*:Children, R:*:MP { ... }
22 }

23

24 /* Barnes-Hut tree */
25 class Tree<region R> {

26 region Tree; /* Region for tree */
27 Node<R> root in R:Tree; /* Root */

28 Body<R:[i]>[]<R:[i]>#i bodies in R:Tree; /* Leaves */
29

30 /* Compute forces on all bodies */

31 void computeForces() writes R:* {
32 foreach (int i in 0, bodies.length) {

33 /* reads R:Tree, R:*:Node.Children, R:[i],
34 R:*:Node.MP writes R:[i]:Node.Force */

35 bodies[i].force = bodies[i].computeForce(root);
36 }
37 }

38 }

Figure 14. Using DPJ to write the Barnes-Hut force com-
putation.

together with an array ofBody objects pointing to the leaves
of the tree.

The methodTree.computeForces does the force com-
putation by traversing the array of bodies and calling the
methodBody.computeForce on each one, to compute the
force between the bodythis andsubtree. If subtree is a
body, or is sufficiently far away that it can be approximated
as a point mass, thenBody.computeForce computes and
returns the pairwise interaction between the nodes. Other-
wise, it recursively callscomputeForce on the children of
subtree, and accumulates the result.

We use a region parameter on the node classes to distin-
guish instances of these nodes. ClassTree uses the param-
eters to create an index-parameterized array of referencesto
distinct body objects; the parallel loop incomputeForces
iterates over this array. This allows distinctions from theleft
for operations onbodies[i] (Section 3). We also use dis-
tinct region names within each class (in particular, for the
force, masses and positions, and the children array) to en-
able distinctions from the right.

The key fact is that, from the effect summary in line 21
and the code in line 35, the compiler infers the effects shown
in lines 33–34. Using distinctions from the left and right, the
compiler can now prove that (1) the updates are distinct for
distinct iterations of theforeach; and (2) all the updates
are distinct from the reads. Notice also how the nested RPLs



allow us to describe the entire effect ofcomputeForces as
writes R:*. That is, to the outside world,computeForces
just writes under the region parameter ofTree. Thus with
careful use of RPLs, we can enforce a kind of encapsulation
of effects, which is important for modular software design.

7.2 Expressiveness and Coverage

We used DPJ to expressall available parallelism (except for
vector parallelism, which we do not consider here) for Merge
Sort, Monte Carlo, IDEA, K-Means, and Collision Tree. For
Barnes-Hut, the overall program includes four major phases
in each time step: tree building; center-of-mass computation;
force calculations; and position calculations. Expressing the
force, center of mass, and position calculations is straightfor-
ward, but we studied only the force computation (the domi-
nant part of the overall computation) for this work. DPJ can
also express the tree-building phase, but we would have to
use a divide-and-conquer approach, instead of inserting bod-
ies from the root via “hand-over-hand locking,” as in in [45].

Briefly, we parallelized each of the codes as follows.
MergeSort uses subarrays (Section 4.2) to perform in-place
parallel divide and conquer operations for both merge and
sort, switching to sequential merge and sort for subproblems
below a certain size. Monte Carlo uses index-parameterized
arrays (Section 4.1) to generate an array of tasks and com-
pute an array of results, followed by commutativity anno-
tations (Section 5) to update to globally shared data inside
a reduction loop. IDEA uses subarrays to divide the input
array into disjoint pieces, then usesforeach to operate on
each of the pieces. Section 7.1 describes our parallel Barnes-
Hut force computation. Collision Tree recursively walks two
trees, reading the trees and collecting a list of intersecting tri-
angles. At each node, a separate triangle list is computed in
parallel for each subtree, and then the lists are merged. Our
implementation uses method-local regions to distinguish the
writes to the left and right subtree lists. K-Means uses com-
mutativity annotations to perform simultaneous reductions,
one for each cluster. Table 1 summarizes the novel DPJ ca-
pabilities used for each code.

Table 1. Capabilities Used In The Benchmarks
1. Index-parameterized array; 2. Distinctions from the left; 3. Distinctions from the
right; 4. Recursive subranges; 5. Commutativity annotations.

Benchmark 1 2 3 4 5
Merge Sort - Y - Y -
Monte Carlo Y Y - - Y
IDEA - Y - Y -
Barnes-Hut Y Y Y - -
Collision Tree - Y - - -
K Means - - - - Y

Our evaluation and experience showed some interesting
limitations of the current language design. To achieve good
cache performance in Barnes-Hut, the bodies must be re-
ordered according to their proximity in space on each time
step [45]. As discussed in Section 7.1, we use an index-

Num Monte Carlo IDEA Barnes Hut
Cores DPJ Java DPJ Java DPJ Java

2 2.00 1.80 1.95 1.99 1.98 1.99
3 2.82 2.50 2.88 2.97 2.96 2.94
4 3.56 3.09 3.80 3.91 4.94 3.88
7 5.53 4.65 6.40 6.70 6.79 7.56

12 8.01 6.46 9.99 11.04 11.4 13.65
17 10.02 7.18 12.70 14.90 15.3 19.04
22 11.50 7.98 18.70 17.79 23.9 23.33

Table 2. Comparison of DPJ vs. Java threads performance
for Monte Carlo, IDEA encryption, and Barnes Hut.

parameterized array to update the bodies in parallel. As dis-
cussed in Section 4.1, this requires that we copy each body
with the new destination regions at the point of re-insertion.
As future work, we believe we can ease this restriction by
adding a mechanism for disjointness checking at runtime.

7.3 Performance

We measured the performance of each of the benchmarks on
a Dell R900 multiprocessor running Red Hat Linux with 24
cores, comprising four six-core Xeon processors, and a total
of 48GB of main memory. For each data point, we took the
minimum of five runs on an idle machine.

We studied multiple inputs for each of the benchmarks
and also experimented with different limits for recursive
codes. We present results for the inputs and parameter values
that show the best performance, since our main aim is to
evaluate how well DPJ can express the parallelism in these
codes. The sensitivity of the parallelism to input size and/or
recursive limit parameters is a property of the algorithm and
not a consequence of using DPJ.

Figure 15 presents the speedups of the six programs for
p ∈ {1, 2, 3, 4, 7, 12, 17, 22} processors. All speedups are
relative to an equivalent sequential version of the program,
with no DPJ or other multithreaded runtime overheads. All
six codes showed moderate to good scalability for all val-
ues ofp. Barnes-Hut and Merge Sort showed near-ideal per-
formance scalability, with Barnes-Hut showing a superlinear
increase forp = 22 due to cache effects.

Notably, as shown in Table 2, for the three codes where
we have manually parallelized Java threads versions avail-
able, the DPJ versions achieved speedups close to (IDEA
and Barnes Hut), or better than (Monte Carlo), the Java ver-
sions, for the same inputs on the same machines. We believe
the Java threads codes are all reasonably well tuned; the two
Java Grande benchmarks were tuned by the original authors
and the Barnes Hut code was tuned by us. The manually
parallelized Monte Carlo code exhibited a similar leveling
off in speedup as the DPJ version did beyond about 7 cores
because both have a significant sequential component that
makes copies of a large array for each parallel task. Over-
all, in all three programs, DPJ is able to express the avail-
able parallelism as efficiently as a lower-level hand coded
parallel programming model that provides no guarantees of
determinism or even race-freedom.



Figure 15. Speedups. Numbers in legend are input sizes.

Our experience so far has shown us that DPJ itself can
be very efficient, even though both the compiler and runtime
are preliminary. In particular (except for very small runtime
costs for the dynamic partitioning mechanism for subarrays),
our type system requires no runtime checks or speculation
and thereforeadds negligible runtime overhead for achiev-
ing determinism. On the other hand, it is possible that the
type system may constrain algorithmic design choices. The
limitation on reordering the array of bodies in Barnes-Hut,
explained in Section 7.2, is one such example.

7.4 Porting Effort

Table 3 shows the number of source lines changed and the
number of annotations, relative to the program size. Program
size is given in non-blank, non-comment lines of source
code, counted bysloccount. The next column shows how
many LOC were changed when annotating. The last four
columns show (1) the number of declarations using the
region keyword (i.e., field regions, local regions, and re-
gion parameters); (2) the number of RPLs appearing as ar-
guments toin, types, methods, and effect summaries; (3)
the number of method effect summaries, countingreads

andwrites separately; and (4) the number of commutativ-
ity annotations. As the table shows, the fraction of lines of
code changed was not large, averaging 10.7% of the original
lines. Most of the changed lines were due to writing RPL
arguments when instantiating types (represented in column
four), followed by writing method effect summaries (column
five).

More importantly, we believe that the overall effort of
writing, testing, and debugging a program withany paral-
lel programming model is dominated by the time required
to understand the parallelism and sharing patterns (includ-
ing aliases), and to debug the parallel code. The regions and
effects in DPJ provideconcrete guidance to the program-
mer on how to reason about parallelism and sharing. Once

Total Annotated Region Effect

Program SLOC SLOC Decls RPLs Summ. Comm.

MergeSort 295 38 (12.9%) 15 41 7 0

Monte Carlo 2877 220 (7.6%) 13 301 161 1

IDEA 228 24 (10.5%) 8 22 2 0

Barnes-Hut 682 80 (11.7%) 25 123 38 0

CollisionTree 1032 233 (22.6%) 82 408 58 0

K-means 501 5 (1.0%) 0 3 3 1

Total 5615 600 (10.7%) 143 898 269 2

Table 3. Annotation counts for the case studies.

the programmer understands the sharing patterns, he or she
explicitly documents them in the code through region and ef-
fect annotations, so other programmers can gain the benefit
of his or her understanding.

Further, programming tools can alleviate the burden of
writing annotations. We have developed an interactive port-
ing tool, DPJIZER [49], that infers many of these annota-
tions, using iterative constraint solving over the whole pro-
gram. DPJIZER is implemented as an Eclipse plugin and
correctly infers method effect summaries for a program that
is already annotated with region information. We are cur-
rently extending DPJIZER to infer RPLs, assuming that the
programmer declares the regions.

In addition, a good set of defaults can further reduce the
amount of manually written annotations. For example, if the
programmer does not annotate a class field, its default re-
gion could be the RPLdefault-parameter:field-name. This
default distinguishes both instances of the same class and
fields within a class. The programmer can override the de-
faults if she needs further refinements.

8. Related Work
We group the related work into five broad categories: ef-
fect systems (not including ownership-based systems); own-
ership types (including ownership with effects); unique ref-
erences; separation logic; and runtime checks.

Effect Systems:The seminal work on types and effects for
concurrency is FX [33, 27], which adds a region-based type
and effect system to a Scheme-like, implicitly parallel lan-
guage. Leino et al. [30] and Greenhouse and Boyland [26]
first added effects to an object-oriented language. None of
these systems can represent arbitrarily nested structuresor
array partitioning, and they cannot specify arbitrarily large
sets of regions. Also, the latter two systems rely on alias re-
strictions and/or supplementary alias analysis for soundness
of effect, whereas DPJ does not.

Ownership Types: Some ownership-based type systems
have been combined with effects to enable reasoning about
noninterference. Both JOE [16, 46] and MOJO [14] have
sophisticated effect systems that allow nested regions and
effects. However, neither has the capabilities of DPJ’s array
partitioning and partially specified RPLs, which are crucial



to expressing the patterns addressed in this paper. JOE’s
under effect shape is similar to DPJ’s∗, but it cannot do
the equivalent of our distinctions from the right. JOE allows
slightly more precision than our rule LET when a type or
effect uses a local variable that goes out of scope, but we
have found that this precision is not necessary for express-
ing deterministic parallelism. MOJO has a wildcard region
specifier?, but it pertains to the orthogonal capability of
multiple ownership, which allows objects to be placed in
multiple regions. Leino’s system also has this capability,but
without arbitrary nesting.

Lu and Potter [32] show how to use effect constraints to
break the owner dominates rule in limited ways while still
retaining meaningful guarantees. Theany context of [32] is
identical toRoot:* in our system, but we can make more
fine-grained distinctions. For example, we can conclude that
a pair of references stored in variables of typeC<R1:*> and
C<R2:*> can never alias, ifR1:* andR2:* are disjoint.

Several researchers [11, 3, 28] have described effect sys-
tems for enforcing a locking discipline in nondeterministic
programs, to prevent data races and deadlocks. Because they
have different goals, these effect systems are very different
from ours, e.g., they cannot express arrays or nested effects.

Finally, an important difference between DPJ and most
ownership systems is that we allowexplicit region declara-
tions, like [33, 30, 26], whereas ownership systems gen-
erally couple region creation with object creation. We have
found many cases where a new region is needed but a new
object is not, so the ownership paradigm becomes awkward.
Supporting field granularity effects also is difficult with own-
ership.

Unique References: Boyland [13] shows how to use alias
restrictions to guarantee determinism for a simple language
with pointers. Terauchi and Aiken [48] have extended this
work with a type inference algorithm that simplifies the type
annotations and elegantly expresses some simple patterns of
determinism. Alias restrictions are a well-known alternative
to effect annotations for reasoning about heap access, and in
some cases they can complement effect annotations [26, 12].
However, alias restrictions severely limit the expressivity
of an object-oriented language. It is not clear whether the
techniques in [13, 48] could be applied to a robust object-
oriented language. Clarke and Wrigstad’s external unique-
ness [17] is better suited to an object-oriented style, but it is
not clear whether external uniqueness is useful for determin-
istic parallelism.

Separation Logic: Separation logic [40] (SL) is a poten-
tial alternative to effect systems for reasoning about shared
resources. O’Hearn [35] and Gotsman et al. [25] use SL to
check race freedom, though O’Hearn includes some simple
proofs of noninterference. Parkinson [37] has extended C#
with SL predicates to allow sound inference in the presence
of inheritance. Raza et al. [39] show how to use separation

logic together with shape analysis for automatic paralleliza-
tion of a sequential program.

While SL is a promising approach, applying it to realis-
tic programs poses two key issues. First, SL is alow-level
specification language: it generally treats memory as a sin-
gle array of words, on which notions of objects and linked
data structures must be defined using SL predicates [40, 35].
Second, SL approaches generallyeitherrequire heavyweight
theorem proving and/or a relatively heavy programmer an-
notation burden [37]or are fully automated, and thereby lim-
ited by what the compiler can infer [25, 39].

In contrast, we chose to start from the extensive prior
work on regions and effects, which is more mature than
SL for OO languages. As noted in [40], type systems and
SL systems have many common goals but have developed
largely in parallel; as future research it would be useful to
understand better the relationship between the two.

Runtime Checks: A number of systems enforce some form
of disciplined parallelism via runtime checks. Jade [43] and
Prometheus [5] use runtime checks to guarantee determin-
istic parallelism for programs that do not fail their checks.
Jade also supports a simple form of commutativity annota-
tion [41]. Multiphase Shared Arrays [20] and PPL1 [47] are
similar in that they rely on runtime checks that may fail if
determinism is violated. None of these systems checks non-
trivial sharing patterns at compile time.

Speculative parallelism [7, 23, 51] can achieve deter-
minism with minimal programmer annotations, compared
to DPJ. However, speculation generally either incurs signif-
icant software overheads or requires special hardware [38,
31, 50]. Grace [7] reduces the overhead of software-only
speculation by running threads as separate processes and us-
ing commodity memory protection hardware to detect con-
flicts at page granularity. However, Grace does not efficiently
support essential sharing patterns such as (1) fine-grain ac-
cess distinctions (e.g., distinguishing different fields of an
object, as in Barnes-Hut); (2) dynamically scheduled fine-
grain tasks (e.g.,ForkJoinTask); or (3) concurrent data struc-
tures, which are usually finely interleaved in memory. Fur-
ther, unlike DPJ, a speculative solution does not document
the parallelization strategy or show how the code must be
rewritten to expose parallelism.

Kendo [36] and DMP [21] use runtime mechanisms to
guarantee equivalence to some (arbitrary) serial interleaving
of tasks; however, that interleaving is not necessarily obvi-
ous from the program text, as it is in DPJ. Further, Kendo’s
guarantee fails if the program contains data races, and DMP
requires special hardware support. SharC [6] uses a combi-
nation of static and dynamic checks to enforce race freedom,
but not necessarily deterministic semantics, in C programs.

Finally, a determinism checker [44, 22] instruments code
to detect determinism violations at runtime. This approach
is not viable for production runs because of the slowdowns
caused by the instrumentation, and it is limited by the cover-



age of the inputs used for the dynamic analysis. However, it
is sound for the observed traces.

9. Conclusion
We have described a novel type and effect system, together
with a language called DPJ that uses the system to enforce
deterministic semantics. Our experience shows that the new
type system features are useful for writing a range of pro-
grams, achieving moderate to excellent speedups on a 24-
processor system with guaranteed determinism.

Our future goals are to exploit region and effect anno-
tations for optimizing memory hierarchy performance; to
add runtime support for more flexible operationson index-
parameterized arrays; to add support for object-oriented par-
allel frameworks; and to add support for explicitly nondeter-
ministic algorithms.
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A. Static Semantics Rules
We divide the static semantics in to five parts: rules for valid
program elements (Figure 16), rules for validity, nesting,
and inclusion of RPLs (Figure 17), rules for valid types and
subtypes (Figure 18), rules for valid effects and subeffects
(Figure 19), and rules for typing expressions (Figure 20).

B. Dynamic Semantics Rules
Figure 21 gives the rules for evaluating programs. Iff :
A → B is a function, thenf ∪ {x 7→ y} is the function
f ′ : A ∪ {x} → B ∪ {y} defined byf ′(a) = f(a) if a 6= x

andf ′(x) = y. new(C) is the function taking each field of

classC with typeT to a null reference of typedΓ(T ), and
new(T [n]) is the function taking each indexn′ ∈ [0, n− 1]
to a null reference of typedΓ(T )[i← n′].

The rules for dynamic RPLs, types, and effects are nearly
identical to their static counterparts. Instead of writingout
all the rules, we describe how to generate them via simple
substitution from the rules given in Section A. For every
rule given there except RPL-VAR, RPL-PARAM, UNDER-
VAR, INCLUDE-PARAM, and INCLUDE-FULL, do the
following: (1) append DYN- to the front of the name; (2)
replaceΓ with H and[i] with [n]; and (3) replaceR with dR,
T with dT , andE with dE. For example, here are the rules
for dynamic class subtyping, generated by the substitution
above from the rule SUBTYPE-CLASS:

(DYN-SUBTYPE-CLASS) H ⊲ dR ⊆ dR′

H ⊲ C<dR> ≤ C<dR′>

Then add the following rules:

(DYN-RPL-REF) H ⊲ o : dT

H ⊲ o

(DYN-UNDER-REF) H ⊲ o : C<dR>

H ⊲ o ≤ dR

(DYN-TYPE-ARRAY) H ⊲ dT [i← n] H ⊲ dR[i← n]
H ⊲ dT []<dR>#i

C. Soundness
C.1 Type and Effect Preservation

Definition 1 (Valid dynamic environments). A dynamic en-
vironment dΓ is valid with respect to heapH (H ⊲ dΓ) if
the following hold: (1) for every bindingz 7→ o ∈ dΓ,
H ⊲ o : dT ; (2) for every bindingP 7→ dR ∈ dΓ, H ⊲ dR;
and (3) if this 7→ o ∈ dΓ, thenH ⊲ o : C<dR>, and
param(C) 7→ dR ∈ dΓ.

Definition 2 (Valid heaps). A heapH is valid (⊲H) if for
eacho ∈ Dom(H), one of the following holds:

1. (a)H ⊢ o : C<dR> and (b)H ⊲ C<dR> and (c) for each
field T f in Rf ∈ def(C), if H(o)(f) is defined, then
H ⊲ H(o)(f) : dT andH ⊲ dT andH ⊲ dT ≤ T [o ←
this][dR← param(C)]; or

2. (a)H ⊲ o : dT []<dR>#i and (b)H ⊲ dT []<dR>#i and
(c) if H(o)(n) is defined, thenH ⊲ H(o)(n) : dT ′ and
H ⊲ dT andH ⊲ dT ′ ≤ dT [i← n].

Definition 3 (Instantiation of static environments). A dy-
namic environment dΓ instantiates a static environmentΓ
(H ⊲ dΓ ≤ Γ) if ⊲Γ, ⊲H , andH ⊲ dΓ; the same variables
appear in Dom(Γ) as in Dom(dΓ); and for each pairz 7→
T ∈ Γ andz 7→ o ∈ dΓ, H ⊲ v : dT andH ⊲ dT ≤ dΓ(T ).

Theorem 1 (Preservation). For a well-typed program, if
Γ ⊲ e : T, E andH ⊲ dΓ ≤ Γ and(e, dΓ, H)→ (o, H ′, dE),
then (a)⊲H ′; and (b)H ′ ⊲ dT ≤ dΓ(T ), whereH ′ ⊲ o : dT ;
and (c)H ′ ⊲ dE; and (d)H ′ ⊲ dE ⊆ dΓ(E).



(PROGRAM) ⊲class∗ ∅ ⊲ e : T, E

⊲class∗ e

(CLASS) {this 7→ C<P>} ⊲ field∗ method∗ comm∗

⊲class C<P> { field∗ method∗ comm∗ }
(ENV) ∀z 7→ T ∈ Γ.Γ ⊲ T ∀P ⊆ R ∈ Γ.Γ ⊲ R

⊲Γ

(FIELD) Γ ⊲ T Γ ⊲ R

Γ ⊲ T f in R

(METHOD) Γ ⊲ Tr , Tx, E Γ′ = Γ ∪ {x 7→ Tx} Γ′ ⊲ e : T ′, E′ Γ′ ⊲ T ′ ≤ Tr Γ′ ⊲ E′ ⊆ E

Γ ⊲ Tr m(Tx x) E { e }

(COMM) this 7→ C<P> ∈ Γ ∃def(C.m), def(C.m′)
Γ ⊲ m commuteswith m′

Figure 16. Rules for valid program elements. def(C.m) means the definition of methodm in classC.

(RPL-ROOT)
Γ ⊲ Root

(RPL-VAR) z 7→ C<R> ∈ Γ
Γ ⊲ z

(RPL-PARAM) this 7→ C<P> ∈ Γ ∨ P ⊆ R ∈ Γ
Γ ⊲ P

(RPL-NAME) Γ ⊲ R region r ∈ program
Γ ⊲ R : r

(RPL-INDEX) Γ ⊲ R i ∈ Γ
Γ ⊲ R : [i]

(RPL-STAR) Γ ⊲ R

Γ ⊲ R : ∗
(UNDER-ROOT)

Γ ⊲ R ≤ Root

(UNDER-VAR) z 7→ C<R> ∈ Γ
Γ ⊲ z ≤ R

(UNDER-NAME) Γ ⊲ R ≤ R′

Γ ⊲ R : r ≤ R′

(UNDER-INDEX) Γ ⊲ R ≤ R′

Γ ⊲ R : [i] ≤ R′

(UNDER-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R : ∗ ≤ R′

(UNDER-INCLUDE) Γ ⊲ R ⊆ R′

Γ ⊲ R ≤ R′

(INCLUDE-NAME) Γ ⊲ R ⊆ R′

Γ ⊲ R : r ⊆ R′ : r

(INCLUDE-INDEX) Γ ⊲ R ⊆ R′

Γ ⊲ R : [i] ⊆ R′ : [i]
(INCLUDE-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R ⊆ R′ : ∗

(INCLUDE-PARAM) P ⊆ R ∈ Γ
Γ ⊲ P ⊆ R

(INCLUDE-FULL) Γ ⊲ R ⊆ Rf

Γ ⊲ Rf ⊆ R

Figure 17. Rules for valid RPLs, nesting of RPLs, and inclusion of RPLs.The nesting and inclusion relations are reflexive
and transitive (obvious rules omitted).

(TYPE-CLASS) ∃def(C) Γ ⊲ R

Γ ⊲ C<R>

(TYPE-ARRAY) Γ ∪ {i} ⊲ T, R

Γ ⊲ T []<R>#i

(SUBTYPE-CLASS) Γ ⊲ R ⊆ R′

Γ ⊲ C<R> ≤ C<R′>

(SUBTYPE-ARRAY) Γ ∪ {i} ⊲ R ⊆ R′[i′ ← i] T ≡ T ′

Γ ⊲ T []<R>#i ≤ T ′[]<R′>#i′

Figure 18. Rules for valid types and subtypes. def(C) means the definition of classC. T ≡ T ′ means thatT andT ′ are
identical up to the names of variablesi.

(EFFECT-EMPTY)
Γ ⊲ ∅

(EFFECT-READS) Γ ⊲ R

Γ ⊲ reads R

(EFFECT-WRITES) Γ ⊲ R

Γ ⊲ writes R

(EFFECT-INVOKES) ∃def(C.m) Γ ⊲ E

Γ ⊲ invokes C.m with E

(EFFECT-UNION) Γ ⊲ E Γ ⊲ E′

Γ ⊲ E ∪ E′

(SE-EMPTY)
Γ ⊲ ∅ ⊆ E

(SE-READS) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ reads R′

(SE-WRITES) Γ ⊲ R ⊆ R′

Γ ⊲ writes R ⊆ writes R′

(SE-READS-WRITES) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ writes R′

(SE-INVOKES-1) Γ ⊲ E ⊆ E′

Γ ⊲ invokes C.m with E ⊆ invokes C.m with E′

(SE-INVOKES-2)
Γ ⊲ invokes C.m with E ⊆ E

(SE-UNION-1) Γ ⊲ E ⊆ E′ ∨ Γ ⊲ E ⊆ E′′

Γ ⊲ E ⊆ E′ ∪E′′

(SE-UNION-2) Γ ⊲ E′ ⊆ E Γ ⊲ E′′ ⊆ E

Γ ⊲ E′ ∪E′′ ⊆ E

Figure 19. Rules for valid effects and subeffects.

(LET) Γ ⊲ e : C<R>, E Γ ∪ {x 7→ C<R>} ⊲ e′ : T ′, E′

Γ ⊲ let x = e in e′ : T ′[x← R : ∗], E ∪ E′[x← R : ∗]
(FIELD-ACCESS) T f in Rf ∈ def(C) this 7→ C<param(C)> ∈ Γ

Γ ⊲ this.f : T, reads Rf

(FIELD-ASSIGN) this 7→ C<param(C)> ∈ Γ z 7→ T ∈ Γ T ′ f in Rf ∈ def(C) Γ ⊲ T ≤ T ′

Γ ⊲ this.f = z : T, writes Rf

(ARRAY-ACCESS) z 7→ T []<R>#i ∈ Γ
Γ ⊲ z[n] : T [i← n], reads R[i← n]

(ARRAY-ASSIGN) {z 7→ T []<R>#i, z′ 7→ T ′} ⊆ Γ Γ ⊲ T ′ ≤ T [i← n]
Γ ⊲ z[n] = z′ : T ′, writes R[i← n]

(INVOKE) {z 7→ C<R>, z′ 7→ T} ⊆ Γ Tr m(Tx x) E { e } ∈ def(C) Γ ∪ {P ⊆ R} ⊲ T ≤ Tx[this← z][param(C)← P ]
Γ ⊲ z.m(z′) : Tr[this← z][param(C)← R], invokes C.m with E[this← z][param(C)← R]

(VAR) z 7→ T ∈ Γ
Γ ⊲ z : T, ∅

(NEW-CLASS) Γ ⊲ C<R>

Γ ⊲ new C<R> : C<R>, ∅
(NEW-ARRAY) Γ ⊲ T []<R>#i

Γ ⊲ new T [n]<R>#i : T []<R>#i, ∅

Figure 20. Rules for typing expressions. param(C) means the parameter of classC.



(DYN-LET) (e, dΓ, H) → (o, H′, dE) (e′, dΓ ∪ {x 7→ o}, H′)→ (o′, H′′, dE′)
(let x = e in e′, dΓ, H) → (o′, H′′, dE ∪ dE′)

(DYN-VAR) z 7→ o ∈ dΓ
(z, dΓ, H) → (o, H, ∅)

(DYN-FIELD-ACCESS) this 7→ o ∈ dΓ H ⊲ o : C<dR> T f in Rf ∈ def(C)
(this.f, dΓ, H) → (H(o)(f), H, reads dΓ(Rf ))

(DYN-FIELD-ASSIGN) {this 7→ o, z 7→ o′} ⊆ dΓ H ⊲ o : C<dR> T f in Rf ∈ def(C)
(this.f = z, dΓ, H) → (o′, H ∪ {o 7→ (H(o) ∪ {f 7→ o′})}, writes dΓ(Rf ))

(DYN-ARRAY-ACCESS) z 7→ o ∈ dΓ H ⊲ o : dT []<dR>#i

(z[n], dΓ, H) → (H(o)(n), H, reads dR[i← n])

(DYN-ARRAY-ASSIGN) {z 7→ o, z′ 7→ o′} ⊆ dΓ H ⊲ o : dT []<dR>#i

(z[n] = z′, dΓ, H)→ (o′, H ∪ {o 7→ (H(o) ∪ {n 7→ o′})}, writes dR[i← n])

(DYN-INVOKE) H ⊢ o : C<dR> Tr m(Tx x) E { e } ∈ def(C) (e, {this 7→ o, param(C) 7→ dR, x 7→ o′}, H) → (o′′, H′, dE)
(z.m(z′), {z 7→ o, z′ 7→ o′} ∪ dΓ, H)→ (o′′, H′, invokes C.m with dE)

(DYN-NEW-CLASS) o 6∈ Dom(H) H′ = H ∪ {o 7→ new(C)} H′ ⊲ o : C<dΓ(R[: ∗ ← ǫ])>
(new C<R>, dΓ, H) → (o, H′, ∅)

(DYN-NEW-ARRAY) o 6∈ Dom(H) H′ = H ∪ {o 7→ new(T [n])} H′ ⊲ o : dΓ(T )[]<dΓ(R[: ∗ ← ǫ])>
(new T [n]<R>#i, dΓ, H)→ (o, H′, ∅)

Figure 21. Rules for program evaluation.

(DISJOINT-LEFT-NAME) r 6= r′ Γ ⊲ R ≤ Rf : r Γ ⊲ R′ ≤ Rf : r′

Γ ⊲ R # R′

(DISJOINT-LEFT-INDEX) i 6= i′ Γ ⊲ R ≤ Rf : [i] Γ ⊲ R′ ≤ Rf : [i′]
Γ ⊲ R # R′

(DISJOINT-LEFT-NAME-INDEX) Γ ⊲ R ≤ Rf : r Γ ⊲ R′ ≤ Rf : [i]
Γ ⊲ R # R′

(DISJOINT-RIGHT-NAME) r 6= r′

Γ ⊲ R : r # R′ : r′

(DISJOINT-RIGHT-INDEX) i 6= i′

Γ ⊲ R : [i] # R′ : [i′]

(DISJOINT-RIGHT-NAME-INDEX)
Γ ⊲ R : r # R′ : [i]

(DISJOINT-NAME) Γ ⊲ R # R′

Γ ⊲ R : r # R′ : r

(DISJOINT-INDEX) Γ ⊲ R # R′

Γ ⊲ R : [i] # R′ : [i]

Figure 22. Rules for disjointness of RPLs. The disjointness
relation is symmetric (obvious rule omitted).

C.2 Disjointness

Figure 22 gives the rules for concluding that two static RPLs
are disjoint; we extend them to dynamic RPLs as in Sec-
tion B.

Definition 4 (Set interpretation of dynamic RPLs). Let ⊲H

and H ⊲ dR. Then S(dR, H) is defined as follows: (1)
S(dRf , H) = {dRf}; (2) S(dR : r, H) = {dRf : r|dRf ∈
S(dR, H)}; (3) S(dR : [n], H) = {dRf : [n]|dRf ∈
S(dR, H)}; and (4)S(dR : ∗, H) = {dRf |H⊲dRf ≤ dR}.

Definition 5 (Region of a field or array cell). If H ⊲ o :
C<dR> andT f in Rf ∈ def(C), then region(o, f, H) =
Rf [this ← o][param(C) ← dR]. If H ⊲ o : dT []<dR>#i,
then region(o, n, H) = dR[i← n].

(NI-READ)
Γ ⊲ reads R # reads R′

(NI-READ-WRITE) Γ ⊲ R # R′

Γ ⊲ reads R # writes R′

(NI-WRITE) Γ ⊲ R # R′

Γ ⊲ writes R # writes R′

(NI-INVOKES-1) Γ ⊲ E # E′

Γ ⊲ invokes C.m with E # E′

(NI-INVOKES-2) m commuteswith m′ ∈ def(C)
Γ ⊲ invokes C.m with E # invokes C.m′ with E′

(NI-EMPTY)
Γ ⊲ ∅# E

(NI-UNION) Γ ⊲ E # E′′ Γ ⊲ E′ # E′′

Γ ⊲ E ∪ E′ # E′′

Figure 23. The noninterference relation on effects. Nonin-
terference is symmetric (obvious rule omitted).

Proposition 1(Disjointness of region sets). If H⊲dR # dR′,
thenS(dR, H) ∩ S(dR′, H) = ∅.

Proposition 2 (Distinctness of disjoint regions). If H ⊲

region(o, f, H)#region(o′, f ′, H), then eithero 6= o′ or
f 6= f ′; and if H ⊲ region(o, n, H)#region(o′, n′, H), then
eithero 6= o′ or n 6= n′.

C.3 Noninterference of Effect

Figure 23 gives the noninterference relation on static effects.
We extend this relation to dynamic effects as in Section B.

Theorem 2 (Soundness of noninterference). If Γ ⊲ e : T, E

and Γ ⊲ e′ : T ′, E′ and Γ ⊲ E # E′ and H ⊲ dΓ ≤
Γ and (e, dΓ, H) → (o, H ′, dE) and (e′, dΓ, H ′) →
(o′, H ′′, dE′), then there existsH ′′′ such that(e′, dΓ, H)→
(o′, H ′′′, dE′) and(e, dΓ, H ′′′)→ (o, H ′′, dE).
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Abstract
Today’s widely-used concurrent programming models either pro-
vide weak safety guarantees, making it easy to write code with
subtle errors, or are limited in the class of programs that they can
express. We propose a new concurrent programming model based
on tasks with effects that offers strong safety guarantees while still
providing the flexibility needed to support the many ways that con-
currency is used in complex applications. The core unit of work in
our model is a dynamically-created task. The model’s key feature
is that each task has programmer-specified effects, and a run-time
scheduler is used to ensure that two tasks are run concurrently only
if they have non-interfering effects. Through the combination of
statically verifying the declared effects of tasks and using an effect-
aware run-time scheduler, our model is able to guarantee strong
safety properties, including data race freedom and atomicity. It is
also possible to use our model to write programs and computations
that can be statically proven to behave deterministically. We de-
scribe the tasks with effects programming model and provide a for-
mal dynamic semantics for it. We also describe our implementation
of this model in an extended version of Java and evaluate its use in
several programs exhibiting various patterns of concurrency.

Categories and Subject Descriptors D.3.2 [Software]: Language
Classifications—Concurrent, distributed, and parallel languages;
D.3.3 [Software]: Language Constructs and Features—Concurrent
Programming Structures; D.1.3 [Software]: Concurrent Program-
ming

General Terms Languages, Verification, Design, Performance

Keywords Tasks, effects, task scheduling, concurrent and parallel
programming, task isolation, data race freedom, atomicity, deter-
minism

1. Introduction
Concurrency is used for many purposes in modern programs. To
exploit the full capabilities of today’s multicore processors, paral-
lel algorithms must be used. But concurrency is also used for other
purposes. This is perhaps particularly true of interactive programs,
both on end-user devices and servers, where the behavior of the
user or client is inherently concurrent with the program. In GUI
programs, long-running operations should be run concurrently with
user interface event processing in order to preserve responsiveness.
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It can also be convenient to express a full program as a set of of
modules or actors [3] that can operate concurrently and communi-
cate with each other. This can be a natural fit, for example, to the
model-view-controller design of interactive programs.

Large programs often combine multiple types of concurrency.
For example, an interactive application may separate long compu-
tations from the UI thread or use multiple concurrent modules, but
also sometimes perform data-parallel computations. We believe a
widely-applicable concurrent programming model should seek to
support all of these forms of concurrency, since they are all widely
used and are often combined within a single application.

Today, parallel and concurrent programs are commonly written
using threads, with low-level mechanisms such as locks used for
synchronization (or with carefully designed lock-free data struc-
tures). Such a programming model is flexible enough to express
many forms of concurrency, but it does not guarantee any safety
properties such as data race freedom, atomicity, deadlock-freedom,
or determinism. It also provides little well-defined structure for the
concurrent control flow and synchronization in programs, making
it difficult to reason about them manually or automatically. In addi-
tion, complicated low-level details such as processor memory mod-
els [2] can affect the semantics of programs written in this style,
further complicating the task of reasoning about them.

Many previous systems have attempted to address aspects of
these problems. Some offer more structured parallel control and
synchronization constructs, but sometimes with limitations that
prevent them from expressing general, event-driven concurrency,
and often without strong safety guarantees. Cilk [11] and Thread
Building Blocks (TBB) [22], for example, provide structured par-
allelism constructs, but they do not offer checked guarantees of
strong safety properties such as data race freedom.

Some other systems do seek to offer stronger guarantees. The
Deterministic Parallel Java (DPJ) language [13, 14] offers a strong
set of guarantees for programs that can be expressed in it. These
include data race freedom, strong atomicity [1], deadlock freedom,
and deterministic semantics with full sequential equivalence for
parallel computations that do not explicitly use nondeterministic
parallel constructs. These guarantees are very strong, but DPJ’s
parallelism model does not provide the flexibility that we seek.
Most critically, DPJ is restricted to fork-join parallelism structures,
which are not suitable for many concurrent programs.

In this paper, we propose a new model for concurrent program-
ming, which gives strong safety guarantees while providing the
flexibility needed to express a wide range of concurrent programs
in it. We call our model tasks with effects.1 It uses tasks that can
execute concurrently as the fundamental units of work. Tasks are
lighter-weight constructs than threads and support only limited op-
erations for inter-task communication and synchronization. Con-
current work is launched by creating a new task, and it is possi-

1 Two workshop papers gave preliminary descriptions of the tasks with
effects model [20, 21].



ble for one task to await the completion of another. A scheduler is
responsible for executing tasks in an efficient manner. Tasks pro-
vide a structured mechanism for concurrent control flow, while still
preserving the flexibility to express a wide variety of concurrency
patterns and parallel algorithms.

Several existing systems support task-based programming mod-
els, including Intel’s TBB, Apple’s Grand Central Dispatch and op-
eration queues [6], Microsoft’s Task Parallel Library in .NET [30],
the ForkJoinTask framework in Java 7 [33], and the tasking op-
erations in OpenMP 3.x [32]. However, they do not offer strong
safety guarantees. It is possible for two concurrent tasks to perform
conflicting accesses that give rise to data races or violations of in-
tended atomicity properties, and it is generally the programmer’s
responsibility to manually reason that such accesses do not occur
or are benign, or else to protect them using low-level synchroniza-
tion mechanisms such as locks.

We propose instead to associate a checked effect specification
with each task. The run-time system then schedules tasks so as to
ensure that only tasks with non-interfering effects can run concur-
rently. Effect specifications can take many forms, but in this work
we adopt the statically-checked effect system developed for Deter-
ministic Parallel Java [13]. In this system, the compiler statically
verifies that the memory accesses in each task or method are cov-
ered by its programmer-specified effects. By combining these static
checks with our dynamic effect-based task scheduling system, we
are able to guarantee the basic task isolation property that no two
tasks with interfering effects may run concurrently with each other.
This guarantee leads to a guarantee of data race freedom, and to
a guarantee of atomicity for tasks or portions of tasks that do not
create or wait for any other tasks.

We also define mechanisms based on effect transfer between
tasks to further enhance the utility of our model. One mechanism is
used to avoid a class of deadlocks, and also enables certain useful
programming paradigms. Another form of effect transfer is used
for nested parallel computations. It enables us to provide a compile-
time guarantee of determinism for a class of deterministic programs
and algorithms similar to those supported by DPJ. We are aware of
no other programming model which provides equally strong safety
guarantees while supporting the flexible control flow needed for
general concurrent programs such as interactive applications and
actor-like programs.

This paper makes the following contributions:

• We define the tasks with effects programming model, which
supports flexible task-based concurrency while providing a
strong set of safety guarantees.

• We describe the TWEJava language which implements this
model, and describe our compiler and runtime system for it.

• We provide a formal dynamic semantics of tasks with effects,
and describe how it guarantees task isolation, data race free-
dom, atomicity, and (for certain computations) determinism.

• We evaluate the expressiveness and performance of our lan-
guage and implementation. We show that TWEJava can be used
to write a variety of concurrent and parallel programs, including
two interactive applications, and that we can achieve substantial
parallel speedups.

The rest of this paper proceeds as follows. Section 2 presents the
TWEJava language and describes the task-related operations used
in it. Section 3 gives a dynamic semantics of tasks with effects. Sec-
tion 4 describes the safety properties of our model. Section 5 dis-
cusses our implementation of TWEJava in a compiler and runtime
system, and section 6 evaluates it on several benchmark programs.
Finally, section 7 discusses related work and section 8 concludes.

1 public abstract class Task<type TRet, TArg, effect E> {
2 // Code to be run when task is executed.
3 public abstract TRet run(TArg arg) effect E;
4

5 // Execute a task at some point in the future
6 public final TaskFuture<TRet> executeLater(TArg arg);
7 // Spawn a subtask of the current task, with effect transfer
8 public final SpawnedTaskFuture<TRet, effect E> spawn(TArg arg);
9 }

10

11 public class TaskFuture<type TReturn> {
12 // Await completion and get return value (no effect transfer)
13 public TReturn getValue();
14 // Check if task is done
15 public boolean isDone();
16 }
17

18 public class SpawnedTaskFuture<type TReturn, effect E>
19 extends TaskFuture<TReturn> {
20 // Await completion and get return value, with effect transfer
21 public TReturn join();
22 }

Figure 1. Operations supported by TWEJava. The abstract method
run must be implemented in concrete subclasses of Task, giving
the code to be run as a task. The other operations, although using
the syntax of Java methods, are in fact new task-related language
operations supported by our compiler and runtime system.

2. The TWEJava language
We implement the tasks with effects model for safe, flexible con-
currency in an extended version of Java, which we call TWEJava.
(TWEJava programs can use almost all Java language features, but
they should not use Java’s thread-based concurrency mechanisms
or lock-based synchronization, which TWEJava is designed to re-
place.) Figure 1 shows the new operations supported by TWEJava.

Figure 2 shows how our task system can be used in an image
editing program, which we will use as as running example. It
illustrates a simplified version of a programming pattern used in
the ImageEdit program that we have implemented in TWEJava (see
section 6). The example code shows a class Image representing
an image, with the pixel values held in two arrays, topHalf and
bottomHalf. We would like to support operations in parallel on
these two halves of the image. (We adopt this arrangement for
simplicity. In the actual ImageEdit application, it is possible to
use finer-grained parallelism.) We also want to support a variety of
operations to read and manipulate the image, which may be invoked
as asynchronous tasks. This is useful, for example, when the user
directs the program to perform a lengthy operation that should not
block the user interface while it runs.

We show the task increaseContrast (lines 6–16), which can
be executed to increase the contrast of the image. It relies on
the separate method increasePixelContrast (lines 18–26) to
actually update the pixel values in each array. This enables the
increaseContrast operation to work on the top and bottom
halves of the image in parallel, by spawning a child task to work
on the top half while the parent task works on the bottom half.

Figure 3 shows the tasks created in this computation. The GUI
system executes the increaseContrast task in response to user
input. That task in turn spawns a child task so that the two halves
of the image can be processed in parallel, and then joins that child
task after it completes. Meanwhile, the GUI system might execute
additional tasks in response to further user input. (In this example,
we show the GUI system as a task, responsible for processing low-
level input data and launching tasks in response to UI events. This
architecture would be possible, but for ease of implementation we
have so far used Java’s Swing GUI framework, with wrappers to
launch tasks in response to Swing events.)



1 class Image {
2 region Top, Bottom;
3 final int[]<Top> topHalf; // pixel values
4 final int[]<Bottom> bottomHalf;
5 ...
6 public final Task<Void, Void, writes Top,Bottom>
7 increaseContrast =
8 new Task<>() {
9 public Void run(Void _) {

10 SpawnedTaskFuture<Void, writes Top> f =
11 increasePixelContrast(topHalf).spawn(null);
12 increasePixelContrast(bottomHalf).run(null);
13 f.join();
14 return null;
15 }
16 };
17

18 private static <region runtime R> Task<Void, Void, writes R>
19 increasePixelContrast(final int[]<R> pixels) pure {
20 return new Task<>() {
21 public Void run(Void _) {
22 modify values in pixels array
23 return null;
24 }
25 };
26 }
27 }

Figure 2. Example computation.

increaseContrast+

increasePixelContrast(topHalf)+4me+
spawn+ join+

writes++
Top,+Bo;om+

writes+Top+

writes+Bo;om+
writes++
Top,+Bo;om+

increasePixelContrast(bo;omHalf)+

GUI+
writes+GUIData+

executeLater+ …+

Figure 3. Tasks in example computation.

2.1 Tasks
In TWEJava, potentially concurrent work is made by creating a
task, which will then be executed at some point when execution re-
sources are available. It is possible to check if a task is completed
or block awaiting its completion. A program written in TWEJava is
started by invoking an initial task, and creating new tasks is the
sole means of performing concurrent work. Tasks can also take
parameters as input and return a result. (Wrapper classes support
tasks with multiple parameters.) Three fundamental operations im-
plement this basic tasking model: executeLater adds a task to
the queue of tasks to be executed, getValue waits until a task is
done and gives its return value, and isDone checks whether a task
is done, without blocking.

Each type of task is specified by a subclass of the Task class,
which takes type parameters giving its input and output types,
and an effect parameter giving its effect (described below). An
executeLater operation performed on a Task instance returns a
TaskFuture object, which represents an actual execution of the
task; getValue and isDone operations can be performed on this
task future. In our example, the increaseContrast task is created
by an executeLater operation in the GUI. (The spawn and join
operations used within it will be described in section 2.5.)

The structure described above is similar to other existing task
systems, but TWEJava has a key difference. In other systems, a

task can generally be run at any time after it is queued for execu-
tion, without regard to what other tasks are running concurrently.
Because of this, the programmer must take care to ensure that there
are no data races between potentially concurrent tasks. This can be
done by using synchronization mechanisms such as locks within
tasks to guard access to shared data, or by carefully designing the
pattern in which tasks are executed and joined in such a way that
no two tasks accessing the same data might be executed concur-
rently. Using these mechanisms to guard against data races is often
complex and error-prone, and traditional thread-based systems for
concurrent programming generally do not provide a mechanism to
automatically check that they have been used correctly.

Our system solves this problem by using effects to control the
scheduling of tasks. Each task has an effect specification, which
is checked at compile time to ensure that it accurately (conserva-
tively) reflects the task’s memory accesses. These effect specifica-
tions of tasks are in turn used at run time by the task scheduler,
which will ensure task isolation—that is, that no two tasks with
interfering effects can be running concurrently.

2.2 Effects and Regions
In order to perform effect-based scheduling of tasks, our system
must know the effects of each task, and be able to check whether the
effects of two different tasks interfere with each other. Intuitively,
two tasks interfere if they could both access the same memory
location and at least one of those accesses could be a write. Two
tasks can only be run concurrently if their effects do not interfere,
which is the core property enforced by the scheduler in our system.

In TWEJava, we use the effect system originally developed
for the Deterministic Parallel Java (DPJ) language [13]. DPJ is
an extended version of Java that uses type and effect annotations
to enable the compiler to statically prove strong safety properties
for programs written using its fork-join parallel constructs. In this
work, however, we adopt its type and effect system for use in
combination with our effect-based task scheduling system.

The DPJ type and effect system is based on a partitioning of
memory into regions. The programmer can declare each object field
and array cell to be in a specified region. Region-parameterized
types and methods are also supported. This permits different in-
stances of a class to have their fields in different regions by giving
different region arguments when instantiating the class. In addi-
tion, nested hierarchies of regions are supported by using region
path lists (RPLs), and index-parameterized arrays allow each ele-
ment of an array to be placed in a distinct region. A wildcard * can
be used in RPLs to specify effects covering a set of regions.

Using this partitioning of memory into regions, the effects of
any operation in the program can be specified in terms of read
and write effects on memory regions. The programmer declares the
effects of each method as part of its method signature. The compiler
can then statically verify that the declared effects of each method
actually cover the effects of every operation in it. The DPJ type and
effect system also defines formally under what circumstances two
effects can be proven to be non-interfering. In DPJ, this information
is used purely statically to verify that programs using simple fork-
join parallelism constructs have no interference of effect between
portions of code that can run concurrently.

TWEJava adopts DPJ’s region-based type and effect system, but
couples it with a runtime representation of effects that is used by a
run-time scheduler to guarantee noninterference of effect between
concurrent tasks. This allows it to support a much wider range of
programs than DPJ can handle, including those that are inherently
nondeterministic and do not use a fork-join style of concurrency.

We also use an extension of the basic DPJ type system to sup-
port effect parameters to types (in addition to region parameters),
which was introduced in [12]. This allows us to use an effect pa-



rameter E in our definition of the abstract class Task, which will be
extended by each actual task defined in the user’s code. The defini-
tion of each actual type of task will instantiate this parameter with
that task’s effects, and the compiler will then be able to ensure stat-
ically that the effects of the supplied run method for that task are
actually covered by the effect parameter E. Thus, our runtime sys-
tem can safely use that effect parameter as a (possibly conservative)
summary of the actual effects of the task.

In our example code, we declare two region names, Top and
Bottom (line 2). We then declare the cells of the topHalf and
bottomHalf arrays to be in those two regions, respectively. The
increaseContrast task is declared with the effects writes
Top, Bottom, meaning it can read and write the pixel values in
both halves of the image. The increasePixelContrast method
has a region parameter R corresponding to the region containing the
cells of the array passed to it. Since the declared effect of the task it
returns is writes R, increasePixelContrast(topHalf) will
produce a task with the effect writes Top.

Like DPJ, we use purely static checks to ensure that each
method and task complies with its effect declaration and that
region- and effect-parameterized types are used soundly. TWEJava
never requires runtime checks associated with individual memory
accesses, which avoids a major source of overhead in some other
systems such as STMs. However, our system does need to have in-
formation on the effects of tasks available at run time so that it can
be used by the scheduler. We make this information available by
introducing a set of internal runtime classes that represent dynamic
regions and effects, and internally adding extra fields to classes
which hold the runtime instantiation of their region and effect pa-
rameters, as well as extra arguments to constructors and methods
corresponding to the region and effect parameters passed to them.

The scheduler only directly needs information about the effect
parameters of task objects, but these may depend on other region
and effect parameters in scope at the places where task classes are
declared and instantiated, making it necessary to also track those
additional parameters at run time. To minimize the overhead of
this run-time tracking, we require programmers to annotate region
parameters that need to be tracked at run time. This allows us
to avoid generating run-time tracking code for the many region
parameters that are used only in the compiler’s static analysis.
(Failing to provide such an annotation where needed will cause a
compile-time error.)

2.3 Effect-Based Task Scheduling
The key property that our run-time task scheduler must enforce is
that two tasks with interfering effects will not be run concurrently.
To do this, the scheduler will have to delay the execution of tasks
that are created while another task with interfering effects is already
executing. It may also delay tasks for other reasons, e.g. waiting
until execution resources are available.

In Figure 3, the increaseContrast task with effects writes
Top, Bottom is run while the GUI task with effect writes
GUIData continues to execute. To determine if the new task may be
run concurrently with the already-executing task, the scheduler will
check if these two sets of effects interfere with each other. In this
case, the region GUIData is disjoint from Top and Bottom, so the
two tasks have non-interfering effects and may be run concurrently.

If a third task is run with executeLater while these two
tasks are executing, its effects will be checked against those of
both existing tasks. Thus, another task trying to access the im-
age data in the regions Top and Bottom would have to wait
until the increaseContrast task is done, but a task access-
ing different regions might be able to run concurrently. (The
increasePixelContrast(topHalf) task is run with the spawn

operation, which uses effect transfer to avoid the need for these
run-time checks; see section 2.5.)

Considerable variation is possible in the design of an effect-
aware task scheduler. Our initial prototype implementation uses
an approach based on a linear queue of tasks, which is described
in section 5.2. For greater performance and scalability, the effect
checking could be structured around regions, so that tasks access-
ing unrelated regions do not need to be explicitly checked against
each other. A scheduler may also provide additional properties re-
lated to fairness or task ordering, in addition to the basic property of
noninterference. For interactive programs, it is valuable to preserve
responsiveness through fairness properties that avoid delaying the
execution of one task excessively while other tasks execute ahead
of it. But for efficiency in many parallel codes, it would be desirable
to use algorithms similar to Cilk’s work-stealing scheduler [11],
which preferentially execute recently-created tasks on each proces-
sor. We believe that the design of high-performance effect-based
task schedulers is a valuable area for future work.

2.4 Effect Transfer When Blocked
The model we have described so far envisions the effects of each
task remaining unchanged while it runs, and says that two tasks
with interfering effects may not run concurrently. This will lead to
deadlock if one task blocks waiting for another task that has yet
to run and which has effects that interfere with those of the first
task. For example, if task A creates task B using executeLater,
then blocks on B using getValue, and the effects of tasks A and B
interfere, deadlock results because B cannot begin execution until
A is complete.

We wish to prevent this form of deadlock and enable certain
useful programming patterns involving this sort of blocking, so we
introduce a mechanism for effect transfer from a blocked task to
the task it is blocked on. The key idea is that a getValue or a
join operation (described later) “transfers” enough effects from
the blocking task to the target task to allow the target task to begin
execution. For example, if a task A is blocked on another task B
using getValue, we record this fact and ignore any effect conflict
between A and B in deciding whether B can be executed. We also
extend this to indirect blocking through chains of blocking opera-
tions. Note that a task that blocks will always remain blocked until
all the tasks it directly or indirectly blocks on are done. Therefore,
this mechanism does not enable two tasks with conflicting effects
to be actively running at the same time.

This form of effect transfer prevents the type of deadlock de-
scribed above, and it also allows some useful programming pat-
terns. One of these is for one module of the program with effects
on a certain region to launch and block on a task in another module,
which may “call back” to the first module by launching and block-
ing on another task whose effects interfere with those of the first
task. Another useful programming pattern enabled by this mecha-
nism is similar to a locked or atomic block in other programming
models. One task can launch a second task with a superset of its
effects, and then use a getValue operation to wait for the second
task. This transfers the first task’s effects to the second task (al-
lowing it to access the same regions as the first task), and leaves the
second task to wait until it can acquire access to the regions covered
by its other effects, which may correspond to a shared resource.

2.5 Effect Transfer for Nested Parallelism
Our system supports an additional form of effect transfer which
is particularly suitable for nested parallelism, as used in fork-join
style computations. It is a mechanism to transfer some of the effects
of a parent task to a newly-created child task, and later transfer
those effects back to the parent task when the child task completes.
We call these operations spawn and join, respectively. A child



task created with spawn may run immediately, since “ownership”
of its effects is transferred directly from the parent to the child task,
and thus no other tasks with conflicting effects may be running
concurrently.

In Figure 2, these mechanisms are used to operate in paral-
lel on the two halves of the image. We use the spawn opera-
tion to run the increasePixelContrast(topHalf) task (line
11). This transfers the effect writes Top directly from the parent
increaseContrast task to the new child task, which means the
new task can be enabled for execution immediately. The parent task
also continues executing concurrently, with its remaining effect
writes Bottom. The increasePixelContrast(bottomHalf)
operation is run as a method within the parent task, which is pos-
sible since its remaining effect writes Bottom covers the effect
of the method call. After that computation finishes, the parent task
joins the spawned child task. This join operation also transfers the
child task’s effect writes Top back to the parent task. After this,
both halves of the image will have been updated, so any other task
that waits for the increaseContrast task to finish will know that
the full operation is complete.

2.5.1 Spawning and joining child tasks
The spawn operation executes a new task, whose effects must be
entirely covered by the effects of the parent task calling spawn.
It immediately transfers those effects to the spawned task, which
allows that task to be enabled for execution immediately, without
going through the normal effect-based scheduling process required
when using executeLater. Since the effects are transferred di-
rectly from the parent task to the child task, data in regions covered
by those effects cannot be modified by any other task in the in-
terim, so the child task reading that data is guaranteed to see the
values last seen or written by the parent task.

The join operation permits effect transfer back to the parent
task at the end of a child task. Apart from effect transfer, join
behaves like getValue: it will await the completion of the joined
task, and return the result value produced by it, if any. The dif-
ference is that join will transfer effects directly from a completed
task to the task that joins it. This permits the task that called join to
perform subsequent operations covered by the effects of the joined
task. One application of this is that data written by the completed
child task can be read by its parent task after the child task is done.

Only tasks executed with spawn are joinable, and this is re-
flected by the fact that spawn returns a SpawnedTaskFuture,
which supports the join operation. Furthermore, only the parent
task that spawns a task may join it, and a task may only be joined
once (violating these rules causes an exception to be thrown). Also,
the system implements an implicit join operation prior to return-
ing from each method for all the tasks spawned by that method
that have not already been explicitly joined. These measures ensure
that all spawned tasks get joined, and that all the effects transferred
from a method with spawn are returned to it through join oper-
ations before the method returns. This simplifies our static effect
analysis, since a method never “gives up” effects from the perspec-
tive of its callers.

2.5.2 Covering Effect Analysis for Effect Transfer
Implementing effect transfer makes the static analysis of covering
effects more complex, since a spawn or join operation subtracts
or adds effects to the task in which it is executed, thereby changing
the covering effects applicable to subsequent code in that task. This
would be easy to address if we used dynamic checks to determine
whether the effect of each memory operation is covered by the
current effects of the task in which it appears, but we want to use
a static analysis to determine this in order to minimize runtime
overheads and detect as many errors as possible at compile time.

To do so, we added a dataflow analysis algorithm in the com-
piler to conservatively compute the current covering effect applica-
ble to each expression in the program. The current covering effect
at the beginning of a method is given by its declared method ef-
fect summary. When spawn operations are encountered, the stat-
ically declared effects of the spawned task are subtracted from
the current covering effect, and a SpawnedTaskFuture param-
eterized by the effects of the spawned child task is returned. At
join operations, the effects given by the static type of the joined
SpawnedTaskFuture are added to the current covering effect. At
control flow join points, a minimum of the current covering effects
from the different control flow paths is used. Using an iterative
dataflow analysis, we can thus conservatively compute the current
covering effect applicable to each expression in the program. The
effects of each expression can then be compared against its current
covering effect to ensure the expression’s effects will be covered.

In our example the covering effect of the increaseContrast
task is initially writes Top, Bottom. When it spawns a child
task (line 11), its covering effect then becomes writes Bottom,
since the writes Top effect has been transferred to the spawned
child task. When that task is joined (line 13), the covering effect of
the parent task once again becomes writes Top, Bottom.

One detail that must be accounted for in this analysis is that
effect-parameterized types in the static program code are in gen-
eral only a conservative summary of the actual effects of tasks at
run time, and they may contain wildcard elements in their region
specifiers. The actual effects of the Task object used at run time
may be smaller than the effects given in the static type, e.g. by
omitting some of the effects that are included in the static type or
replacing effects on RPLs containing wildcards (which can cover
a set of regions) with effects on a fully-specified RPL designating
a single region in that set. We generally use a conservative static
analysis: spawns are treated as transferring away all the effects in
the static type of the spawned task, including ones with wildcards.
Subsequent operations in the parent task may not interfere with
those transferred-away effects, which conservatively ensures that
they cannot interfere with any of the actual effects of the child task
at run time.

As an exception in this conservative analysis, however, we al-
low spawn operations even if we cannot be certain at compile time
whether or not the effects of the spawned task will actually be cov-
ered at run time. In this case, we generate code to keep track of
the run-time covering effects in the method containing the spawn
operation (updated only when a spawn or join operation is per-
formed). An exception will be thrown if the effects of the spawned
task are not actually covered at run time. This limited dynamic
checking is useful for cases where we do not have full information
on the effects of spawned tasks at compile time. For example, a
loop may spawn tasks to operate on different elements of an index-
parameterized array, but our compiler cannot determine statically
whether each of the elements is distinct, so this mechanism effec-
tively enables the check to be performed dynamically instead.

For joins, we need to be sure that the actual run-time effects
of the task being joined are not less than those specified in the
static type. To do this, we statically treat joins as performing effect
transfer only if the effect parameter of the joined task’s static type is
fully-specified (i.e. contains no wildcards). We also adopt the typ-
ing rule that an effect-parameterized type A is only treated as a sub-
type of another effect-parameterized type B if either the correspond-
ing effect parameters are exactly equivalent, or the effect parame-
ters in B are not fully-specified. This ensures that fully-specified
effect parameters in the static types of SpawnedTaskFutures ex-
actly match the actual parameters used when instantiating the task
object at run time, so we may safely use those parameters in the
static analysis of join operations.
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Figure 4. Dynamic semantics of tasks with effects.

3. Dynamic Semantics of Tasks with Effects
We have formalized the dynamic semantics for the core operations
of the tasks with effects model in the context of a basic imperative
language. A program in this language consists of a set of global
variable declarations and task declarations (which are similar to
function declarations in a traditional language, but include an effect
specification for each task). Here we present and describe only
those semantic rules related to tasks, which are shown in Figure 4.

These rules are written using the K semantic framework [36],
which is based on rewriting logic and operates on a configuration
of nested cells which corresponds at any point to the current state
of the execution. (Although the K framework is less common than
the standard approach for operational semantics, it has significant
advantages, especially in that it is more modular and flexible.) Each
rule may apply when it can match the configuration elements on the
top of it, and when it applies any elements with a horizontal line
under them are replaced by what is below the line. K supports lists,
sets, and maps, and a rule may match a single element from these
structures, either anywhere in them or at the front of a list; in these
cases, the remainder of the structure is denoted by ellipses. A dot

represents the identity element of these structures, and an underline
is a ‘don’t-care’ element that can match anything. K rules also obey
a locality principle, saying that a rule matching two subcells that
appear within the same outer cell must match only two subcells
within the same instance of that outer cell.

At the top of Figure 4, we show the initial configuration of the
program. It consists of a task cell (of which there may later be
more than one, indicated by the *); a running cell which will hold
a set containing information on running tasks; a waiting cell which
will contain a set of IDs of tasks waiting to execute; a genv cell
holding the global environment (mapping identifiers to locations in
the store); a store cell which will map locations (integers) to various
objects; and a nextLoc cell giving the next available location in the
store. Each task cell contains code to be executed in its k subcell;
an ID in its id subcell (corresponding to a location in the store); the
current environment in its env subcell; and a set of IDs of spawned
child tasks in its spawned subcell. The initial configuration will
pass the program code to a special operation execute (not shown)
which initializes the store and global environment based on the
declarations in the program and then runs the task named main.



Note that we present here only a dynamic semantics, which
presupposes that the program has passed all static checks, including
type checking and checking that the current covering effects at
each point in each task correctly cover all the memory accesses it
may perform. (Dynamic computations of current covering effects
are not needed in this formalism, because the effects of each task
are fully defined statically and there is no provision for dynamic
instantiation of region or effect parameters.) These semantics are
agnostic to the specific effect system used, but a formalism of the
DPJ type and effect system used in TWEJava is presented in [13].

3.1 Starting Tasks
The first major class of rules in our semantics relates to starting
tasks. The EXECUTELATER rule implements the executeLater
operation. It will apply once the executeLater operation is the
next piece of code to execute, after a task name in the code has been
evaluated to a lambda expression (comparable to a Task object in
TWEJava) and its arguments have been evaluated to values (simple
rules not shown). The EXECUTELATER rule will allocate a new
location L in the store, and store a TF tuple (corresponding to a
TaskFuture in TWEJava). This tuple contains the effect of the
task, the code to be executed when it is run, and the task’s return
value (initially ⊥T , indicating it has not yet been set). The rule adds
the ID (location) of this task to the set of tasks waiting to run, and
the result of the operation is a reference to that location.

The START-TASK rule is then responsible for actually starting
one of the tasks in the waiting set. When it applies, it will create a
new task cell in the configuration, containing the code of the new
task to be run. (This cell may exist side-by-side with other task
cells.) The rule also adds a tuple (L, Eff, ∅) to the running cell.
This indicates that the task L is now running, and holds its effects
and an initially-empty set of tasks that it is blocked on. Finally,
the key element of this rule is the condition relating to the existing
contents R of the running cell. This will contain information about
all the other currently-running tasks, and we use it to ensure our
model’s basic property of task isolation. Specifically, the new task
L cannot be started unless for every already-running task L2, either
the effects of L are non-interfering with those of L2 (denoted by #)
or L is in the set of tasks on which L2 is blocked. This latter case
implements our mechanism for effect transfer when blocked.

The SPAWN rule is similar to a combination of the EXECUTE-
LATER and START-TASK rules, since it allows a task to start imme-
diately without the need for the effect checking in the START-TASK
rule. One addition, however, is that the ID of the spawned task is
added to the spawned set of its parent task, which keeps track of
child tasks that have been spawned and not yet joined.

3.2 Awaiting Completed Tasks and Blocking
The next group of rules relates to the potentially blocking opera-
tions getValue and join. They both can be applied to a reference
to a location containing a TF tuple. The GETVALUE-SUCCEEDS
rule addresses the case where the task in question is complete, and
as such has a return value V stored in its TF tuple. In this case,
the result of the operation is that value. Since the task that executed
the getValue operation (L1) will no longer be blocked, we empty
the blocked-on set in its running tuple. The JOIN-SUCCEEDS rule is
similar, but also requires that the task being joined was in the cur-
rent task’s spawned set, and removes it. This reflects the fact that
a task can only be joined once, and only by the task that spawned
it. (If a join operation violates these rules, the task that executes it
will hang in our formalism. In TWEJava, an exception is thrown.)

The next two rules, GETVALUE-BLOCKS and JOIN-BLOCKS,
handle the case where the task L may not yet be done. These
rules put L in the blocked-on set for the task L1 that does a
getValue or join operation on L. This potentially allows L to be

started based on effect transfer, using the START-TASK rule. The
INDIRECT-BLOCKING rule propagates entries in the blocked-on
sets when there is a chain of blocked tasks, allowing effect transfer
to be applied in the case of indirect blocking. (In the TWEJava
implementation, this propagation is fully performed at the time a
getValue or join operation is evaluated.)

3.3 Finishing Tasks and Checking If Tasks are Done
The next group of rules relates to finishing a task. The RETURN
rule handles a return statement (which may be in the program’s
code, or the return nothing; that we insert at the end of each
task when starting it, in case it does not explicitly return a value).
The rule says to first await any spawned children of the current task
that have not yet been joined, then set the task’s return value in its
TF tuple (which will signal that the task may be considered done),
and finally erase its task cell and its entry in the running set. The
next several rules implement these operations.

Finally, the last two rules implement the isDone operation. A
task is considered done once its return value has been set to a value.
If it is still undefined (indicated by ⊥T ), then the task is not done.

4. Safety Properties
Our model guarantees strong safety properties, including our ba-
sic task isolation property, plus data race freedom and atomicity
properties stemming from it. We also avoid a significant class of
deadlocks and can prove that many computations are deterministic.

4.1 Task isolation
The task isolation property of our system is that no two tasks may
be actively running concurrently with interfering covering effects.
The basic check used to guarantee this is to record the effects of
each running task in the running set, and compare the effects of
new tasks against the effects of all existing tasks before allowing
them to start in the START-TASK rule.

There are two cases where we can start tasks even though
they might appear to have effects interfering with those of another
running task. One is that a task A may be allowed to start while
a task B with conflicting effects is in the running set if A is in
the blocked-on set for B. In this case, our rules guarantee that B
cannot resume execution until A has completed, so we allow A to
run based on our first effect transfer mechanism.

The other case is the spawn operation. In this case, our cov-
ering effects analysis ensures that the spawned task’s effects are
subeffects of its parent task’s effects (so they may not conflict with
anything that the parent’s effects do not) and that the parent task
will not execute any operations that conflict with the effects of the
spawned task between where it is spawned and where it is joined.

4.2 Data race freedom
Data race freedom follows from the combination of the task isola-
tion property and the guarantee provided by our static checks that
the specified effects of each task cover all its memory accesses.

The formalism in section 3 implicitly uses a sequentially-
consistent memory model, but in fact the tasks with effects model
requires memory updates to be visible only between operations
ordered by a limited set of happens-before edges. Our model im-
poses some order on any two tasks with interfering effects. This
gives rise to happens-before edges between the end of one task
and the start of any subsequent task with interfering effects, anal-
ogous to those between a lock release and subsequent acquisition
in other systems. A full happens-before relation for our model is
given by the transitive closure over these edges as well as edges
for task creation, waiting or checking for task completion, and the
sequential program order within each task. Any two accesses to a



memory location where at least one is a write will be ordered by
this happens-before relation.

4.3 Atomicity
A task or portion of a task that does not create or wait for any
other tasks behaves atomically. It has fixed effects that cover all
the memory locations it can access, and the scheduler will ensure
that no other tasks performing conflicting accesses run concurrently
with it, which ensures it is atomic. This atomicity property also
extends to portions of tasks that contain task creation operations,
in the sense that the semantics are equivalent to those given by
creating the new tasks only at the end of the parent task or just
before the next getValue or join operation in it.

Atomicity does not always extend across getValue or join
operations, as our mechanism for effect transfer when blocked may
allow other tasks with conflicting effects to run before the blocking
operation completes. However, this potential for non-atomicity is
limited to running the task(s) that are directly or indirectly blocked
on, and it does not occur in cases where those tasks have definitely
finished prior to the getValue or join operation. Also, a deter-
ministic computation (discussed below) effectively executes atom-
ically, as it is semantically equivalent to a sequential execution with
no task-related operations. As in languages with explicit atomic
constructs, it remains the programmer’s responsibility to identify
sections of code that should behave atomically and write the code
in a way that ensures they do so, e.g. by not using getValue or
join operations within such sections.

4.4 Deadlock avoidance
Our model avoids deadlocks in the case that a task A directly or
indirectly blocks on another task B whose effects conflict with
A’s effects, using the effect transfer mechanism discussed in sec-
tion 2.4. While we do not prevent all deadlocks, we believe this
class of deadlocks is significant, and we found our effect transfer
mechanism to be useful in practice, particularly in the interactive
FourWins program (see section 6).

4.5 Determinism
Many parallel algorithms are deterministic. That is, they always
produce the same output given the same input state. Since this is an
expected property of many algorithms, detecting violations of it is
a useful way of finding bugs. Moreover, knowing that a program or
an algorithm is deterministic makes it much easier to reason about:
the user of the program or algorithm knows that it will always
produce the same output given the same input, so they need not
be concerned that different parallel interleavings of operations may
produce different results. Determinism also makes a program or
algorithm much simpler to debug, since one knows that the same
result will be produced every time it is run with a given input.

DPJ [13] can provide a compile-time guarantee of determin-
ism using the combination of its type and effect system and simple
parallelism constructs supporting only fork-join patterns of paral-
lelism. We provide a similar static guarantee of determinism for
deterministic algorithms or programs written in TWEJava. All pro-
gramming patterns for which DPJ can give a guarantee of deter-
minism can also be expressed and proven deterministic using the
tasks with effects model. Our model also allows us to give a static
guarantee of determinism for certain computations in a program
while still allowing the rest of the program to use the full flexibility
of TWEJava (including non-fork-join concurrency structures), and
guaranteeing our other safety properties for the whole program.
Thus, our feature for guaranteed determinism can be used within
programs that could not be expressed with DPJ.

To request that the compiler check and enforce the determinism
of a certain task or method, the programmer can annotate it as

@Deterministic. In code that has this annotation, the compiler
will enforce that the only task-related operations used in the code
are the spawn and join operations described in section 2.5. Also,
code annotated as deterministic may only call other deterministic
methods and spawn other deterministic tasks.

These restrictions ensure that the code invoked from a determin-
istic task or method (including through the creation of other tasks)
accesses memory only as specified by its declared effects. More-
over, there is a defined order by which control of each region cov-
ered by those effects is transferred between tasks, as determined by
spawn and join operations. (Note that the form of effect described
in section 2.4 will never be needed for join operations within a
deterministic computation, and thus will not occur.) Therefore, for
a given input state of the memory in regions covered by the effects
of the deterministic task or method, there is a deterministic out-
put state that will not vary between executions of the code. This
state is the same as the state produced if the code were executed
sequentially with each task’s code run at the point where the task is
spawned. These deterministic computations are also deadlock-free.

5. Compiler and Runtime System
Our implementation of TWEJava consists of a compiler and a
runtime system, which we briefly describe here.

5.1 Compiler
The compiler is based on the DPJ compiler, which checks that ef-
fect declarations are correct and that types are used correctly. Our
extended version also supports the new features of TWEJava de-
scribed in Section 2. These include generating code to record effect
parameters and some region parameters for use at run time; per-
forming a data flow analysis to determine the covering effects for
each operation (accounting for operations that do effect transfer);
and checking the use of the @Deterministic annotation.

To enable interoperation with existing Java code and libraries
that do not have region and effect annotations (including the Java
standard libraries), the compiler allows methods without effect an-
notations to be called within methods that have effect annotations.
This produces a warning, but that warning can be suppressed for
individual methods. Since we have not written an extensive stan-
dard library for TWEJava, we take advantage of this capability to
use Java standard library features such as the Swing GUI system,
I/O routines, and math functions. The compiler cannot give a full
guarantee about the correctness of code making such calls, so the
programmer has to manually reason about it, but that reasoning can
be encapsulated by writing annotated wrapper methods that inter-
nally call unannotated library routines.

5.2 Runtime System
Code generated by our compiler can be run using our runtime sys-
tem, which implements the various task-related operations in TWE-
Java. We use an effect-based scheduler to enforce our model’s key
property of task isolation. Our current prototype implementation
uses a queue of tasks protected by a single lock to manage the
effect-checking phase of task scheduling. The effect-based sched-
uler enables a task for execution only once it is safe to do so based
on its effects. Once a task is enabled for execution by our scheduler,
it is handed off to a version of the Java ForkJoinPool framework,
which is responsible for actually executing tasks using a thread
pool.

When attempting to execute a task, our implementation gener-
ally works by scanning from a task’s position forward toward the
head of the queue (which includes both running and waiting tasks),
checking if the task’s effects conflict with those of each task ahead
of it. If a conflicting task is found when attempting to schedule a



task, then the later task is marked as waiting for the earlier one to
complete. This approach will generally run conflicting tasks in the
order that they were enqueued, but there is also a mechanism for
prioritizing tasks that a running task is blocked on.

We show below that with this relatively simple scheduling ap-
proach we can achieve substantial speedups on a range of bench-
marks. However, the tasks with effects model could also be imple-
mented with other more scalable scheduling approaches. In particu-
lar, if we associated information about enqueued tasks with regions,
then tasks with effects on unrelated regions would not need to have
their effects explicitly compared against each other, and we could
also avoid the need for a single global task queue lock.

6. Evaluation
We have carried out an evaluation of the tasks with effects model
and our TWEJava language by porting several concurrent programs
to it and writing one new one from scratch. We are principally con-
cerned with demonstrating that TWEJava and the tasks with effects
model can express a variety of concurrent programming styles used
in real-world applications, but we also show that substantial parallel
speedups can be achieved with our current TWEJava implementa-
tion.

6.1 Expressiveness
We ported four existing concurrent programs to TWEJava and
wrote one new application in it. The first ported program is an
interactive Connect Four game implementation called FourWins,
which was ported from an original code that used JCoBox [37], an
actor-like concurrent programming system for Java. The FourWins
code is structured in terms of modules that behave similarly to ac-
tors, including the game state, board state, game controller, GUI
view, and human and computer players. These modules communi-
cate by sending messages between each other, sometimes, but not
always, blocking until the message is processed. Our general ap-
proach in most parts of this code was to introduce a region holding
the data for each module, and to define a number of types of tasks
corresponding to each message that may be sent to that module.
Those tasks have either read or write effects on the module’s region,
as needed. This code also includes a parallel computation in the
computer player’s AI, to explore the tree of possible future moves.
That recursive parallel computation consumes most of the execu-
tion time, and it is the portion for which we report performance
results below. We note that the complex concurrency structure of
this program, with code from multiple actors running concurrently
and sending messages between each other, cannot be expressed in
many more restrictive parallelism models that require structured
parallelism (e.g. fork-join) or involve a single conceptual flow of
control.

The other interactive GUI application we implemented is an
image editing application called ImageEdit, which we wrote from
scratch in TWEJava. It allows the user to open one or more images
and apply various image editing filters to them. Each of the images
is displayed in a separate window and updated as filters are applied
to it. Each image has a region associated with it, and the actual
pixel data for the image is broken up into a 2-D grid of blocks, with
the data for each block placed in a separate region using index-
parameterized arrays. (By default, and in our benchmarks, a block
is simply a group of adjacent lines totaling about 100,000 pixels,
but the user may specify other block dimensions.) Concurrency is
possible both by doing concurrent operations on different images
and by operating in parallel on one image at the level of blocks.
ImageEdit currently includes filters for Gaussian blur, sharpening
(unsharp mask), detecting edges in the image (based on the Canny
edge detection algorithm [15]), darkening or brightening the image,
and converting it to grayscale. All of the filters can use parallelism

at the level of blocks, sometimes using several computation steps
in sequence with parallelism in each step. The only non-parallel
step in any of them is a short final step in the edge detection
filter to identify edges in the input image that cross between two
different blocks. Computation in this program is driven by user
input events, so the program as a whole does not follow the fork-
join computation model required by systems like DPJ. It could be
written in other task-based concurrency models that do not use
effects, but these would not provide the strong safety guarantees of
TWEJava and would require the programmer to manually ensure
that tasks performing conflicting memory operations cannot run
concurrently.

The other three benchmarks were previously written in DPJ [13],
and we ported our versions from the DPJ versions, following a
similar pattern of regions and effects. These are the force compu-
tation from a Barnes-Hut n-body simulation; a k-means clustering
algorithm (originally adapted from STAMP); and a Monte Carlo fi-
nancial simulation, originally from the Java Grande parallel bench-
marks. These three benchmarks allow us to evaluate the impact
of the run-time scheduling overheads in our system by comparing
against the original DPJ versions, which do not have any overheads
related to effect-based scheduling at run time.

The Barnes-Hut force computation involves a parallel loop over
a set of bodies, computing and adding up the forces on each body
due to the other bodies. We create one task per thread using the
spawn operation, each operating on a portion of the total set of
bodies, which is divided using an index-parameterized array. The
resulting computation is deterministic and has good parallelism.

The Monte Carlo simulation includes a deterministic parallel
loop to compute an array of results, followed by a reduction step
that updates globally shared data. In the DPJ version, this reduc-
tion step used DPJ’s commutative annotation, which represents an
unchecked assertion from the programmer that two invocations of
a certain method are commutative and that it internally uses the
necessary locking to correctly synchronize concurrent invocations.
In the TWEJava version, this commutative method is replaced by a
task, and our system automatically guarantees that this task behaves
atomically. Thus, TWEJava offers a stronger safety guarantee than
DPJ, since it does not require the programmer to correctly insert
manual locking operations. As with Barnes-Hut, we create one task
per thread in the parallel loop.

The k-means computation involves a parallel loop with a reduc-
tion step. In the original STAMP code, this reduction step is an
atomic block, but in the DPJ version it is a commutative method
with internal locking. In TWEJava, it is a task. As in Monte Carlo,
the DPJ version relied on unchecked, manual locking, so TWE-
Java offers a stronger safety guarantee than DPJ. The structure of
the reduction computation in k-means requires that we create many
reduction tasks, independent of the number of threads.

We were able to express all the parallelism that was present
in the original codes that we ported. Both the executeLater/
getValue operations and structured parallelism with spawn are
used in our benchmarks. The former are necessary for unstructured
parallelism such as messaging between actors or modules, and
for defining tasks that behave like atomic or synchronized blocks,
while the latter can be used in parallel loops or recursive parallel
computations.

6.2 Performance
We measured the performance of our benchmark codes on a ma-
chine with four Intel Xeon E7-4860 processors (40 total cores, 80
hardware threads using Hyper-Threading) and 128 GB of memory,
running Scientific Linux 6.3 with kernel 2.6.32 and 64-bit Oracle
JDK 7u9. Figures 5 and 6 report the speedups achieved in the par-
allel portion of each code. For ImageEdit, we report speedups for
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Figure 5. Parallel speedups of benchmarks ported from DPJ, showing performance of TWEJava and DPJ versions. These speedups are
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Figure 6. Speedups for the FourWins AI computation and two filters in the ImageEdit application. We did not have pure sequential versions
of these programs available for comparison, so we give speedups relative to the TWEJava codes run using one worker thread and configured
so that the major potentially-parallel computations in the codes each run as a single task, thereby minimizing task-related overheads.

both the edge detection filter and the sharpening filter. We also com-
pared the parallel running times to DPJ for the codes where there is
a DPJ version. The multi-threaded DPJ version internally executes
tasks on a thread pool, but it does not have the overhead of run-
time effect-based task scheduling, and previous work has shown it
is generally quite efficient [13].

Each of our TWEJava benchmarks achieves significant speed-
ups, with maximum speedups on the various benchmarks ranging
from 7.5x to 23.6x. The Barnes-Hut and FourWins benchmarks
continue scaling substantially up to 80 threads (with the gains going
from 40 to 80 threads attributable to Hyper-Threading). The other
benchmarks show good scaling at lower numbers of threads, but do
not continue scaling above 24 to 32 threads.

The benchmarks for which we have DPJ versions perform very
similarly to the DPJ versions up to at least eight threads, but show
worse scaling at high numbers of threads. Several types of over-
head in the TWEJava system may be responsible for these perfor-
mance differences. The overheads of our effect-based run-time task
scheduling system include the need to check the effects of tasks
against each other to see whether they conflict, and the need to
track some region parameters and all effect parameters at run time,
rather than erasing them during compilation. These overheads can
become larger with larger numbers of threads, because there will
generally be more tasks active at once in such configurations. An-
other important factor limiting the scalability of our current im-
plementation is that our effect-based scheduler uses a single queue

protected by a single lock, so all the effect-based scheduling opera-
tions in the system are essentially serialized. Also, the DPJ runtime
system can use recursive subdivision to split the iterations of par-
allel loops into tasks, while in TWEJava we converted these con-
structs to loops that sequentially spawn off child tasks. This may
also contribute to the inferior scalability of the TWEJava codes. It
would be possible to implement this sort of recursive subdivision in
the tasks with effects model, but TWEJava currently does not have
convenient language constructs for it.

We believe the overheads of effect-based task scheduling are
particularly important factors in explaining the inferior scaling of
our version of KMeans compared to the DPJ version on large
numbers of threads, because the TWEJava version uses a task rather
than a locked block for the reduction step. This is called a large
number of times, regardless of the number of threads (550,000
times in our benchmark configuration). Since task scheduling is a
heavier-weight procedure than simple locking around a short block,
and particularly since (as noted above) the scheduling of each task
is effectively sequentialized in our current implementation, this
leads to poorer scalability for the TWEJava version of the code.

In the case on ImageEdit, one factor limiting the speedups
achieved is that each time the image is updated, some sequential
operations are necessary to actually change the image displayed
in the GUI, which is implemented with Java’s Swing framework
and therefore needs to do GUI operations on a single thread, in
accordance with Swing’s architecture. This is a larger factor for the



sharpening operation than for the edge detection operation, since
the core parallel computation for sharpening is faster than for edge
detection. We believe this at least partially accounts for the poorer
scalability of sharpening compared to edge detection, as well as the
overall scalability limits of the ImageEdit computations.

While our system has run-time overheads related to task schedul-
ing and dynamic tracking of region and effect parameters, it still
delivers significant parallel speedups, sometimes comparable to
the DPJ versions of the codes (particularly on relatively low num-
bers of threads). We believe the scalability and performance of
our system could be improved by implementing a scheduler that
does not use a single lock and a compiler and scheduler that work
together to minimize the number of dynamic effect comparisons
(e.g. by avoiding the need for run-time checking of covering ef-
fects when child tasks are spawned in a loop). However, we think
our current implementation without these optimizations still gives
good enough performance to be used in many applications, partic-
ularly in desktop and mobile systems with relatively low numbers
of cores.

7. Related Work
Traditional multithreaded systems such as Java or Posix threads
are more flexible than TWEJava in the sense that they allow al-
most any desired concurrency and synchronization structure to be
expressed, but they provide no guarantees about the absence of con-
currency errors, and also have few or no facilities that simplify rea-
soning about such errors. Some systems, including OpenMP [32],
Cilk [11], Threading Building Blocks (TBB) [22] (except for the
“lower-level” task interfaces), and Java’s ForkJoinTask [33] are
more structured and easier to reason about than traditional threads.
However, these systems still do not provide any correctness guar-
antees such as data race freedom or determinism. The programmer
still has to reason manually to ensure that data sharing patterns are
correct and synchronization is present when needed. These systems
simplify such reasoning by limiting programs to use a particular
parallelism structure (e.g. fork-join), but in doing so, can no longer
express the forms of concurrency required by many programs such
as interactive applications, servers, and actor-style programs. TWE-
Java is able to express all these kinds of programs and yet provides
strong correctness guarantees.

RCCJava [18] can ensure data race freedom, but it does not pro-
vide structured concurrency constructs or guarantee other safety
properties such as determinism. SharC [5] allows flexible concur-
rent control flow while providing a guarantee of data race free-
dom, but it also does not provide structured concurrency constructs
and cannot guarantee stronger properties like determinism. Core-
Det [8], Kendo [31], Grace [9], and DMP [16] allow multithreaded
programs to be executed with a deterministic execution order that
does not vary from run to run, but they do not provide structured
parallelism constructs, and the deterministic execution order they
provide is not related in an obvious way to the program code and
may change if the code or input changes, which limits their utility
as tools for reasoning about program behavior.

Many parallel and concurrent programming systems provide
various correctness guarantees but have weaker expressive power
than TWEJava. These include Jade [35], Prometheus [4], DPJ [13,
14], OoOJava [23], Dynamic Out-of-Order Java (DOJ) [17], Pān̄ini
[27], SvS [10], Legion [7], and Ke et al.’s system for paralleliza-
tion with dependence hints [25]. Several of these systems, includ-
ing Jade, Prometheus, OoOJava, DOJ, and Pān̄ini, guarantee deter-
ministic semantics (often with equivalence to a unique sequential
program) but these systems are unable to express inherently non-
deterministic algorithms, or programs where concurrency is due to
external requests or user input and the input and its timing may
affect the program’s results. SMPSs [34] is also designed to pro-

vide sequential-equivalent semantics and uses a form of effect an-
notations for task scheduling, but these annotations are not veri-
fied, so the programmer is responsible for ensuring that the annota-
tions are correct in order to ensure proper program behavior. Sev-
eral systems, including (at least) Jade, SvS, Legion, DOJ, SMPSs,
and Aida [28], have used effects in some form to guide run-time
scheduling decisions, but TWEJava provides the ability to express
programs not supported by any of these other languages and gives
stronger safety guarantees than some of them.

DPJ, Legion and SvS can express nondeterministic programs,
but not programs requiring flexible concurrency structures, iden-
tified above. DPJ supports programs with both deterministic and
nondeterministic algorithms, and provides the strongest parallel
correctness guarantees we know of, but because it is limited to
fork-join parallel structures, it is not suitable for many concurrent
programs. TWEJava supports a much broader class of programs
than DPJ, and provides almost as strong correctness guarantees: its
primary weakness compared to DPJ is that it only provides lim-
ited protection from deadlocks. Like DPJ, Legion cannot express
programs with general concurrency and synchronization patterns
because there are no mechanisms for explicit “join” synchroniza-
tion between tasks (tasks block for other tasks only due to inter-
fering effects, enforced by the scheduler) and the effects of a par-
ent task must be a superset of the effects of its child tasks. Le-
gion also provides significantly weaker correctness guarantees than
DPJ or TWEJava, although it allows more dynamic assignment of
data to regions, and explicit program management of locality via
region maps. SvS executes tasks according to a statically-defined
task graph, which limits the language to a narrower range of con-
current applications than TWEJava. SvS allows both deterministic
and nondeterministic algorithms, and guarantees data race freedom
to such programs. One key difference is that SvS infers potential
conflicts due to implicit sharing of data between tasks, and uses an
approximate run-time analysis of the memory possibly accessed by
a task. While these features reduce the annotation burden on the
programmer, they increase the likelihood of spurious dependences
(“false positives”) that prevent two tasks from executing in parallel.
TWEJava does not suffer from such false positives when checking
for effect interference between tasks.

Transactional memory systems [19] use speculative execution
to enforce correctness guarantees such as atomicity. These sys-
tems guarantee that atomic blocks declared by the programmer ex-
ecute in isolation from each other, performing rollback and retry
if necessary. To date, implementations have often relied on soft-
ware transactional memory (STM). STM systems generally have
high overheads, stemming from the need to track memory accesses
and check for conflicts, combined with wasted computation when
rollbacks occur. In contrast, TWEJava only requires conflict checks
(on task effect summaries) before a task begins execution and never
rolls back partially-completed tasks. Also, to avoid exorbitantly
high overheads, many STM systems only guarantee isolation be-
tween two atomic blocks (weak isolation). In these systems, state-
ments outside atomic blocks may still race with other statements
inside or outside atomic blocks, so there is not a full guarantee of
data race freedom.

Several other systems also use optimistic parallelism. Ga-
lois [26] focuses on irregular algorithms and requires the program-
mer to specify which operations are semantically commutative and
define inverse methods for use on rollback. Non-deterministic al-
gorithms in DPJ also use atomic blocks implemented via an STM
system, which has fairly poor absolute performance [14]. Aida [28]
also focuses on irregular parallelism. It guarantees the absence of
data races, deadlock and livelock, via a mechanism called “dele-
gated isolation,” where a task that conflicts with another concurrent
task is rolled back and then “delegates” all its computation and data



to the latter task. Galois, DPJ and Aida are all limited to highly
structured, fork-join concurrency.

A more flexible style of concurrent programming is actors [3].
In the basic actor model, a concurrent system is composed of
several actors, each potentially having local state, but no shared
state between the actors. Actors communicate by sending messages
to other actors, and computation is done at each actor in response
to the messages received. Each actor processes only one message
at a time, so all concurrency is due to the simultaneous execution of
different actors. Actor-style programs are natural to express using
our system: a region can be defined to correspond to each actor, and
tasks with effects on that region can be thought of as equivalent
to messages sent to and processed by that actor. Several actor-
like programming models for shared memory systems [24, 29, 37]
broaden the basic actor model to include some form of shared state
between actors, but these systems are generally less flexible than
our effect system, and in some cases do not guarantee data race
freedom. Our system, when used to write actor-style programs, can
express both shared state between actors and internal concurrency
within actors, while guaranteeing data race freedom as well as,
where desired, deterministic, sequential-equivalent semantics for
parallel algorithms used within an actor.

8. Conclusion
We have described and defined the semantics of a new concurrent
programming model based on tasks with effects, and presented a
language called TWEJava that implements it. TWEJava can express
a wide range of concurrent and parallel programs, while deliver-
ing very strong safety properties including task isolation, data race
freedom, atomicity, and optionally determinism. We have imple-
mented several concurrent programs in TWEJava and shown that
our present implementation can give substantial parallel speedups.
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Abstract

In this paper we describe techniques for compiling fine-
grained SPMD-threaded programs, expressed in program-
ming models such as OpenCL or CUDA, to multicore execu-
tion platforms. Programs developed for manycore processors
typically express finer thread-level parallelism than is appro-
priate for multicore platforms. We describe options for im-
plementing fine-grained threading in software, and find that
reasonable restrictions on the synchronization model enable
significant optimizations and performance improvements
over a baseline approach. We evaluate these techniques
in a production-level compiler and runtime for the CUDA
programming model targeting modern CPUs. Applications
tested with our tool often showed performance parity with
the compiled C version of the application for single-thread
performance. With modest coarse-grained multithreading
typical of today’s CPU architectures, an average of 3.4×
speedup on 4 processors was observed across the test appli-
cations.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming ]: Parallel Programming

General Terms Algorithms, Performance

Keywords CUDA, Multicore, CPU, SPMD

1. Introduction

In the coming years, commercial application developers will
have a strong incentive to develop highly parallel software
to take advantage of widespread parallel processors in the
consumer market. However, it is unclear whether each po-
tential user of an application will have a computing subtrate
with a similar degree, granularity and style of parallelism.
Even if an application is amenable to targeting a wide vari-
ety of parallel computational platforms, it is unclear whether
a single expression of the application in any one program-
ming model will be sufficient. The model must be powerful
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enough to effectively capture many applications, yet have
enough constraints to enable a wide range of architectures
to be effectively supported.

We present some initial findings of a case study testing
one parallel programming model that industry is hoping will
be such a portable model: fine-grained Single Program Mul-
tiple Data (SPMD) kernels, with limited thread coopera-
tion, controlled by a centralized process. CUDA [16] and
OpenCL [12], for example, are both built on an underly-
ing programming model of fine-grained SPMD threads. For
the experiments presented here, we will be working with
the CUDA programming model, noting in advance that the
same techniques would be applicable to OpenCL and other
SPMD programming models as well.

The CUDA programming model is a hybrid of two par-
allel programming models initially tailored to GPU archi-
tectures. It supports bulk synchronous task parallelism [24],
where each task is composed of fine-grained SPMD threads.
Programmers have been using CUDA with significant suc-
cess in many application fields, such as bioinformatics [19],
molecular dynamics [21], machine learning [4], and medical
imaging [22]. We view these successes as sufficient evidence
that the fine-grained SPMD model is effective for program-
ming a manycore architecture with explicit support for fine-
grained threads. However, previously there has not been in-
vestigation of how such a model could effectively map to
a more coarsely threaded architectures such as the current
commodity multicore processors.

The contributions of this paper are:

• An implementation and comparison of two approaches to
implementing a fine-grained SPMD programming model
on a processor with coarse-grained thread-level paral-
lelism.

• A description of programming model restrictions nec-
essary to implement the intuitively more effective ap-
proach.

• Optimizations enabled by the serialization of a parallel
model, primarily redundancy removal in both computa-
tion and data storage.

• Experimental evidence confirming the intuition, and
comparing it with standard compiled C on current mul-
ticore CPUs.

The primary enabling factors for generating efficient C
code from a fine-grained threading model are the restrictions



on synchronization usage. These restrictions allow stronger
reasoning in the compiler about execution semantics in
the static code. The baseline microthreading approach to
serializing an SPMD programming model is described in
Section 4. The baseline approach represents what we be-
lieve to be the state of the art in implementing general
finely-threaded programs on a system with significantly less
thread-level parallelism. The second approach is summa-
rized in our own previously published work [23] and that
of Shirako et al. [20], describing a basic approach for gen-
erating structured code serializing fine-grained SPMD code.
We have reimplemented and extended the functionality of
these algorithms within a production-level compiler, and
compile the full CUDA language without the limitations of
the previous work. We show with experimental results that
the structured approach enabled by restrictions on synchro-
nization usage does indeed provide significant performance
benefits over the more general baseline.

In the context of a serialized parallel model, several opti-
mizations not available to the parallel form of the code are
enabled. The optimizations detailed in Section 6 are notably
analogous to existing redundancy removal optimizations in
sequential programming models. However, we can leverage
knowledge of explicit parallelism to reduce the burden of
analysis or surpass the typical capabilities of commercial
implementations.

We highlight some of the related work in cross-architecture
parallel programming models in Section 2. A concise descrip-
tion of CUDA’s execution and memory models relevant to
this work is presented in Section 3. The general microthread-
ing and structured microthreading techniques are discussed
in Sections 4 and 5 respectively, followed by a description of
enabled optimizations in Section 6. We describe the prac-
tical details of our compiler and runtime environment in
Section 7 to provide a full context for our performance re-
sults presented in Section 8. We summarize the experiments
and lessons learned in the concluding remarks of Section 9.

2. Related Work

The issue of mapping small-granularity parallel work units to
CPU cores has been addressed in other programming mod-
els, such as parallel simulation frameworks [7] and dataflow
or message-driven programming models [2, 3]. Such mod-
els typically implement a user-level microthreading tech-
nique similar to our baseline approach. Microthreading im-
plementation is simplified when implemented within a sin-
gle code object, as an SPMD programming model provides.
OpenCL [12] is a programming model closely related to
CUDA that claims such platform portability as we would
like to explore. However, it has not matured to demon-
strate such portability at this time. The methods and re-
sults presented here would be directly applicable to all finely-
threaded SPMD programming models, including OpenCL.

Shirako et al. [20] applied many of the same transforma-
tion methodologies to serialize data-parallel loops contain-
ing barriers. We demonstrate how similar techniques can be
utilized in an SPMD programming model, and demonstrate
the further optimizations enabled by the application of these
techniques.

Numerous other frameworks and programming models
have been proposed for data-parallel applications for multi-
processor architectures. Some examples include OpenMP [17]
and HPF [11]. Although widely used in a CPU symmet-
ric multiprocessor environment, these models are yet to be
proven for manycore chips. Lee et al. have described a sys-

1 __global__ small_mm_list(float* A_list, float* B_list,

, const int size)
{

2 float sum;
3 int matrix_start, col, row, out_index, i;
4 matrix_start = blockIdx.x * size * size;

5 col = matrix_start + threadIdx.x;
6 row = matrix_start + (threadIdx.y * size);

7 sum = 0.0;

8 for(i = 0; i < size; i++)
9 sum += A_list[row + i] * B_list[col + (i*size)];

// Barrier before overwriting input data

10 __syncthreads();

11 out_index = matrix_start +

(threadIdx.y * size) + threadIdx.x;
12 A_list[out_index] = sum;

Figure 1: Multiplying many small matrices in CUDA.

tem for compiling OpenMP programs to CUDA [13] which,
if successful, could provide similar experimental benefit as
extending CUDA to CPUs.

Diamos has implemented a binary translation framework
from GPU binaries to x86 [10]. While binary translators
have advantages in knowing statically unavailable runtime
parameters, compilers have more high-level program infor-
mation available to them in the structured and symbolic
source code. It is unclear which of the high-level transfor-
mations we propose would be possible without high-level
compiler information available, if any.

Liao et al. designed a compiler for efficiently mapping the
stream programming model to a multicore CPU architec-
ture [14]. Their implementation attempted to build into the
compiler capability for removing many of the restrictions of
the stream programming model. In many ways, fine-grained
SPMD-threaded models remove from the stream program-
ming model those same limitations addressed by Liao et al.’s
compiler. The programmer has control over tiling and ker-
nel merging optimizations, the range of which is potentially
broader than can be discovered and applied in an automated
framework.

NVIDIA has released a toolset for CUDA program em-
ulation on a CPU, designed for debugging. In the emula-
tion framework, each fine-grained thread is executed by a
separate runtime OS thread, incurring significant thread-
scheduling overhead, and performing orders of magnitude
more poorly than any of our approaches in informal experi-
ments.

3. CUDA Programming Model

CUDA as a programming model has several interacting con-
structs for composing parallel programs on a shared-memory
system [16]. The programming model allows sequential code
in the standard C language with library APIs to control and
manage grids of parallel execution specified by kernel func-
tions. The host portion of the code is compiled using tradi-
tional methods and tools, while the kernel code introduces
constructs for expressing SPMD parallelism. This work pri-
marily focuses on the compilation and execution of the par-
allel kernel functions. We will be using the example kernel
function of Figure 1 throughout this paper.

Within the SPMD kernel functions, threads are distin-
guished by an implicitly defined 3-tuple index uniquely iden-



tid = threadIdx.x;
while(i < end)
{

x += input[i];
if(i == end-1) {

//segmented circular shift
data[(tid + 1) % shift] = x;
__syncthreads();

output = data[tid];
break;

}
else {

i++;
}

}

(a) Incorrect Usage

tid = threadIdx.x;
while(i < end)
{

x += input[i];
if(i == end-1) {

break;
}
else {

i++;
}

}
//segmented circular shift

data[(tid + 1) % shift] = x;
__syncthreads();
output = data[tid];

(b) Correct Usage

Figure 2: Synchronization within control flow. (b) shows
code semantically equivalent to that of (a), and obeys the
synchronization usage constraints.

tifying threads within a thread block. Thread blocks them-
selves are distinguished by an implicitly defined 2-tuple vari-
able. The ranges of these indexes are defined at runtime by
the host code in special kernel invocation syntax. In the ex-
ample of Figure 1, each thread block is computing one small
matrix multiplication out of the list, while each thread is
computing one element of the result matrix for its block.

CUDA guarantees that threads within a thread block
will be live concurrently, and provides constructs for threads
within a thread block to perform fast barrier synchroniza-
tions and local data sharing. Distinct thread blocks within
a grid have no ordering imposed on their creation or execu-
tion. Atomic operations provide limited interblock commu-
nication.

CUDA uses textually-aligned static barrier semantics,
such as those of the Titanium language [1]. For instance,
it is illegal to invoke a barrier intrinsic in both paths of
an if-else construct when CUDA threads may take different
branches of the construct. Although all threads within a
thread block will reach one of the intrinsics, they represent
separate barriers, each requiring that either all or none of
the threads reach it.

As a more general example, consider the constructed
example of Figure 2. We assume that end is a function
of the thread index, while the initial value of i is thread-
invariant. Although each logical thread will hit the barrier
exactly once, the code of Figure 2a will have unpredictable
runtime behavior. Figure 2b shows how the code may be
restructured to achieve the desired effect without violating
this constraint.

CUDA is less restrictive than Titanium in that barri-
ers can be dependent on statically thread-dependent expres-
sions. It only requires that the dynamic evaluation of those
expressions results in a uniform boolean value at runtime.
For instance, if end and the initial value of i are functions
of the thread index such that (i - end) is thread-invariant,
the code of Figure 2a will function correctly, in constrast
with the restrictions of Titanium that would prohibit this
case as well.

The CUDA memory model, at the highest level, separates
the host and device memory spaces, such that host code and
kernel code can only access their respective memory spaces
directly. The device memory spaces are the global, constant,
local, shared, and texture memory spaces. A summary of the
memory spaces is given in Table 1.

1 __global__ small_mm_list(float* A_list, float* B_list,
const int size)

{
2 float sum[];
3 int matrix_start[], col[], row[], out_index[], i[];

int current_restart, next_restart;
next_restart = 0;
// Loop over barrier synchronization intervals
while (next_restart != -1) {

current_restart = next_restart;
//Loop over threads within an interval
for(each tid) {
switch (current_restart) {

case 0:
goto RESTART_POINT_0;

case 1:
goto RESTART_POINT_1;

}

// Original program beginning:
RESTART_POINT_0:

4 matrix_start[tid] = blockIdx.x * size * size;
5 col[tid] = matrix_start[tid] + tid.x;
6 row[tid] = matrix_start[tid] + (tid.y * size);

7 sum[tid] = 0.0;

8 for(i[tid] = 0; i[tid] < size; i[tid]++)
9 sum[tid] += A_list[row[tid] + i[tid]] *

B_list[col[tid] + (i[tid]*size)];

// restart point induced by syncthreads()
10 next_restart = 1;

goto end_of_thread_loop;
RESTART_POINT_1:

11 out_index[tid] = matrix_start[tid] +
(tid.y * size) + tid.x;

12 A_list[out_index[tid]] = sum[tid];
next_restart = -1; // indicates "return"
end_of_thread_loop:
}

} // while
}

Figure 3: Microthreaded code for our example kernel

These memory spaces follow general microarchitecture
principles. Large memory spaces are expected to have long
latencies and limited random-access bandwidth, while small
memory spaces can reliably satisfy low-latency accesses. Ef-
ficient CUDA programs make these cost trade-offs explicitly
by using localized access patterns and limiting the active
working set. However, if an application is written assuming
significant hardware acceleration of texture processing oper-
ations, it could lead to design choices that perform poorly
on processors implementing those features in software.

4. Baseline SPMD Microthreading

The term microthreading describes software techniques
used in contexts where parallel work units are too small
to efficiently schedule individually [2, 7]. The key concept
is that software emulates the execution of multiple con-
ceptually parallel threads or computation objects in a sin-
gle, sequential program. The result of applying such a mi-
crothreading technique to the kernel of Figure 1 is shown in
Figure 3. Note that the implicitly defined variable threa-
dIdx has been shortened to tid for brevity. The compiler
begins by labeling each barrier with a unique number, re-



Table 1: CUDA Device Memory Spaces in GPU Execution Context
Memory
Space

Permissions Scope of an
Object

Capacity Latency Special Features

Global Read/Write All threads DRAM capacity High Requires aligned, contiguous simultaneous accesses for
best bandwidth.

Constant Read-Only All threads 64KB Low
(cached)

Single-banked cache with broadcast capability to mul-
tiple threads.

Local Read/Write Single thread DRAM capacity High Most often promoted to private registers, which are
shared between threads. Values not promoted to regis-
ters have long latency access.

Shared Read/Write Single thread
block

16KB Low Scratchpad memory shared between thread blocks.
More shared memory used per thread block means
fewer thread blocks can be simultaneously active.

Texture Read-Only All threads DRAM capacity,
limits per object

High Hardware interpolation, indexable by real-valued in-
dexes, and other features for image processing.

serving the number zero for the implicit barrier at the be-
ginning of the program. In our example, the single barrier
gets labeled with the number 1. The original code for the
program is modified, with each barrier replaced by a unique
label, an assignment of the next_restart variable with the
barrier’s ID, and a jump to begin executing the next concep-
tual thread. All exit points from the function are replaced by
statements assigning an exit flag (-1) to the next_restart
variable. The compiler then generates the microthreading it-
eration structures. The master while-loop iterates over the
number of times the threads will synchronize, each time up-
dating the current restart point to the place the threads
synchronized. A for-loop iterates over thread indexes, and
uses a switch structure to begin each thread’s execution at
the current restart point. For each iteration of the concep-
tual thread for-loop, a single conceptual thread is advanced
from its previous synchronization point to its next synchro-
nization point. The master while-loop then iterates again to
emulate all conceptual threads executing the original pro-
gram from the barrier statement to the next point of syn-
cronization, unless the original program end was reached by
the conceptual threads being emulated.

In our example, the master while-loop control structure
will begin executing the SPMD code of the original parallel
program, marked by RESTART_POINT_0. The program exe-
cutes the original, SPMD source code until it reaches state-
ment 10, the original synchronization point. It then marks
the synchronization point it reached, and program execu-
tion continues with the next conceptual thread at the origi-
nal program beginning (statement 4). When all intances of
conceptual threads have been iterated over (each tid is ex-
hausted), the barrier is marked as the next restart point.
This corresponds to the release of all conceptual threads
from the barrier, so each microthread is executed again start-
ing at the barrier release. Each conceptual thread then writes
its output and reaches the original function’s end. When all
conceptual thread indexes have been processed again, the
master while-loop detects that all conceptual threads have
completed, and exits the function.

The memory model must also be adapted to fit a mono-
lithic shared memory system. The globally visible memory
regions already fit this model, and need not be changed.
The features of the texture fetching functions must be im-
plemented in a software library. The host and device memory
spaces must generally be kept distinct, implying that API
functions copying between host and device memory spaces

should still operate as specified. Removing this overhead is
a potential target for future work.

Local memory regions must be allocated per thread. The
simplest method accomplishing this is to change each local
memory object into an array of objects accessed by the
CUDA thread index. The shared memory regions, private
to a thread block, should be dynamically allocated for the
thread blocks actively executing. For shared memory arrays
of fixed size, this can be done using the program function
stack. However, CUDA allows shared array of statically
unspecified size, determined at kernel launch time. In C,
this is most feasibly addressed by dynamically allocating
a shared memory buffer of the appropriate size for each
actively executing thread block. This is addressed in the
runtime portion of the system.

The runtime environment is responsible for the execu-
tion of the programming model, given the adapted kernel
functions generated by the compiler. Considering the thread
blocks as work units, the runtime essentially implements a
bulk-synchronous parallism model. It is responsible for the
parallel processing of the work units within a grid, ensuring
that different grids will be synchronized with each other and
with the host.

5. Structured Microthreading

Consider a common case in which a kernel function has
no synchronization. In this case, complex microthreading
techniques are unnecessary, as the threads can be interleaved
in any way we desire, including complete serialization. When
barrier synchronization is present, complete serialization is
not possible, but unstructured control flow caused by the
added goto statements to and from the restart points of the
previous approach is less easily analyzed by most compilers,
especially for optimizations like automatic vectorization.
The improved approach described in this section summarizes
a variation of previous work [23] taking advantage of the
synchronization restrictions to more efficiently implement
microthreading.

Algorithm 1 partitions an SPMD program with textually-
aligned static barriers and regular control flow into groups of
statements not containing barrier synchronization. For each
statement in sequence, we examine whether it is or con-
tains a barrier statement. If not, it is included in the current
partition. If it is a barrier statement, it defines a partition
boundary, ending the current partition and beginning an-
other. If it is a control-flow construct containing a barrier,
then by the restrictions on the correct usage of barriers, all



Input: List of Statements F in AST representation
Output: List X of Code Partitions Free of Barriers
Begin new partition P ;
while F has next statement S do

switch type of statement S do

case barrier
Add P to X;
P = new partition;

end

case simple statement
Add S to P ;

end

case seq
Prepend statements comprising S to F ;

end

otherwise

if S contains a barrier statement then
Add P to X;
Invoke algorithm recursively on the body
of S, producing a list L of partitions
within S; Append L to X;
P = new partition;

else
Add S to P ;

end

end

end

end

if P not empty then
Add P to X;

end

Algorithm 1: Construction of code partitions free of
barriers

1 __global__ small_mm_list(float* A_list, float* B_list,
, const int size)

{

2 float sum[];
3 int matrix_start, col[], row[], out_index[], i[];

for( each tid ) {

4 matrix_start = blockIdx.x * size * size;

5 col[tid] = matrix_start + tid.x;
6 row[tid] = matrix_start + (tid.y * size);

7 sum[tid] = 0.0;

8 for(i[tid] = 0; i[tid] < size; i[tid]++)
9 sum[tid] += A_list[row[tid] + i[tid]] *

B_list[col[tid] + (i[tid]*size)];
}

10
for( each tid ) {

11 out_index[tid] = matrix_start +

(tid.y * size) + tid.x;
12 A_list[out_index[tid]] = sum[tid];

}
}

Figure 4: Partitioned translation of our example kernel

threads must reach or not reach the construct, making it a
valid partition boundary itself. The same algorithm is in-
voked recursively on the internal contents of the construct
to partition the statements within.

These partitions define regions of code where the execu-
tion of different CUDA threads may be interleaved in any
way, including complete serialization, as shown in Figure 4,
where each partition is enclosed within a nested loop struc-
ture iterating through all thread indexes. Comparing Fig-
ure 4 to the previous Figure 3, we see that both perform the

same sequential ordering of the original statements. How-
ever, Figure 4 does so with significantly less complex code
in comparison, both inherently simpler and more easily an-
alyzable for later optimization. For each statement of the
program, the code generator also finds references to vari-
ables in the local memory space in that statement, and con-
servatively converts these into references to the replicated
arrays.

6. Optimizations Enabled

Programmers writing parallel software make significant
tradeoffs between the cost of redundant computation among
parallel execution units and the cost of synchronization and
communication. However, when these parallel applications
are serialized to execute on a sequential processor, the cost
of communication largely vanishes, and redundant compu-
tation often no longer makes sense. In sequential-program
compilers, redundancy removal has been very successful,
but somewhat limited by the conservative assumptions nec-
essary to preserve sequential semantics when analysis falls
short. However, when the sequential program is actually an
explicitly parallel program serialized, the need for analysis
is either greatly reduced or removed entirely, as interthread
ordering semantics are much more loosely constrained than
a typical sequential loop nest. While such optimizations
should be possible within the baseline approach, it would
not be possible to leverage the existing work on loop nest
transformations in that context.

Variance Analysis Opportunities for redundancy re-
moval are exposed by discovering what portions of the ker-
nel code will produce the same value for all thread indexes.
Computation that was previously performed redundantly by
multiple CUDA threads now can be executed once in the sin-
gle CPU thread. The core of variance analysis is the forward
program slice of each element of the thread index tuple. We
compute these program slices, annotating each statement
with those program slices they comprise. We refer to these
annotations as variance vectors. For instance, statement 9
of our example kernel has a variance vector of (x,y), be-
cause it depends on the results of statements 5 and 6 that
respectively read the x and y index components. Implicitly,
atomic intrinsics are considered as a use of each element of
the thread index, as their return value could vary for each
CUDA thread.

When no statement in a partition contains a particular
element in its variance vector, the partition does not need to
be executed for each value in the index range of that element.
Its results are independent of that element of the conceptual
thread index. In the simplest case, and perhaps the most
common, a programmer could intend to only use a subset of
the elements of the thread index tuple to distinguish threads,
implicitly assuming that all of the other elements will have
a constant value of 1. In this case, the programmer writes a
kernel never using some elements of the thread index tuple.
The variance analysis will not annotate any statement with
an unused component, directing the code generator to not
create any loops over those elements of the thread index for
any partition. This is the case for our example kernel, where
the z index is unused.

Adaptive Loop Nesting Even when loops over certain
elements are required for a partition, perhaps not all state-
ments in a partition require execution for all thread indexes,
analogous to loop invariant removal. However, we propose a
technique called adaptive loop nesting that is more general in
that it simultaneously evaluates transformations equivalent



1 __global__ mm_list(float* A_list, float* B_list,

, const int size)
{

2 float sum[];
3 int matrix_start, col[], row[], out_index, i;

4 matrix_start = blockIdx.x * size * size;
for(tid.x = 0; tid.x < blockDim.x; tid.x++) {

5 col[tid] = matrix_start + tid.x;

for(tid.y = 0; tid.y < blockDim.y; tid.y++) {
6 row[tid] = matrix_start + (tid.y * size);
7 sum[tid] = 0.0;

8 for(i = 0; i < size; i++)

9 sum[tid] += A_list[row[tid] + i] *
B_list[col[tid] + (i*size)];

}

}
10

for(tid.x = 0; tid.x < blockDim.x; tid.x++)
for(tid.y = 0; tid.y < blockDim.y; tid.y++) {

11 out_index = matrix_start +
(tid.y * size) + tid.x;

12 A_list[out_index] = sum[tid];

}
}

Figure 5: Optimized translation of our example kernel

to loop interchange, loop fission, and loop invariant removal
to achieve the best redundancy removal, similar to polyhe-
dral modeling of loop nests for sequential languages [8]. The
significant distinction from typical loop-nest optimization
is that all iterations can be assumed independent without
analysis because of their origin from parallel threads.

The compiler may generate loops over thread index ele-
ments only around those statements that contain that ele-
ment in their variance vector. To remove loop overhead, the
compiler may fuse adjacent statement groups where one has
a variance vector that is a subset of the other. All of the tra-
ditional cost analysis applied to loop fusion operations may
apply here.

Typical cost analysis must be used to determine cases
such as statements 5-9 of our example kernel. Statements
7-9 must be included in a loop nest over both x and y com-
ponents of the conceptual thread index, as the computation
is unique to each CUDA thread. As each of statements 5
and 6 is only dependent on one index element, either can
be merged into a loop nest with statements 7-9, inside the
outer loop over one component but before the inner loop
of the other index. However, choosing either statement 5 or
6 to merge will lead to one of two choices for the other.
We may choose to force the other into the innermost loop,
causing unnecessary redundant execution, since it was inde-
pendent of one of the loops now containing it. Otherwise,
me must enclose it in an extra, separate loop nest for that
statement alone, incurring extra control overhead. We chose
a cost heuristic that in this case would determine that the
extra control overhead is more costly, and would generate
the control flow observed in Figure 5 that redundantly exe-
cutes statement 6 for every x index.

Optimizing Local Variable Replication We note
that because of the serialization of the computation in the
fine-grained threads, not all data conceptually private to
each thread must necessarily be instantiated as separate
memory locations per thread. In particular, it is not nec-
essary to create private memory locations for values that
have a live range completely contained within a partition.
In such cases, one memory location reused by all threads is
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Figure 6: Compiler implementation diagram

sufficient. Another case is where, even though the variable is
live through multiple partitions, its value is thread-invariant.
This is the case when a variable definition has an empty vari-
ance vector.

Two cases arise in which variable replication must be
applied to the output value of an assignment with a non-
empty variance vector. The first is if a value defined by the
assignment reaches a use in another partition. As stated
previous, values with a live range completely contained
within a partition will never need to be saved for the same
conceptual thread to use in some later partition. The second
is if, in the presence of the loop over thread indexes placed
around the partition, the defined value would reach a use
that it previously would not have.

Assignments with an empty variance vector technically
never need to write to a replicated location, such as state-
ment 4 of Figure 5. However, we decided that for any use
reachable by at least one replicated definition, all its po-
tential definitions must write to the replicated location for
simplicity.

Minimal variable replication and adaptive loop nesting
share an interesting interplay in that the maximal fusing of
loops over indexes can introduce additional cases requiring
replication. This has been well established in work on loop
fusion. The final results of these optimization algorithms
would result in a generated kernel code like that shown in
Figure 5.

7. Implementation

The compiler is implemented within NVIDIA’s produc-
tion CUDA compilation toolchain. The toolchain provides
a CUDA compiler driver, called nvcc. We added a new
compiler flag enabling multicore compilation. The compiler
structure is shown in Figure 6. At a high level the com-
piler consists of two main components: a frontend (CUD-
AFE) and the Open64 [9] high-level backend. CUDAFE is



the standard CUDA production compiler front-end without
modifications, just as it is used for GPU compilation.

In our implementation we generate HI-WHIRL interme-
diate representation (IR) for the Open64 backend infrastruc-
ture [9]. We implemented all the optimizing transformations
at the HI-WHIRL level, chosen because almost all machine-
independent analysis and optimization passes are available
there [6]. The backend consists of five main components.

PreOpt- We use the standard Open64 optimizer to per-
form a few simple optimizations and, more importantly, to
generate data flow information in the form of def-use chains.

Variance Analysis- The variance analysis we described
earlier computes forward program slices on the thread index
variables, annotating every statement with the components
of the threadIdx variable on which that statement depends.

Partitioning- The partitioning algorithm described in
Section 5 builds a list of partitions and, within each parti-
tion, collects a list of statements.

Local Variable Replication- Def-use chains restricted
to the set of local variables of a function determine which
variable references are read and written in multiple parti-
tions. Each statement is annotated with the list of variable
references within that statement needing to reference the
expanded version of the variable.

Code Generation- This phase completes the genera-
tion of IR that is the complete, optimized transformation of
the input into executable code. It traverses each partition,
grouping adjacent statements if desirable given their vari-
ence vectors. It also transforms statements to use replicated
versions of variables as necessary. Finally, it surrounds each
grouped cluster of statements within a partition by the nec-
essary thread loops, as required by the variance vectors of
those statements.

WHIRL2C- We use the WHIRL2C [5] component from
the Open64 distribution to generate C code from the trans-
formed IR.

Thread blocks in the CUDA programming model repre-
sent independent tasks, each embodied by a sequential pro-
gram following our compiler’s translation. Many frameworks
exist for distributing such parallel tasks to processors. Our
implementation uses POSIX threads as an example. The
runtime system creates several OS worker threads, the num-
ber of which can be controlled by an environment variable.
At a kernel launch, the number of CUDA thread blocks in
the grid to be launched is statically partitioned to the run-
time threads. Each runtime thread executes its chunk se-
quentially and waits on a barrier. When all runtime threads
reach the barrier, the grid has completed, and control is re-
turned to the host thread.

8. Performance Evaluation

We present results on the eight CUDA benchmarks in Ta-
ble 2 from application fields including fluid dynamics, as-
trophysics, and financial modeling. These applications were
written specifically for a GPU target architecture, and have
shown significant performance on that platform, some re-
ported in previous work [18]. For benchmarking, we used an
Intel Core2 Quad processor system running RedHat Enter-
prise Linux 4 (Update 7). We use gcc version 3.4.6 as the
final C compiler, with -O3 optimization for all tests.

Table 3 shows that optimizations of the structured mi-
crothreading implementation dramatically reduced the num-
ber of replicated variables, with direct effect on reducing
cache pressure. The number of references to replicated vari-
ables is also consequently reduced, intuitively leading gcc to

Benchmark App. domain Kernel
lines

Static
barriers

petrinet stochastic models 191 5
blinn volume rendering 155 0
blackscholes financial models 43 0
nbody astrophysics sim. 180 3
lbm fluid sim. 285 1
tpacf astronomy data

processing
98 4

binoption financial models 121 5
FDTD electromagnetic

simulation
263 6

Table 2: Benchmark summary

Benchmark Local
objects

Static lo-
cal object
references

Replicated
local ob-
jects

Static ref-
erences to
replicated
objects

petrinet 72 623 0 0
blinn 93 343 0 0
blackscholes 35 133 0 0
nbody 82 498 18 141
lbm 110 1269 11 51
tpacf 36 196 6 25
binoption 51 215 6 6
FDTD 46 481 13 94

Table 3: Static Results of Optimizing Transformations

promote a larger fraction of variable accesses to register ac-
cesses. The variance analysis correctly detected that, out of
all of the benchmarks, only tpacf used two dimensions of
the thread index, while all the other applications used only
one.

Figure 7 shows the benefits of our optimizations over
a traditional microthreaded approach. Those applications
with the least performance differences, blinn and blacksc-
holes, do not use any synchronization within the CUDA
kernel. In these cases, the performance benefits of the struc-
tured implementation are primarily due to the removal of the
redundant local memory objects, as the control flow struc-
ture is practically the same between the two implementa-
tions. The rest of the applications do use synchronization,
and gain significant performance benefits from the struc-
tured implementation, with an average of approximately 2×
performance difference between the baseline and structured
implementations of microthreading.

The most extreme cases of disparity between structured
and unstructured microthreading were BinOption and FDTD.
These were also the applications with the most synchroniza-
tion, showing that the advantage of strutured microthread-
ing and optimization generally increases with kernel pro-
gram complexity.

Finally, we can see that the performance compared to a
native C application varies widely. This is to be expected,
as the implementation decisions were made in different pro-
gramming models, although the task and general algorithm
were fixed. petrinet and FDTD required the most parrallel
algorithm implementation overhead, reflected in the compar-
ison with sequential execution. Some applications even saw
single thread performance gains over the existing C imple-
mentation. This indicates that the optimization effort spent
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on the CUDA implementation, for the GPU, was more ef-
fective for the CPU than the optimization effort spent on
the C implementation.

All applications also saw significant performance gains
from multithreading across the coarse-grained cores. We can
see in Figure 8 that the performance scaling of the translated
applications is very good, with close to ideal linear scaling
for a small number of processor cores for most applications.
The only application that reaches a scaling ceiling on our
test system is lbm, as the application becomes bottlenecked
by system memory bandwidth. Several other applications
show somewhat less than ideal scaling, primarily due to
load imbalance caused by our simplistic work partitioning
implementation developed under the assumption of large
numbers of equal-latency tasks. The two applications most
affected by load imbalance are tpacf and petrinet, which
have large variations in the runtimes of each block. A large
existing body of work explores more effective dynamic work
scheduling policies [15] applicable to our implementation

would likely move some of the applications closer to the ideal
scaling curve.

9. Conclusions

We have described techniques for efficiently implementing
the CUDA programming model on a conventional multipro-
cessor CPU architecture. We have described a baseline mi-
crothreading approach, showing that a microthreading ap-
proach based on structured control flow has significant com-
parative performance advantages, in part due to additional
optimizations that are enabled.

We observe that a fine-grained SPMD decomposition can
be translated into more coarse-grained work units effectively,
but only with reasonable restrictions on the synchronization
model. Fine-grained threads that may interact arbitrarily
must resort to some form of unstructured microthreading,
which has shown to as much as double execution times
compared to the structured approach, and in no case was
it better. Our results also suggest that there is a class of
parallel kernels where the finely-threaded version of the
code shows parity with a native C implementation in single-
thread performance.

Finally, our results have shown a particular software en-
gineering advantage for current CUDA developers requir-
ing some CPU fallback implementation when CUDA is not
installed on a particular client’s system. Using these tech-
niques, such developers could translate their CUDA code
directly into multithreaded C that is almost always better
than a quickly written sequential program on a small mul-
tiprocessor typical in today’s systems, while still keeping a
single code base.
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ABSTRACT

Heterogeneous architectures, by definition, include multiple processing components with very different microar-
chitectures and execution models. In particular, computing platforms from supercomputers to smartphones can now
incorporate both CPU and GPU processors. Disparities between CPU and GPU processor architectures have naturally
led to distinct programming models and development patterns for each component. Developers for a specific system
decompose their application, assign different parts to different heterogeneous components, and express each part in
its assigned component’s native model. But without additional effort, that application will not be suitable for another
architecture with a different heterogeneous component balance. Developers addressing a variety of platforms must
either write multiple implementations for every potential heterogeneous component or fall back to a “safe” CPU
implementation, incurring a high development cost or loss of system performance, respectively. The disadvantages
of developing for heterogeneous systems are vastly reduced if one source code implementation can be mapped to
either a CPU or GPU architecture with high performance.

A convention has emerged from the OpenCL community defining how to write kernels for performance portability
among different GPU architectures. This paper demonstrates that OpenCL programs written according to this
convention contain enough abstract performance information to enable effective translations to CPU architectures as
well. The challenge is that an OpenCL implementation must focus on those programming conventions more than the
most natural mapping of the language specification to the target architecture. In particular, prior work implementing
OpenCL on CPU platforms neglects the OpenCL kernel’s implicit expression of performance properties such as
spatial or temporal locality. We outline some concrete transformations that can be applied to an OpenCL kernel to
suitably map the abstract performance properties to CPU execution constructs. We show that such transformations
result in marked performance improvements over existing CPU OpenCL implementations for GPU-portable OpenCL
kernels. Ultimately, we show that the performance of GPU-portable OpenCL kernels, when using our methodology,
is comparable to the performance of native multicore CPU programming models such as OpenMP.

I. INTRODUCTION

Heterogeneous computing systems are becoming very prevalent in many market segments. The number of
accelerated supercomputers in the Top500 has been steadily increasing since 2009 [1]. The current #1 entry in the
Top500 ranking of supercomputers uses an equal number of CPU and GPU chips [1]. Processors marketed towards
consumer laptop and workstation systems often integrate heterogeneous CPU and GPU components on the same
silicon die. Because GPUs and CPUs developed for somewhat distinct workloads historically, the programming
models associated with each are mostly disjoint. Multicore CPU programmers may gravitate towards OpenMP
or TBB, while GPU vendors have been encouraging the growth of CUDA [2], OpenCL [3], C++AMP [4], and
OpenACC [5].



2

Divergent programming models and architectures are already causing significant costs in high-performance
software development. Optimization is difficult for any architecture, and explicit heterogeneity increases that
difficulty even for a single platform. An application developer must target program segments to the appropriate
system component, balancing for the relative strengths and weaknesses of each, and then optimize each program
segment for the targeted architecture. But software typically outlives systems, and an application with expected
longevity has to be targeted towards a system unknown at development time.

When faced with the challenge of targeting an unknown but probably heterogeneous system, developers today
typically make one of two choices. Some accept that each performance-sensitive program component must be capable
of running on any CPU or GPU with high performance. Those developers bear the high cost of writing high-
performance implementations for each, and guarantee performance portability through exhaustive specialization.
Other developers lack the motivation or resources to pursue such a high-cost path, and choose instead to target
some lowest common denominator, usually the CPU. These two choices drain development effort or leave significant
performance opportunities on the table, respectively.

The root problem is a lack of performance portability, or the ability to write a single software implementation
that can be targeted to either a CPU or GPU with high performance. For some languages, this is because the
programming model itself is innately unsuitable for certain architectures. We are unaware of any serious work
trying to implement POSIX threads on a GPU, for instance. Other programming models seem to hold much
more promise. Stratton et al. presented an implementation of the CUDA language for CPU architectures within
two years of the language’s release [6]. OpenCL was specifically designed with portability between GPUs and
CPUs in mind, with both AMD and Intel releasing x86 CPU implementations. Yet the current ecosystem fails to
deliver satisfactory performance portability [7], [8]. This is primarily because a language specification, by itself, is
insufficient for establishing performance portability.

Performance portability requires not only an agreed-on functional language specification, but a clear specification
or convention for expressing a program’s performance-related attributes. In practice, a vendor implementing a
language may think first of how the language’s functional components might most naturally map to the specific
architecture. That implementation will then define some best practices for programmers targeting that architecture
through that implementation. The problem is that when the best practices for different platforms diverge, the potential
for performance portability is lost. To follow divergent best practices for different platforms, programmers have no
choice but to write specialized implementations for each.

OpenCL is a language with both essential characteristics for performance portability in place. The parallelism
constructs are abstract enough to transform into diverse lower-level implementations. Additionally, multiple GPU
vendors have converged on similar conventions for how OpenCL kernel code should be written for good perfor-
mance [9], [10], [11].

Our contributions over prior work include:
• Identifying the OpenCL community’s emergent performance model.
• Formalizing the patterns necessary for performance portable OpenCL programming.
• Introducing two novel compiler transformations to efficiently map portable OpenCL codes to CPU architectures.
• Providing a best-of-breed OpenCL implementation for CPUs that exploits our performance and portability

insights.
We review the OpenCL programming model and discuss the prevailing performance conventions in that model in

Section II. While multiple other accelerator languages have similar parallelism models and performance conventions,
OpenCL has the most examples of alternative CPU implementation methodologies. These alternative CPU imple-
mentations allow us to characterize the impact of failing to match the conventions for expressing performance in
one or more significant ways. The characterization and qualitative analysis of current implementation methodologies
is presented in Section III.

In Section IV, we describe one possible set of transformations that honors all of the major OpenCL performance
conventions while mapping the programming model to a CPU architecture. Section V details the practical implemen-
tation of such transformations in an OpenCL compiler and runtime for experimental evaluation. We demonstrate
that successfully exploiting the performance conventions achieves greater performance portability than previous
work with two primary experiments. First, we show that OpenCL programs following the performance conventions
perform as much as 10× better than prior implementations that did not incorporate these performance insights
(average 1.8×). Second, we demonstrate that with our implementation, the performance of OpenCL kernels on a
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1 __kernel void MatMul(__global float *A,
2 __global float *B, __global float *C) {
3 float result;
4 __global float *A_line = A + get_group_id(1)*A_WIDTH;
5
6 result = 0.0f;
7 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {
8
9 for (int ii = 0; ii < TILE_WIDTH; ii++)

10 result += A_line[i + ii] *
11 B[(i+ii)*B_WIDTH + get_global_id(0)];
12
13 barrier(CLK_LOCAL_MEM_FENCE);
14 }
15 C[C_WIDTH * get_group_id(1) + get_global_id(0)] =
16 result;
17 }

Fig. 1. A simple, portable matrix multiplication kernel in OpenCL.

CPU is comparable to the performance of a native CPU implementation of the same algorithm in OpenMP. We
summarize some additional related work and our conclusions in Sections VII and VIII, respectively.

II. A PROPOSED CONSENSUS PERFORMANCE MODEL FOR OPENCL

Clearly, if different vendors have seriously divergent expectations of how programmers should use the language,
it is impossible for programmers to write portable code. In the early days of OpenCL, the NVIDIA OpenCL
programming guide and AMD GPU programming guide offered conflicting guidelines, mainly regarding whether
work-items should operate on scalar or vector data elements [12], [9]. For a variety of reasons, certainly including
the pain developers felt from the lack of performance portability, later architectures and compilers from NVIDIA,
AMD, and Intel converged on the general conventions described in this section.

The ultimate convention was attractive for several reasons. First, its focus on scalar work-item programs is
simpler to use. Tools can aggregate scalar elements into a vector access if necessary, but cannot easily decompose
a short vector access into multiple GPU SIMD-lanes [13]. Second, the convention has direct corallaries with
dominant performance aspects of modern computer architectures: data-parallel (SIMD) execution, scalable task
parallelismsuch, spatial locality, and temporal locality.

Figure 1 shows a listing of an OpenCL kernel for multiplying two matrices in single precision, which we will
use as an ongoing example in this paper. If these practices could be performance-portable in theory, then achieving
the goal of a portable language will require that both GPU and CPU implementations of OpenCL deliver high
performance for codes written with these programming practices.

The kernel exhibits the major performance principles outlined in this section, but also demonstrates a limitation of
those principles. The kernel program lacks more advanced algorithm-level data reuse and register tiling techniques
commonly used to improve performance on real systems [14]. Nevertheless, the code is sufficient for demonstrating
the performance guidelines. Note that these guidelines are primarily about programming for high hardware efficiency,
i.e. reaching an achieved bandwidth and execution efficiency close to the architecture’s peak. They will not advise
whether or not particular algorithms would perform better, or whether bandwidth or execution throughput will be
the ultimate limiting performance factor for a given architecture.

A. Task and Data Parallelism

The OpenCL programming model includes a two-level decomposition of work. Although the decomposition is
just a two-level hierarchy of parallel tasks, the two levels have very distinct performance implications. All of the
work-items in a work-group are guaranteed to be scheduled together, allowing them to coordinate more closely.
Work-groups can not make any assumptions about scheduling or co-scheduling of other work groups, which means
both that atomic operations must be used to guard critical sections, and in all other ways the groups are constrained
to a bulk-synchronous programming model.

The groups of co-scheduled tasks are a clear source of thread-level parallelism, and are exploited in that way
by nearly all implementations. Less obviously, perhaps, the work-items within a group are exploited as a source of
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vector-level parallelism on all GPU implementations known to the authors. The reasoning is that OpenCL’s single-
program multiple-data programming model will often naturally lead programmers to write groups of work-items
with nearly-identical control flow in many situations. Even if it were not fully natural, the GPU implementations
made this programming pattern fastest on their architectures from the beginning. Every known OpenCL GPU
programming guide discourages “divergence”, or writing programs such that different work-items within a work-
group take different paths through the program, making SIMD less effective.

To be performance-portable, the amount of parallelism in and among workgroups needs to be flexible. Work-
groups must be at least as wide as the native SIMD width of the machine, but never larger than the machine’s
capacity to schedule locally and simultaneously. The number of work-groups should be several times larger than
the number of processors on the device to enable load-balancing. Given the variety of architectures, it is unclear
whether these constraints can be met for all platforms with a fixed-size work-group. At minimum, performance-
portable programs have to query the device parameters at runtime and choose group sizes appropriately, or allow
the platform itself to choose a group size suitable for itself.

Our example kernel program computes a single output element with each work-item, so the number of work-items
for a reasonably large matrix would be substantial. In line 15, get_group_id(1), the second element of the
group index tuple, is used as the output row index, indicating that each work-group should process some contiguous
section of a particular output row. Therefore, every work-item in a work-group will need to access the same row
of data from the A matrix. Also, there are no divergent branches in the kernel. Every condition is independent
of the work-item index, so the entire path taken through the program execution is uniform across all work-items.
Therefore, SIMD groups of work-items will be fully exercised, without the need to predicate any SIMD lanes at
any time.

One interesting point about the OpenCL programming model is that by using groups of work-items as the
basis for SIMD execution, the OpenCL implementations are providing the user a way to exploit SIMD without
requiring them to program to a specific SIMD width. This is critical for portability, because different CPU and GPU
architectures have widely varying SIMD widths. Work-groups that are significantly larger than an architecture’s
SIMD width enables additional thread- or instruction-level parallelism, as the group can be divided into multiple
SIMD-width units. Subsequent proposed languages captured this insight particularly well also, such as the ISPC
programming model that advocates SPMD programming as an easy and effective way of writing SIMD code for
x86 CPUs [8].

B. Spatial and temporal memory locality

A large part of writing high-performance code is managing data locality well. In a recent survey article of seven
broad GPU programming optimization techniques, only one was not directly related to memory locality manage-
ment [15]. The OpenCL programming model makes explicit certain architectural realities that other languages try
to keep abstracted away. Large, coherent memories are inherently more expensive to access than small, local data
resources. As typical, we will divide our discussion of locality into two major classes: spatial locality and temporal
locality.

Traditional mechanisms for capturing spatial locality were in response to the observation that in sequential
programs, if a particular address was accessed, other addresses nearby were likely to be accessed soon in the
future. Today, spatial locality is almost a performance requirement, because we build our entire memory systems
out of large-line data transactions, such as cache lines and DRAM bursts. Furthermore, building hardware data
structures with many ports for independent simultaneous access is very expensive. In particular, this means that
even if a wide SIMD unit has gather and scatter capabilities, spatial locality among the addresses accessed will
significantly reduce the number of unique memory lines touched by the access, which means a much reduced
overall throughput demand on the memory system. In fact, OpenCL programmers are specifically encouraged to
assign work-items to data elements such that memory accesses are “coalesced” [9], [10], [11]. Formally, an access
is considered coalesced if it can be decomposed into the form:

uniform_base_address + (get_local_id(0) % SIMD_WIDTH).

A coalesced access causes all of the work-items in a particular SIMD execution bundle to access a set of
contiguous elements in memory for the given instruction or expression. To be tolerant to varying SIMD widths
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Fig. 2. Access pattern to a tile of matrix B in our example OpenCL program. Tasks within the work group perform wide, coalesced
accesses to the memory system.

across architectures, many programs assign the entire work-group to a contiguous set of elements, such that any
contiguous subdivision of the group will have a coalesced vector access.

Temporal locality is somewhat more complex to manage portably. Given that inter-group scheduling is out
of the programmer’s control, her focus is on temporal locality within each group. Futhermore, it is primarily
temporal locality in accesses from multiple work-items that needs explicit management; task-private temporal
locality is usually handled through simple register promotion. There are two possible approaches to achieving
temporal locality in OpenCL: explicitly managed local memory buffers or assuming an implicitly managed cache.
Older GPUs prevalent during OpenCL’s drafting had very limited caching support, forcing programmers to manage
temporal locality through explicitly-managed scratchpads. More recent GPUs from NVIDIA, AMD, and Intel all
include memory caches all the way down to the L1 level, which simplifies but does not eliminate the need to
specifically consider how temporal locality is managed. Even if a cache is present, it can be exploited one of
two ways on a GPU: explicitly controlling the execution order with work-group barriers, or relying on implicit,
round-robin scheduling patterns on GPUs to keep all work-items in a work-group roughly in phase with each other.
Either of these mechanisms will ensure that memory locations accessed repeatedly by different work-items in the
group will likely still be in cache.

In the given example, most accesses to global memory are perfectly coalesced across the entire work-group,
because the index expressions on lines 11, and 15 are both of the form uniform_base + get_local_id(0).
In the example kernel, the priority of spatial locality is most clearly shown by the access to the input matrix B
from line 11, which is shown graphically in Figure 2. The entire work group accesses wide lines of the matrix at
a time before proceeding downward in the column direction. Therefore, because each access completely consumes
an entire memory line, this kernel achieves a high percentage of peak global memory bandwidth consumption, even
though more advanced tiling algorithms could reduce the total number of global memory accesses significantly.

The shown kernel also uses a functionally unnecessary barrier on line 13 to potentially improve temporal locality,
particularly for accesses to the matrix A. Line 10 shows that the accesses to matrix A do not depend on the local
work-item index. Accesses independent of work-item index are uniform across the work-items of the group, which
is often an equally effective access pattern for GPUs with any kind of local caching mechanism. The presence of
the barrier ensures that a particular tile of the A row remains in cache while all work-items in the group use it.

Note that controlling locality on GPUs always relies on being able to switch between actively executing work-
items frequently and with low overhead. Round-robin instruction scheduling is another way of saying that the
hardware makes frequent implicit moves between actively executing work-items to balance their progress. Frequent
barriers are effectively programmer commands to suspend currently executing work-items at the barrier so that other
work-items can catch up. Therefore, we can say that a fundamental requirement of an OpenCL implementation
that supports performance portability for current developer practices is a low-overhead mechanism for switching
execution between work-items.
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1 struct wi_state {
2 int local_id[3], group_id[3], global_id[3];
3 float result;
4 float *A_line;
5 int i;
6 int ii;
7 void *restart_point;
8 }
9

10 struct wi_state group_state[WORKGROUP_SIZE];
11 struct wi_state *awi; //Active work-item
12
13 void barrier(int fence, void* restart) {
14 (awi++)->restart_point = restart;
15 if (awi = group_state + WORKGROUP_SIZE)
16 awi = group_state;
17 goto awi->restart_point;
18 }
19
20 void MatMul(float *A, float *B, float *C,
21 int g_id[3], g_size[3]) {
22 setup_wi_contexts(group_state);
23 awi = group_state;
24 kernel_start:
25 awi->result = 0.0f;
26 awi->A_line = A + awi->group_id[1]*A_WIDTH;
27
28 for (awi->i = 0; awi->i < A_WIDTH;
29 awi->i+= TILE_WIDTH) {
30
31 for (awi->ii = 0; awi->ii < TILE_WIDTH; awi->ii++)
32 awi->result += awi->A_line[awi->i + awi->ii] *
33 B[(awi->i+awi->ii)*B_WIDTH +
34 awi->global_id[0]];
35 barrier(CLK_LOCAL_MEM_FENCE, &&restart_0);
36 restart_0:
37 }
38 C[C_WIDTH*awi->group_id[1] + awi->global_id[0]] =
39 awi->result;
40 barrier(0, &&kernel_finish);
41 }

Fig. 3. C-like pseudocode representing AMD’s OpenCL implementation.

III. PRIOR IMPLEMENTATIONS OF OPENCL ON CPUS

Much previous work has addressed the challenge of implementing OpenCL on x86 processors, both published
academically and implemented industrially. Here, we cover those related works most directly related to our method-
ology and those that are most popularly used today. We will study each implementation as it relates to the running
example in Figure 1.

The AMD CPU OpenCL language implementation is based on the Twin Peaks technology [16]. The primary
insight of the implementation is that modern, multicore, superscalar, x86 CPUs support a relatively low level of
thread-level parallelism, but a very high degree of instruction-level parallelism. Therefore, it makes most sense to
combine all of the work-items in a group into a single CPU thread. The AMD CPU stack accomplishes this with
user-level threading techniques, using irregular control flow to “simulate” multiple parallel work-items with a single
user thread.

Figure 3 shows a pseudocode example of how this user-level threading is accomplished. First, the implementation
declares a data structure suitable for holding all the data private to a single work-item, and then initializes a collection
of such data structures to hold the state of all work-items in the group (details not shown.) The CPU thread calls the
MatMul function with a particular work-group index, which the compiler has modified such that it will complete
the execution of all work-items in the specified work-group. It initializes the local state of the work-group on line
22, and selects the work-item with index 0 to be the first active work-item. At any given time, the active work-item
is the one being advanced through the program. To support multiple work-items with the same kernel code, a level
of indirection is added, with awi pointing to the private data of the active work-item.

The program execution follows the original OpenCL kernel’s operations, referring to the active work-item’s
private storage through awi for references to private variables. Execution of the first work-item continues until the
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Fig. 4. Access pattern to a tile of matrix B in our example OpenCL program using the Twin Peaks methodology. Only accesses from the
first few threads of the work-group are shown.

barrier statement on line 35. At the barrier, the framework saves the program location where the current work-item
should be restarted, in this case the label restart_0 on line 36. It then updates the awi pointer to the next
work-item’s private state, and performs an indirect jump to the location at which the newly activated work-item
should be restarted. At initialization, all work-items have their restart points set to the kernel_start label, so
in this case, the indirect jump takes takes the second work-item to the beginning of the program, as it should. The
second work-item will then follow the same program path to the same barrier, at which point the framework will
make the third work-item the active work-item, and so on, until all work-items in the group have reached the first
barrier.

When the last work-item executes the first barrier, the condition on line 15 will evaluate to true for the first time,
and restart the first work-item at restart_0, allowing it to continue execution where it left off. It will do so until
it reaches the barrier again, where it will again save its current restart point and switch to the second work-item.
The constant switching of active work-items continues until work-items begin to reach the kernel’s end. At that
point, the work-items save their restart point as some sentinel value that will lead the framework to the cleanup
code to finish the current work-group, and prepare to execute another work-group if available.

The Twin Peaks methodology has several aspects that make it ill-suited to support the programming practices
outlined in Section II. First, the overhead of changing the active work-item is significant. The example shown uses
illegal label-passing to illustrate the concepts, but the real implementation is based on setjmp and longjmp.
Even after significant optimization of those low-level routines for this context, the Twin Peaks authors claim an
overhead of 10ns or thirty clock cycles per work-item change. Additionally, the micro-threading approach makes
no effort to capture vector-level parallelism across work-items. Each work-item is executed in isolation, and any
vectorization is limited to opportunities within the code of a single work-item.

Finally, the Twin Peaks implementation does not capture spatial locality as expected by the developer. Figure 4
shows a graphical representation of a single work-group’s accesses to the input matrix B over the course of
one tile. In a GPU implementation, with wide SIMD vectors and round-robin scheduling, large collections of
contiguous addresses are accessed and consumed together. However, a serialization of work-items with the Twin
Peaks methodology effectively executes all of a single work-item’s accesses first, before the accesses of any other
work-items. The kernel follows the guidelines to support SIMD across work-items, leading to interleaved accesses
among work-items but strided accesses in the access stream of a single work-item. Figure 4 shows how the serialized
implementation accesses a wide range of addresses in a short amount of time for the first work-item, followed by
another set of strided accesses from the second work-item, and so on. If the tile size or the memory footprint of
the work-group’s total state gets large enough, this kind of access pattern will cause significant cache thrashing,
and result in very poor spatial locality usage.

Figure 5 shows pseudocode for the result of prior region-based serialization work [17]. Some private variables
such as result are expanded into an array of values, with one element for each work-item. However, analysis
can often detect cases where private variables always store values uniform across the entire work-group, such as
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1 void MatMul( float *A, float *B, float *C,
2 int g_id[3], // work-group ID
3 int g_size[3]){ // work-group size
4 float result[WORKGROUP_SIZE];
5 float *A_line = A + g_id[1]*A_WIDTH;
6 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {
7 result[__x__] = 0.0f;
8 }
9 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {

10
11 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {
12 for (int ii = 0; ii < TILE_WIDTH; ii++)
13 result[__x__] += A_line[i + ii] *
14 B[(i+ii)*B_WIDTH + g_size[0]*g_id[0]+__x__];
15 }
16 //barrier(CLK_LOCAL_MEM_FENCE);
17 }
18 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {
19 C[C_WIDTH*g_id[1] + g_size[0]*g_id[0]+__x__] =
20 result[__x__];
21 }
22 }

Fig. 5. C-like pseudocode representing region-based loop serialization.

the variable A_line, and avoid creating separate memory locations to store redundant information.
Instead of adding functionality to the barrier function, the compiler uses the very presense of the barrier function

to inform analysis of the kernel code. The prior work describes the transformations more rigorously, but effectively,
the kernel code is split up into contiguous regions that contain no barriers. Each region is then serialized with an
inserted counted loop over the work-item indexes.

In Figure 5, one region occupies lines 6-8, initializing the private variable result for all work-items. A second
region on lines 11-15 performs the primary computation, accumulating inner products for each column of B. The
final region on lines 18-21 copies the final results to the correct region of the output space. The code regions
themselves constitute nodes in a dynamic control flow graph independent of work-item index, with each dynamic
region executed for all work-items. In the example kernel, there is a loop over the second regions, executing it for
each tile of the input data, while the first and last regions are executed only once each.

The inserted serialization loops themselves then maintain the semantics of the original barrier, not letting any
operations following the barrier in the dynamic execution completing before any operation before that barrier.
Therefore, the barrier itself can be removed from the final code, as it adds no information or constraint not already
represented by the serialized code.

From a portability standpoint, the region-based serialization methodology has several advantages over the Twin
Peaks technique. First, the overhead of executing a barrier is significantly reduced. In this methodology, a barrier
only adds a cost of a loop branch and loop counter increment in the worst case. In practice, the overhead is even
smaller, because optimizing compilers apply optimizing transformations such as loop unrolling to the serialization
loops. Such optimizing loop transformations are practically prohibited by the indirect jumps of the Twin Peaks
methodology. Second, this implementation could indirectly result in SIMD vectorization across work-items, if the
inserted serialization loops happen to be innermost loops, and a vectorizing compiler is able to conservatively prove
the vectorizability of those loops. And finally, the implementation does not fundamentally solve the spatial locality
expectation mismatch, as the access patterns remain largely unchanged. The CPU Scalar Access Pattern in Figure 4
still accurately describes the serialized access pattern of the main computation region: strided accesses along a
column of the B matrix, followed by more strided accesses along subsequent columns.

Intel’s implementation of OpenCL for x86 is both the most recent and the least explicitly disclosed or studied.
Our best understanding is that the Intel implementation would behave somewhat like the pseudocode in Figure 6.
The figure assumes that the implementation uses region-based serialization for simplicity, but this is not necessarily
clear. What is more clear, and noteworthy, is the implementation’s focus on explicitly combining multiple work-
items into vectorized execution bundles. Instead of creating private, scalar data elements for every work-item, it
will create vector data elements for each SIMD bundle, as the declaration of the variable result on line 4 shows.
All serialization loops are effectively unrolled by a factor of SIMD_W, the width of the SIMD units, with each
iteration performing operations on vector values.



9

1 void MatMul( float *A, float *B, float *C,
2 // work-group ID and size
3 int g_id[3], int g_size[3]) {
4 simd_float result[WORKGROUP_SIZE/SIMD_W];
5 float *A_line = A + g_id[1]*A_WIDTH;
6 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {
7 simd_store(result[__x__], simd_expand(0.0f));
8 }
9 for (int i = 0; i < A_WIDTH;

10 i+= TILE_WIDTH) {
11
12 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {
13 for (int ii = 0; ii < TILE_WIDTH; ii++)
14 simd_accumulate(&result[__x__] , A_line[i + ii] *
15 simd_load(&B[(i+ii)*B_WIDTH +
16 g_size[0]*g_id[0]+__x__]));
17 }
18 //barrier(CLK_LOCAL_MEM_FENCE);
19 }
20 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {
21 simd_store(&C[C_WIDTH*g_id[1] +
22 g_size[0]*g_id[0]+__x__], result[__x__]);
23 }
24 }

Fig. 6. C-like pseudocode representing Intel’s vectorizing OpenCL
implementation.
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Fig. 7. Access pattern to a tile of matrix B in our example OpenCL
program using the work-item SIMD bundling. For illustration, we
assume a SIMD width of 2.

In practice, for recent CPUs, Intel’s methodology works very well compared to the other techniques already
described. It does map multiple work-items to the SIMD units of the architecture, mirroring the expected behavior
as described in Section II. The barrier overhead of the implementation is not clear from the disclosed materials,
but experimentally seems to be somewhere between the region-based methods and the Twin Peaks method. The
explicit combining of work-items into SIMD units does assist in the capturing of spatial locality, but still does not
use the caches as effectively as they could. The CPU 2-wide SIMD access pattern in Figure 7 shows why. For
GPUs, the effective SIMD width of the processor is very wide, and the cache line size is closely matched to the
SIMD data vector width for 32-bit words. In CPUs, while the SIMD widths have increased recently, the cache lines
are still significantly larger than the SIMD data vector width. Therefore, a single SIMD access will utilize a smaller
portion of the cache line by itself. In a kernel written according to the OpenCL programming guidelines, other
work-items in adjacent SIMD bundles would be consuming the rest of that data. However, the overall control flow
of the compute region on lines 15-20 of Figure 6 still executes all of the accesses for one SIMD group before any
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Array Declaration int array[ARRAY_SIZE]
Full array slice array[:]

Bounded array slice array[100:100]
Indirect gather or scatter array[indexes[:]]

Fig. 8. CEAN array slice notation examples.

accesses from the next SIMD group. The final result is an access pattern that looks like the Figure 7, somewhere
between the completely serialized and completely vectorized access patterns.

In summary, in the previous implementation methodologies we show some common performance insights and
common portability oversights. It is clear that the work-items in a single work-group should be combined into a
single, sequential CPU thread. Work-items within a group are primarily a source of vector- and instruction-level
parallelism, both of which CPU architectures exploit from within a single CPU thread. The CPU implementations
vary widely in their approach to serializing work-items and capturing SIMD parallelism from the work-items,
with the Twin Peaks method vectorizing only explicit vector operations within a work-item, region serialization
relying on autovectorization technology, and Intel’s methodology directly targeting SIMD instructions. And finally,
no current CPU implementation does an excellent job of handling spatial locality given the most common OpenCL
programming practices. Instead, they each result int some kind of strided access pattern by executing one or more
work-items as long as possible instead of interleaving the accesses of the work-items that would consume the
elements of a particular cache line.

IV. MAPPING OPENCL PERFORMANCE CONVENTIONS TO CPUS

The previous two sections summarized the implicit performance assumptions held by most OpenCL developers,
and how prior work implementing OpenCL on CPUs fails to match some of those assumptions. In this section, we
present one potential approach to mapping the performance conventions of OpenCL programs to CPU architectures.
The goal of this implementation is to evaluate the practical impact to be had by honoring those performance
conventions.

We propose a vector-based serialization of each work-group. Even though the physical SIMD width of a machine
is of a fixed and limited value, the programming model’s usages would benefit from executing work-groups in a
way that emulates a work-group-wide vector machine. If instead of advancing only a small number of work items
until they are forced to yield, an implementation could execute each dynamic statement for all work-items in the
group before moving on to the next statement. The C Extensions for Array Notation (CEAN) programming model
provides an excellent mechanism for describing just such execution semantics.

A. C Extensions for Array Notation

Intel introduced CEAN as part of their production compiler in 2010. It has also been implemented in gcc, although
not integrated into the trunk, and proposed to the C++ standards committee as an industry-standard extension of
C and C++ It is very similar to, and likely inspired by, FORTRAN-style array operations. The basic syntax is
shown in Figure 8. An array slice expression is an array subscript expression (C99 6.5.2.1) that uses an array slice
operator. The two most relevant array slice operator types are the full slice and bounded slice operators. A full
slice operator, syntactically expressed with a single semicolon as the subscript expression, can only be used on
arrays with a known size, and evaluates to the entire contents of the array. A bounded slice operator can be used
on any array or pointer, and is a subscript expression of the form:

array ptr [ base index semicolon extent ].

The base index determines the offset of the first element of the slice, and the extent value determines the number of
contiguous elements that should be extracted in the slice. The example bounded array slice in Figure 8 accesses a
100-element slice from the array, beginning with index 100 and ranging to index 199. A bounded slice will always
result in an array value with a number of elements equal to the extent. Multi-dimensional slices are permitted, but
we will restrict ourselves to single-dimensional array operations for this paper. Array expressions can also be used
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1 void MatMul( float *A, float *B, float *C,
2 // work-group ID and size
3 int g_id[3], int g_size[3]) {
4 float result[WORKGROUP_SIZE];
5 float *A_line = A + g_id[1]*A_WIDTH;
6
7 result[:] = 0.0f;
8 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {
9

10 for (int ii = 0; ii < TILE_WIDTH; ii++)
11 result[:] += A_line[i + ii] *
12 B[(i+ii)*B_WIDTH + g_id[0]*g_size[0]:g_size[0]];
13 //barrier(CLK_LOCAL_MEM_FENCE);
14 }
15 C[C_WIDTH*g_id[1] + g_id[0]*g_size[0]:g_size[0]] =
16 result[:];
17 }

Fig. 9. CEAN-based result of our proposed OpenCL implementation.

as array subscript expressions into other arrays, which is useful for defining indirect gather and scatter accesses.
Indirect accesses tend to be significantly slower than full or bounded accesses in practice.

Operations on multiple array expressions must operate per-element across the extent of all involved array
expressions. For instance, adding a scalar to an array expression will result in a new array expression with the
scalar addition applied to every element of the array. Adding a pair of array expressions means an element-wise
addition, and requires that the two array expressions have the same number of elements.

B. Implementing OpenCL with CEAN

Figure IV-A shows how we can apply CEAN-style transformations similar to the way previous work applies
loop-based serialization. As with previous work, we expand the result private variable into an array, because its
value depends on work-item index. However, instead of introducing loops over the kernel code, we simply replace
the scalar expressions in the code with array slices where appropriate. Accesses to the result local variable on
lines 7, 11, and 16 use a full slice expression over the array. Accesses to the global memory could use the indirect
array access expression syntax in the general case. However, in the example code, all global memory accesses are
provably coalesced across the entire work-group. They can therefore be converted into the faster bounded slice
operations by decomposing the index operation into the form base index + get local id(0). Once the base index
expression has been identified, the compiler can generate a bounded array slice beginning at that base index and
with an extent equal to the work-group size. For the accesses to B and C, the compiler must first apply the following
equivalence:

get_global_id(0) ==

get_group_id(0)*get_group_size[0] + get_local_id(0)

The group index and size are then incorporated to the base index expression for the array slice expressions, as
seen on lines 12, and 15. The result of all these transformations is a program that expresses the execution of the
work-group as a sequence of vector operations over local variables.

CEAN has two important properties that make it very well suited to describing OpenCL work-group execution.
First, array expression operations were specifically introduced to support SIMD execution on CPUs. Operations
over array expressions are explicitly independent across all elements, and therefore directly targeted as vectorization
opportunities. Second, the execution semantics are such that each statement using array slice expressions is evaluated
in its entirety before the next statement executes, just as it would if all operations were only scalar. This creates the
kind of access pattern that actually achieves the spatial locality the developer intended. And like in the prior region-
based serialization approach, barriers are rendered irrelevant in the final code. The array slice ordering constraints
essentially provide the same ordering as if there were a barrier between every pair of statements.

Note that this choice of scheduling has strong implications for the local layout of data within the work-group.
The Twin Peaks authors specifically defends their choice of storing all the private data for a single work-item
contiguously in memory in a data structure. Their claim is that such a layout will get the best spatial locality [16]
(although admittedly stating that more research was needed on the topic.) This makes sense given their execute-
until-yield serialization model. If one work-item is going to be executed for a long time, it makes most sense that
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all its private data would be close together, and not interleaved with the data from other work-items. However, it
makes vectorization across work-items inefficient. In order to efficiently combine multiple work-items into a SIMD
bundle, all instances of the local variables for work items in that bundle should be contiguously stored.

V. PRACTICAL IMPLEMENTATION AND METHODOLOGY

To the best of our knowledge, prior implementations of region-based serialization were only available for the
CUDA language. For comparisons with a uniform codebase, we implemented both region-based serialization
and vector serialization in our compiler, so that each could be compared with each other and with industry
implementations.

Our compiler is implemented as a two-stage framework, the first of which performs source-to-source translation
from OpenCL to C, performing the high-level transformations in the process. It will transform the kernel code itself
into a new function representing the computation of a single work-group. It will also generate a wrapper function
to marshall arguments and execute each work-group as an iteration of an OpenMP parallel-for loop. The second
phase of the compiler is an off-the-shelf C compiler with OpenMP support, in our case using version 13.0 of Intel’s
C compiler with the optimization flags -O3 -xHOST enabled. The resulting object file is linked with a library
implementing all of the OpenCL built-in kernel functions, resulting in a shared library that can be dynamically
loaded. The wrapper function for a kernel is invoked by the OpenCL runtime at kernel launch to perform the kernel
computation.

In the case of region-based serialization, the high-level transformations performed by the translator include region
formation alanysis, as described in previous work [17]. Region formation is the identification of textual regions of
input code that can be safely iterated sequentially for all work-items in a work-group. The primary constraints are
that regions must be properly nested with the existing control flow constructs within the program itself, and must
not contain any barrier operations. Once the regions have been identified, each declared private variable is analyzed
for control- or data-dependence on the local work-item index. Those variables that do vary across work-items are
expanded into an array of values for each work-item.

When the translator performs vector-based serialization of work-items, it performs the same region formation
and work-item-dependence analyses as described above. It then checks the contents of each region to determine
whether the region can be serialized with CEAN notation. For instance, loops with work-item-dependent trip counts
cannot be expressed in CEAN notation. When such cases are detected, the compiler tries to divide the region into
smaller subregions, so that as many statements as possible are within regions that meet the requirements for vector
serialization.

Our translator is implemented as an automatic source-to-source transform in the Clang frontend [18] of the
LLVM compiler infrastructure [19]. We evaluate our proposed OpenCL implementation on an Intel CoreTMi7-3770
CPU, with 256-bit vector units supporting the AVX instruction set, using version 13.0 of Intel’s C compiler with
the optimization flags -O3 -xHOST enabled, and running Ubuntu GNU-Linux (Linux kernel version 3.2.0-32).

VI. EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed approach by running OpenCL and OpenMP benchmarks. We
have experimented with two benchmark suites; Parboil [20] and Rodinia [21]. They both come with benchmarks
that contains functionally equivalent OpenCL and OpenMP implementations in most cases.

We run the OpenCL benchmarks over four different OpenCL implementations analyzed in this paper. The Intel
and AMD implementations are the publicly available versions. The prior region-based serialization proposal and
the new CEAN-based vector serialization proposal are both enabled in our own implementation. Figure 10 shows
the speedup of the OpenCL implementations relative to the slowest implementation for each benchmark.

The benchmarks that both follow and rely on implicit performance conventions heavily show a dramatic perfor-
mance increase with our vector-based serialization, including kmeans, sgemm, lud, cfd, backprop, and fft.
This is not to say that these benchmarks are simple; the fft butterly access pattern is far from trivial to form into
coalesced operations, for instance.

Although the benchmarks were written specifically for a GPU architecture, not all of them follow the performance
guidelines we describe in this paper. In particular, the bfs benchmark is fundamentally a task-parallel algorithm,
and does not embody good data-parallelism or memory locality. Other benchmarks may follow the performance
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Fig. 10. Comparison of performance of OpenCL implementations. The baseline for each benchmark is an implementation takes the longest
execution time.

1.4 x 

0.1 x 

2.1 x 

4.6 x 

0.8 x 

7.1 x 

1.3 x 

3.2 x 

1.1 x 

0.6 x 

1.0 x 

0.6 x 

1.3 x 
2.0 x 

0.5 x 

6.2 x 

19.1 x 

7.0 x 

1.7 x 

0.0625 
0.125 

0.25 
0.5 

1 
2 
4 
8 

16 
32 

b
fs

* 

h
is

to
 

lb
m

 

m
ri

-g
ri

d
d

in
g 

m
ri

-q
 

sg
em

m
 

sp
m

v 

st
en

ci
l 

b
ac

kp
ro

p
 

cf
d

 (
A

O
S)

 

cf
d

 (
SO

A
) 

h
ea

rt
w

al
l 

h
o

ts
p

o
t 

km
ea

n
s 

la
va

M
D

 

le
u

ko
cy

te
 

lu
d

 

n
w

 

G
EO

M
EA

N
 

Sp
ee

d
u

p
 o

ve
r 

O
p

en
M

P
 

Fig. 11. Comparison of the MxPA OpenCL implementation with OpenMP.

conventions as much as possible, but are naturally less sensitive to implementations that diverge from those
performance considerations, such as lavaMD or tpacf. Such cases usually indicate that the benchmarks use short
vector types, enabling the AMD implementation to successfully vectorize operations, and are heavily compute-
bound, making them less sensitive to differences in how locality is exploited in the target platform. Still other
benchmark have very small runtimes, and we have experimentally determined that the overhead for the OpenMP
work distribution used in the region- and vector-based serialization implementations significantly impacts the runtime
for the gaussian, bfs, and lud benchmarks. Even when these cases are taken into account, the CEAN vector-
based serialization is a full 1.7× faster than AMD’s implementation on average.

We also compare the performance of OpenCL kernels on the CPU with OpenMP implementations. Such com-
parisons are difficult, because the source code implementations can vary significantly. For instance, the default
implementation of histo for OpenMP uses a very small degree of parallelism, with significanly less overhead
compared to the highly scalable OpenCL implementation. Other cases fall the other way, where the SIMD and
locality expressions in the OpenCL kernels were superior to those of the OpenMP implementation, as we can see
in lud and sgemm in particular. But with a large number of benchmarks, we can see that, on average, the OpenCL
implementations are, if anything, higher-performing on the CPU architecture than the OpenMP implementations,
even though the OpenCL implementations were written with a GPU platform specifially in mind. This result
boasts the success of performance portability in practice, even if, in theory, the OpenMP implementations could
be improved. The OpenCL implementations could also be improved to more closely conform to the OpenCL
performance conventions we describe, increasing their performance on the CPU archtecture as well.



14

VII. RELATED WORK

Performance portability has been a concern as long developers have had the desire to target multiple architectures.
For instance, Jiang et al. were concerned about the performance portability between Multi-socket CPU systems
with and without hardware cache coherence as far back as 1997 [22]. Performance portability between different
GPU devices was noted a concern by early adopters [23], [24], but that since been tempered by the adoption of
the portability guidelines described here, supported by newer tools [13].

Aside from the prior OpenCL and CUDA implementations we discuss at length, other have built systems for
executing GPU-style kernels on CPU platforms. Kerr et al. implemented the CUDA programming model on CPUs
with the GPUOcelot project [25]. However, performance seemed to be a secondary concern, as the tools is primarily
developed to enable better debugging, profiling, and tracing of CUDA applications. It does take a more vector-
execution approach, similar to the one we propose, but sacrifices performance for flexibility and the other high-level
features mentioned. The Portable Compute Language project [26] aspires to be an open-source, high-performance
implementation of OpenCL on CPUs. It has two methods of code generation, roughly corresponding to the region-
based and vector-execution methodologies described in this paper. However, the project is somewhat immature,
and performance results comparing itself with industry implementations have not been published to the best of our
knowledge.

VIII. CONCLUSIONS

Performance portability requires a programming language and well-defined performance convention within that
language. The natural pull for a language implementor is to map language constructs to architecture constructs in a
straightforward way, minimizing the cost of the implementation. However, implementors for different architectures
will be pulled in different directions if this methodology is followed. A collection of implementations guided
by architecture idiosyncrasies eliminates performance portability, and creates a huge programming burden for
application developers.

However, the community is already moving towards an abstract performance convention for OpenCL for porta-
bility between multiple GPU devices. The performance convention embodies preferred methods for expressing
data-parallelism, task parallelism, spatial locality, and temporal locality. To achieve performance portability, vendor
implementations of the language must determine how to adopt those abstract performance expressions to their
architecture, in addition to obeying the functional specification of the language. We have demonstrated that a CPU
implementation of OpenCL following those guidelines outperforms the currently available implementations for
OpenCL workloads following these conventions.

Programming conventions have limitations. There is some measurable cost paid to conform not only to a language
specification but to a particular performance model. The OpenCL benchmarks we studied even included several
examples of algorithms that simply have no tenable expression that conforms to the portable performance guidelines.
Future work should focus on what the boundaries of the current performance conventions, and add features to the
language that broaden the scope of algorithms that can be portably expressed.

Our proposed methodology has been rigorously tested and used for several industry OpenCL application projects.
The lead developer of one of those projects, a video processing library, once sent an email with these words. “I
just happened to re-run the multi-core performance tests for the VPL today and discovered that the changes we
have done recently to improve AMD (GPU) performance have also improved our (CEAN-based) performance.”
This is what developers want, the ability to optimize a piece of software once, and have those optimization efforts
be favorably reflected on many architectures. We have shown in this paper that performance portability is feasible,
when implementations of a language focus on a common performance convention.
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Abstract
Designers of mobile devices face the challenge of providing the
user with more processing power while increasing battery life. Het-
erogeneous systems offer some opportunities to solve this chal-
lenge. In an heterogeneous system, multiple classes of processors
with dynamic voltage and frequency scaling functionality are em-
bedded in the mobile device. With such a system it is possible
to maximize performance while minimizing power consumption if
tasks are mapped to the class of processors where they execute the
most efficiently.

In this paper, we study the scheduling of tasks in a real-time
context on a heterogeneous system-on-chip that has dynamic volt-
age and frequency scaling functionality. We develop a heuristic
scheduling algorithm which minimizes the energy while still meet-
ing the deadline. We introduce the concept of cross-platform task
heterogeneity and model sets of tasks to conduct extensive experi-
ments. The experimental results show that our heuristic has a much
higher success rate than existing state of the art heuristics and de-
rives a solution whose energy requirements are close to those of the
optimal solution.

Categories and Subject Descriptors I.2.8 [Problem Solving,
Control Methods, and Search]: Scheduling; C.1.3 [Other Archi-
tecture Styles]: Heterogeneous (hybrid) systems

General Terms Algorithms, Performance

Keywords Dynamic voltage and frequency scaling, heteroge-
neous system, scheduling

1. Introduction
Advances in portable devices demand higher speed of computation
as well as longer operational autonomy. To address the challenge
of these opposite goals we study techniques that balance program
execution speed and energy consumption in the context of typical
portable device applications. We focus on streaming computations,
which are networks of tasks that operate on a data stream that flows
into the computation at a fixed rate [10, 20]. Upon completion, each
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task passes its output to its successor(s) in the network. Streaming
computations are often used to implement video post-processing
applications, which are among the most important for the future
of mobile devices. In video post-processing computations, tasks
implement filters and the data stream is a sequence of video frames.
The computation is typically subjected to a real-time constraint
which is to display between 15 and 30 frames per second for many
of today’s video post-processing applications.

The objective of the techniques discussed in this paper is to
minimize the energy consumed by streaming computations under
the constraint of a minimum output rate. We assume that there
could be multiple classes of processors embedded in the mobile
device and that they have dynamic voltage and frequency scaling
(DVFS) functionality. Since the maximum possible frequency is
not typically required to achieve the desired output rate, energy
consumption can often be minimized by lowering the voltage and
hence the frequency as much as the real time constraint allows.
This minimization process is complicated by three situations. First,
only a discrete number of frequencies are possible in today’s ma-
chines. Second, changing the voltage/frequency consumes time,
which means that such changes must be applied judiciously. Third,
energy efficiency can be controlled not only by DVFS but also by
choosing the class of processor on which to map each task since dif-
ferent processors are efficient for different types of tasks. A GPU
will excel in vector operations but will be inferior to a conventional
CPU for applications rich in control flow. An example of Systems-
on-a-Chip (SOC) that integrate a multiprocessor core with graphics
cores is the AMD Fusion Zacate E350/E240 [1]. Another example
is the PowerVR SGX 5XT from Imagination [2] for smartphones
and other mobile devices, which can be integrated with a multipro-
cessor core to obtain a heterogeneous SOC. Although these systems
are not yet available for mobile devices, we expect them to reach
the market soon.

The technique that we propose in this paper takes the form of a
two step heuristic that first chooses on what class of processors to
map each task and then uses a homogeneous scheduling algorithm
to apply the voltage and frequency scaling within each homoge-
neous subsystem. We allow frequency scaling at the granularity of
the tasks. This enables us to place the code for frequency scaling at
natural locations. Our heuristic outperforms other heuristics such
as Greedy and LR, both presented in [22]. It has a high success
rate at finding a feasible schedule and, for most of the cases we
studied, the resulting schedule is within 5% of the one of the opti-
mal schedule. It also offers very stable results when the architecture
heterogeneity and task uniformity vary. Additionally, the memory
usage is linear in the size of the input. Finally, we demonstrate the
importance of the concept of the cross-platform heterogeneity of a



task in the choice of the processors and show how combining two
heuristics enables even better results.

This paper is organized as follows. Section 2 discusses related
work. Section 3 describes the problem we are trying to solve. Sec-
tion 4 discusses our scheduling algorithm. Section 5 gives some de-
tails about other techniques that we use to compare against our pro-
posed scheduling algorithm. Section 6 describes the environmental
setup that we use to run the experiments in Section 7. Finally, Sec-
tion 8 discuss future work and our final conclusions.

2. Related Work
Task scheduling for power efficiency is a fairly recent problem.
There have been studies on scheduling for one processor with DVS
capabilities [19, 23, 12, 14] and for homogeneous multiprocessors
also with DVFS capability [16, 17, 5]. In Section 4.1.3, we discuss
one of the heuristics for homogeneous multiprocessors, the SpringS
algorithm [17]. We use this algorithm as part of our scheduling
strategy for heterogeneous systems.

Mixed software-hardware strategies in which the application
is partitioned between hardware and software components [11]
have also been studied but they require some of the scheduling to
happen at hardware design time. Mixed strategies may offer higher
performance because they make use of specialized hardware.

The problem of scheduling on heterogeneous processors is dis-
cussed only in a few papers. The case of heterogeneous single-
voltage setup system has been studied in [9, 13]. The single-voltage
setup problem consists in choosing a fixed frequency for each pro-
cessor. This technique helps system designers choose the most ef-
ficient operating point for the products. However, such systems
clearly lack flexibility when optimizing different applications.

Luo and Jha addressed the heterogeneous scheduling problem
with continuous voltage scaling [18]. They assume that the fre-
quency can be scaled continuously between a minimum and a max-
imum value. Yang, Chen, Kuo and Thiele [21] study the heteroge-
neous multi-level voltage scheduling problem and propose an algo-
rithm which accepts a factor ρ > 1 and generates schedules whose
energy consumption are less than ρ times the optimal possible en-
ergy required.

To the best of our knowledge the paper by Yu and Prasanna [22]
is the only one so far to propose a reasonably efficient algorithm for
the problem of scheduling in a heterogeneous system with multi-
level discrete frequencies. They propose the LR heuristic that we
discuss in Section 5.3 and evaluate in our experimental results in
Section 7. The LR heuristic is a fast heuristic algorithm based
on the linear relaxation of the linear-programming problem. The
heuristic we introduce in this paper outperforms the LR heuristic
by succeeding in multiple cases where LR fails, as shown in the
experimental results in Section 7.

3. Problem formulation
3.1 Hardware and Power Model
We assume that the target system contains m processing elements
(PE) Pj for j = 1 . . . m. We also assume a finite number of pos-
sible frequencies. The system considered is heterogeneous, which
means that it contains different classes of processors (or proces-
sor species): we assume that there are q different processor types
S1 . . . Sq in the system. We say that Pj ∈ Sk if Pj is of type Sk.

For each processor type Sk there is a set Fk of allowed fre-
quencies. If the processor type does not support DVS, the set Fk is
reduced to the singleton containing the only frequency offered by
processors of type Sk.

The power consumed by the system will fluctuate over time
depending on which processor units are in use. The power function
indicating the average energy consumption rate of the processor

as a function of the frequency can be obtained from specifications
or can be measured. For each frequency f ∈ Fk, let pk(f) be
the associated average dynamic power of a processor of type Sk

when running at frequency f . We will not consider the static power
because we assume that it is constant. We assume that ∀k ∈ [1, q],
f 7−→ pk(f) is an increasing function of the frequency. Generally,
pk(f) is also convex such that a slight increase in the frequency
at low frequency will not have much impact on power whereas the
same increase at high frequency produces a much higher power
increase. In fact, for CMOS DVS processors, the dynamic power
function pk(f) can be approximated by pk(f) = Cf3/κ2 where
C is the switch capacitance and κ is a design specific constant [8].

3.2 Application Model
The scheduling problem of dependent tasks without dependence
cycles can be reduced to the scheduling of a kernel of independent
tasks as it has been shown by Liu et al. [17]. We will discuss this
point more in depth in section 4.1.1.

Therefore, we will consider a set of n independent tasks Ti

(i = 1, 2, . . . , n) and a deadline d defined as the maximum time
allotted to process one dataset (in the case of video post-processing,
this would be the time required to generate one video frame). We
define CS

ik as the number of cycles required to execute task Ti on a
processor of type Sk. Cij is also defined as the number of cycles to
execute Ti on processor Pj . We assume that the number of cycles
is not data dependent. This is the case for the video post-processing
filters we studied. If it was data dependent, CS

ik could be defined as
the worst-case number of cycles so that the algorithm can guarantee
the feasibility of the found schedule.

Let ĈS
ik = 1

q

Pq
k=1 CS

ik be the average cycles of a task on the
different types of processing units. We define the cross-platform
heterogeneity of a task by:

Hi =

Pq
k=1(C

S
ik − ĈS

ik)2

ĈS
ik

A task Ti1 is more heterogeneous than another task Ti2 if Hi1 >
Hi2 . This means that choosing the right processor for Ti1 has a
more significant impact on its execution time than choosing the
right processor for Ti2 would have on Ti2 ’s execution time.

Notice that the execution time of task Ti on processor Pj and at
frequency f is Cij

f
.

3.3 Scheduling Problem
Let Vz = (Pjz , fz) be a processor-frequency pair. Our goal is to
find a mapping of each task Ti onto a pair Vz that minimizes en-
ergy consumption and produces results at the rate of 1/d results
per second, where d is determined by the real-time constraint of
the application. For the algorithm presented in this paper we ignore
the communication costs. Thus, our model does not account for
the time consumed to bring the data to the processor the first time
that they are accessed or the time required to move data from the
cache or memory in a processing element to the cache or memory
of another processing element, independently of whether these two
processing elements are of the same or of different type. To mea-
sure to what extent this simplification could affect our results we
ran some experiments with four filters of a video post-processing
application from MJPEGTools [3] and we observed that the proces-
sor was very effective at hiding the latency the first time the frame
was brought to a core, most likely because the hardware prefetcher
managed to hide the latency of the memory accesses due to the reg-
ular access pattern of the filters in this application. We do not have
data for the transfer costs of the data between processing units of
different types, but we expect that in a SOC the communication
cost between processing elements of different types will be signif-



icantly smaller than today’s cost between the processor cores and
the off-chip GPU. In addition, prefetching (hardware or software)
should be able to help at decreasing communication costs. Next, we
describe more formally the scheduling problem that the algorithm
presented in this paper is trying to solve.

Given Sk, the set of processing elements of type k and Fk,
the set of frequencies allowed in each processor type, there are
v =

Pq
k=1 |Sk|×|Fk| pairs. Let xiz be 1 if task Ti is mapped to the

pair Vz (which means that the task Ti will run on processor Pjz at
frequency fz) and 0 otherwise. The value eiz = pk(fz)

Cijz
fz

is the
energy consumed by task Ti running at frequency fz on processor
Pjz of type Sk. Given Vz = (Pjz , fz), the fraction of processor
Pjz utilized by the task Ti when mapped to a pair Vz is uiz =

Cijz
d×fz

where d is the deadline. If this fraction is smaller than 1, there is
still room in the processor to accommodate other tasks and still
meet the deadline. The utilization Uj of processor Pj is the sum
of the utilizations for all tasks: Uj =

Pn
i=1

P
Vz

uizxiz , where
Vz ∈ {(Pjz , fz)|jz = j}. For each processor Pj , the real-time
constraint requires that Uj ≤ 1.

The scheduling problem can be formulated as an integer linear
programming problem ILP0 which consists in the minimization of:

nX
i=1

vX
z=1

eizxiz (1)

such that:

Uj ≤ 1 1 ≤ j ≤ m (2)
vX

z=1

xiz = 1 1 ≤ i ≤ n (3)

xiz ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ z ≤ v (4)

While Equation 2 states that the deadline must be respected, Equa-
tions 3 and 4 specify that each task has to be mapped entirely to
one processor. We call optimal solution any solution to this prob-
lem, if it exists. We call feasible schedule any solution to this prob-
lem without the minimization constraint (Equation 1). Finally, a
mapping of all the tasks which does not respect the time constraint
(Equation 2) but satisfies Equations 3 and 4 is called an unfeasible
schedule.

For discrete frequencies, finding the optimal schedule that min-
imizes the energy consumption while meeting the time constraint
is clearly a NP-hard problem since the scheduling problem is NP-
hard even ignoring the energy issues. We therefore must solve the
problem with a heuristic to avoid the exponential complexity. The
algorithm we use to address this problem is presented in the next
section.

4. Scheduling Algorithm
4.1 Algorithm
Before scheduling an application, it is necessary to identify which
tasks to schedule. In a first section we study how to build a kernel
of independent tasks. Our heuristic has then two phases which
apply to this kernel. The first, mapping, chooses the processor type
for each task. The power function is used in that phase to guide
the choice. The second phase, frequency choice, chooses one of
the processors within the type selected in the first phase and the
frequency for each task.

4.1.1 Task Set Identification
A stream-based application consists of a set of filters where each fil-
ter is applied in sequence to each input item. Thus, the stream appli-
cation contains a total of n tasks, where n = number of filters×

Figure 1: Kernel identification for four video filter tasks and d
frames.

number of input items. In order to take advantage of the sev-
eral processing units, we need to partition the total number of tasks
into sets of independents tasks or kernels that can execute in par-
allel. To extract these kernels we follow an approach similar to
software-pipelining [17]. This strategy can be easily applied when
there are not data dependence cycles between the tasks, i.e., the
task graph can be represented as a directed acyclic graph or DAG.

If we call Ti[k] to filter Ti when applied to item k, the normal
chain of dependencies would be T1[k] → T2[k], · · · → Tn[k]. To
obtain independent tasks one can select filters that apply to different
items. This way T1[k], T2[k + 1], T3[k + 2], . . . Tm−1[k + m −
2], Tm[k + m − 1] form a kernel whose tasks are independent on
each other, as they operate on different items. Figure 1 illustrates an
example when m = 4, where the tasks in the kernel repeat several
times, and a prolog step at the beginning and an epilog at the end
fill and drain the pipeline, respectively.

Notice that in the case of the video post-processing application
we considered four different filters from the MJPEGTools [3]:
denoise, sharpen, increase frame rate, and up-scale, where the input
items to these filters were the frames of the video being processed.

Once a kernel of independent tasks has been built, it is usually
possible to create sub-tasks. For instance, in the case of video post-
processing applications, the filters can be easily tiled. Then, instead
of considering task Ti working on frame k, we can consider two
subtasks, Ti,1 and Ti,2 working respectively on two subsets of
frame k. The result is a more flexible scheduling, as the increase of
the number of tasks increases the number of tasks for the scheduler
to choose from. In fact, our experimental results in Section 7 show
that increasing the number of tasks has an impact on the optimality
of the schedule.

Finally, consider the case where the dependence graph of the
tasks is not a DAG, that is, there are back arcs due to dependences
across data stream entities. In this case, applying software pipelin-
ing may produce a kernel with multiple steps instead of the single
step that arises when the dependence graph is a DAG. The method-
ology described below can be applied to each one of these steps.

4.1.2 Mapping Phase
This Section describes the mapping of each task in the kernel to a
processor type. The mapping algorithm is shown in Algorithm 1.
The power function is used in this phase to guide the search. The
power function is an increasing function, that is, the faster a pro-



cessor computes, the more energy it consumes. Thus, to minimize
energy consumption this algorithm uses a heuristic that maps tasks
to processor types at the lowest possible frequency that still meets
the deadline.

Algorithm 1 Heuristic algorithm
1: Input: kernel of independent tasks Ti, set of processors Pj .
2: Output: variables xiz set to 1 if task i is mapped to the pair

processor/frequency Vz .
3: for all i, j do
4: xij = 0
5: end for
6: for each task Ti in decreasing Hi order do
7: for each processor Pj of type Sk do
8: fopt,j =

P
i′ xi′jCi′j+Cij

d
.

9: fnew,j = fopt,j round to the next discrete frequency
available on Sk or max(Fk) if fopt,j ≥ max(Fk).

10: δej = pk(fnew,j)[(
P

i′
xi′jCi′j

fnew,j
) +

Cij

fnew,j
] −

pk(fj)
P

i′
xi′jCi′j

fj

11: end for
12: Choose the pair Vz such that δez is minimal and task Ti fits

on Pjz if Ti and all the tasks already assigned to Pjz were to
run at maximum frequency. Fail if no such processor exists.

13: xiz = 1.
14: end for

The algorithm assigns processors to tasks following a decreas-
ing cross-platform heterogeneity order (line 6), where the cross-
platform heterogeneity of a task is computed as shown in Sec-
tion 3.2. By following this order, we are giving more choices to
those tasks whose energy consumption is more affected by the type
of processor where they run. The end goal is to minimize the overall
energy consumption. Our experimental results in Section 7.2 will
show the effectiveness of this heuristic.

Then, the algorithm computes the “insertion frequency” of this
task on each processing element and the corresponding energy
increase if the task were to be mapped on this processing element
(lines 7 to 11).

The “insertion frequency” fopt,j is the ideal frequency [15, 6]
at which the processor Pj should run so that all the tasks already
assigned to Pj finish within the time constraint while minimizing
the energy consumed. This frequency converges to an approxima-
tion of the frequency at which all the tasks on the processor should
run in an ideal situation. In general this frequency is not available
and the tasks would have to run at the smallest higher discrete fre-
quency available fnew,j . If the insertion frequency is higher than
the highest available frequency, this processor will not be able to
execute this task and all the previously assigned tasks within the
deadline d. In this case, if space is not available on another proces-
sor, the scheduling algorithm fails.

At line 12 we choose the processor which results in the mini-
mum energy increase when the task is assigned to that processor
at the insertion frequency. We also make sure that the deadline is
always met when running at the maximum frequency. By checking
this, the algorithm makes sure that it is not generating an infeasible
schedule. It might be possible that, at this step, no processor can
run an additional task within the defined deadline d. If this is the
case, the heuristic fails. This, however, does not mean that no fea-
sible schedule exists. Failure is inherent to the heuristic approach.
In section 4.2, we discuss ways to reduce the failure rate in finding
a feasible solution.

Finally, we record the pair processor/frequency Vz where the
task under consideration will run (line 13) and proceed to the next
task.

4.1.3 Frequency Choice Phase
Once this first phase finishes, each task is associated with a given
processor type Sk. In the process, we actually assigned each task
to a specific processor. In this last phase, we rearrange the tasks
mapped to processors of the same type and assign them a final
processor and frequency. We consider each group of processors of
the same type in Algorithm 2 and apply to them an homogeneous
scheduling technique as shown in Algorithm 3. We chose to use
the SpringS algorithm by Liu et al. [17]. SpringS reorganizes the
tasks mapped to the processors of the same type and search for
the appropriate frequency. Applying the SpringS algorithm is only
possible because the processors of the same type have the same
characteristics (frequency and cycles for each task). This algorithm
starts with an existing schedule. In our application, we start with
the schedule found by the mapping phase and we reset all the
frequencies to the minimum frequency (Algorithm 3, line 3). Then
the SpringS algorithm, as its name indicates, behaves like a Spring.
If a processor does not meet the deadline, that is, its utilization is
larger than 1, it will find the best task for which to increase the
frequency (the one that results in the smallest energy increase) and
try to reschedule a subset of the tasks (lines 7 to 13). On the other
hand, if the schedule has some slack to meet the deadline, it tries
to slow down a task to save some energy (lines 15 to 17). After this
phase, the variables xiz are final and define a feasible schedule for
ILP0.

Notice that in the case of homogeneous scheduling, the mapping
phase can be skipped and our heuristic is reduced to the SpringS
heuristic.

Algorithm 2 Frequency Choice Phase
for each set Sk do

Apply the SpringS algorithm to Sk with the schedule found
by the mapping phase.

end for

4.2 Improving the Heuristic
Heuristics can fail to find a feasible solution, as shown by our
experimental results in Section 7. Thus, we have search different
solutions to improve the success rate of the heuristic. Heuristics
run fast. Hence, the first solution is to run a different heuristic
in combination with our heuristic. We call this combination the
hybrid heuristic. This heuristic selects the best results between LR-
heuristic [22], which we will present later, and our heuristic. As we
will see in the next section, not only does the hybrid heuristic help
improve the optimality but it also reduces the failure rate of the
scheduler. In addition, since both heuristic run fast, this can also be
used as a strategy to improve a given schedule.

Additionally, it is clear that solving the scheduling problem for
a deadline tighter than the required constraint also satisfies the orig-
inal problem. For instance, if the original problem requires a con-
straint d, any solution to the same problem with a new constraint
βd with 0 ≤ β < 1 is also a solution to the original problem. Al-
though the failure rate is higher for tighter constraints, the heuristic
algorithms are sensitive to small changes in the constraint since the
deadline is involved in the computation of the optimal insertion fre-
quency (line 8 of Algorithm 1). Therefore, if our heuristic fails for
the initial constraint, we can retry with a slightly tighter one and
may find a valid schedule.

5. Other Approaches
We compare our results with a greedy heuristic and a heuristic
based on the linear relaxation of the integer linear programming



Algorithm 3 SpringS Algorithm. The operators argmin and
argmax refer respectively to the index of the minimum and of the
maximum in an ordered set.

1: Input: initial schedule of tasks in T onto the processing ele-
ments in Sk.

2: Output: optimized schedule of tasks in T onto the processing
elements in Sk.

3: ∀Ti ∈ T such that xiz = 1: xiz = 0 and xim = 1, where
{Vm = (Pjm , fm)|(Pjm = Pjz ) and (fm = min(Fk))}

4: while true do
5: j0 = argmax({Uj |Pj ∈ Sk})
6: if Uj0 > 1 then
7: Find the task Tref on Pj0 with the minimum energy

increase when increasing its assigned frequency to the
next step fref+1 if its frequency is not already the highest.

8: Let R be the set of tasks whose current execution time is
smaller than the execution time of Tref running at fref+1.

9: for each task Ti inR in decreasing number of cycles order
do

10: j1 = argmin({Uj |Pj ∈ Sk})
11: Assign Ti to Pj1 without changing its frequency if all

the tasks assigned to Pj1 and not in R fit at maximum
frequency. If not, return the schedule previously found.

12: Remove Ti from R.
13: end for
14: else
15: j1 = argmin({Uj |Pj ∈ Sk})
16: On Pj1 , find the task T with the minimum execution time

increase when decreasing its frequency to the lower step.
17: Decrease T ’s frequency if possible. If not, return the cur-

rent schedule.
18: end if
19: end while

problem (LR-heuristic) both presented in [22]. To be able to com-
pare the algorithms in an absolute fashion, we also search for the
optimal solution. We present these different approaches in the next
subsections.

5.1 Solving Integer Linear Programming
The problem ILP0 is an NP-hard problem. For problems of small
size, it can be solved by exhaustive search. We search for a solution
of this previously defined integer linear programming problem by
using lp solve, an open-source linear solver [7]. By using a branch-
and-bound approach, lp solve gives us the optimal solution if it
exists. For problems small enough, lp solve will find the solution
in a reasonable amount of time, which allows us to compare the
optimality of the algorithms. Searching for the optimal solution
to ILP0 may be slower than expected for small problem sizes
depending on the characteristics of the input data.

5.2 The Greedy Heuristic
The Greedy heuristic will pick a task after another – order doesn’t
matter – and for each task consider all the possible processors and
frequencies, and choose the task mapping that minimizes the en-
ergy consumption among all the possible combinations that are
within the deadline. The Greedy heuristic is presented in Algo-
rithm 4.

Clearly a problem with the Greedy algorithm is that it tends to
allocate the first tasks considered at a low frequency and then the
remaining tasks might not fit anymore. Therefore, the success rate
of Greedy is expected to be low.

Algorithm 4 The Greedy heuristic
T = set of all tasks
while T is not empty do

For each task Ti, find the pair Vz such that eiz is minimum
and that Ujz ≤ 1. Save the value as (Ti, Vz, eiz).
Among all the triplets, choose the one with the minimum
energy eiz and map the corresponding Ti it to the processor
Pz and frequency fz: xiz = 1.
Remove this task Ti from T.

end while

5.3 The LR-heuristic
The LR-heuristic [22] uses properties of the linear relaxation of
the scheduling problem to iteratively map tasks to processors while
reducing the size of the problem at each step by removing the tasks
that are already mapped. The LR-heuristic considers the integer
linear programming problem ILP0 defined previously. However, in
that problem, the variables xiz are constrained to be binary. The
LR-heuristic solves the more general relaxed problem LP0 in which
Equation 4 is changed into

xiz ∈ [0, 1] 1 ≤ i ≤ n, 1 ≤ z ≤ v (5)

The only difference with ILP0 is that the variables xiz are allowed
to take any value between 0 and 1. The LR-heuristic is then as
described in Algorithm 5.

Algorithm 5 The LR-heuristic (LinRel)
repeat

Remove all the useless xiz variables which set to 1 would
make Ujz > 1.
Solve the linear relaxation problem LP0. As proved in [22], at
least one variable xiz will be equal to 1, in spite of being able
to take any value between 0 and 1.
All the variables xiz = 1 are fixed and removed from the
problem.

until all tasks are mapped or no feasible schedule is found

6. Environmental Setup
In this Section we describe the environmental setup that we use to
run our experiments.

6.1 Task Set Generation
To demonstrate the quality of our heuristic compared to the previ-
ously described heuristics, we ran a large number of experiments
using synthetic task sets. In order to generate a synthetic task set,
we define two parameters, the single-platform task uniformity τ 1

and the architecture heterogeneity η as presented in [4]. τ repre-
sents how different the cycles number of the tasks will be on the
same platform. η allows to tweak how different this number will be
between the various platforms. For a given task i, we draw τi from
a uniform distribution U(1, τ) and for each processor type we draw
ηi,k from a uniform distribution U(1, η) and we set CS

ik to τiηi,k

cycles.
In order to have realistic parameters for these task sets, we

use numbers from experiments on Intel(r) Atom(tm). We ran the
five filters denoise, sharpen, color correction, increase frame rate
and up-scale from MJPEGTools, and measured an average cycle

1 Single-platform task uniformity is called task heterogeneity in [4]. We call
it here single-platform task uniformity to avoid confusion with the cross-
platform heterogeneity defined in Section 3.2



number of 1010. Therefore, we chose τ = 105 and η = 105 for
our experiments to achieve an average cycle number of 1010. In
Section 7.3, we will consider different values of τ and η.

For the experiments we generate task sets of different sizes. The
limit to the task set size is set by the execution time of the linear
solver. We run experiments with up-to 40 tasks.

6.2 Time Constraint
Once we have a synthetic task set, we want to generate a reasonable
deadline. The minimum execution time of a task i (tmin

i ) is the
execution time of this task on the processor best suited for this task
at the maximum frequency available on this processor:

tmin
i = min({ CS

ik

max(Fk)
|k ∈ [1..q]})

We define the tight time constraint as the sum of the minimum
execution time of the n tasks distributed among the m available
processors:

dtight =

Pn
i=1 tmin

i

m
Unless the tasks were perfectly balanced, the tight time constraint
would be impossible to meet. This is why we define the relaxed
time constraint:

d = α · dtight

where α is an input parameter of the experiment. By varying α
we obtain a constraint more or less tight. In our experiments with
MJPEGTools, a deadline of 30 frames per second translated to a
value α = 1.5. In section 7, we present results for different values
of α: 1.1, 1.5 and 2.0.

6.3 Hardware Configurations
We consider two different hardware configurations, configuration 1
and 2. Configuration 1 is composed of three processing units. Two
of the processing units follow the power function and the available
frequencies of an Atom CPU as described in Table 1a. The other
processing unit has the power characteristics of a GPU with only
one power state of 344 mW at 800 MHz as shown in Table 1b.
Configuration 2 is another platform composed of four Atom-like
and two GPU-like processing units with the power characteristics
presented in Tables 1a and 1b, respectively.

6.4 Algorithms evaluated
We run experiments with five different algorithms. Greedy is the
Greedy algorithm described in Section 5.2. LinRel is the LR heuris-
tic described in Section 5.3. Heuristic is the algorithm proposed in
the paper and described in Section 4.1. Heuristic with retry and Hy-
brid are the algorithms described in Section 4.2. The Heuristic with
retry tightens the constraint βd up to 20% of the original constraint
(β = 0.80) with a new try every 1%. This of course requires 20
runs of the heuristics and, consequently, the Heuristic with retry can
run up to 20 times slower. We based the heuristic with retry on our
heuristic. It would be possible to base it on the LR-heuristic which
might improve it, or even on the hybrid heuristic which would of
course lead to even better results.

7. Experiment Results
In this section, we present our experimental results. Section 7.1
evaluates the optimality of the different algorithms for different
numbers of tasks and different constraints. Section 7.2 discusses
different ways of sorting the tasks and evaluates the impact on the
optimality of the schedule. Section 7.3 analyzes the sensitivity of
the different heuristics to different values of the task uniformity
and architecture heterogeneity τ and η. Section 7.4 compares the

Figure 2: Fraction of feasible schedules for the linear solver with
the hardware configuration 1. This shows what percentage of the
generated task sets leads to feasible schedules. If the linear solver
fails, it means that there is no feasible schedule for this task set.

execution time of the different algorithms. Finally, Section 7.5
summarizes our results.

7.1 Energy Savings and Success Rate
For each experiment, we generate one thousand synthetic task sets.
Not every task set allows a feasible schedule but the linear solver
(Section 5.1) will always find the optimal schedule if there is one.
Running the linear solver first tells us if there is a feasible schedule
and, if there is one, gives us the optimal energy. If there is no
feasible schedule, we discard the task set. Figure 2 reports the
percentage of feasible schedules over the one thousand task sets
generated for different values of α and different number of tasks.

For each heuristic we measure its success rate as the ratio of
number of schedules found to the number of feasible schedules.
In addition, if the heuristic succeeds, it returns a schedule and
its associated energy. We measure the optimality of the different
heuristics as the ratio of the energy found to the optimal energy.
We call it error to optimal.

Configuration 1: Two CPUs and one GPU The first set of ex-
periments considers α = 1.1 with configuration 1, two CPUs and
one GPU. Such a value for α leads to a very tight constraint. The
number of feasible schedules is very low and is close to 0% for
more than 20 tasks, as seen on Figure 2. Therefore, we only present
results up to 20 tasks for these experiments. The success rate of
all the heuristics is shown in Figure 4a. The ratio of extra energy
required when the heuristic does not find the optimal schedule is
shown as the error to optimal plot in Figure 3a. As Figure 4a shows
Heuristic outperforms the Greedy and the LR-heuristic, especially
for 10 and 20 tasks. The Greedy heuristic finds only a few sched-
ules. Although the success rates are low, the heuristics perform well
when they find a schedule, with an average error of less than 5%,
as shown in Figure 3a.

For α = 1.5, success rate and error to optimal are shown in
Figures 4b and 3b, respectively. As it can be seen the success rate
of the heuristics improves significantly. We only show results for
20 tasks because the number of feasible schedules is still close to
0% for more than 20 tasks (See Figure 2). The Greedy heuristic
is still lagging behind with less than 30% success rate for 5 tasks
and almost 0% for 10 or more tasks. The LR-heuristic has a decent
success rate that is above 70%, but all our heuristics outperforms it
with, with close to 100% success rate.

Figure 3c presents the results for α = 2 . We can see that the
success rate of Heuristic is close to the optimal (in average less
than 3%) and outperforms the LinRel and the Greedy heuristic. For



Frequencies (GHz) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4
Power (mW) 240 300 360 750 1100 1620 2160 3240

(a) ATOM CPU power function

Frequencies (GHz) 0.8
Power (mW) 344

(b) GPU power function

Table 1: Power functions of the processing units

(a) α = 1.1

(b) α = 1.5

(c) α = 2

Figure 3: Error of the heuristics for different values of α. Two
CPUs and one GPU. The horizontal axis is the number of tasks.
The vertical axis represents how far from the optimal the heuristics
are. The optimal is computed with the linear solver.

(a) α = 1.1

(b) α = 1.5

(c) α = 2

Figure 4: Success rate of the heuristics. Two CPUs and one GPU.
A success rate of 100% means that the heuristic found a schedule
each time the linear solver found one.



Figure 5: Error of the heuristics. Four CPUs and two GPUs with
α = 2. The horizontal axis is the number of tasks. The vertical axis
represents how far from the optimal the heuristics are. The optimal
is computed with the linear solver.

a small number of tasks, Greedy and LinRel do not perform very
well. As shown in Figure 4c, the success rate of our heuristic is
100%, whereas the Greedy heuristic does not succeed in finding a
good schedule 20% of the time for 5 tasks, and 10% of the time
for 10 tasks. Similarly, LR-heuristic also fails to find a feasible
schedule for some small task sets.

Notice that the error is small (¡ 5%) for all our heuristics when
α is 1.1 or 2.0. When α is 1.5, all the heuristics have a higher error.
We believe the reason for this is that for values for α of 1.1 the
constraint is very tight. So if the algorithm cannot find the correct
schedule, it fails. Most likely there are very few feasible schedules.
In that situation, we believe all the feasible schedules are likely to
be similar. For values for α of 1.5 there are more feasible schedules,
but the constraint is still tight and there is not much freedom for the
algorithm to rearrange tasks or map a task to the best processor. In
this situation, the heuristic can find a solution very different from
the optimal, but still feasible. For values of α of 2.0, the constraint
is looser, so it is much easier for all the algorithms to find a good
schedule.

Finally, notice that the Hybrid heuristic is useful to reduce the
error when Heuristic fails. Hybrid also helps improving the success
rate. This is particularly useful for tight constraints as in Figure 4a
when heuristics are more likely to fail. Finally, the heuristic with
retry helps to slightly improve the success rate for the very tight
schedules generated with α = 1.1.

Configuration 2: Four CPUs and two GPUs Figure 5 and Fig-
ure 6 present the results for Configuration 2, that uses four CPUs
and two GPUs, when α = 2. Our heuristic stays under 2.5% of er-
ror for all the task counts considered. The Greedy and LR-heuristic
improve a lot with an increasing number of tasks thanks to the
greater freedom in scheduling allowed by more granularity. For
α = 1.1 or α = 1.5 and for 1000 experiments run, only a small
fraction gave a feasible schedule. Comparing the algorithms for
such a small number of schedules would not be significant enough.

7.2 Sorting by Cross-Platform Task Heterogeneity vs.
Sorting by Task Size

As discussed in Section 4.1, a key point in our heuristic is sorting
tasks by decreasing cross-platform heterogeneity at the beginning
of the mapping phase. One alternative logic could consider sorting
the tasks by decreasing size to first map the largest tasks which
could be the most difficult to fit in the schedule; this logic is
still better than picking tasks in a random order or sorting them

Figure 6: Success rate of the heuristics. Four CPUs and two GPUs
with α = 2. A success rate of 100% means that the heuristic found
a schedule each time the linear solver found one.

Figure 7: Error to optimal for the first hardware configuration
when sorting tasks by decreasing cross-platform heterogeneity, by
decreasing cycles, not sorting at all or sorting by increasing cross-
platform heterogeneity, respectively. The y-axis shows the average
error to the optimal for 1000 experiments with α = 2

by increasing cross-platform heterogeneity, as shown in Figure 7.
Notice our heuristic of sorting tasks by decreasing cross-platform
task heterogeneity divides the error by more than 2 in most cases.
Success rate for all experiments presented in this figure is greater
than 99%.

7.3 Sensitivity Analysis
In this subsection, we analyze the sensitivity of the heuristics to the
single-platform task uniformity and architecture heterogeneities.
We chose the hardware configuration 1 and let the single-platform
task uniformity τ and the architecture heterogeneity η vary respec-
tively between 10 and 109. Figures 8a and 8b present the results.
Our different heuristics are not sensitive to variations on the whole
spectrum of heterogeneity considered. On the other hand, both the
LinRel and Greedy are sensible to changes in η and τ ; on Figure 8b,
we see that Greedy and the LinRel are negatively impacted by an
increase in architecture heterogeneity.

7.4 Execution Time of the Heuristic
A fast scheduler allows to test a lot of different configurations in a
short time. It is also better for online scheduling, especially on real-
time systems since the scheduling will consume time and power. In
addition, if the scheduler is embedded in a compiler, it will allow
shorter compilation times.



(a) Sensitivity to single-platform task uniformity τ : error to optimal as a
function of τ

(b) Sensitivity to architecture heterogeneity η: error to optimal as a
function of η

Figure 8: Error to optimal of the different heuristics as a function of the task uniformity and architecture heterogeneity.

Figure 9: Comparison of the execution time in milliseconds as a
function of the number of tasks for scheduling on the first hardware
configuration with α = 2. The heuristic and the heuristic with retry
curve are almost the same because the retry only happens when no
schedule is found.

#tasks 5 10 20 30 40
Exhaustive 8.05 88.27 13,000 172,470 420,090

Table 2: Execution time in milliseconds of the linear solver as a
function of the number of tasks.

Our heuristic was implemented in C++ without specific per-
formance optimizations. We also reimplemented in C++ the LR-
heuristic and the Greedy heuristic presented in [22]. We used the
lp solve library [7] to solve the linear programming problems, both
for the optimal case and for the LR-heuristic. For the optimal case,
we simply make a call to the library, whereas for the LR-heuristic
we wrap the call to lp solve in some code controlling the differ-
ent iterations of Algorithm 5. We ran 100 serial experiments on
an Intel(r) Core(tm) i7 machine and timed each experiment with
gettimeofday(). The results of these experiments are shown
in Figure 9, where the average running time of each algorithm is
plotted. We kept the exhaustive search numbers apart in Table 2
due to the huge difference in execution time.

Results on Figure 9 show that all the heuristics always perform
very fast compared to the linear solver. The linear solver average
execution time increases considerably as soon as the number of

tasks increases. However, we noticed that in a large number of
instances of the problem, even if the number of tasks is high, the
execution time of the exhaustive search can be short depending on
whether the branch-and-bound approach of the linear solver can
eliminate more or less branches depending on the constraints. The
average is very high because some instances of the problem take
an extremely long time to explore. In the experiment presented in
Figure 9, the heuristic with retry performs exactly the same as the
heuristic because α = 2 is a loose enough constraint that there
is almost no need for retry. The hybrid heuristic execution time is
higher and is exactly the sum of our heuristic and the LR-heuristic
execution times.

7.5 Summary
Our experimental results in the previous Sections show that our
Heuristic performs significantly better than Greedy and LR-Heuristic
for those cases where there is little flexibility in the scheduling. In
our experiments those cases appear when the value of α is low (α
= 1.1) or when the number of tasks is small (20 or less). Our exper-
iments on the Configuration 1 also show that when the number of
tasks is small (20 or less) our Heuristic is faster than LR-Heuristic,
and only slightly slower than Greedy, which performs very poorly.
When the scheduling is easier due to extra freedom to map the
tasks, all the algorithms obtain better results in terms of success
rate and error rate. In particular our experiments for Configuration
1 show that for 40 tasks and α=2 LR-Heuristic is a good heuris-
tic, as it runs faster than our Heuristic and have similar success
and error rate. Notice that the are only two cases where the error
rate of the LR-Heuristic is smaller than that of our Heuristic. Both
cases occur in Configuration 1: the first one occurs with α = 1.5
and 20 tasks and the second one when α=2 and 40 tasks. In the
first case our Heuristic has a higher success rate; in the second case
(where all the heuristics have a 100% success rate), the error of our
Heuristic is less than 3%. In addition, the Hybrid heuristic can take
advantage of those cases where the LR-Heuristic performs better,
although at the expense of some extra execution time.

Our results also show that the Greedy algorithm performs
poorly; in fact, Greedy only performs well with large values of
α (α=2) and large number of tasks.

Finally, our Heuristic seems very insensitive to architecture or
task heterogeneity, because the heuristic that we use to do the
mapping takes care of these variations.



8. Conclusions and future work
In this paper, we explored the scheduling of real-time tasks on a
heterogeneous platform with energy minimization as a goal. Our
heuristic offers a high success rate and significantly improves the
state of the art heuristics, especially for small task sets. Our algo-
rithm is stable in its results when exploring different task sets and
platforms of different heterogeneities. Our experiments also evalu-
ate the importance of the order in which the tasks are selected for
scheduling. Furthermore, we have shown how to improve the re-
sults by combining two heuristics and how to improve the success
rate by using the sensitivity of the scheduler to the tightness of the
constraint.

Our scheduling strategy relies on a kernel composed of inde-
pendent tasks and use software-pipelining to build this kernel of
independent tasks. However, this can create a problem because it
increases the pressure on cache and memory traffic, because now
several items are in-flight at the same time. In the particular case of
video postprocessing that we were studying, the number of frames
in-flight will increase. Thus, we plan to study different approaches
to refactor the task set for scheduling while improving the locality
and reducing the data traffic.
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ABSTRACT

Multithreaded code is notoriously hard to develop and test.
A multithreaded test exercises the code under test with two
or more threads. Each test execution follows some sched-
ule/interleaving of the multiple threads, and different sched-
ules can give different results. Developers often want to en-
force a particular schedule for test execution, and to do so,
they use time delays (Thread.sleep in Java). Unfortunately,
this approach can produce false positives or negatives, and
can result in unnecessarily long testing time.

This paper presents IMUnit, a novel approach to speci-
fying and executing schedules for multithreaded tests. We
introduce a new language that allows explicit specification of
schedules as orderings on events encountered during test ex-
ecution. We present a tool that automatically instruments
the code to control test execution to follow the specified
schedule, and a tool that helps developers migrate their
legacy, sleep-based tests into event-based tests in IMUnit.
The migration tool uses novel techniques for inferring events
and schedules from the executions of sleep-based tests. We
describe our experience in migrating over 200 tests. The
inference techniques have high precision and recall of over
75%, and IMUnit reduces testing time compared to sleep-
based tests on average 3.39x.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Verification, Reliability

Keywords

IMUnit, Unit Testing, Multithreaded Code

1. INTRODUCTION
Multicore processors are here to stay. To extract greater

performance from multicore processors, developers need to
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write parallel code. The predominant paradigm for paral-
lel code is that of shared memory where multiple threads of
control communicate by reading and writing shared data ob-
jects. Shared-memory multithreaded code is often afflicted
by concurrency bugs, which are hard to detect because mul-
tithreaded code can demonstrate different behavior based on
the scheduling of threads, and the bugs may only be trig-
gered by a small specific set of schedules.

To validate their multithreaded code, developers write
multithreaded unit tests. A multithreaded test creates and
executes two or more threads (and/or invokes code under
test that itself creates and executes two or more threads).
Each test execution follows some schedule/interleaving of
the multiple threads, and different schedules can give differ-
ent results. Developers often want to enforce a particular
schedule for a test. For example, consider two threads, one
executing a method m and the other executing a method
m′. Developers may want to ensure in one test that m fin-
ishes before m′ starts and in another test that m′ finishes
before m starts (and in more tests that m and m′ inter-
leave in certain ways). Without controlling the schedule, it
is impossible to write precise assertions about the execution
because the results can differ in the two scenarios, and it is
impossible to guarantee which scenarios were covered during
testing, even if multiple runs are performed.

To control the schedule of multithreaded tests, develop-
ers mostly use a combination of timed delays in the vari-
ous test threads. In Java, the delay is performed with the
Thread.sleep method, so we call this approach sleep-based.
A sleep pauses a thread while other threads continue exe-
cution. Using a combination of sleeps, developers attempt
to enforce the desired schedule during the execution of a
multithreaded test, and then assert the intended result for
the desired schedule. A sleep-based test can fail when an
undesired schedule gets executed even if the code under test
has no bug (false positive). Dually, a sleep-based test can
pass when an unintended schedule gets executed even if the
code under test has a bug (false negative). Indeed, sleeps are
an unreliable and inefficient mechanism for enforcing sched-
ules. To use sleeps, one has to estimate the real-time du-
ration for which to delay a thread while the other threads
perform their work. This is usually estimated by trial and
error, starting from a small duration and increasing it un-
til the test passes consistently on the developer’s machine.
The estimated duration depends on the execution environ-
ment (hardware/software configuration and the load on the
machine). Therefore, when the same test is executed in a
different environment, the intended schedule may not be en-
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forced, leading to false positives/negatives. Moreover, sleep
can be very inaccurate even on a single machine [20]. In an
attempt to mitigate the unreliability of sleep, developers of-
ten end up over-estimating the duration, which in turn leads
to slow running multithreaded tests.

Researchers have previously noted the numerous prob-
lems with using sleeps to specify schedules in multithreaded
tests and have developed frameworks such as ConAn [22,
23], ConcJUnit [27], MultithreadedTC [26], and ThreadCon-
trol [13] to tackle some problems in specifying and enforc-
ing schedules in multithreaded unit tests. However, despite
these frameworks, multithreaded unit testing still has many
issues that could be categorized as follows:

Readability: Most current frameworks force developers
to reason about the execution of threads relative to a global
clock. This is unintuitive since developers usually reason
about the execution of their multithreaded code in terms
of event relationships (such as m finishing before m′ starts).
Some frameworks require users to write schedules in external
scripts, which makes it even more difficult to reason about
schedules. In other frameworks the schedule is implicit, as a
part of the unit test code, and hence it is difficult to focus on
the schedule and reason about it separately at a higher level.

Modularity: In some current frameworks, the intended
schedule is intermixed with the test code and effectively
hard-coded into a multithreaded unit test. This makes it
difficult to specify multiple schedules for a particular unit
test and/or to reuse test code among different tests.

Reliability: Some current frameworks, as well as the
legacy sleep-based tests, rely on real time. As explained,
this makes them very fragile, leading to false positives/neg-
atives and/or slow testing time.

Migration Costs: Most current frameworks are very dif-
ferent from the traditional sleep-based tests. This makes it
costly to migrate the existing sleep-based tests.

We present a new framework, called IMUnit (pronounced
“immunity”), which aims to address these issues with mul-
tithreaded unit testing. Specifically, we make the following
contributions:

Schedule Language: IMUnit introduces a novel lan-
guage that enables natural and explicit specification of sch-
edules for multithreaded unit tests. Semantically, the basic
entity in an IMUnit schedule is an event that an execution
can produce at various points (e.g., a thread starting/finish-
ing the execution of a method, or a thread getting blocked).
We call the IMUnit approach event-based. An IMUnit sched-
ule itself is a (monitorable) property [10,24] on the sequence
of events. More precisely, each schedule is expressed as a
set of desirable event orderings, where each event ordering
specifies the order between a pair of events (note that an
IMUnit schedule need not specify a total order between all
events but only the necessary partial order).

While the ideas of IMUnit can be embodied in any lan-
guage, we have developed an implementation for Java. Syn-
tactically, the IMUnit constructs are represented using Java
annotations. A developer can use @Event and @Schedule an-
notations to describe the events and intended schedules, re-
spectively, for a multithreaded unit test.

Automated Migration: We have developed two infer-
ence techniques and a tool to ease migration of legacy, sleep-
based tests to IMUnit, event-based tests. Our inference
techniques can automatically infer likely relevant events and
schedules from the execution traces of existing sleep-based

tests. We implemented our migration tool as an Eclipse
plugin which uses the results of inference to automatically
refactor a given multithreaded test into an IMUnit test.

Execution and Checking: We have implemented a tool
for execution of IMUnit multithreaded unit tests. The tool
can work in two modes. In the active mode, it controls the
thread scheduler to enforce a given IMUnit schedule dur-
ing test execution. In the passive mode, it checks whether
an arbitrary test execution, controlled by the regular JVM
thread scheduler, follows a given IMUnit schedule. To en-
force/check the schedules, our tool uses the JavaMOP mon-
itoring framework [10,24]. We also include a new runner for
the standard JUnit testing framework to enable execution
of IMUnit tests with our enforcement/checking tool.

Evaluation: To guide and refine our design of the IMUnit
language, we have been inspecting over 200 sleep-based tests
from several open-source projects. We manually translated
198 of those tests into IMUnit, adding events and sched-
ules, and removing sleeps. As a result, the current version
of IMUnit is highly expressive, and we were able to remove
all sleeps from all but 4 tests.

We evaluated our inference techniques by automatically
inferring events/schedules for the original tests that we man-
ually translated (the subprojects on manual translation and
automatic inference were performed by different authors to
reduce the direct bias of manual translation on automatic
inference). Computing the precision and recall of the auto-
matically inferred events/schedules with respect to the man-
ually translated events/schedules, we find our techniques to
be highly effective, with over 75% precision and recall.

We also compared the execution time of the original tests
and our translated tests. Because the main goal of IMUnit
is to make tests more readable, modular, and reliable, we
did not expect IMUnit to run faster. However, IMUnit did
reduce the testing time, on average 3.39x, compared to the
sleep-based tests, with the sleep duration that the original
tests had in the code. As mentioned earlier, these duration
values are often over-estimated, especially in older tests that
were written for slower machines. In summary, IMUnit not
only makes multithreaded unit tests more readable, modu-
lar, and reliable than the traditional sleep-based approach,
but IMUnit can also make test execution faster.

This paper makes progress on our vision for improving
multithreaded unit testing; our position paper [15] proposed
the idea of event-based specification of schedules, but the
IMUnit language and algorithms/tools for inference and ex-
ecution are completely new.

2. EXAMPLE
We now illustrate IMUnit with the help of an example

multithreaded unit test for the ArrayBlockingQueue class in
java.util.concurrent (JSR-166) [17]. ArrayBlockingQueue
is an array-backed implementation of a bounded blocking
queue. One operation provided by ArrayBlockingQueue is
add, which performs a non-blocking insertion of the given el-
ement at the tail of the queue. If add is performed on a full
queue, it throws an exception. Another operation provided
by ArrayBlockingQueue is take, which removes and returns
the object at the head of the queue. If take is performed on
an empty queue, it blocks until an element is inserted into
the queue. These operations could have bugs that get trig-
gered when the add and take operations execute on different
threads. Consider testing some scenarios for these opera-



1 @Test
2 public void testTakeWithAdd() {
3 ArrayBlockingQueue<Integer> q;
4 q = new ArrayBlockingQueue<Integer>(1);
5 new Thread(
6 new CheckedRunnable() {
7 public void realRun() {
8 q.add(1);
9 Thread.sleep(100);

10 q.add(2);
11 }
12 }, ”addThread”).start();
13 Thread.sleep(50);
14 Integer taken = q.take();
15 assertTrue(taken == 1 && q.isEmpty());
16 taken = q.take();
17 assertTrue(taken == 2 && q.isEmpty());
18 addThread.join();
19 }

(a) JUnit

1 public class TestTakeWithAdd
2 extends MultithreadedTest {
3 ArrayBlockingQueue<Integer> q;
4 @Override
5 public void initialize() {
6 q = new ArrayBlockingQueue<Integer>(1);
7 }
8 public void addThread() {
9 q.add(1);

10 waitForTick(2);
11 q.add(2);
12 }
13 public void takeThread() {
14 waitForTick(1);
15 Integer taken = q.take();
16 assertTrue(taken == 1 && q.isEmpty());
17 taken = q.take();
18 assertTick(2);
19 assertTrue(taken == 2 && q.isEmpty());
20 }
21 }

(b) MultithreadedTC

1 @Test
2 @Schedule(”finishedAdd1->startingTake1,
3 [startingTake2]->startingAdd2”)
4 public void testTakeWithAdd() {
5 ArrayBlockingQueue<Integer> q;
6 q = new ArrayBlockingQueue<Integer>(1);
7 new Thread(
8 new CheckedRunnable() {
9 public void realRun() {

10 q.add(1);
11 @Event(”finishedAdd1”)
12 @Event(”startingAdd2”)
13 q.add(2);
14 }
15 }, ”addThread”).start();
16 @Event(”startingTake1”)
17 Integer taken = q.take();
18 assertTrue(taken == 1 && q.isEmpty());
19 @Event(”startingTake2”)
20 taken = q.take();
21 assertTrue(taken == 2 && q.isEmpty());
22 addThread.join();
23 }

(c) IMUnit

Figure 1: Example multithreaded unit test for ArrayBlockingQueue

tions (in fact, the JSR-166 TCK provides over 100 tests for
various scenarios for similar classes).

Figure 1 shows a multithreaded unit test that ArrayBlock-
ingQueue exercises add and take in two scenarios. In particu-
lar, Figure 1(a) shows the test written as a regular JUnit test
method, with sleeps used to specify the required schedule.
We invite the reader to consider what scenarios are specified
with that test (without looking at the other figures). It is
likely to be difficult to understand which schedule is being
exercised by reading the code of this unit test. While the
sleeps provide hints as to which thread is waiting for another
thread to perform operations, it is unclear which operations
are intended to be performed by the other thread before the
sleep finishes.

The test actually checks that take performs correctly both
with and without blocking, when used with add from another
thread. To check both scenarios, the test exercises a sched-
ule where the first add finishes before the first take starts,
and the second take blocks before the second add starts.
Line 13 shows the first sleep that is intended to pause the
main thread1 while the addThread finishes the first add. Line 9
shows the second sleep which is intended to pause the add-

Thread while the main thread finishes the first take and then
proceeds to block while performing the second take. If the
specified schedule is not enforced during the execution, there
may be a false positive/negative. For example, if both add

operations execute before a take is performed, the test will
throw an exception and fail even if the code has no bug, and
if both take operations finish without blocking, the test will
not fail, even if the blocking take code had a bug.

Figure 1(b) shows the same test written using Multithre-
adedTC [26]. Note that it departs greatly from traditional
JUnit where each test is a method. In MultithreadedTC,
each test has to be written as a class, and each method in
the test class contains the code executed by a thread in the

1JVM names the thread that starts the execution main by
default, although the name can be changed later.

test. The intended schedule is specified with respect to a
global, logical clock. Since this clock measures time in ticks,
we call the approach tick-based. When a thread executes a
waitForTick, it is blocked until the global clock reaches the
required tick. The clock advances implicitly when all threads
are blocked (and at least one thread is blocked in a wait-

ForTick). While a MultithreadedTC test does not rely on
real time, and is thus more reliable than a sleep-based test,
the intended schedule is still not immediately clear upon
reading the test code. It is especially not clear when wait-

ForTick operations are blocked/unblocked, because ticks are
advanced implicitly when all the threads are blocked.

Figure 1(c) shows the same test written using IMUnit.
The interesting events encountered during test execution are
marked with @Event annotations2, and the intended sched-
ule is specified with a @Schedule annotation that contains a
comma-separated set of orderings among events. An order-
ing is specified using the operator ->, where the left event is
intended to execute before the right event. An event speci-
fied within square brackets denotes that the thread execut-
ing that event is intended to block after that event. It should
be clear from reading the schedule that the addThread should
finish the first add before the main thread starts the first take,
and that the main thread should block while performing the
second take before the addThread starts the second add.

We now revisit, in the context of this example, the issues
with multithreaded tests listed in the introduction. In terms
of readability, we believe that making the schedules explicit,
as in IMUnit, allows easier understanding and maintenance
of schedules and code for both testing and debugging. In
terms of modularity, IMUnit allows extracting the addThread

as a helper thread (with its events) that can be reused in

2Note that @Event annotations appear on statements. The
current version of Java (ver. 6) does not support annotations
on statements, but the upcoming version of Java (ver. 7)
will add such support. For now, @Event annotations can
be written as comments, e.g., /* @Event("finishedAdd1") */,
which IMUnit translates into code for test execution.



<Schedu le> : := { <Order ing> [ ” , ”] } <Order ing>
<Order ing> : := <Cond i t i on> ”->” <Bas i c Event>
<Cond i t i on> : := <Bas i c Event> | <Block Event>

| <Cond i t i on> ”| | ” <Cond i t i on>
| <Cond i t i on> ”&&” <Cond i t i on>
| ”( ” <Cond i t i on> ”) ”

<Bas i c Event> : := <Event Name> [ ”@” <Thread Name>]
| ”s t a r t ” ”@” <Thread Name>
| ”end ” ”@” <Thread Name>

<Block Event> : := ”[ ” <Bas i c Event> ”] ”
<Event Name> : := { <Id> ”. ” } <Id>
<Thread Name> : := <Id>

Figure 2: Syntax of the IMUnit schedule language

other tests (in fact, many tests in the JSR-166 TCK [17] use
such helper threads). In contrast, reusing thread methods
from the MultithreadedTC test class is more involved, re-
quiring subclassing, parametrizing tick values, and providing
appropriate parameter values. Also, IMUnit allows specify-
ing multiple schedules for the same test code (Section 4.3).
In terms of reliability, IMUnit does not rely on real time and
hence has no false positives/negatives due to unintended sch-
edules. In terms of migration costs, IMUnit tests resemble
legacy JUnit tests more than MultithreadedTC tests. This
similarity eases the transition of legacy tests into IMUnit:
in brief, add @Event annotations, add @Schedule annotation,
and remove sleep calls. Section 4 presents our techniques
and tool that automate this transition.

3. SCHEDULE LANGUAGE
We now describe the syntax and semantics of the language

used in IMUnit’s schedules.

3.1 Concrete Syntax
Figure 2 shows the concrete syntax of the implemented

IMUnit schedule language. An IMUnit schedule is a comma-
separated set of orderings. Each ordering defines a condi-
tion that must hold before a basic event can take place. A
basic event is an event name possibly tagged with its is-
suing thread name when that is not understood from the
context. An event name is any identifier, possibly prefixed
with a qualified class name. There are two implicit event
names for each thread, start and end, indicating when the
thread starts and terminates. Any other event must be ex-
plicitly introduced by the user with the @Event annotation
(see Figure 1(c)). A condition is a conjunctive/disjunctive
combination of basic and block events, where block events
are written as basic events in square brackets. A block event
[e′] in the condition c of an ordering c → e states that e′

must precede e and, additionally, the thread of e′ is blocked
when e takes place.

3.2 Schedule Logic
It is more convenient to define a richer logic than what

is currently supported by our IMUnit implementation; the
additional features are natural and thus may also be imple-
mented in the future. The semantics of our logic is given in
Section 3.3; here is its syntax:

a ∶∶= start ∣ end ∣ block ∣ unblock ∣ event names
t ∶∶= thread names
e ∶∶= a@t
ϕ ∶∶= [t] ∣ ϕ→ ϕ ∣ usual propositional connectives

The intuition for [t] is “thread t is blocked”and for ϕ→ ψ “if
ψ held in the past, then ϕ must have held at some moment
before ψ”. We call these two temporal operators the block
and the ordering operators, respectively. For uniformity, all
events are tagged with their thread. There are four im-
plicit events: start@t and end@t were discussed above, and
block@t and unblock@t correspond to when t gets blocked
and unblocked3.

For example, the following formula in our logic

(a1@t1 ∧ ([t2] ∨ (¬(start(t2)→ a1@t1))))→ a2@t2
∧ (a2@t2 ∧ ([t1] ∨ (end(t1) → a2@t2)))→ a2@t2

says that if event a2 is generated by thread t2 then: (1)
event a1 must have been generated before that and, when a1
was generated, t2 was either blocked or not started yet; and
(2) when a2 is generated by t2, t1 is either blocked or termi-
nated. As explained shortly, every event except for block and
unblock is restricted to appear at most once in any execution
trace. Above we assumed that a1, a2 ∉ {block ,unblock}.

Before we present the precise semantics, we explain how
our current IMUnit language shown in Figure 2 (whose de-
sign was driven exclusively by practical needs) is a smaller
fragment of the richer logic. An IMUnit schedule is a con-
junction (we use comma instead of ∧) of orderings, and
schedules cannot be nested. Since generating block and un-
block events is expensive, IMUnit currently disallows their
explicit use in schedules. Moreover, to reduce their implicit
use to a fast check of whether a thread is blocked or not,
IMUnit also disallows the explicit use of [t] formulas. In-
stead, it allows block events of the form [a@t] (note the
square brackets) in conditions. Since negations are not al-
lowed in IMUnit, and since we can show (after we discuss the
semantics) that (ϕ1 ∨ϕ2) → ψ equals (ϕ1 → ψ) ∨ (ϕ2 → ψ),
we can reduce any IMUnit schedule to a Boolean combina-
tion of orderings ϕ → e, where ϕ is a conjunction of ba-
sic events or block events. All that is left to show is how
block events are desugared. Consider an IMUnit schedule
(ϕ ∧ [a1@t1]) → a2@t2, saying that a1@t1 and ϕ must pre-
cede a2@t2 and t1 is blocked when a2@t2 occurs. This can
be expressed as ((ϕ ∧ a1@t1) → a2@t2) ∧ ((a2@t2 ∧ [t1]) →
a2@t2), relying on a2@t2 happening at most once.

3.3 Semantics
Our schedule logic is a carefully chosen fragment of past-

time linear temporal logic (PTLTL) over special well-formed
multithreaded system execution traces.

Program executions are abstracted as finite traces of eve-
nts τ = e1e2 . . . en. Unlike in conventional LTL, our traces
are finite because unit tests always terminate. Traces must
satisfy the obvious condition that events corresponding to
thread t can only appear while the thread is alive, that is,
between start@t and end@t. Using PTLTL, this require-
ment states that for any trace τ and any event a@t with
a ∉ {start , end}, the following holds:

τ ⊧ ¬⟐ (a@t ∧ (⟐end@t ∨ ¬⟐ start@t))

where ⟐ stands for “eventually in the past”. Moreover, ex-
cept for block@t and unblock@t events, we assume that each

3It is expensive to explicitly generate block/unblock events in
Java precisely when they occur, because it requires polling
the status of each thread; our currently implemented frag-
ment only needs, through its restricted syntax, to check if a
given thread is currently blocked or not, which is fast.



event appears at most once in a trace. With PTLTL, this
says that the following must hold (� is “previously”):

τ ⊧ ¬⟐ (a@t ∧�⟐ a@t)

for any trace τ and any a@t with a ∉ {block ,unblock}.
The semantics of our logic is defined as follows:
e1e2 . . . en ⊧ e iff e = en
τ ⊧ ϕ ∧/∨ ψ iff τ ⊧ ϕ and/or τ ⊧ ψ
e1e2 . . . en ⊧ [t] iff (∃1 ≤ i ≤ n) (ei = block@t and

(∀i < j ≤ n) ej ≠ unblock@t)
e1e2 . . . en ⊧ ϕ→ ψ iff (∀1 ≤ i ≤ n) e1e2 . . . ei /⊧ ψ or

(∃1 ≤ i ≤ n) (e1e2 . . . ei ⊧ ψ and
(∃1 ≤ j ≤ i) e1e2...ej ⊧ ϕ)

It is not hard to see that the two new operators [t] and
ϕ→ ψ can be expressed in terms of PTLTL as

[t] ≡ ¬unblock@t S block@t
ϕ→ ψ ≡ �¬ψ ∨ ⟐(ψ ∧⟐ϕ)

where S stands for “since” and � for “always in the past”.

4. MIGRATION
We now describe the process of migrating legacy, sleep-

based tests to IMUnit, event-based tests. First we present
the steps that are typically performed during manual migra-
tion and then we describe the automated support that we
have developed for key steps of the migration.

4.1 Manual Migration
Based on our experience of manually migrating over 200

tests, the migration process typically follows these steps:

Step 1: Optionally add explicit names for threads in the
test code (by using a thread constructor with a name or by
adding a call to setName). This step is required if events are
tagged with their thread name (e.g. finishedAdd1@addThread)
in the schedule, because by default the JVM automatically
assigns a name (e.g. Thread-5) for each thread created with-
out an explicit name, and the automatic name may differ
between JVMs or between different runs on the same JVM.

Step 2: Introduce @Event annotations for the events relevant
for the intended schedule. Some of these annotations will be
used for block events and some for basic events.

Step 3: Introduce a @Schedule annotation for the intended
schedule. Steps 2 and 3 are the hardest to perform as they
require understanding of the intended behavior of the sleep-
based test. Note that a schedule with too few orderings can
lead to failing tests that are false positives. On the other
hand, a schedule with too many orderings may lead to false
negatives whereby a bug is missed because the schedule is
over-constraining the test execution.

Step 4: Check that the orderings in the introduced sched-
ule are actually satisfied when running the test with sleeps
(Section 5 describes the passive, checking mode).

Step 5: Remove sleeps.

Step 6: Optionally merge multiple tests with different sched-
ules (but similar test code) into one test with multiple sched-
ules, potentially adding schedule-specific code (Section 4.3).

4.2 Automated Migration
We have developed automated tool support to enable eas-

ier migration of sleep-based tests to IMUnit. In particular,
we have developed inference techniques that can compute

enum EntryType { SLEEP CALL, SLEEP RETURN, BLOCK CALL,
BLOCK RETURN, OTHER CALL, OTHER RETURN, TH START,
TH END, EVENT }

class LogEntry { EntryType type; ThreadID tid; String info; StmtID sid; }

Figure 3: Log Entries

likely relevant events and schedules for sleep-based tests by
inspecting the execution logs obtained from test runs. We
next describe the common infrastructure for logging the test
runs. We then present the techniques for inferring events
and schedules.

4.2.1 Lightweight Logging

Our inference of events and schedules from sleep-based
tests is dynamic: it first instruments the test code (using As-
pectJ [19]) to emit entries potentially relevant for inference,
then runs the instrumented code (several times, as explained
below) to collect logs of entries from the test executions, and
finally analyzes the logs to perform the inference.

Figure 3 shows the generic representation for log entries,
although event and schedule inference require slightly differ-
ent representations. Each log entry has a type, name/ID of
the thread that emits the entry, potential info/parameters
for the entry, and the ID of the statement that creates the
entry (which is used only for event inference). The types of
log entries and their corresponding info are as follows:

SLEEP_CALL: Invocation of Thread.sleep method. (Only used
for inferring events.)

SLEEP_RETURN: Return from Thread.sleep method.

BLOCK_CALL: Invocation of a thread blocking method (Lock-
Support.park or Object.wait).

BLOCK_RETURN: Return from a thread blocking method.

OTHER_CALL: Invocation of a method (other than those listed
above) in the test class. The info is the method name. (Only
used for inferring events .)

OTHER_RETURN: Return from a method executed from the test
class.

TH_START: Invocation of Thread.start. The info is the ID of
the started thread. (Only used for inferring schedules.)

TH_END: End of thread execution.

EVENT: Execution of an IMUnit event. The info is the name
of the event. (Only available while inferring schedules.)

Note that any logging can affect timing of test execution.
Because sleep-based tests are especially sensitive to timing,
care must be taken to avoid false positives. We address this
in three ways. First, our logging is lightweight. The instru-
mented code only collects log entries (and their parameters)
relevant to the inference. For example, OTHER_CALL is not col-
lected for schedule inference. Also, the entries are buffered
in memory during test execution, and they are converted to
strings and logged to file only at the end of test execution.
While keeping entries in memory would not work well for
very long logs, it works quite well for the relatively short
logs produced by test executions. Second, our instrumenta-
tion automatically scales the duration of sleeps by a given
constant N to compensate for the logging overhead. For ex-
ample, for N = 3 it increases all sleep times 3x. Increasing
all the durations almost never makes a passing test fail, but
it does make the test run slower. Third, we perform multiple



runs of each test and only collect logs for passing runs. This
increases the confidence that the logs indeed correspond to
the intended schedules specified with sleeps.

4.2.2 Inferring Events

Figure 4 presents the algorithm for inferring IMUnit events
from a sleep-based test. The input to the algorithm consists
of a set of logs (as described in Section 4.2.1) and a con-

fidenceThreshold. The output is a set of inferred events.
Each event includes the code location where @Event anno-
tation should be added and the name of the event. The
intuition behind the algorithm is that SLEEP_CALL log entries
are indicative of code locations for events. More precisely, a
thread t calls sleep to wait for one or more events to happen
on other threads (those will be “finished” events) before an
event happens on t (that will be a “starting” event). Recall
our example from Section 2. When the main thread calls
sleep, it waits for add to finish before take starts, and thus
finishedAdd1 executes before startingTake1.

For each log, the algorithm first computes a set of regions,
each of which is a sequence of log entries between SLEEP_CALL

and the matching SLEEP_RETURN executed by the same thread.
The log entries executed by other threads within a region are
potential points for the “finished” events. Regions from dif-
ferent threads can be partially or completely overlapping,
but regions from the same thread are disjoint (i.e., each
SLEEP_CALL is followed directly by SLEEP_RETURN before any
other statement is executed by the thread). Figure 5 shows
two regions for a simplified log produced by our running ex-
ample. In pseudo-code, each region is represented as a pair
of ints that point to the beginning and end of the region
in the list of log entries. For each region, the algorithm
first calls addFinishedEvents to potentially add some “fin-
ished” events for threads other than the region’s thread. If
an event is added, the algorithm calls addStartingEvent to
add the matching “starting” event.

The procedure addFinishedEvents potentially adds an in-
ferred event for each thread that executes at least one state-
ment in the region. For each such thread, the procedure first
discovers a relevant statement, which is one of SLEEP_CALL,
BLOCK_CALL, and TH_END. Only threads that have exactly one
relevant statement in the region are considered. The intu-
ition is that sleeps usually wait for exactly one event in each
other thread. If a thread executes none or multiple rele-
vant statements, it is most likely independent of the thread
that started the region and therefore can be ignored. Fig-
ure 5 shows the relevant statements for each region. The
procedure then finds the OTHER_RETURN statement immedi-
ately before the relevant statement for each thread. This
statement determines the name for the new“finished” Stat-
icEvent, whereas the relevant statement determines the lo-
cation. Note that logging only method calls would not be
enough to properly determine the previous statement since
the call can come from a helper method in the test class. For
our example, these before log entries are OTHER_RETURN(add),

addThread, 326 and OTHER_RETURN(take), main, 336 (Fig. 5).
The procedure addStartingEvent adds an event for the

thread that starts the region. The event is placed just before
the first statement that follows the end of the region. The
type of the statement can be any, including OTHER_CALL. The
same statement is used for naming the event. In Figure 5,
OTHER_CALL(take), main, 336 and OTHER_CALL(add), addThr-

ead, 330 are found following the algorithm.

1 // Input
2 Set⟨List⟨LogEntry⟩⟩ logs;
3 float confidenceThreshold;
4 // Output
5 class StaticEvent { StmtID sid; String name; }
6 Set⟨StaticEvent⟩ events;
7 // State
8 Bag⟨StaticEvent⟩ inferred := ∅;
9

10 class Region { int start; int end; }
11

12 void inferEvents() {
13 foreach (List⟨LogEntry⟩ log in logs) {
14 foreach (Region r in computeRegions(log)) {
15 boolean addedFinished := addFinishedEvents(r, log);
16 if (addedFinished) { addStartingEvent(r, log); }
17 }
18 }
19 filterOutLowConfidence(confidenceThreshold);
20 events := inferred.toSet();
21 }
22 Set⟨Region⟩ computeRegions(List⟨LogEntry⟩ log) {
23 return { new Region(i, j) | log(i).type = SLEEP CALL ∧
24 j := min{ k | log(i).tid = log(k).tid ∧
25 log(k).type = SLEEP RETURN } }
26 }
27 boolean addFinishedEvents(Region r, List⟨LogEntry⟩ log) {
28 boolean result ∶= false;
29 foreach (ThreadID t in { log(i).tid | i ∈ r } − { log(r.start).tid }) {
30 Set⟨int⟩ relevant := { i ∈ r | log(i).tid = t ∧
31 log(i).type ∈ { SLEEP CALL, BLOCK CALL, TH END } ∧
32 ¬(∃ j ∈ r | log(j).tid = t ∧
33 log(j).type ∈ { SLEEP RETURN, BLOCK RETURN }) }
34 if (relevant.size() /= 1) continue;
35 int starting := max{ j < relevant | log(j).tid = t ∧
36 log(j).type = OTHER RETURN }
37 addEvent(relevant, ”finished”, starting);
38 result := true;
39 }
40 return result;
41 }
42 void addStartingEvent(Region r, List⟨LogEntry⟩ log) {
43 int finished := min{ j > r.start | log(j).tid = log(r.start).tid ∧
44 log(j).type ∈ { OTHER CALL, TH END } }
45 addEvent(finished, ”starting”, finished);
46 }
47 void addEvent(int location, String namePrefix, int suffixIdx) {
48 StmtID sid = log(location).sid;
49 events ∪= new StaticEvent(sid, namePrefix +
50 log(suffixIdx).info + sid);
51 }

Figure 4: Events-Inference Algorithm
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// calls/returns if add is a helper method

TH_START, main, 333
SLEEP_CALL, main, 334

SLEEP_CALL, addThread, 328 // relevant in 0
SLEEP_RETURN, main, 334

BLOCK_CALL, main, 155 // relevant in 1

BLOCK_RETURN, main, 155
OTHER_RETURN(take), main, 339

OTHER_CALL(add), addThread, 326

SLEEP_RETURN, addThread, 328
OTHER_CALL(add), addThread, 330
OTHER_RETURN(add), addThread, 330

OTHER_RETURN(add), addThread, 326

OTHER_CALL(take), main, 336

OTHER_CALL(take), main, 339
OTHER_RETURN(take), main, 336

Figure 5: Snippet from a Log for Inferring Events



4.2.3 Inferring Schedules

Figure 6 presents the algorithm to infer an IMUnit sch-
edule for a sleep-based multithreaded unit test that already
contains IMUnit event annotations. These annotations can
be automatically produced by our event inference or manu-
ally provided by the user. The input to the algorithm is a
set of logs obtained from the passing executions of the sleep-
based test. Figure 7 shows a snippet from one such log for
our running example sleep-based test shown in Figure 1(a).
The input also contains a confidenceThreshold which will be
described later. The output is an inferred schedule, i.e., a
set of orderings that encodes the intended schedule for the
test. The main part of the algorithm is the addSleepIn-

ducedOrderings procedure. It captures the intuition that a
thread normally executes a sleep to wait for the other active
threads to perform events. Recall line 13 from our example
in Figure 1(a) where the main thread sleeps to wait for the
thread addThread to perform an add operation, and line 9
where addThread sleeps to wait for the main thread to first
perform one take operation and then block while performing
the second take operation.

For each log, the procedure scans for SLEEP_RETURN entries
(line 31). As shown in Figure 7, the log for our example con-
tains two SLEEP_RETURN entries, one each in the main thread
and addThread. For each SLEEP_RETURN that is found, the pro-
cedure does the following:

1) Retrieves the next EVENT entry for the same thread
(line 33). This event will be used as the after event in Or-

derings induced by the SLEEP_RETURN. In the example log, the
two after events are startingTake1 for the first SLEEP_RETURN
and startingAdd2 for the second SLEEP_RETURN.

2) Computes the other threads that were active between
the SLEEP_RETURN and the after event (line 34). In the exam-
ple, for the first SLEEP_RETURN, the only other active thread
is addThread and for the second SLEEP_RETURN, the only other
active thread is main.

3) Finds for each active thread the last EVENT entry that
is before the after event. This event will be the before

event in the Ordering induced by the SLEEP_RETURN with the
corresponding active thread (line 38). Note that this before
event on another thread can be even before the SLEEP_RETURN.
Effectively, this event is the current last entry and not the
last entry at the time of the sleep. In the example, the two
before events are finishedAdd1 and startingTake2 for the
first and second SLEEP_RETURNs, respectively.

4) Creates an Ordering for each before and after event
pair and inserts it into the inferred bag. If a before event
is followed immediately by a BLOCK_CALL (within entries for
the same thread), a BlockingOrdering is created; otherwise,
a NonBlockingOrdering is created (line 41). In the exam-
ple, since startingTake2 is followed by a BLOCK_CALL, the
ordering between startingTake2 and startingAdd2 will be
a BlockingOrdering, while the other ordering between fin-

ishedAdd1 and startingTake1 will be a NonBlockingOrdering.
Before the addSleepInducedOrderings procedure is invoked,

each log is modified by the preprocessLogs procedure. This
procedure looks for SLEEP_RETURN entries followed immedi-
ately by TH_START entries for the same thread. For every such
instance, it swaps the SLEEP_RETURN and TH_START entries and
sets the tid of the SLEEP_RETURN entry to be the ID of the
thread that is started by the TH_START event. The intuition
is that a SLEEP_RETURN followed by a TH_START signifies that
the started thread, rather than the starting thread perform-

1 class Event { String eventName; ThreadID tid; }
2 abstract class Ordering { Event before; Event after; }
3 class NonBlockingOrdering extends Ordering {};
4 class BlockingOrdering extends Ordering {};
5 // Input
6 Set⟨List⟨LogEntry⟩⟩ logs;
7 float confidenceThreshold;
8 // Output
9 Set⟨Ordering⟩ orderings;

10 // State
11 Bag⟨Ordering⟩ inferred := ∅;
12

13 void inferSchedules() {
14 foreach (List⟨LogEntry⟩ log in logs) {
15 List⟨LogEntry⟩ preprocessed := preprocessLog(log);
16 addSleepInducedOrderings(preprocessed);
17 }
18 minimize();
19 }
20 List⟨LogEntry⟩ preprocessLog(List⟨LogEntry⟩ log) {
21 List⟨LogEntry⟩ result := log.clone();
22 foreach ({ i | log(i).type = SLEEP RETURN }) {
23 int j := min{j > i | log(j).tid = log(i).tid };
24 if (log(j).type = TH START) {
25 result(j) := new LogEntry(SLEEP RETURN, , log(j).info);
26 result(i) := log(j);
27 } }
28 return result;
29 }
30 void addSleepInducedOrderings(List⟨LogEntry⟩ log) {
31 foreach ({ i ∈ log.indexes() | log(i).type = SLEEP RETURN }) {
32 ThreadID t := log(i).tid;
33 int j := min{ n > i | log(n).tid = t ∧ log(n).type = EVENT };
34 Set⟨ThreadID⟩ active := { t’ | ( ∃ n < j |
35 log(n).tid = t’ ∧ log(n).type = EVENT ) ∧
36 ( ∃ n > i | log(n).tid = t’ ∧ log(n).type = TH END

) };
37 foreach (ThreadID t’ in active − { t }) {
38 int j’ := max{ n < j | log(n).tid = t’ ∧ log(n).type = EVENT };
39 Event before := new Event(log(j’).info, t’);
40 Event after := new Event(log(j).info, t);
41 if (log(min{ n > j’ | log(n).tid = t’ }).type /= BLOCK CALL) {
42 inferred ∪= new NonblockingOrdering(before, after);
43 } else { // before.type = BLOCK CALL
44 inferred ∪= new BlockingOrdering(before, after);
45 } } } }
46 void minimize(List⟨LogEntry⟩ log) {
47 Set⟨Ordering⟩ graph := inferred.toSet() ∪ computeSeqOrderings(log);
48 removeCyclicOrderings(graph);
49 performTransitiveReduction(graph);
50 inferred.onlyRetainOrderingsIn(graph);
51 filterOutLowConfidence(confidenceThreshold);
52 orderings := inferred.toSet();
53 }
54 void Set⟨Ordering⟩ computeSeqOrderings(List⟨LogEntry⟩ log) {
55 return { new NonblockingOrdering(log(i), log(j)) |
56 i < j ∧ log(i).tid = log(j).tid ∧
57 log(i).type = log(j).type = EVENT ∧
58 ¬(∃ k | i < k < j ∧ log(j).tid = log(k).tid
59 ∧ log(k).type = EVENT) };
60 }

Figure 6: Schedule-Inference Algorithm
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BLOCK_CALL, main

SLEEP_RETURN, main

TH_START(addThread), main

SLEEP_RETURN, addThread

EVENT(startingTake1), main

EVENT(finishedAdd1), addThread

EVENT(startingTake2), main

EVENT(startingAdd2), addThread

Figure 7: Snippet from a Log for Inferring Schedules



ing the TH_START, should wait for the other active threads
to perform events. Many of the sleep-based tests that we
migrated included instances of this pattern. Effectively, this
swap makes it appear as if the sleep was at the beginning
of the run method for the started thread, although the sleep
was actually before the start method.

After each log is processed by the preprocessLogs and
addSleepInducedOrderings procedures, the inferred bag is
populated with all the inferred orderings. However, the in-
ferred orderings may contain cycles (e.g., a->b and b->a)
and transitively redundant orderings (e.g., a->b, b->c, and
a->c, where the last ordering is redundant). The minimize

procedure removes such orderings. It first creates an or-
dering graph by combining the edges from the inferred or-
derings with the edges implied by the sequential orderings
of events within each thread (the latter edges being com-
puted by the computeSeqOrderings procedure). It then re-
moves all the edges of the graph that participate in cycles.
It finally performs a transitive reduction on the acyclic graph

and updates the inferred bag by removing all orderings not
included in the reduced graph. We use an open-source im-
plementation [12] of the transitive reduction algorithm in-
troduced by Aho et al. [1]. Since the transitive reduction is
performed on an acyclic graph, we can use a simpler case of
the general algorithm.

The last step of the minimize procedure is to remove the
orderings that were inferred with low confidence. Recall that
the input to our inference is a set of logs from several (pass-
ing) runs of the test being migrated. The confidence of an
inferred ordering is the ratio of the count of that ordering
in the inferred bag and the number of logs/runs. For ex-
ample, an ordering may be inferred in only 60% of runs, say
3 out of 5. The confidenceThreshold defines the lowest ac-
ceptable confidence. All inferred orderings with confidence
lower than the specified threshold are discarded.

4.2.4 Eclipse Plugin

We have developed a refactoring plugin for Eclipse to en-
able automated migration of existing sleep-based unit tests
into event-based IMUnit tests. The plugin is implemented
using the generic refactoring API provided by Eclipse. The
refactoring automates the most important steps required to
migrate a sleep-based test into an IMUnit test: introduc-
tion of events and schedule (using inference techniques) and
checking of the introduced schedule. The refactoring can
also help the user name the threads in the test.

4.3 Multiple Schedules
As mentioned in Step 6 of Section 4.1, after converting

sleep-based tests to event-based IMUnit tests, developers
can merge several similar tests with different schedules into
one test with multiple IMUnit schedules. Recall our exam-
ple sleep-based test from Figure 1(a). Its intended schedule
is an add followed by a non-blocking take and a blocking take

followed by another add. Suppose that the same test class
contained another sleep-based test whose indented schedule
is an add followed by a non-blocking take and another add

followed by another non-blocking take. Although these two
sleep-based tests would be almost identical (with the sleep at
line 9 moved to before line 16), they cannot share the com-
mon code without using additional conditional statements
to enable the appropriate sleeps during execution. In con-
trast, after both tests are migrated to IMUnit tests, they can

be easily replaced by just one new test. This new test would
have the same code as in Figure 1(a), with two added anno-
tations: (1) @Event("finishedAdd2") added after the add(2)

call, and (2) @Schedule("finishedAdd1->startingTake1, fin-

ishedAdd2->startingTake2") added before the test method.

5. ENFORCING & CHECKING
We now describe the IMUnit Runner, our tool for enforc-

ing/checking schedules for IMUnit tests. It is implemented
as a custom test runner for the JUnit testing framework.
It executes each test for each IMUnit schedule and has two
operation modes. In the active mode, it controls the thread
scheduler to enforce an execution of the test to satisfy the
given schedule. Note that this mode avoids the main prob-
lem of sleep-based tests, that of false positives and negatives
due to the execution of unintended schedules. In the passive
mode, our tool observes and checks the execution provided
by the JVM against the given schedule.

Our runner is implemented using JavaMOP [10, 24], a
high-performance runtime monitoring framework for Java.
JavaMOP is generic in the property specification formalism
and provides several such formalisms as logic plugins, includ-
ing past-time linear temporal logic (PTLTL). Although our
schedule language is a semantic fragment of PTLTL (Sec-
tion 3), enforcing PTLTL specifications in their full gener-
ality on multithreaded programs is rather expensive.

Instead, we have developed a custom JavaMOP logic plu-
gin for our current IMUnit schedule language from Figure 2.
Since JavaMOP takes care of all the low-level instrumenta-
tion and monitor integration details (after a straightforward
mapping of IMUnit events into JavaMOP events), we here
only briefly discuss our new JavaMOP logic plugin. It takes
as input an IMUnit schedule and generates as output a mon-
itor written in pseudo-code; a Java shell for this language
then turns the monitor into AspectJ code [19], which is fur-
ther woven into the test program. In the active mode, the
resulting monitor enforces the schedule by blocking the vio-
lating thread until all the conditions from the schedule are
satisfied. In the passive mode, it simply prints an error when
its corresponding schedule is violated.

A generated monitor for an IMUnit schedule observes the
defined events. When an event e occurs, the monitor checks
all the conditions that the event should satisfy according to
the schedule, i.e., a Boolean combination of basic and block
events (Figure 2). The status of each basic event is main-
tained by a Boolean variable which is true iff the event oc-
curred in the past. The status of a block event is checked as
a conjunction of this variable and its thread’s blocked state.
In the active mode, the thread of e will be blocked until this
Boolean expression becomes true. If the condition contains
any block event, periodic polling is used for checking thread
states. Thus, IMUnit pauses threads only if their events are
getting out of order for the schedule. Note that the user
may have specified an infeasible schedule, which can cause a
deadlock where all threads are paused. Our runner includes
a low-overhead runtime deadlock detection that detects and
reports deadlocks.

As an example, Figure 8 shows the active-mode moni-
tor generated for the schedule in Figure 1(c). When events
finishedAdd1 and startingTake2 occur, the monitor just sets
the corresponding Boolean variables, as there is no condition
for those events. For event startingTake1, it checks if there
was an event finishedAdd1 in the past by checking the vari-



1 sw i t c h ( even t ) {
2 case finishedAdd1 :
3 o c cu r r ed finishedAdd1 = t r ue ; n o t i f y A l l ( ) ;
4 case startingTake2 :
5 t h r e a d startingTake2 = cu r r en tTh read ( ) ;
6 o c cu r r ed startingTake2 = t r ue ; n o t i f y A l l ( ) ;
7 case startingTake1 :
8 wh i l e ( ! o c cu r r ed finishedAdd1 )
9 wa i t ( ) ;

10 o c cu r r ed startingTake1 = t r ue ; n o t i f y A l l ( ) ;
11 case startingAdd2 :
12 wh i l e ( ! ( o c cu r r ed startingTake2 &&
13 i s B l o ck ed ( t h r e a d startingTake2 ) ) )
14 wa i t ( ) ;
15 o c cu r r ed startingAdd2 = t r ue ; n o t i f y A l l ( ) ; }

Figure 8: Monitor for the schedule in Figure 1(c)

able occurred_finishedAdd1; if not, the thread will be blocked
until finishedAdd1 occurs. For event startingAdd2, in addi-
tion to checking the Boolean variable for startingTake2, it
also checks whether the thread of the event startingTake2 is
blocked; if not, the thread of the event startingAdd2 will be
blocked until both conditions are satisfied.

6. EVALUATION
To evaluate the IMUnit contributions—schedule language,

automated migration, and schedule execution—we analyzed
over 200 sleep-based tests from several open-source projects.
Table 1 lists the projects and the number of sleep-based tests
that we manually migrated to IMUnit. We first describe
our experience with the IMUnit language. We then present
results of our inference techniques for migration. We finally
discuss the test running time.

6.1 Schedule Language
It is hard to quantitatively evaluate and compare lan-

guages, be it implementation or specification languages, in-
cluding languages for specifying schedules. One metric we
use is how expressive the language is, i.e., how many sleep-
based tests can be expressed in IMUnit such that sleeps can
be removed altogether. Note that IMUnit conceptually sub-
sumes sleeps: sleeps and IMUnit events/schedules can co-
exist in the same test, and developers just need to make
sleeps long enough to account for the IMUnit schedule en-
forcement. While every sleep-based test is trivially an IMU-
nit test, we are interested only in those tests where IMUnit
allows removing sleeps altogether.

We were able to remove sleeps from 198 tests, in fact all
sleeps from all but 4 tests. While the current version of
IMUnit is highly expressive, we have to point out that we
refined the IMUnit language based on the experience with
migrating the sleep-based tests. When we encountered a
case that could not be expressed in IMUnit, we considered
how frequent the case is, and how much IMUnit would need
to change to support it. For example, blocking events are
very frequent, and supporting them required a minimal syn-
tactic extension (adding events with square brackets) to the
initial version of our language. However, some cases would
require bigger changes but are not frequent enough to jus-
tify them. The primary example is events in a loop. IMUnit
currently does not support the occurrence of an event more
than once in a trace. We did find 4 tests that would require
multiple event occurrences, but changing the language to
support them (e.g., adding event counters or loop indices to
events) would add a layer of complexity that is not justified
by the small number of cases. However, as we apply IMUnit

Subject Tests Events Orderings

Collections [4] 18 51 32
JBoss-Cache [18] 27 105 47
Lucene [6] 2 3 4
Mina [7] 1 2 1
Pool [5] 2 8 3
Sysunit [11] 9 33 34
JSR-166 TCK [17] 139 577 277

∑ 198 779 398

Table 1: Subject Programs Statistics

to more projects, and gain more experience, we expect that
the language could grow in the future.

6.2 Inference of Events and Schedules
To measure the effectiveness of our migration tool in infer-

ring events/schedules, we calculated precision and recall of
automatically inferred events/schedules with respect to the
manually written events/schedules (i.e., the manual trans-
lations from sleep-based schedules). Calculating precision
and recall requires comparing the automatically inferred and
manually written events/schedules. For event inference, the
input is a sleep-based test, and the output is a set of events.
Our current comparison uses only the source-code location
(line number) of the static events and not their name. For
schedule inference, the input is a sleep-based test with man-
ually written (not automatically inferred) events, and the
output is a schedule. Our comparison considers all order-
ings from the automatically inferred and manually written
schedules; two orderings match only if they have exactly the
same both before and after events (including their name and
type that can be basic or block). We performed the com-
parisons for all but 14 (discussed below) of our 198 tests.
Table 2 shows for each project precision and recall values,
averaged over the tests from that project.

Columns two and three show the results for event infer-
ence. In most cases, precision and recall are fairly high.
We inspected the cases with lower precision and identified
two causes for it. The first cause is due to our evaluation
setup and not the algorithm itself. Namely, our current com-
parison requires the exact match of source-code locations. If
the locations differ, the inferred event counts as a false nega-
tive, even if it was only a few lines from the manually written
event, and even if those locations are equivalent with respect
to the code. In the future, we plan to improve the setup by
analyzing the code around the automatically inferred and
manually written events to determine if their locations are
equivalent. The second reason is that some tests use sleeps
that are not relevant for the thread schedule (e.g., JBoss-
Cache has such sleeps in the helper threads shared among
tests, and Lucene has similar sleeps while interacting with
the I/O library). These extra sleeps mislead our inference,
which assumes that every sleep is relevant for the schedule
and infers events for every sleep.

Columns four and five show the results for schedule infer-
ence. The results are even more impressive than for event
inference, with precision and recall of over 75% in all cases.
We identified two causes for misses. The first cause is that
some threads can be independent. The algorithm always
forms edges from all threads to the thread that invokes
sleep method, but this should not be done for independent
threads. In the future, we plan to consider an abstraction
similar to regions (Figure 4) as a mechanism to detect inde-



Subject
Inferring Events Inferring Schedules

Precision Recall Precision Recall

Collections 0.75 0.82 0.96 0.97
JBoss-Cache 0.83 0.86 0.87 0.96
Lucene 0.75 1.00 1.00 0.75
Mina 0.22 1.00 1.00 1.00
Pool 0.90 1.00 1.00 1.00
Sysunit 0.76 0.87 0.89 0.89
JSR-166 TCK 0.67 0.74 0.98 0.98

Overall 0.75 0.79 0.96 0.94

Table 2: Precision and Recall for Inference

Subject Original CR TR LC

Collections 33 0 0 0
JBoss-Cache 39 2 3 0
Lucene 5 0 1 1
Mina 1 0 0 0
Pool 3 0 0 0
Sysunit 39 0 5 0
JSR-166 TCK 306 0 30 1

Table 3: Numbers of Removed Orderings

pendent threads. The second cause is the same as for event
inference, namely unnecessary sleeps.

A known issue in information retrieval is that some re-
sult sets may be empty, which corresponds to infinite pre-
cision and zero recall. For 14 of 198 tests, our inference
techniques returned empty sets of events/schedules because
these tests do not use sleeps to control schedules. Instead,
these tests use while (condition) { Thread.sleep/yield } or
wait/notify or CountDownLatch and other concurrent con-
structs to control schedules. We excluded these 14 tests
from the evaluation of our inference techniques.

Our inference algorithms use confidenceThreshold to se-
lect some of the events/schedules, with the default value of
0.5 (for Table 2). We performed a set of experiments to
evaluate how sensitive our inference is to the value of con-

fidenceThreshold. We found that the results are quite sta-
ble. For example, for schedule inference, when changing the
value from 0.5 to 0.1, only for Lucene the precision drops
from 1 to 0.75. When changing the value from 0.5 to 0.9,
only for JBoss-Cache the precision and recall drop from 0.87
and 0.96 to 0.86 and 0.93, respectively. For all other cases,
everything else is inferred exactly the same for the values
0.1 and 0.9 as for the default value 0.5.

The other input to our inference algorithms is the set of
logs obtained from passing runs of the legacy tests. By de-
fault, we collect 5 passing logs for each test (for Table 2).
Different runs of the legacy test can produce different logs
that can in turn result in different sets of events/schedules
being inferred. Therefore, depending on the number of logs,
inferred events/schedules could differ. So we evaluated how
sensitive our inference is to the number of logs. We found
that the logs are quite stable, and almost identical results
were obtained for 1, 5, and 10 logs. For instance, going from
5 to 10 logs only the recall for JBoss-Cache drops from 0.96
to 0.94, and everything else remains the same.

Lastly, our schedule-inference algorithm runs a minimiza-
tion phase after processing all the logs. Table 3 summarizes
the results of this phase. It tabulates, for each project, the
number of schedule orderings originally inferred before min-
imization (Original) and the numbers of orderings removed
by cycles removal (CR), by transitive reduction (TR), and

Subject
Original IMUnit [s] Speedup

[s] DDD DDE DDD DDE

Collections 4.96 1.06 1.67 4.68 2.97
JBoss-Cache 65.58 31.25 31.76 2.10 2.06
Lucene 11.02 3.57 6.12 3.09 1.80
Mina 0.26 0.17 0.20 1.53 1.30
Pool 1.43 1.04 1.04 1.38 1.38
Sysunit 17.67 0.35 0.45 50.49 39.27
JSR-166 TCK 15.20 9.56 9.56 1.59 1.59

GeometricMean 3.39 2.76

Table 4: Test execution time. DDD - deadlock de-
tection disabled; DDE - deadlock detection enabled

due to low confidence (LC). As it can be seen, the mini-
mization phase does not remove many orderings. However,
it is important to remove the orderings it does remove. For
example, without removing the cycle for JBoss-Cache, not
only would inference have a lower precision but it would also
produce a schedule that is unrealizable.

6.3 Performance
Table 4 shows the execution times of the 198 original,

sleep-based tests and the corresponding IMUnit tests (for
IMUnit, with deadlock detection both disabled and enabled).
We ran the experiments on an Intel i7 2.67GHz laptop with
4GB memory, using Sun JVM 1.6.0 06. Our goal for IMU-
nit is to improve readability, modularity, and reliability of
multithreaded unit tests, and we did not expect IMUnit ex-
ecution to be faster than sleep-based execution. In fact, one
could even expect IMUnit to be slower because of the addi-
tional code introduced by the instrumentation and the cost
of controlling schedules. It came as a surprise that IMUnit
is faster than sleep-based tests, on average 3.39x. Even with
deadlock detection enabled, IMUnit was on average 2.76x
faster. This result is with the sleep durations that the orig-
inal tests had in the code.

We also compared the running time of IMUnit with Multi-
threadedTC on a common subset of JSR-166 TCK tests that
the MultithreadedTC authors translated from sleep-based to
tick-based [25]. For these 129 tests, MultithreadedTC was
1.36x faster than IMUnit. Although MultithreadedTC is
somewhat faster, it has a much higher migration cost, and
in our view, produces test code that is harder to understand
and modify than the IMUnit test code. Moreover, we were
surprised to notice that running MultithreadedTC on these
tests, translated by the MultithreadedTC authors, can result
in some failures (albeit with a low probability), which means
that these MultithreadedTC tests can be unreliable and lead
to false positives in test runs.

7. RELATED WORK
Three areas of work are related to IMUnit: (1) unit test-

ing of multithreaded code, (2) enforcement of schedules,
and (3) automated inference of specifications. We briefly
discuss each of them. (1) ConAn [22, 23] and Multithre-
adedTC [26] introduce unit testing frameworks that allow
developers to specify schedules to be used during the exe-
cution of multithreaded unit tests. However, the schedules
in both frameworks are specified relative to a global clock
(real time for ConAn and logic time for MultithreadedTC),
which makes it difficult to reason about the schedules. Also,
neither framework supports automated migration of sleep-



based tests. ConcJUnit [27] extends JUnit to propagate ex-
ceptions raised by child threads up to the main thread and
also checks whether all child threads have finished at the
end of a test method. ThreadControl [13] proposes a tool
to ensure that assertions are performed without interference
from other threads. (2) There has been some previous work
on using formally specified sequencing constraints to verify
multithreaded programs [28]. The specifications are over
sync events with LTL-like constraints, and the verification
ensures that the implementation is faithful to the specifica-
tion. In contrast, IMUnit schedule specifications are used
to enforce ordering between user-specified events while the
system is tested. Carver and Tai [9] use deterministic replay
for concurrent programs. LEAP [14] is a more recent sys-
tem using a similar record-and-replay approach to reproduce
bugs. In comparison, our enforcement and checking mecha-
nism targets ensuring the user-specified schedule rather than
replaying a previously observed execution. (3) Work on au-
tomated mining of specifications for programs [2, 3, 8, 21] is
related to our automated inference of events and schedules.
However, most existing work focuses on mining API usage
patterns/rules in a single threaded scenario, while our tech-
niques mine the intention of sleep-based tests i.e. interesting
events and event orderings across multiple threads.

8. CONCLUSIONS
Current approaches for unit testing of multithreaded code

have issues with readability, modularity, reliability, and/or
migration cost. We presented IMUnit, a novel approach that
addresses these issues. IMUnit includes a new language that
makes tests more readable and modular as it allows explic-
itly specifying schedules on the events during test execution.
We described inference techniques and a tool that can help
in migrating sleep-based tests to IMUnit. We also described
a tool that can reliably execute the specified schedule to
avoid false positives/negatives. The promising results with
IMUnit encourage us to further explore this approach, e.g.,
for automatic generation of multithreaded tests (both test
code and schedules) only from the code under test, or for
regression testing of code with IMUnit schedules [16].
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Abstract
We propose null-pointer dereferences as a target for finding bugs in
concurrent programs using testing. A null-pointer dereference pre-
diction engine observes an execution of a concurrent program un-
der test and predicts alternate interleavings that are likely to cause
null-pointer dereferences. Though accurate scalable prediction is
intractable, we provide a carefully chosen novel set of techniques
to achieve reasonably accurate and scalable prediction. We use an
abstraction to the shared-communication level, take advantage of
a static lock-set based pruning, and finally, employ precise and re-
laxed constraint solving techniques that use an SMT solver to pre-
dict schedules. We realize our techniques in a tool, ExceptioNULL,
and evaluate it over 13 benchmark programs and find scores of null-
pointer dereferences by using only a single test run as the prediction
seed for each benchmark.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

Keywords Testing, Concurrency, SMT, Null-pointers, Data-Races

1. Introduction
Errors in concurrent programs often occur under subtle interleaving
patterns that the programmer had not foreseen. There are too many
interleavings to explore, even on a single test input for a concurrent
program, making concurrency testing a hard problem. With the rise
of multicore hardware platforms, finding solutions to this problem
is very important as testing is still the most effective way of finding
bugs today. Current testing technologies such as stress testing have
proved largely inadequate in exposing such subtle interleavings.

Prediction-based testing has emerged as a promising approach
to testing concurrent programs. It involves taking one arbitrary con-
current execution of the program under test, and from that predict
alternate interleavings that are more likely to contain bugs (inter-
leavings that lead to data-races, interleavings that violate atomicity,
etc.). Prediction replaces systematic search with a search for inter-
leavings that are close to observed executions only, and hence is
more tractable, and at the same time explores interesting interleav-
ings that are likely to lead to errors [9, 10, 26, 27, 31].

In this paper, we explore a new target for predictive testing
of concurrent programs that is fundamentally very different from
data-races or atomicity errors: we propose to target executions
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that lead to null-pointer dereferences. Given an arbitrary execution
of a concurrent program under test, we investigate fundamental
techniques to accurately and scalably predict executions that are
likely to lead to null-pointer dereferences.

Null-pointer dereferences can occur in a thread when deref-
erencing local variables. Consequently, an accurate prediction of
null-pointer dereferences requires, by definition, handling local
variables and the computation of threads. This is in sharp contrast to
errors like data-races and atomicity violations, which depend only
on accesses to shared variables.

The prediction algorithm aims to find some interleaving of the
events in the observed run that will result in a null-pointer derefer-
ence. The naive approach to this problem is to reduce it to a con-
straint satisfaction problem; the set of constraints capture the se-
mantics of local computations as well as the interaction of threads
using reads and writes, concurrency control like locks, etc. A con-
straint solver could then solve these constraints and hence synthe-
size an interleaving that causes a null-pointer dereference to occur
(this is similar to logic-based bounded model-checking for concur-
rent programs [24, 25]). However, this simply does not scale in
realistic dynamic testing setting where the number of events that
model reads/writes and computation can span millions of events.
Consequently, accurate null-pointer dereference prediction seems
intractable.

The main goal of this paper is to achieve useful and scalable
prediction for finding runs that cause null-pointer dereferences.
We propose a combination of four carefully chosen techniques to
achieve this:

1. Approximation: An approximation of the prediction problem
that ignores local computation entirely, and recasts the prob-
lem involving only the events that observe shared reads, writes,
and concurrency control events (which we call the shared com-
munication level) to achieve scalability. The prediction at the
shared communication level can be more efficiently solved, us-
ing a combination of a lock-set based static analysis that iden-
tifies null read-write pairs and a constraint satisfaction problem
to predict executions that force these null reads. Predicted runs
in this model will be feasible but may not actually cause a null-
pointer dereference, though they are likely to do so.

2. Static Pruning: An aggressive pruning of executions using
static analysis based on vector-clocks that identifies a small
segment of the observed run on which the the prediction ef-
fort can be focused. This greatly improves the scalability of
using sophisticated logic solvers. Pruning of executions does
not affect feasibility of the runs, but may reduce the number of
runs predicted. However, we show that in practice no additional
errors were found without pruning.

3. Relaxed prediction: A formulation of the prediction at the
shared communication level that allows some leeway so that
the prediction algorithm can predict runs with mild deviations
from the observed run which could be interesting runs; this
makes the class of predicted runs larger at the expense of pos-
sibly making them infeasible, though in practice we found the
majority of the predicted runs to be feasible.



4. Re-execution: The runs predicted using the techniques may be
infeasible, or may be feasible and yet not cause any null-pointer
dereference. We mitigate this by a re-execution engine that ex-
ecutes predicted schedules accurately to check if a null-pointer
dereference actually occurs. Errors reported hence are always
real (i.e., they cause an uncaught exception or result in failing
the test harness), and hence we incur no false positives.

We explain these techniques below, and motivate their choice and
their impact.

Approximation to the shared communication level: Though
null-pointer dereferences could occur on local variables and shared
variables (unlike data-races and atomicity, which are defined only
at the level of shared variables), a prediction that takes into account
local variables and local computation simply does not scale (we
have tried many experiments on such a model that validate this
claim). We propose an approximation to null-pointer dereference
prediction that works at the shared communication level. Consider
a thread T that in some interleaving reads a shared variable x and
subsequently does some computation locally using its value, and
consider the task of predicting whether this could result in a null-
pointer dereference. Our approximation of the prediction problem
at the shared communication level asks for a run that forces the
thread T to read a value of null. Note that this approximation is
neither sound nor complete— thread T may read null for x but
may not dereference the pointer (e.g., it could check if x is null),
and there may be runs where the value read is not null and yet the
local computation causes a null pointer dereference. However, such
an approximation is absolutely necessary to scale to large runs, as
it is imperative that local computation is not modeled. As our ex-
periments demonstrate, this approximation does not inhibit us from
finding interesting executions with null-pointer dereferences.

The above approximation poses the problem as a prediction
problem at the shared communication level, which is a well-studied
problem. In particular, there is a known maximal causal model that
allows prediction at this level [23] and is the most precise predic-
tion one can achieve at the shared communication level. Moreover,
this prediction can be achieved using automatic constraint solvers
that solve a constraint that demands a sequentially-consistent in-
terleaving that respects the semantics of read/write of shared vari-
ables and the concurrency control mechanisms (locks, barriers,
threads-creation, etc.). Maximal causality prediction using con-
straint solvers has been done in the past for data-races, atomicity,
etc. (as they are properties already defined at the shared communi-
cation level) [22] and we utilize a similar technique with additional
optimizations to approximately predict null-pointer dereferences.

Static pruning of executions: Prediction at the shared communi-
cation level, though more scalable than when modeling local com-
putation, still has scalability issues in practice, as there can be in
the order of hundreds of thousands of events involving shared vari-
ables. We propose pruning the execution using a simple scalable
lock-set and vector-clock based analysis that determines a large
prefix of the observed run that can be cut out soundly. The predic-
tion algorithm hence is only applied to the remnant segment, which
is smaller by an order of magnitude. If the prediction of the smaller
segment succeeds, we are guaranteed that there is a way to stitch
back the removed prefix to predict a full execution. Furthermore,
the relaxed prediction technique (discussed below) being only ap-
plied to the smaller segment, introduces inaccuracies solely within
that segment.

Relaxed prediction: The above two techniques of approximate
prediction at the shared communication level and static pruning ad-
dress scalability issues, and ensure that predicted runs are always
feasible. However, they do not always work well in practice be-

cause sometimes no solution to the constraints exist. Demanding
that the predicted run be absolutely guaranteed to be feasible (us-
ing the maximal causal model) seems too stringent a requirement,
as it rules out runs that even mildly deviate from the requirements.
For instance, if there is a read of y with value 23 in the original run,
the predicted run is required to make the same read-event read the
value 23, while in reality reading a different value, say 27, may not
cause the program to completely deviate from the current path.

We propose a novel relaxed prediction algorithm that models the
constraints to allow bounded wiggle-room. We propose to explore,
for an increasing threshold k, whether there is a predictable run
that violates at most k constraints that specify the values of shared
reads. According to our experiments, even setting k to a small
number (e.g., 5) is often sufficient to predict runs causing null-
pointer dereferences. These predicted runs are not guaranteed to be
feasible, but we show empirically that most of them actually are.

This technique, as well as the approximation to the shared com-
munication level, causes unsoundness (predicted runs may be feasi-
ble or not cause a null-pointer dereference), which is handled by us-
ing an accurate re-execution tool that checks whether the predicted
runs are indeed feasible and cause a null-pointer dereference.

The main technical contributions of this paper is the mechanism
of targeting null-pointer dereference prediction using the approxi-
mation to the shared-communication level, the static pruning for
scalability, and the prediction by relaxing constraints so as to make
the prediction useful.

Evaluation: The final contribution of this paper is a full-fledged
implementation realizing the new prediction-based testing tool that
targets null-pointer dereferences, called EXCEPTIONULL . EX-
CEPTIONULL monitors and reschedules interleavings for Java
programs using Java bytecode rewriting (building over the PENE-
LOPE [27] infrastructure), and implements the identification of
null-WR pairs, the pruning, and the logic-based procedures for
both precise and relaxed prediction, using the SMT solver Z3 from
Microsoft Research [11]. We show that EXCEPTIONULL is ef-
fective in predicting a large number of feasible runs in a suite of
concurrent benchmarks. Evaluated over a suite of 13 benchmarks,
we show the discovery of a slew of about 40 null-pointer derefer-
ence errors just be predicting from single test executions, and with
no false positives. We know of no current technique that can find
anywhere close to these many null-pointer dereferences on these
benchmarks. We believe that the techniques proposed here hence
make a significant leap forward in testing concurrent programs.

We also study some of the effects of techniques we have in-
troduced, and estimate the inaccuracies caused and the scalability
gained. We show that the pruning technique provides significant
scalability benefits, while at the same time does not prohibit the
prediction from finding any of the errors. We also show experimen-
tally that the relaxation technique allows us to predict many more
runs than the maximal causal model that result in errors (14 of the
41 errors were found due to relaxation).

We also show the efficacy of the relaxation technique by adapt-
ing our relaxed prediction to find data-races. Note that data-races
are already defined at the shared communication level, and hence
the approximation technique is not relevant. However, even in this
setting, the static pruning allows us to scale more and the relaxation
technique allows us to predict a lot more runs that have data-races
than the strict prediction on the maximal causal model can (the lat-
ter is the current state-of-the-art in predicting data-races). Our tool
discovers 60 data-races over our benchmarks of which 17 are found
using relaxed prediction, showing that relaxed prediction is a very
effective for other types of errors as well.

Related Work: The closest work related to ours in the realm
of logic-based methods are those that stem from bounded model-



checking for finding executions of bounded length in concurrent
programs that have bugs. Typically, a program’s loops are unrolled
a few times to get a bounded program, and using a logical encoding
of the runs in this bounded program, a constraint solver is used to
check if there is an error. We refer the reader to the papers from
the NEC Labs group [24, 25] ([24] gives a clean encoding) as
well as work from Microsoft Research [2, 12, 16, 21], where the
programs are converted first to a sequential program from which
bounded run constraints are generated. The crucial difference in our
work is that we use logic in the testing setting to predict alternate
interleavings. Another closely related work is CONMEM [35] (see
also [34]), where the authors target a variety of memory errors in
testing concurrent programs, including null-pointer dereferences,
but the prediction algorithms are much weaker and quite inaccurate
compared to our robust prediction techniques. Furthermore, there is
no accurate rescheduling engine which leads the tool to have many
false positives.

There are two promising approaches that have emerged in test-
ing concurrent programs: selective interleavings and prediction-
based testing (and combinations of these). The selective interleav-
ing approach is to focus in testing a small but carefully chosen
subset of interleavings. There are several tools and techniques that
follow this philosophy: for instance, the CHESS tool from Mi-
crosoft [18] tests all interleavings that use a bounded number pre-
emptions (unforced context-switches), pursuing the belief that most
errors can be made to manifest this way. Several tools concentrate
on testing atomicity violating patterns (for varying notions of what
atomicity means), with the philosophy that they are much more
likely to contain bugs [17, 19, 20, 33]. However, systematically
testing even smaller classes of interleavings is often impossible in
practice, as there are often too many of them.

There are several work on prediction-based testing that do not
use logical methods. These algorithms may focus on predicting
runs violating atomicity or containing data-races: those by Sor-
rentino et al. [13, 27], those by Wang and Stoller [31, 32], and
[14] by Huang and Zhang. A more liberal notion of generalized
dynamic analysis of a single run has also been studied in a series
of papers by Chen et al. [9, 10]. JPREDICTOR [10] offers a predic-
tive runtime analysis that uses sliced causality [9] to exclude the
irrelevant causal dependencies from an observed run and then ex-
haustively investigates all of the interleavings consistent with the
sliced causality to detect potential errors. The main drawback of
non-logical prediction approaches is that the predicted runs may
not be feasible. In fact, they ignore data which makes them less ef-
fective in finding bugs that are data-dependent such as null-pointer
dereferences.

Logic-based prediction approaches, target precise prediction.
Given an execution of the program, several work [29, 30] model the
whole computation (local as well as global) logically to guarantee
feasibility. The research presented in the above related work has too
big an overhead to scale to large executions. Maximal Causality
Model (MCM) [23], on the other hand, allows prediction at the
level of shared communication and is the most precise prediction
one can achieve at this level. MCM has been used by Said et al. [22]
for finding data-race witnesses. We also use this model to predict
runs leading to null-pointer dereferences.
2. Motivating Example
Consider a code extract from the Pool 1.2 library [5] in the
Apache Commons collection, presented in Figure 1. The object
pool’s state, open or closed, is tested outside the synchronized
block in method returnObject, by checking whether the flag
variable isClosed is true. If so, then some local computation
occurs, followed by a synchronized block that dereferences the
shared object pool. A second method close closes the pool and
sets isClosed to true to signal that the pool has been closed.

An error in this code (and such errors are very typical) stems
from the fact that the check of isClosed in the method return-
Object is not within the synchronized block; hence, if a thread
executes the check at line `, and then a concurrent thread executes
the method close() before the synchronized block begins, then
the access to the pool object at line `′ will raise an uncaught null-
pointer dereference exception.

In a dynamic testing setting, consider the scenario where we
observe an execution σ with two threads, where T executes the
method returnObject first, and then, T ′ executes the method
close after T finishes executing returnObject. There is no
null-pointer dereference in σ. Our goal is to predict an alternate
scheduling of events of σ that causes a null-pointer dereference.

Our prediction for null-pointer dereferences works as follows.
In the run σ, a read of the shared variable pool at `′ occurs in T
and the read value is not null. Also, a write to pool occurs in T ′

at `′′ which writes the value null. We ask whether there exists an
alternative run σ′ in which, the read at `′ (in T ) can read the value
null written by the write at location `′′ (in T ′) (as illustrated by
the arrow in Figure 1).

Our prediction algorithm observes the shared events (such as
shared reads/writes) but suppresses the semantics of local compu-
tations entirely and does not even observe them; they have been
replaced by “...” in the figure as they play no role in our analysis.

Prediction of runs that force the read at `′ to read the null
value written at `′′ must meet several requirements. Even if the
predicted run respects the synchronization semantics for locks,
thread creation, etc., the run may diverge from the observed run
due to reading a different set of values for shared variables which
will result in a different local computation path (e.g. the condition
check at ` will stop the computation of the function right away if
the value of isClosed is true). Therefore, we also demand that
all other shared variable reads read the same value as they did in the
original observed run, in order to guarantee that unobserved local
computations will unfold in the same way as they did in the original
run. This ensures the feasibility of the predicted runs.
Relaxed prediction: The requirement for all shared variable reads
to read the same values, however, can be too strict in some cases.
For instance, in our example, the variable modCount is a global
counter keeping track of the number of modifications made to the
pool data structure, and does not play any role in the local control
flow reaching the point of null-pointer dereference at `′′. In the real
execution leading to this null-pointer dereference, which is the one
where block b1 (from T ) is executed first, followed by b3 (from T ′)
and then b2 (from T ), the read of modCount will read a different
value than the corresponding value read in σ. However, this does
not affect the feasibility of the run (in contrast to the value read for
isClosed, which plays an important role in reaching the null-
pointer dereference).

Our relaxed prediction model gives a slack threshold k, allowing
predicted runs to have at most k reads that do not have to read the
same values as in σ. By increasing the threshold k iteratively, our
technique will find an execution that violates the read condition on
modCount, but yet finds a feasible run that causes the null-pointer
dereference in this example.

3. Preliminaries
Here, we present an overall overview of our prediction-based ap-
proach and set up a formal notation to describe the predicted runs.

3.1 Overview of proposed approach
Given a concurrent program P and an input I , we perform the
following steps:

• Monitoring: We execute P on the input I and observe an
arbitrarily interleaved run σ.



public void close(){
Synchronized (this) {

...
modCount = ...
...
pool = null;
isClosed = true;

}
}

public void returnObject(Object obj){
...
if (isClosed)
throw new PoolClosedEx();

...
Synchronized (this) {
numActive--;
...
... = modCount;
...
pool.push(obj);

}
}

! :

!′ :

!′′:

T ′:T :

Can the null valu
e

be observ
ed here?

b1

b2

b3

Figure 1. Code snippet of the buggy implementation of Pool.
• Run Prediction: We analyze the run σ to find a set of pair of

events α = (e, f) in σ such that: (i) e is a write to shared
variable x that writes a null value, (ii) f is a read from the
same shared variable x that reads a non-null value in another
thread, and (iii) static analysis on the run determines that there
is a run σ̂ of P , obtained from reshuffling of events in σ, that
respects locks and in which f reads the null value written by e.
We call such pair of events α = (e, f) a null-WR pair. For each
null-WR pair, we logically encode the set of runs and use SMT
solvers to predict concrete runs σ̂ that force null-reads.
• Rescheduling: For each σ̂ generated by the run prediction

phase, we re-execute the program, on the same input I , forcing
it to follow σ̂. If it succeeds, then the null value read at f
may later result in an error, such as a null-pointer dereference
exception; we report all such confirmed errors.

We now set up the formal notation to describe the run prediction
phase. In particular, the prediction algorithm will ignore computa-
tion of threads, and interleave at the level of blocks of local com-
putations that happen between two reads/writes to global variables.

3.2 Modeling program runs, suppressing local computation
We model the runs of a concurrent program as a word where
each letter describes the action done by a thread in the system.
The word will capture the essentials of the run— shared variable
accesses, synchronizations, thread-creating events, etc. However,
we will suppress the local computation of each thread, i.e. actions
a thread does by manipulating local variables, etc. that are not (yet)
visible to other threads, and model the local computation as a single
event lc. (In the formal treatment, we will ignore other concurrency
constructs such as barriers, etc.; these can be accommodated easily
into our framework.)

We fix an infinite countable set of thread identifiers T= {T1, T2, ..}
and define an infinite countable set of shared variable names SV
that the threads manipulate. Without loss of generality, we assume
that each thread Ti has a single local variable lvi that reflects its
entire local state. Let V = SV

⋃
i{lvi} represent the set of all vari-

ables. Let Val(x) represent the set of possible values that variable
x ∈ SV can get, and define Init(x) as the initial value of x. We
also fix a countable infinite set of locks L.

The actions that a thread Ti can perform on a set of shared
variables SV and global locks L is defined as:

ΣTi = {Ti:readx,val, Ti:writex,val| x ∈ SV, val ∈ Val(x)}
∪ { Ti: lc} ∪ {Ti:acquire(l), Ti:release(l)| l ∈ L}
∪ {Ti: tc Tj | Tj ∈ T}

Actions Ti:readx,val and Ti:writex,val correspond to the thread
Ti reading the value val from and writing the value val to the
shared variable x, respectively. Action Ti: lc corresponds to a local
computation of thread Ti that accesses and changes the local state
lvi. Action Ti : acquire(l) represents acquiring the lock l and the

action Ti : release(l) represents releasing of the lock l, by thread
Ti. Finally, the action Ti: tc Tj denotes the thread Ti creating the
thread Tj .

We define Σ =
⋃
Ti∈T ΣTi as the set of actions of all threads.

A word w in Σ∗, in order to represent a run, must satisfy several
obvious syntactic restrictions, which are defined below.

Lock-validity, Data-validity, and Creation-validity: There are
certain semantic restrictions that a run must follow. In particular, it
should respect the semantics of locks and semantics of reads, i.e.
whenever a read of a value from a variable occurs, the last write
to the same variable must have written the same value, and the
semantics of thread creation. These are captured by the following
definitions (σ|A denotes the word σ projected to the letters in A).

DEFINITION 3.1 (Lock-validity). A run σ ∈ Σ∗ is lock-valid if
it respects the semantics of the locking mechanism. Formally, let
Σl = {Ti : acquire(l), Ti : release(l) | Ti ∈ T} denote the set of
locking actions on lock l. Then σ is lock-valid if for every l ∈ L,
σ|Σl is a prefix of[⋃

Ti∈T (Ti:acquire(l) Ti:release(l))
]∗

DEFINITION 3.2 (Data-validity). A run σ ∈ Σ∗ over a set of
threads T , shared variables SV , and locks L, is data-valid if it
respects the read-write constraints. Formally, for each n such that
σ[n] = Ti:readx,val, one of the following holds:
(i) The last write action to x writes the value val. I.e. there is a
m < n such that σ[m] = Tj:writex,val and there is no m < k < n
such that σ[k] = Tq:writex,val’ for any val′ and any thread Tq , or
(ii) there is no write action to variable x before the read, and
val is the initial value of x. I.e. there is no m < n such that
σ[m] = Tj : writex,val’ (for any val′ and any thread Tj), and
val = Init(x).

DEFINITION 3.3 (Creation-validity). A run σ ∈ Σ∗ over a set of
threads T is creation-valid if every thread is created at most once
and its events happen after this creation, i.e., for every Ti ∈ T ,
there is at most one occurrence of the form Tj : tc Ti in w, and, if
there is such an occurrence, then all occurrences of letters of ΣTi

happen after this occurrence.

Program Order: Let σ = a1...an be a run of a program P. The
occurrence of actions in runs are referred to as events in this paper.
Formally, the set of events of the run is E = {e1, . . . , en}, and
there is a labeling function λ that maps every event to an action,
given by λ(eu) = au.

While the run σ defines a total order on the set of events in it
(E,≤), there is an induced total order between the events of each
thread. We formally define this asvi for each thread Ti, as follows:
for any es, et ∈ E, if as and at belong to thread Ti and s ≤ t then
es vi et. The partial order that is the union of all the program
orders is v= ∪Ti∈T vi.

The Maximal Causal Model for prediction: Given a run σ
corresponding to an actual execution of a program P , we would
like our prediction algorithms to synthesize new runs that interleave
the events of σ to cause reading of null values. However, we want
to predict accurately; in other words we want the predicted runs to
be feasible in the actual program.

We now give a sufficient condition for a partial run predicted
from an observed run to be always feasible. This model of pre-
diction was defined by Şerbănuţă et al., and is called the maximal
causal model [23]; it is in fact the most liberal prediction model
that ensures that the predicted runs are always feasible in the pro-
gram that work purely dynamically (i.e. no other information about
the program is known other than the fact that it executed this set
of observable events, which in turn do not observe computation).



We generalize the model slightly by taking into account thread cre-
ation.

DEFINITION 3.4 (Maximal causal model of prediction [23]). Let
σ be a run over a set of threads T , shared variables SV , and locks
L. A run σ′ is precisely predictable from σ if (i) for each Ti ∈ T ,
σ′|Ti is a prefix of σ|Ti , (ii) σ′ is lock-valid, (iii) data-valid, and
(iv) creation-valid. Let PrPred(σ) denote the set of all runs that
are precisely predictable from the run σ.

The first condition above ensures that the events of Ti executed
in σ′ is a prefix of the events of Ti executed in σ. This property is
crucial as it ensures that the local state of Ti can evolve correctly.
Note that we are forcing the thread Ti to read the same values
of global variables as it did in the original run. Along with data-
validity, this ensures that the thread Ti reads precisely the same
global variable values and updates the local state in the same way
as in the original run. Lock-validity and creation-validity are, of
course, required for feasibility. We will refer to runs predicted
according to the maximal causal model (i.e. runs in PrPred(σ))
as the precisely predicted runs from σ.

The following soundness of the prediction that assures all pre-
dicted runs are feasible, follows:

THEOREM 3.5 ([23]). Let P be a program and σ be a run cor-
responding to an execution of P . Then every precisely predictable
run σ′ ∈ PrPred(σ) is feasible in P .

The above theorem is independent from the class of programs.
We will assume however that the program is locally determinis-
tic (non-determinism caused by threads interleaving is, of course,
allowed). The above theorem, in fact, even holds when local com-
putations of P are non-deterministic; i.e. the predicted runs will
still be feasible in the program P . However, in order to be able to
execute the predicted runs, we need to assume determinism of lo-
cal actions. In this case, we can schedule the run σ′ precisely and
examine the outcomes of the tests on these runs.

3.3 The prediction problem for null-reads
We are now ready to formally define the precise prediction problem
for forcing null-reads.

DEFINITION 3.6 (Precisely predictable null-reads). Let σ be a
run of a program P . We say that σ′ is a precisely predictable
run that forces null-reads if there is a thread Ti and a variable x
such that the following are satisfied: (i) σ′ = σ′′.f where f is of
the form Ti: readx,null, (ii) σ′′ is a precisely predictable run from σ
using the maximal causal model, and (iii) there is some val 6= null
such that (σ′′|Σi). Ti:readx,val is a prefix of σ|Σi .

Intuitively, the above says that the run σ′ must be a precisely
predictable run from σ followed by a read of null by a thread Ti
on variable x, and further, in the observed run σ, thread Ti must be
executing a non-null read of variable x after executing its events in
σ′′. The above captures the fact that we want a precisely predictable
run followed by a single null-read that corresponded to a non-
null read in the original observed run. Note that σ′ itself is not in
PrPred(σ), but is always feasible in the program P , and results
in a null-read by thread Ti on variable x that had not happened in
the original run.

The precisely predictable runs that force null-reads are hence
excellent candidates to re-execute and test; if the local computation
after the read does not check the null-ness of x before dereferencing
a field of x, then this will result in an exception or error.

4. Identifying null-WR pairs using lock-sets
The first phase of our prediction is to identify null-WR pairs α =
(e, f) where e is a write of null to a variable and f is a read of

the same variable, but where the read in the original run reads a
non-null value. Moreover, we would like to identify pairs that are
feasible at least according to the hard constraints of thread-creation
and locking in the program. For instance, if a thread writes to a
shared variable x and reads from it in the same lock-protected
region of code, then clearly the read cannot match a write protected
by the same lock in another thread. Similarly, if a thread initializes
a variable x to a non-null and then creates another thread that reads
x, clearly the read cannot read an uninitialized x. We use a lock-set
based static analysis of the run (without using a constraint solver) to
filter out such impossible read-write pairs. The ones that remain are
then subject to a more intensive analysis using a constraint solver.

Using a static analysis on the observed run σ, we first collect all
null-WR pairs α = (e, f). Then, we prune away null-WR pairs for
which there is no lock-valid run in which f is reading the null value
written by e. Then, for each null-WR pair α = (e, f) left, we use
our precise logical prediction algorithm to obtain a lock-valid, data-
valid and creation-valid run in which f is reading the null value
written by e. However, instead of using run σ for the purposes of the
prediction, we slice a relevant segment of it, and use the segment
instead. The reason for this is twofold: (1) these run segments are
often orders of magnitude smaller than the complete run, and this
increases the scalability of our technique and (2) when a precisely
predictable run does not exist, we use a more relaxed version of
the constraints to generate a new run, limiting the improvisation to
a smaller part of run increases our chances of obtaining a feasible
execution. We formally define this relevant run segment and how it
is computed in Section 7.

In this static analysis, the idea is to check if the null-WR pairα =
(e, f) can be realized in a run that respects lock-validity and
creation-validity constraints only (and not data-validity). Creation
validity is captured by computing a vector clock associated with
each event, where the vector clock captures only the hard causality
constraints of thread creation. If f occurs before e according to this
relation, then clearly it cannot occur after e and the pair is infeasi-
ble. Lock-validity is captured by reducing the problem of realizing
the pair (e, f) to pairwise reachability under nested locking [15],
which is then solved by computing lock-sets and acquisition his-
tories for each event. We describe only the lock-validity checking
below. Similar techniques have been exploited for finding atomicity
violations in the tool PENELOPE [27].

Checking lock-valid reachability Consider a null-WR pair α =
(e, f) and a run σ in which f (a read in thread Tj) occurs first, and
later the write event e is performed by Ti.

Let us assume that e′′ is the next write event (to the same
variable accessed in e and f ) in Ti after e. If there exists a lock-
valid run σ′ (obtained by permuting the events in σ) in which
f reads the null value provided by e, then in σ′, f should be
scheduled after e, but before e′′; if f is scheduled also after e′′,
then the write in e′′ overwrites the null value written by e before
it reaches f . This means that there should exist an event e′ of
thread Ti, occurring between events e and e′′, that is executed right
before (or after f ) in σ′; in other words, e′ and f are co-reachable.
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Figure 2. Constraints capturing the maximal causal model.

quisition histories at e′ and f : the lock-sets at e′ and f must be
disjoint and the acquisition histories at e′ and f must be compati-
ble.

Note that the above condition is necessary for the existence of
the lock-valid run σ′, but not sufficient; hence filtering out pairs that
do not meet this condition is sound.

5. Precise prediction by logical constraint solving
We now describe how we solve the problem of precisely predicting
a run that realizes a null-WR pair α = (e, f). This problem is to
predict whether there is an alternate schedule in the maximal causal
model that forces the read at f to read the null value written by e.
We solve this using a logic constraint solver (an SMT solver); the
logic of the constraints is in a fragment that is efficiently decidable.

Prediction according to the maximal causal model is basically
an encoding of the creation-validity, data-validity, and lock-validity
constraints using logic, where quantification is removed by expand-
ing over the finite set of events under consideration. Modeling this
using constraint solvers has been done before ([22]) in the context
of finding data races. We reformulate this encoding briefly here for
several reasons. First, this makes the exposition self-contained, and
there are a few adaptations to the null-read problem that need ex-
planation. Second, we perform a wide set of carefully chosen op-
timizations on this encoding, whose description needs this exposi-
tion. And finally, the relaxation technique, which is one of the main
contributions of this paper, is best explained by referring directly to
the constraints.

Capturing the maximal causal model using logic
Given a run σ, we first encode the constraints on all runs predicted
from it using the maximal causal model, independent of the spec-
ification that we want runs that match a given null-WR pair . A
predicted run can be seen as a total ordering of the set of events E
of the run σ. We use an integer variable tse to encode the times-
tamp of event e ∈ E when e occurs in the predicted run. Using
these timestamps, we logically model the constraints required for
precisely predictable runs (see Definition 3.4), namely that the run
respect the program order of σ, that it be lock-valid, data-valid, and
creation-valid.

Figure 2 illustrates the various constraints. The constraints are
a conjunction of program order constraints (PO), creation-validity
constraints (CV), data-validity constraints (DV), and lock-validity
constraints (LV).

The program order constraint (PO) captures the condition that
the predicted run respect the program order of the original observed
run. Suppose that the given run σα consists of n threads, and
let σα|Ti = ei,1, ei,2, ..., ei,mi be the sequence of events in σα
that relates to thread Ti. Then the constraint POi demands that
the time-stamps of the predicted run obey the order of events in
thread Ti, and PO demands that all threads meet their program
order. We also consider an initial event einit which corresponds
to the initialization of variables. This event should happen before
any thread starts the execution in any feasible permutation, and is
encoded as the constraint Cinit.

Turning to creation-validity, suppose that etc(i) is the event that
creates thread Ti. Then the constraint CV demands that the first
event of Ti can only happen after etc(i). Combined with program
order constraint, this means that all events before the creation of Ti
in the thread that created Ti must also occur before the first event
of Ti.

The data-validity constraints DV (see Definition 3.3) capture
the fact that reads must be coupled with appropriate writes; more
precisely, that every read of a value from a variable must have a
write before it writing that value to that variable, and moreover,
there is no other intermediate write to that variable. Let Rx,val
represent the set of all read events that read value val from variable
x in σα, Wx represent the set of all write events to variable x, and
Wx,val represent the set of all write events that specifically write
value val to variable x. For each read event r = readx,val and
write event w ∈ Wx,val, the formula Coupledr,w represents the
requirement that w is the most recent write to variable x before r
and hence r is coupled withw. The constraintDV demands that all
reads be coupled with writes that write the same value as the read
reads.

Lock-validity is captured by the formula LV . We assume that
each lock acquire event ac of lock l in the run is matched by
precisely one lock release event rel of lock l in the same thread,
unless the lock is not released by the thread in the run. We call
the set of events in thread Ti between ac and rel a lock block
corresponding to lock l represented by [ac, rel]. Let Li,l be the set
of lock blocks in thread Ti regarding lock l. Then LV1 asserts that
no two threads can be simultaneously inside a pair of lock blocks
[eac, erel] and [e′ac, e

′
rel] corresponding to the same lock l. Turning

to locks that never get released, the constraint LV2 handles asserts
that the acquire of lock l by a thread that never releases it must
always occur after the releases of lock l in every other thread. In
this formula, NoReli,l stands for lock acquire events in Ti with no
corresponding later lock release event.

Optimizations
The constraints, when written out as above, can be large. We do
several optimization to control the formula bloat (while preserving
the same logical constraint).

The data-validity constraint above is expensive to express, as it
is, in the worst case, cubic in the maximum number of accesses
to any variable. There are several optimizations that reduce the
number of constraints in the encoding. Suppose that r = readx,val
is performed by thread Ti.

• Each write event w′ to x that occurs after r in Ti, i.e. r vi w′,
can be excluded in the constraints related to coupling r with a
write in constraint DV above.
• Suppose that w is the most recent write to x before r in Ti.

Then, each write event w′ before w in Ti, (i.e. w′ vi w), can
be excluded in the constraints related to coupling r with a write
in constraint DV above.
• When r is being coupled with w ∈ Wx,val in thread Tj , each

write event w′ before w in Tj , i.e. w′ vj w, can be excluded as
candidates for e′′ in the formula Coupledr,w.



• Suppose that r is being coupled with w ∈ Wx,val in thread
Tj and w′ is the next write event to x after w in thread Tj .
Then each write event w′′ after w′ in Tj , i.e. w′ vj w′′, can be
excluded as candidates for e′′ in the formula Coupledr,w.
• Event r can be coupled with einit only when there is no other

write event to x before r in Ti, i.e. @w. (w vi r ∧ w ∈ Wx).
Furthermore, it is enough to check that the first write event to x
in each thread (if it exists) is performed after r.

The lock-validity formula above, which is quadratic in the num-
ber of lock blocks, is quite expensive in practice. We can optimize
the constraints. If a read event r in thread Ti can be coupled with
only one write event w which is in thread Tj then in all precisely
predictable runs, w should happen before r. Therefore, the lock
blocks according to lock l that are in Tj before w and the lock
blocks according to lock l that are in Ti after r are already ordered.
Hence, there is no need to consider constraints preventing Ti and
Tj to be simultaneously in such lock blocks. In practice, this greatly
reduces the number of constraints. Furthermore, when considering
lock acquire events with no corresponding release events in LV2

above, it is sufficient to only consider the last corresponding lock
blocks in each thread and exclude the earlier ones from the con-
straint.

Predicting runs for a null-WR pair
We adapt the above constraints for predicting in the maximal causal
model to predict whether a null-WR pair α = (e, f) is realizable.
Suppose that σ and α = (e, f) are a run and a null-WR pair passed
to the prediction phase, respectively. Notice that in the original run
f reads a non-null value while we will force it to read null in the
predicted run by coupling it with write event e. Indeed, this is the
whole point of predicting runs— we would like to diverge from the
original run at f by forcing f to read a null value. Note that once
f reads a different value, we no longer have any predictive power
on what the program will do (as we do not examine the code of the
program but only its runs). Consequently, we cannot predict any
events causally later than f .

The prediction problem is hence formulated as follows:
Given a run σ, and a null-WR pair α = (e, f) in σ, algorithmi-

cally find a precisely predictable run from σ that forces null-reads
according to α; i.e. f is the last event and reads the null value
written by e.

The prediction problem is to find precisely predicted runs that
execute e followed by f , while avoiding any other write to the
corresponding variable between e and f . The constraints that force
the read f be coupled with the write e is NC = Coupledf,e.

Furthermore, recall that the feasibility of the run that we are
predicting needs to be ensured only up to the read f . Consequently,
we drop from the data-validity formula that the value read at f (in
the original run) match the last write (it should instead match e as
above).

A further complication is scheduling events that happen after
e in the same thread. Note that some of these events may need
to occur in order to satisfy the requirements of events before f
(for instance a read before f may require a write after e to occur).
However, we may not want to predict some events after e, as we are
really only concerned with f occurring after e. Our strategy here is
to let the solver figure out the precise set of events to schedule after
e (and before the next write to the same variable as e is writing to)
in the same thread.

For events after e in Ti, we enforce lock-validity and data-
validity constraints only if they are scheduled before f . More pre-
cisely, we replace ∨w′Coupledri,w′ in the formula DV to (tsr<
tsf ⇒ ∨w′Coupledri,w′). Similarly, we drop the lock constraints
on events occurring after f (this relaxation is more involved but
straightforward).

In summary, we have reduced the problem of predicting a run
according to the maximal causal model that causes the null write-
read pair to be realizable to a satisfiability of a formula ψ in logic.
The constraints generated fall within the class of quantifier-free
difference logic constraints which SMT solvers efficiently solve in
practice.

6. Relaxed prediction
The encoding proposed in the previous section is sound, in the
sense that it guarantees feasibility of the predicted runs. However,
as demonstrated by the example in Section 2, sound prediction
under the maximal causal model can be too restrictive and result
in predicting no runs. Slightly diverging from the original can
sometimes lead to prediction of runs that are feasible in the original
program.

We hence have a tension between two choices— we would like
to maintain the same values read for as many shared variable reads
as possible to increase the probability of getting a feasible run, but
at the same time allow a few reads to read different values to make
it possible to predict some runs. Our proposal, which is one of the
main contributions of this paper, is an iterative algorithm for finding
the minimum number of reads that can be exempt from data-validity
constraints that will allow the prediction algorithm to find at least
one run. We define a suitable relaxed logical constraint system to
predict such a run. Our experiments show that exempting a few
reads from data-validity constraints greatly improves the flexibility
of the constraints and increases the possibility of predicting a run,
and at the same time, the predicted runs are often feasible.

The iterative algorithm works as follows. Let’s assume there
are n shared variable reads that are required to be coupled with
specific write by the full set of data-validity constraints. The data-
validity constraints are expressed so that we specifically ask for n
shared reads to be coupled correctly. If we fail to find a solution
satisfying constraints for all n reads, then we repeatedly decrement
n, and attempt to find a solution that couples n−1 reads in the next
round, and so on. The procedure stops whenever a run (solution) is
found. The change required in the encoding to make this possible
is described below.

For every read event ri ∈ R, we introduce a new Boolean
variable, bi, that is true if the data-validity constraint for ri is
satisfied, and false otherwise. In addition, we consider an integer
variable bInti which is initially 0, and set to 1 only when bi
is true. This is done through a set of constraints, one for each
ri ∈ R: [(bi → bInti = 1) ∧ (¬bi → bInti = 0)]. Also,
for each ri ∈ R, we change the sub-term ∨w′Coupledri,w′ to
(tsr < tsf ) ⇒ (bi ⇒ ∨w′Coupledri,w′) in DV , forcing the
data-validity constraint for read ri to hold when bi is true. Note
that with these changes, we require a different theory, that is Linear
Arithmetic in the SMT solver to solve the constraints, compared
to the Difference Logic which was used for our original set of
constraints.

Initially, we set a threshold η to be |R|, the number of all read
events. In each iteration, we assert the constraint

∑
1≤i≤|R| bInti =

η, which specifies the number (η) of data-validity constraints that
should hold in that iteration. If no run can be predicted with the
current threshold η (i.e. the constraint solver reports unsatisfia-
bility), then η is decremented in each iteration, until the formula
is satisfiable. This way, when a satisfying assignment is found, it
is guaranteed to have the maximum number of reads that respect
data-validity possible for predictable run.

Note that once η < |R|, the predicted run is not theoretically
guaranteed to be a feasible run. However, in practice, when η is
close to |R| and a run is predicted, this run is usually feasible in the
program.
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7. Pruning executions for scalability
Identifying null-WR pairs using the lock-set based analysis and
then subjecting them to constraint checking is a precise method to
force null reads. However, in our experiments, we discovered that
the constraint solving approach does not scale well when runs get
larger. In this section, we propose a pruning technique for the runs
that removes a large prefix of them while maintaining the property
that any run predicted from the suffix will still be feasible. While
this limits the number of predictable runs in theory, we show that in
practice, it does not prevent us from finding errors (in particular, no
error was missed due to pruning in our experiments). Furthermore,
we show that in practice pruning improves the scalability of our
technique, in some cases by an order of magnitude.

Consider an execution σ and a null-WR pair α = (e, f). The
idea behind pruning is to first construct the causal partial order
of events of σ, and then remove two sets of events from it. The
first set consists of events that are causally after e and f (except
for some events, as described in detail below). The second set
is a causally prefix-closed set of events (a configuration) that are
causally before e and f , and where all the locks are free at the
end of execution of this configuration. The intuition behind this is
that such a configuration can be replayed in the newly predicted
execution precisely in the same way as it occurred in the original
run, and then stitched to a run predicted from the suffix, since the
suffix will start executing in a state where no locks are held.

In order to precisely define this run segment, we define a notion
of partial order on the set of events E that captures the causal
order. Let D denote the dependency relation between actions that
relates two actions of the same thread, reads and writes on the
same variable by different threads, and lock acquisition and release
actions of the same lock in different threads. We define the partial
order �⊆ E × E on the set of program events as the least partial
order relation that satisfies the condition that (ei, ej) ∈�whenever
ai = σ[i], aj = σ[j], i ≤ j, and (a, a′) ∈ D where ai and aj are
actions performed by events ei and ej , respectively.

Let us define ρα as the smallest subset of events of σ that
satisfies the following properties: (1) ρα contains events e and f ,
(2) for any event e′ in ρα, all events e′′ � e′ are in ρα, and
(3) for every event corresponding to a lock acquire in ρα, its
corresponding release event is also in ρα.

The intuition is that events that are not in ρα are not relevant for
the scheduling of the null-WR pair ; they are either far enough in the
future, or are not dependent on any of the events in ρα. The figure
below presents a run of a program with 4 threads that is projected
into individual threads. Here, e belongs to thread T1 and f belongs
to thread T2. The cut labeled ρα marks the boundary after which
all events are not causally before e and f , and hence, need not be
considered for the generation of the new run.

Next, we identify a causally prefix-closed set of events before e
and f to remove. For the null-WR pair α, define λα as the largest

subset of events of ρα that has the following properties: (1) it does
not contain e or f , (2) for any event e′ in λα, all events e′′ � e′

are in λα, and (3) for any event e′ in Ti such that e′ is the last
event of Ti in λα (with respect to vi), the lockset associated to e′

in Ti is empty. In the above figure, the curve labeled λα marks the
boundary of λα, and events T1, . . . , T4 have empty lock-sets.

T1 T2 T3T4

f

•
•

•• •

•
•

•

•• e

ρα

σα

t1

t2

t3

t4
λα

The run segment
relevant to a null-
WR pair α is then
defined as the set of
events in σα = ρα \λα
scheduled according to
the total order in σ (≤).
One can use a simple
worklist algorithm to
compute both ρα and
λα, and consequently
σα. This run segment is passed to the run prediction phase, in the
place of the whole run σ.

8. Implementation
We have implemented our approach in a tool named EXCEP-
TIONULL . Figure 3 demonstrates the architecture of EXCEP-
TIONULL . It consists of three main components: a monitor, a run
predictor, and a scheduler. The monitor and scheduler are built on
top of the PENELOPE tool framework, with considerable enhance-
ments and optimizations, including the extension of the monitoring
to observe values of shared variables at reads and writes. In the fol-
lowing, we will explain each of these components in more details.
Monitor: The monitor component has an instrumenter which uses
the Bytecode Engineering Library (BCEL) [4] to (automatically)
instrument every class file in bytecode so that a call to an event
recorder is made after each relevant action is performed. These
relevant actions include field and array accesses, acquisition and
releases of locks, thread creations and thread joins, etc., but ex-
clude accesses to local variables. The instrumented classes are then
used in the Java Virtual Machine (JVM) to execute the program
and get an observed run. For the purpose of generating the data-
validity constraints, the values read/written by shared variable ac-
cesses are also recorded. For variables with primitive types (e.g.
Boolean, integer, double, etc), we just use the values read/written.
Objects and arrays are treated differently; the object hash code (by
System.identityHashCode()) is used as the value every
time an object or an array is accessed.
Run Predictor: The run predictor consists of several components:
null-WR pair extractor, segment generator, constraint generator,
Z3 SMT solver, and run extractor. The null-WR pair extractor
generates a set of null-WR pairs from the observed run by the
static lock analysis described in Section 4. The segment generator
component, for each null-WR pair α = (e, f), isolates a part of
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run ρ that is relevant to α as described in Section 7 and passes it
to the constraint generator. Given a null-WR pair and the relevant
segment, the constraint generator produces a set of constraints,
based on the algorithm presented in Section 5, and passes it to the
Z3. Any model found by Z3 corresponds to a concurrent schedule.
The run extractor component generates a run based on the model
returned by Z3. When Z3 cannot find a solution, the constraint
generator iteratively weakens the constraints (see Section 6) and
calls Z3 until a solution is found.
Scheduler: The scheduler is implemented using BCEL [4] as well;
we instrument the scheduling algorithm into the Java classes using
bytecode transformations, so that the program interacts with the
scheduler when it is executing the same set of events that were
monitored. The scheduler, at each point, looks at the predicted run,
and directs the appropriate thread to perform a sequence of n steps.
The threads wait for a signal from the scheduler to proceed, and
only then do they execute the number of (observable) events they
are instructed to execute. Afterwards, the threads communicate
back to the scheduler, relinquishing the processor, and await further
instructions. The communication between the scheduler and the
threads is implemented using wait-notify synchronization which
allows us to have a finely orchestrated scheduling process.
Data-Race Prediction: Our proposed monitoring, logic-based
precise and relaxed prediction on statically pruned runs, and the
rescheduling is a general framework and can be adapted to errors
other than null-pointer dereferences as well. In order to study the
effects of relaxed prediction and static pruning, we implemented
a data-race prediction unit as well to our tool, as data-races are a
more well studied class of errors for which precise prediction has
been studied. Due to lack of space, we do not discuss the details of
the data race detection unit here.

9. Evaluation
We subjected EXCEPTIONULL to a benchmark suite of 13 con-
current programs, against several test cases and input parameters.
Experiments were performed on an Apple MacBook with 2 Ghz
Intel Core 2 Duo processors and 2GB of memory, running OS X
10.4.11 and Sun’s Java HotSpot 32-bit Client VM 1.5.0.
Benchmarks. The benchmarks are all concurrent Java programs
that use synchronized blocks and methods as means of syn-
chronization. They include RayTracer from the Java Grande
multi-threaded benchmarks [3], elevator from ETH [28], Vector,
Stack, HashSet and StringBuffer from Java libraries,
Pool (three different releases) and StaticBucketMap from
the Apache Commons Project [5], Apache FtpServer from
[7], Hedc from [6], and Weblech from [8]. elevator simulates
multiple lifts in a building; RayTracer renders a frame of an ar-
rangement of spheres from a given view point; Pool is an object
pooling API in the Apache Commons suite; StaticBucketMap
is a thread-safe implementation of the Java Map Interface; Apache
FtpServer is a FTP server by Apache; and Vector, Stack,

HashSet and StringBuffer are Java libraries that respec-
tively implement the concurrent vector, the concurrent stack, the
HashSet and the StringBuffer data structures. Hedc is a Web
crawler application and Weblech is a websites download tool.
Experimental Results. Table 1 illustrates the experimental re-
sults for null-pointer dereference prediction; information is pro-
vided about all the three phases of monitoring, run prediction, and
scheduling.

In the monitoring phase, the number of threads, shared vari-
ables, locks, the number of potential interleaving points (i.e. num-
ber of global events), and the time taken for monitoring are re-
ported. For the prediction phase, we report the number of null-
WR pairs in the observed run, the number of precisely predicted
runs, and the additional number of predicted runs after relaxing the
data-validity constraints (when there is no precisely predicted run
for a null read-write pair). In the scheduling phase, we report the
total number of schedulable predictions among the predicted ones.
Finally, we report the average time for prediction and rescheduling
of each run, the total time taken to complete the tests (for on all
phases on all predicted executions), and also the number of errors
found using the precise and relaxed predicted runs.
Errors Found. In almost all the cases, the errors manifested in
the form of raised exceptions during the execution. In Weblech,
in addition to a null-pointer dereference, an unwanted behavior
occurred (the user is asked to push a stop button even after the
website is downloaded completely, resulting in non-termination!).
RayTracer has a built-in validation test which was failed in some
of the predicted runs. For some of the test cases of Vector and
Stack the output produced was not the one expected. We report
the errors found in two categories; those that were found through
the precise prediction algorithm, and those that were found after
weakening data-validity constraints (relaxation).
The effect of pruning: Figure 4 illustrates the substantial impact
of our pruning algorithm in reducing prediction time. We present
prediction times with and without using the pruning algorithm.
Note that the histogram is on a logarithmic scale. For example,
in the case of Weblech, the prediction algorithm is about 16
times faster with pruning. Furthermore, all errors found without the
pruning were found on the pruned runs, showing that the pruning
did not affect the quality of error-finding on our benchmarks.
Data Race Detection. Table 2 presents the results of data-race
prediction on our benchmarks using the same observed runs as in
the null-reads prediction. For each benchmark we report the total
number of data-races found; these are all distinct races identified
by the code location of the racy access. We also report the number
of distinct variables involved in data-races. For brevity, information
about different test cases is aggregated for each benchmark (see [1]
for more details).
Observations: EXCEPTIONULL performs remarkably well, pre-
dicting a large number of feasible program runs on which there are
null-pointer dereferences and data-races. In total, it finds about 40
executions with null-pointer dereferences and 60 races, which to
our knowledge, is the most successful attempt at finding errors on
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Table 2. Experimental Results for data race prediction.
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Elevator
(566)

Data 7.3s 3 116 8 14K 7.4s 0 - - - - 7.9s 0 0
Data2 7.3s 5 168 8 30K 7.4s 0 - - - - 8.9s 0 0
Data3 19.2s 5 723 50 150K 19.0s 0 - - - - 58.5s 0 0

RayTracer
(1.5K)

A-10 5.0s 10 106 10 648 5.0s 9 9 - 9 5.6s 50.5s 1∗ 0
A-20 3.6s 20 196 20 1.7K 4.4s 19 19 - 19 6.7s 2m15s 1∗ 0
B-10 42.4s 10 106 10 648 42.5s 9 9 - 9 42.7s 6m24s 1∗ 0

Pool 1.2
(5.8K)

PT1 <1s 4 28 1 98 <1s 3 2 1 3 <1s 1.6s 2 0
PT2 <1s 4 29 1 267 <1s 3 0 0 - - 8.8s 0 0
PT3 <1s 4 20 3 180 <1s 26 0 23 16 1.2s 27.0s 0 3
PT4 <1s 4 24 3 360 <1s 32 2 21 15 2.5s 57.8s 0 1

Pool 1.3
(7K)

PT1 <1s 4 30 1 100 <1s 3 0 3 3 <1s 2.6s 0 0
PT2 <1s 4 31 1 271 <1s 3 0 0 - - 9.8s 0 0
PT3 <1s 4 20 3 204 <1s 35 0 30 19 1.4s 42.9s 0 0
PT4 <1s 4 23 3 422 <1s 62 1 48 29 2.2s 1m49s 0 1

Pool 1.5
(7.2K)

PT1 <1s 4 33 2 124 <1s 2 0 1 1 1.5s 1.5s 0 0
PT2 <1s 4 34 2 306 <1s 5 0 1 0 10.5s 10.5s 0 0
PT3 <1s 4 15 2 108 <1s 3 0 0 - - 4.1s 0 0
PT4 <1s 4 18 2 242 <1s 18 1 7 8 3.4s 27.4s 0 1

SBucketMap
(750)

SMT <1s 4 123 19 892 <1s 2 2 - 2 <1s 1.3s 1 0

Vector
(1.3K)

VT1 <1s 4 44 2 370 <1s 21 11 10 21 <1s 14.3s 2 0
VT2 <1s 4 34 2 536 <1s 31 21 10 31 1.1s 33.0s 1 0
VT3 <1s 4 34 2 443 <1s 32 22 10 32 <1s 22.1s 1 0
VT4 <1s 4 29 2 517 <1s 30 0 30 30 2s 59.4s 0 1∗
VT5 <1s 4 29 2 505 <1s 85 1 84 82 2s 2m57s 0 1∗

Stack
(1.4K)

ST1 <1s 4 29 2 205 <1s 11 6 5 11 <1s 5.5s 2 0
ST2 <1s 4 24 2 251 <1s 16 11 5 15 <1s 10.9s 1 0
ST3 <1s 4 24 2 248 <1s 17 12 5 17 <1s 10.3s 1 0
ST4 <1s 4 29 2 515 <1s 30 0 30 30 1.8s 53.2s 0 1∗
ST5 <1s 4 29 2 509 <1s 85 1 84 83 2.0s 2m51s 0 1∗

HashSet
(1.3K)

HT1 <1s 4 76 1 432 <1s 7 7 - 7 <1s 3.2s 1 0
HT2 <1s 4 54 1 295 <1s 0 - - - - <1s 0 0

StringBuffer
(1.4K)

SBT <1s 3 16 3 80 <1s 2 2 - 2 <1s 1.3s 1+ 0

Apache
FtpServer

(22K)
LGN 1m2s 4 112 4 582 60s 116 78 32 65 1m13s 2h14m46s 9 3

Hedc
(30K)

Std 1.7s 7 110 6 602 1.74s 18 9 1 10 11.7s 1m57s 1 0

Weblech
v.0.0.3

(35K)
Std 4.9s 3 153 3 1.6K 4.92s 55 10 29 30 16.26s 10m34s 1 1@

Total Number of Errors 27 14

Table 1. Experimental results for predicting null-reads. Errors tagged with ∗ represent test harness failures. Errors tagged with + represent
array-out-of-bound exceptions. Errors tagged with @ represent unexpected behaviors. All other errors are null-pointer dereference exceptions.

these benchmarks in the literature. Furthermore, all the errors are
completely reproducible deterministically using the scheduler.

We count exceptions raised in different parts of the code as
separate errors. More precisely, each error reported in Table 1
consists of a unique read-write pair in the code that were forced to
perform a null-read and that resulted in an error. For example, the
12 exceptions in FtpServer are raised in 7 different functions
and at different locations inside the functions, and involve null-
pointer dereferences on 5 different variables.

The prediction algorithm works extremely well— while there
were several runs that were predicted in the precise model, the re-

laxed prediction gives a lot more predictions, and a large fraction of
these were schedulable. The time taken for prediction and schedul-
ing are very reasonable for the kind of targeted analysis that we
perform, despite the use of fairly sophisticated static analysis and
logic-solvers.

The number of data-races found using relaxed prediction fur-
ther shows the efficacy of relaxed prediction. A further 17 data-
races were found using relaxed prediction, showing that predicting
beyond the maximal causal model can be effective even in finding
errors other than null-pointer dereferences.
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quentially consistent systems. Technical report, University of Illinois
at Urbana-Champaign, October 2011.

[24] N. Sinha and C. Wang. Staged concurrent program analysis. In FSE,
pages 47–56, 2010.

[25] N. Sinha and C. Wang. On interference abstractions. In POPL, pages
423–434, 2011.

[26] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound
predictive race detection in polynomial time. In POPL, pages 387–
400, 2012.

[27] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving
threads to expose atomicity violations. In FSE, pages 37–46, 2010.

[28] C. von Praun and T. R. Gross. Object race detection. SIGPLAN Not.,
36(11):70–82, 2001.

[29] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic predictive
analysis for concurrent programs. In Proceedings of the 2nd World
Congress on Formal Methods, FM ’09, pages 256–272, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[30] C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based symbolic
analysis for atomicity violations. In TACAS, pages 328–342, 2010.

[31] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of
atomicity errors in concurrent programs. In PPoPP, pages 137–146,
2006.

[32] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. IEEE Transactions on Software Engineering,
32:93–110, 2006.

[33] J. Yi, C. Sadowski, and C. Flanagan. SideTrack: generalizing dynamic
atomicity analysis. In PADTAD, pages 1–10, 2009.

[34] W. Zhang, J.Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T. W.
Reps. Conseq: detecting concurrency bugs through sequential errors.
In ASPLOS, pages 251–264, 2011.

[35] W. Zhang, C. Sun, and S. Lu. Conmem: detecting severe concurrency
bugs through an effect-oriented approach. In ASPLOS, pages 179–192,
2010.



QuickRec: Prototyping an Intel Architecture Extension
for Record and Replay of Multithreaded Programs

∗

Gilles Pokam, Klaus Danne,
Cristiano Pereira, Rolf Kassa, Tim Kranich,

Shiliang Hu, Justin Gottschlich

Intel Corporation

{gilles.a.pokam, klaus.danne,
cristiano.l.pereira, rolf.kassa, tim.kranich,

shiliang.hu, justin.e.gottschlich}
@intel.com

Nima Honarmand, Nathan Dautenhahn,
Samuel T. King, Josep Torrellas

University of Illinois at Urbana-Champaign

{honarma1, dautenh1, kingst, torrella}
@illinois.edu

ABSTRACT

There has been significant interest in hardware-assisted determinis-
tic Record and Replay (RnR) systems for multithreaded programs
on multiprocessors. However, no proposal has implemented this
technique in a hardware prototype with full operating system sup-
port. Such an implementation is needed to assess RnR practicality.

This paper presents QuickRec, the first multicore Intel Architec-
ture (IA) prototype of RnR for multithreaded programs. QuickRec
is based on QuickIA, an Intel emulation platform for rapid proto-
typing of new IA extensions. QuickRec is composed of a Xeon
server platform with FPGA-emulated second-generation Pentium
cores, and Capo3, a full software stack for managing the recording
hardware from within a modified Linux kernel.

This paper’s focus is understanding and evaluating the imple-
mentation issues of RnR on a real platform. Our effort leads to
some lessons learned, as well as to some pointers for future re-
search. We demonstrate that RnR can be implemented efficiently
on a real multicore IA system. In particular, we show that the rate
of memory log generation is insignificant, and that the recording
hardware has negligible performance overhead. However, the soft-
ware stack incurs an average recording overhead of nearly 13%,
which must be reduced to enable always-on use of RnR.
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1. INTRODUCTION
Deterministic Record and Replay (RnR) of multithreaded pro-

grams is an appealing mechanism for computer systems builders.
RnR can recreate past states and events, by recording key infor-
mation while a program runs, restoring to a previous checkpoint,
and replaying the recorded log to force the software down the same
execution path. With this mechanism, system designers can debug
applications [1, 4, 6, 17, 32, 34, 41], withstand machine failures [5],
and improve the security of their systems [15, 16].

To replay a program, an RnR system must capture all sources of
non-determinism. For multithreaded programs running on multi-
cores, there are two key sources of non-determinism. The first is
the inputs to the execution, such as effects and return values of sys-
tem calls or occurrence of signals. The second is the order of the
inter-thread communications, which manifests as the interleaving
of the inter-thread data dependences through the memory system.
While the first source of non-determinism can be captured in soft-
ware with relatively low overhead, doing the same to record the
second source typically imposes significant slowdowns.

To record memory access interleaving with low overhead, re-
searchers have proposed several hardware assisted RnR designs
(e.g., [3, 7, 12, 13, 23, 24, 25, 26, 30, 31, 36, 39, 40]). These
proposals have outlined RnR systems that have negligible over-
head during execution recording and can operate with very small
log sizes. To evaluate these systems, the authors typically imple-
ment their techniques in software-based simulators. In addition,
they typically run their simulations without an operating system
that manages and virtualizes their special hardware. The exceptions
are LReplay [7], which extends and simulates the RTL (Register
Transfer Level) model of a chip multiprocessor and does not dis-
cuss system software issues, and Capo [24] and Cyrus [12], which
use an RnR-aware operating system on top of simulated hardware.

Although this evaluation approach helps assess the efficacy of
the proposed algorithms, it ignores practical aspects of the design,
such as its integration with realistic cache coherence hardware, cop-
ing with relaxed memory models, and virtualizing the recording
hardware. In addition, promoting RnR solutions into mainstream
processors requires a co-design with the system software that con-
trols the hardware, and omitting software effects from the evalua-
tion presents only part of the overall performance picture.

To evaluate the practical implementability of hardware-assisted
RnR, we have built QuickRec, the first multicore IA-based proto-
type of RnR for multithreaded programs. QuickRec is based on
QuickIA [37], an Intel emulation platform for rapid prototyping of
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Figure 1: Photograph of the QuickRec prototype with FPGAs in CPU sockets (a); architecture of the QuickIA processor-emulation platform
(b); and architecture overview of the extended Pentium core in QuickRec, where circled numbers identify the main CPU touch points required
to enable recording (c).

new IA extensions. QuickRec is composed of a Xeon server plat-
form with FPGA-emulated second-generation Pentium cores, and
Capo3, a full software stack for managing the recording hardware
from within a modified Linux kernel.

This paper focuses on identifying and characterizing RnR-related
implementation issues. Specifically, we describe how QuickRec
records the memory access interleaving of threads, and how to in-
tegrate this support into a commodity IA multicore. We discuss
subtle issues related to capturing the ordering of instructions with
multiple memory accesses, and the interaction with the memory
consistency model. We also discuss how Capo3 records the inputs
to processes, manages the replay logs, and virtualizes the hardware
components. We provide data characterizing QuickRec’s recording
performance and log parameters. Overall, our evaluation demon-
strates that RnR can be practical for real IA multicore systems.

This effort has led to some lessons learned, as well as to some
pointers for future research directions. In particular, we find that the
main challenge of RnR systems is to take into account the idiosyn-
crasies of the specific architecture used, such as single instructions
producing multiple memory transactions. Further, we find that the
software stack has a dominant role in the overall system perfor-
mance, as it manages the logs. Based on these experiences, we sug-
gest focusing future research on recording input events efficiently,
and on replay techniques that are tolerant of the micro-architectural
details of the system.

The main contributions of this work are the following:

• The implementation of the first IA multicore prototype of RnR for
multithreaded programs. The prototype includes an FPGA design
of a Pentium multicore and a Linux-based full software stack.

• A description of several key implementation aspects. Specifically,
we show how to efficiently handle x86 instructions that produce
multiple memory transactions, and describe the elaborate hardware-
software interface required for a working system.

• An evaluation of the system. We show that the rate of mem-
ory log generation is insignificant, given today’s bus and memory
bandwidths. In addition, the recording hardware has negligible per-
formance overhead. However, the software stack incurs an average
recording overhead of nearly 13%, which must be reduced to en-
able always-on use of RnR.

This paper is organized as follows: Section 2 introduces the
QuickRec recording hardware; Section 3 describes the Capo3 sys-
tem software; Section 4 characterizes our prototype; Section 5 dis-
cusses using replay for validation; Section 6 outlines related work;
Section 7 describes lessons learned; and Section 8 concludes.

2. QuickRec RECORDING SYSTEM
The QuickRec recording system prototyped in this work is built

on a FPGA processor-emulation platform called QuickIA. This sec-
tion introduces QuickIA and then describes the changes we added
to support RnR. Figure 1a shows a picture of the QuickRec record-
ing system testbed.

2.1 QuickIA Processor Emulation Platform
The QuickIA processor emulation platform [37] is a dual-socket

Xeon server board in which Xeon CPUs are substituted with FPGA
modules from XtreamData [38]. Each such FPGA module is com-
posed of two Compute FPGAs and one Bridge FPGA, as shown in
Figure 1b. Each Compute FPGA implements a second-generation
Pentium core with private L1 and L2 caches. The Bridge FPGA
implements the interconnect between the two Compute FPGAs and
the Intel Front Side Bus (FSB), which connects the two CPU sock-
ets to the Memory Controller Hub (MCH) on the platform. This
allows both CPU sockets to be fully cache coherent, with full ac-
cess to memory and I/O. The QuickIA system implements a MESI
coherence protocol with L2 as the point of coherence.

The Pentium cores used in the QuickIA emulation platform are
fully synthesizable. Each core features a dual-pipeline in-order
CPU with floating-point support. In addition, each core is extended
with a set of additional features to reflect the state of the art of mod-
ern processors. These changes include L1 cache line size increase
to 64 bytes, Memory Type Range Registers, physical address ex-
tension, and FSB xAPICs.

The four emulated Pentium cores run at 60MHz. While this
clock frequency is low, the memory bandwidth is also low (24MB/s),
which means that the ratio between CPU speed and memory band-
width is similar to that of today’s systems. The QuickIA system
includes 8GB of DDR2 memory and basic peripherals (network,
graphics card and HDD), and can boot a vanilla SUSE Linux dis-
tribution. The basic platform parameters are shown in Table 1.

2.2 Recording Interleaving Non-Determinism
To record the non-determinism of memory access interleaving,

the RTL of the synthesizable Pentium core is augmented to capture
the order of memory accesses. This support includes mechanisms
to break down a thread’s execution into chunks (i.e., groups of con-
secutive dynamic instructions), and then order the chunks across
cores. A significant effort was invested in integrating this sup-
port into the Pentium core without adding unnecessary complex-
ity. Some of the main challenges we faced include dealing with the
IA memory model, and coping with x86 instructions with multi-



Cores 4 Pentium cores

Clock 60MHz

L1 data 32KB, private, WB, 8-way assoc,

cache 64B line size, 1-cycle latency

L2 512KB, private, WB, 16-way assoc,

cache 64B line size, 4-cycle latency

Coherence MESI

Memory 8GB DDR2, 24MB/s bandwidth (measured by

STREAM [22]), 90-cycle round-trip latency

Table 1: QuickIA platform parameters.

ple memory accesses. The extended Pentium core is then synthe-
sized and downloaded into FPGAs to boot up the QuickRec emula-
tion platform. A high-level overview of the extended Pentium core
is shown in Figure 1c. In the figure, the Memory Race Recorder

(MRR) box implements the functionality for recording memory ac-
cess interleaving, while the circled numbers indicate the CPU touch

points required to enable it.

2.2.1 Capturing and Ordering Chunks

The QuickRec recording system implements a mechanism simi-
lar to the Intel MRR [30] to divide a thread’s execution into chunks.
It adds Bloom filters next to the L1 cache to capture the read and
write sets of the memory accesses in a chunk (R-set and W-set in
Figure 1c). The line addresses of the locations accessed by loads
and stores are inserted into their respective set at retirement and at
global observation time, respectively. A thread’s chunk is termi-
nated when the hardware observes a memory conflict (i.e., a data
dependence) with a remote thread. Conflicts are detected by check-
ing the addresses of incoming snoops against addresses in the read
and write sets. When a conflict is detected, a counter (Counter

in Figure 1c) with the current chunk size is logged into an internal
chunk buffer (CBUF in Figure 1c), along with a timestamp that pro-
vides a total order of chunks across cores. The chunk-size counter
counts the number of retired instructions in the chunk. After a
chunk is terminated, the read and write sets are cleared, and the
chunk-size counter is reset.

In addition to terminating a chunk on a memory conflict, Quick-
Rec can be configured to terminate a chunk when certain system
events occur as well, such as an exception or a TLB invalidation.
A chunk also terminates when the 20-bit chunk-size counter over-
flows. Additionally, the addresses of lines evicted from L2 are
looked up in the read and write sets and, in case of a hit, the chunk
also ends. This is done because the read and write sets would not
observe future coherence activity on these evicted lines. Further
information on chunk termination is provided in Section 2.3.

Figure 1c shows the main CPU touch points required to enable
the chunking mechanism described above. The first CPU touch
point is hooked-up to the external L1 snoop port to allow snoops
to be forwarded to the MRR for address lookups. The second and
third CPU touch points are hooked-up to the U and V integer ex-
ecution pipelines of the Pentium core. They provide diverse func-
tionalities, such as forwarding load and store line addresses to the
MRR for insertion into the read and write sets, and forwarding the
instruction retirement signal to the MRR to advance the chunk-size
counter.

One of the complexities we encountered when integrating the
chunking mechanism into the Pentium core was keeping updates to
the read and write sets within one cycle, so that they can be per-
formed in parallel with a cache access. The problem is that only
the lower bits of the addresses are available at the beginning of a

cache cycle, as the upper bits (tag bits) are provided usually late in
the cycle, after a DTLB access. To preserve a single cycle for the
read and write set update, addresses (tag plus set bits) are buffered
into a latch stage before they are fed to the Bloom filter logic. To
compensate for the delayed update of the read and write sets, these
buffers are also looked-up on external snoops, at the cost of addi-
tional comparators for each address buffer.

2.2.2 Integration into the IA Memory Model

The IA memory model allows a load to retire before a prior store
to a different address has committed, hence effectively ordering
the load before the prior store in memory. This memory model is
called Total Store Order (TSO). In this situation, using the retired
instruction count is not sufficient to guarantee that loads and stores
are ordered correctly during replay. This is because, during replay,
instructions are executed in program order. Hence, regardless of
when the store committed to memory during the recorded execu-
tion, the store is evaluated before the load during replay. To ad-
dress this problem, QuickRec implements a solution similar to the
one proposed in CoreRacer [31] to handle TSO. The idea is to track
the number of pending stores in the store buffer awaiting commit
and, at chunk termination, append the current number to the logged
entry. This number is called the Reordered Store Window (RSW)
count. The MRR is hooked-up to the memory execution unit to
enable this functionality.

2.2.3 Instruction Atomicity Violation

In the x86 ISA, an instruction may perform multiple memory
accesses before completing execution. For instance, a split cache
line access, which is an access that crosses a cache line bound-
ary, requires more than one load or store operation to complete. In
addition, some complex instructions require several memory op-
erations. For example, the increment instruction (INC) performs a
load and a store operation. At the micro-architecture level, these in-
structions are usually broken down into multiple micro-operations
or µops. An Instruction Atomicity Violation (IAV) occurs if an
event causes the QuickRec recording system to log a chunk in
CBUF in the middle of such an instruction execution. An exam-
ple of such an event is a memory conflict. Because software is
usually oblivious of split cache line accesses and µop execution,
IAVs make it difficult for software to deterministically reproduce a
program execution.

Figure 2 shows an example. Thread T0 executes instruction INC
A, which increments the value in memory location A. The instruc-
tion breaks down into the three µops shown in the figure: a read
from A into user-invisible register rtmp, the increment of rtmp, and
the store of rtmp into A. At the same time, thread T1 writes A.
Suppose that the operations interleave as shown in the time line.

INC  A

µop01: rtmp← A

µop02: rtmp← rtmp + 1

µop03: A← rtmp

T0 T1

A ← r1

1

2

t0

t1

t2

t3

Global Time

Figure 2: Instruction atomicity violation (IAV) example.



When the store in T1 executes at time t2, a conflict with T0 is
detected, since µop01 has read from the same address at t0. There-
fore, QuickRec terminates the chunk in T0 and logs an entry in
T0’s CBUF. This chunk is ordered before the store in T1. However,
since the INC instruction has not yet retired, INC is not counted
as belonging to the logged chunk. Then, when the INC instruc-
tion executes µop03 and retires at t3, a conflict with T1 is detected.
This causes QuickRec to terminate the chunk in T1 and log an en-
try in T1’s CBUF that contains the store. The logged chunk is
ordered before the currently-executing chunk in T0, which is as-
sumed to include the INC instruction. Consequently, in this naive
design, the replay would be incorrect. Indeed, while during record-
ing, µop01 occurred before the store in T1, which in turn occurred
before µop03, during replay, the store in T1 will be executed before
the whole INC instruction.

This problem occurs because the INC instruction suffers an IAV.
Although the instruction has performed some memory transactions
during the earlier chunk in T0, since the instruction has not retired
when the chunk in T0 is logged, the instruction is counted as be-
longing to the later chunk in T0.

The QuickRec recording system solves this problem by moni-
toring the retirement of the multiple memory accesses during the
execution of the instruction. Specifically, it uses a dedicated IAV
counter to count the number of retired memory transactions for
a multi-line or multi-operation instruction (Figure 3). The IAV
counter is incremented at every retired memory transaction, and
is reset when the instruction retires. At chunk termination, if the
IAV counter is not zero, the current instruction has not retired, and
an IAV has been detected. In this case, QuickRec saves the value
of the IAV counter in the log entry of the terminated chunk. Since,
during replay, we know exactly the number (and sequence order) of
the memory transactions that need to occur in a given instruction,
by reading the IAV counter and examining the RSW count (Sec-
tion 2.2.2), we know how many memory operations of the subse-
quent instruction need to be performed before completing the cur-
rent chunk. In our actual implementation, the IAV counter is in-
cremented by 1 for each access in a split cache line reference, and
by 2 for any other access. With this design, an odd counter value
indicates that the chunk terminated between the accesses of a split
cache line reference.

Chunk entry

IAV

Counter

µop Ld/St retirement

µop Ld/St split

Instr. retirement

Event recording 

signal

IAV

Figure 3: IAV counter mechanism.

Consider again the example of Figure 2. When T1 executes the
store at time t2 and a conflict is detected in T0, the INC instruction
has not yet retired. The IAV counter in T0 is 2, since the only re-
tired access is that of µop01. Therefore, an IAV is detected. The
QuickRec recording system terminates the chunk in T0 and, as it
logs the chunk, appends to it the value of the IAV counter. This log
entry conveys to the replayer the information that an IAV has oc-

curred in the chunk and that only the first memory µop had retired
at the time of chunk termination.

Instruction atomicity violation was first introduced in [29] and
then described in [31]. The main difference with [31] is that we log
the number of retired memory transactions instead of the number of
transferred bytes. The advantage of logging memory transactions
over transferred bytes is the reduction in the log size.

2.2.4 Log Management

CBUF is organized into four entries, where each is as large as
a cache line. When a chunk terminates, a 128-bit chunk packet is
stored in CBUF. When a CBUF entry is full, it is flushed by hard-
ware to a dedicated memory region called CMEM. To minimize the
performance impact, this is done lazily, during idle cycles, by by-
passing the caches and writing directly to memory. Occasionally,
however, the chunking mechanism must stall the execution pipeline
to allow CBUF to drain to CMEM to avoid overflow.

There are two main packet types inserted into CBUF, namely
the timestamp packet (TSA) and the chunk packet. Both are very
conservatively sized as 128-bit long. Once a TSA is logged for a
thread, subsequent chunk packets for that thread only need to log
the timestamp difference (TSD) with respect to the last TSA. The
TSA is then logged again when the value in TSD overflows. Note
that this also causes a chunk termination. Figure 4 shows the format
of these two packets. The chunk packet contains the TSD, chunk
size (CS), and RSW and IAV counts. It also contains a Reason

field, which indicates why the chunk was terminated — e.g., due
to a RAW, WAR or WAW conflict, an exception, or a chunk-size
overflow. Table 2 lists the main reasons for terminating chunks.

Format Reason TSD CS RSW IAV Reserved

0              2   3                  6  7               38   39             58   59           63  64               79 80             127

3 bits 4 bits          32 bits           20 bits          5 bits           16 bits           48 bits

Format Reserved TSA Reserved

0       2  3                   6  7                                                      70  71                                              127

3 bits 4 bits                           64 bits                                         57 bits

Chunk Packet

Timestamp Packet

Figure 4: Packet formats in QuickRec.

Type Reason

RAW RAW conflict between chunks

WAR WAR conflict between chunks

WAW WAW conflict between chunks

WAB Both WAR and WAW conflicts between chunks

EXCEPT Exception, interrupt, far call, or far return

EVICT Line eviction from L2 that hits the R-set or W-set

CS_OVERFLOW Chunk size overflow

TLBINV TLB invalidation

XTC Explicit chunk termination instruction

Table 2: Main reasons for terminating chunks. WAB (Write-After-
Both) is when a write in one chunk hits in both the read and the
write set of another chunk.



2.3 Programming Interface
The QuickRec recording system contains a set of registers to

configure and program the hardware. For instance, using these reg-
isters, the hardware can be programmed to record memory non-
determinism for user-level code only, or for both user- and system-
level code. It can also be programmed to terminate a chunk under
certain conditions only, such as a specific type of conflict or ex-
ception. Privileged software can also specify where in memory the
logs are written for each recorded thread. The QuickRec recording
system also has a status register that is updated at chunk termination
time to capture the state of the machine at that point. Among other
information, it captures the reason for the chunk termination. Some
of its information is copied to the Reason field of the logged chunk
packet. A more detailed discussion of the programming interface,
and how the system software uses it to manage the QuickRec hard-
ware is provided in Section 3.3.

QuickRec extends the ISA with two new instructions: one that
terminates the current chunk (XTC), and one that terminates the
current chunk and flushes CBUF to memory (XFC). The use of
these two instructions is restricted to privileged software. Examples
of their use are discussed in Sections 3.4 and 3.6.

2.4 Other Issues
Because the main purpose of this work is to demonstrate the fea-

sibility of hardware-assisted RnR, this prototype only addresses the
issues that are critical to support RnR for the majority of programs.
For instance, the prototype only supports Write-Back (WB) mem-
ory [14], which constitutes the majority of memory accesses in cur-
rent programs. Memory accesses to Uncacheable (UC) or Write-
Combining (WC) memory are not tracked, and cause the system to
terminate a chunk. Chunking is resumed when the next access to
WB memory occurs.

In some cases, the IA memory model allows accesses to WB
memory to have different ordering semantics than TSO. For in-
stance, in fast string operations, a store to WB memory can be re-
ordered with respect to a prior store. To ensure that QuickRec’s
RSW and IAV support work properly, we disable this feature, so
that all loads and stores obey TSO semantics.

Although we do not discuss how to extend our mechanisms to
support Hyperthreading, the changes required to do so are minimal.
In modern IA cores, there already exist mechanisms for detecting
conflicts between the different hardware thread contexts sharing the
same cache. Therefore, in order to enable RnR on a Hyperthreaded
core, one would only need to replicate certain resources for each
hardware thread context (e.g., the read and write sets).

3. Capo3 SYSTEM SOFTWARE
To manage the QuickRec hardware, we built a software system

called Capo3. Capo3 draws inspiration and borrows many of the
concepts and principles from Capo [24], a system designed for
hardware-assisted RnR. However, Capo3 must run on real hard-
ware, and as such, we encounter several issues that were abstracted
away in Capo due to using simulated hardware. In this section, we
compare Capo3 with Capo, describe its architecture, and focus on
several of its key aspects.

3.1 Comparing Capo3 with Capo
Capo3 uses some of the basic ideas introduced by Capo, includ-

ing the Replay Sphere and the Replay Sphere Manager (RSM). The
Replay Sphere abstraction is the single application (or a group of
applications) that should be recorded/replayed in isolation from the
rest of the system. The Replay Sphere Manager is a software com-

ponent that is responsible for correctly capturing non-deterministic
input and memory access interleaving.

Capo3 also uses the same basic techniques as Capo to record pro-
gram inputs, including interactions between the operating system
and processes (e.g., system calls and signals), and non-deterministic
instructions (i.e., rdtsc and cpuid). Recording these input events
guarantees that, during replay, the same data can be injected into
the user-mode address space. However, some system calls also af-
fect the kernel-mode data structures of the program. Hence, to en-
sure that their effects are deterministically recreated during replay,
we re-execute these system calls during replay.

To correctly capture kernel state, like in Capo, the RSM enforces
a total order of input events during recording. The same total order
is enforced during replay. This total order has major performance
and correctness implications, as shown in Sections 3.6 and 4.

Capo3 uses a different software architecture than Capo. Specif-
ically, it places the bulk of the RnR logic in the kernel — whereas
Capo used ptrace to capture key events with user-mode logic. More-
over, since Capo3 must virtualize real hardware, its design must
support a hardware/software interface to enable context switches,
record memory access interleaving when the kernel is running with
interrupts enabled, and manage subtle interactions between Quick-
Rec hardware and Capo3 software.

3.2 Capo3 Architecture
Capo3 implements the RSM as an extension to the Linux ker-

nel. To record an execution, a driver program initializes a Replay
Sphere using the RSM-provided interface. The RSM then logs the
input events, sets-up the MRR hardware to log the memory access
interleaving, and makes all these logs available to the driver pro-
gram that is responsible for the persistent storage and management
of the logs. Figure 5 shows the high-level architecture of the Capo3
software stack.
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Figure 5: Overall architecture of Capo3. Dashed boxes indicate
QuickRec-specific components.

Our decision to use a kernel-based implementation was driven
by the observation that the Linux kernel has well-defined places to
enable the kernel to interpose on processes. As a result, Capo3 only
requires the kernel to be augmented in a few key places, so it can
interpose on all system calls, signals, and memory copies between
processes and the kernel. These changes also allow Capo3 to vir-
tualize the QuickRec hardware by saving/restoring QuickRec state
upon a context switch. Overall, our kernel-based implementation
consists of roughly 3.4K lines of code, where the bulk of the code
is dedicated to managing the logs, and is well isolated from the rest
of the kernel.

There are four different sources of input non-determinism that
the RSM captures: system calls, data copied to user-mode address



spaces, signals, and non-deterministic processor instructions. To
bind these recorded events to their corresponding threads, the RSM
assigns a unique R-Thread ID to each recorded thread. During re-
play, each thread is guaranteed to get the same R-Thread ID. These
R-Thread IDs are also used to associate chunks recorded by the
QuickRec hardware with their corresponding threads.

3.3 Virtualizing the QuickRec Hardware
To virtualize the QuickRec hardware, the RSM uses the pro-

gramming interface outlined in Section 2.3. The main components
of this interface are the seven registers shown in the lower level of
Figure 5. Specifically, the Chunk Memory Pointer (CMEM_PTR)
points to CMEM, which is the in-memory buffer that contains the
logged chunk data. Each thread gets its own CMEM. The Chunk
Memory Index (CMEM_IDX) indicates the location in CMEM where
the next CBUF entry is to be written. This register is updated by
hardware as CBUF entries are written to memory. The Size Regis-
ter (CMEM_SZ) indicates the size of CMEM. The Threshold Reg-
ister (CMEM_TH) indicates the threshold at which a CMEM over-
flow interrupt is generated. The Control Register (MRR_CTL) en-
ables and disables chunking under certain conditions, while the Sta-
tus Register (MRR_STATUS) provides the status of the hardware.
These last two registers were described in Section 2.3. Finally, the
Flags Register (MRR_FLAGS) controls kernel-mode recording and
is discussed later.

It is the RSM’s responsibility to manage the CMEM buffers and
virtualize these hardware registers so that different threads can use
the hardware without having their chunk data mixed-up. In par-
ticular, this involves: (i) ensuring that a valid CMEM pointer is
configured before recording begins, (ii) allocating a new CMEM
buffer when the previous one fills-up, and (iii) writing to CMEM
any contents remaining in the CBUF before a thread is pre-empted.

When a CMEM buffer reaches its capacity, Capo3 writes it to a
file. Because there may be multiple full CMEM buffers in the sys-
tem waiting to be written to the file, the RSM serializes this write
operation using a work queue handled by a dedicated thread. This
work queue provides an effective back-pressure mechanism when
the buffer completion rate of the recorded threads exceeds the speed
of the thread that empties the queue. Specifically, when the work
queue becomes full, the RSM puts the recorded threads to sleep
until the work queue can catch up. This mechanism preserves cor-
rectness, although it may negatively impact recording performance.

3.4 Handling Context Switches
On a context switch, the RSM first executes an XFC instruction

to ensure that the current chunk terminates, and that all the residual
data in the processor’s CBUF are flushed to CMEM. This is needed
to avoid mixing the log of the current thread with the next thread.

Once this has been performed, the RSM saves and restores the
values of the registers in the MRR. Specifically, for the current
thread, it saves the registers that the hardware may have modified
during execution. They are the CMEM_IDX and MRR_FLAGS
registers. Then, before the next thread can execute, the RSM re-
stores the thread’s prior CMEM_PTR, CMEM_IDX, CMEM_SZ,
CMEM_TH, MRR_CTL, and MRR_FLAGS values, enabling it to
correctly resume execution.

3.5 Recording in Kernel Mode
Certain parts of the kernel can interact with a process’ address

space, creating the potential for the kernel to have races with user-
level instructions. The copy_to_user family of functions in the
Linux kernel is an example of such code. Hence, in order to record
all the memory access orderings that can affect the execution of an

application during replay, the QuickRec hardware must also cap-
ture the execution of these kernel-level memory accesses.

QuickRec provides a flag that, if set, allows the MRR to record
kernel instructions as well as user-mode instructions. Hence, to
record sections of the kernel such as copy_to_user(), our initial ap-
proach was to set that flag prior to entering copy_to_user() and
reset it after returning from copy_to_user(). The problem with
this approach is that an asynchronous interrupt (e.g., from a hard-
ware device) or a page fault can occur during the execution of
copy_to_user(). In this case, since the flag is still set, QuickRec
would incorrectly record the interrupt or page fault handler code.

Our solution to this problem is to have an MRR_FLAGS reg-
ister, where the least significant bit (LSB) acts as the previously-
mentioned flag. On entry to copy_to_user(), we set the LSB, while
on returning from it, we reset it. Moreover, the register operates as
a shift register. When an exception is taken, the register automati-
cally shifts left with a 0 being inserted into the LSB, which disables
recording. Upon returning from the exception handler (as indicated
by the iret instruction of x86), the register shifts right, restoring the
previous value of the LSB. If the exception has happened in the
middle of a copy_to_user(), this design disables recording as soon
as the exception is taken, and resumes it as soon as the execution
returns to copy_to_user().

3.6 Handling Input/Chunking Interactions
The RSM component that records the input log and the one that

manages the chunking log proceed almost independently from each
other, each creating a total order of their events. However, in our
initial implementation, we observed a subtle interaction between
the two components that resulted in occasional deadlocks.

The problem occurs if a chunk includes instructions from both
before and after and input event. In this case, the dependences
between chunks and between inputs may intertwine in a way that
causes deadlock.

As an example, consider Figure 6a, where chunks C1 and C2
execute on processors P1 and P2. Suppose that C2 first executes
an input event that gets ordered in the input log before an input
event in C1. Then, due to a data dependence from P1 to P2, C1 is
ordered in the chunking log before C2. We have recorded a cyclic
dependence, which makes the resulting logs impossible to replay
and, therefore, causes deadlock.

C1

C2

P1 P2

input 2

input 1

ti
m

e

(a) Deadlock in replay

C11

C22

P1 P2

input 2

input 1

C12

C21

(b) Deadlock avoided

Figure 6: Examples of dependences between input events (solid
lines) and between chunks (dashed lines).

To avoid this problem, Capo3 does not let a chunk include in-
structions from both before and after an input event. Instead, before
an input event is recorded, the RSM executes the XTC instruction
— therefore terminating the current chunk. With this approach,
the situation in Figure 6a transforms into the one in Figure 6b. In
this case, there are four chunks and the cyclic dependence has been
eliminated. Both input and chunk dependences are satisfied if we
replay the chunks in the C11, C21, C12 and C22 order.



Another issue related to the interaction between the two logs is
how the replayer can match the input log entries and the chunk log
entries generated by the same thread. Fortunately, this is easy, since
the RSM assigns a unique R-Thread ID to each thread (Section 3.2).
As the logs are generated, they are augmented with the R-Thread
ID of the currently-running thread. In particular, as the RSM writes
the CMEM buffers to the log, it attaches the current R-Thread ID
to the buffer’s data.

4. PROTOTYPE CHARACTERIZATION

4.1 Experimental Setup
We evaluate the QuickRec system by collecting and analyzing

both log data and performance measurements for a set of SPLASH-
2 benchmarks (Table 3). We execute each benchmark to comple-
tion, and show results for a default configuration of 4 threads run-
ning on 4 cores. In addition, we also assess the scalability of Quick-
Rec by analyzing runs with 1, 2, 4, and 8 threads. For our experi-
ments, we pin each application thread to a particular core. Thus, in
the default case, we assign each thread to its own core and, in the
8-threaded case, we assign two threads to each core. We implement
Capo3 as a kernel module in Linux 3.0.8.

Benchmark Input Size # of Instruc. (B)

Barnes nbody 8000 3.4

FFT -m 22 3.7

FMM -m 30000 5.3

LU -n 1024 3.0

LU-NC -n 1200 4.7

Ocean -n 1026 7.5

Ocean-NC -e1e-16 2.2

Radix -n 10000000 2.3

Raytrace teapot.env 0.3

Water 1000 molecules 5.4

Table 3: Characteristics of the benchmarks. The last column shows
the total number of instructions executed in the 4-threaded run in
billions. Water refers to Water-nsquare.

4.2 Log Analysis
In this section, we analyze the size and bandwidth requirements

of the logs generated during the recorded execution. In addition,
for the chunk log, we perform a detailed characterization. In all
cases, we consider logs without data compression.

4.2.1 Log Sizes and Bandwidth

Figure 7a shows the uncompressed size of the input and chunk
logs for each of the benchmarks and for the average case (AVG).
For each benchmark, we show data for 1-, 2-, 4-, and 8-threaded
runs. The size is given in bytes per million instructions. From
the bars, we see that the average log size produced by QuickRec
for 4 threads is 1,224 and 1,235 bytes per million instructions for
input logs and for chunk logs, respectively. These are small num-
bers. However, the Ocean-NC and Raytrace benchmarks generate
notably larger logs for 4-8 threads. This effect is mainly due to
the increased use of synchronization in the benchmarks, which in-
volves frequent calls to the futex() system call. As a result, the input
log size increases substantially. Also, since Capo3 terminates the
running chunk before recording an input event (Section 3.6), the
chunk log also grows substantially.

The average log sizes that we measure are in line with sizes re-
ported in previous work. For example, the log sizes reported for
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Figure 7: Analyzing the log sizes without data compression and the
resulting memory bandwidth requirements.

Cyrus [12], DeLorean [23], Rerun [13], and LReplay [7] are all
within approximately 0.5x–2x of ours. We also note that our num-
bers correspond to a simple, unoptimized RnR implementation,
and can easily be improved. As a simple example, consider the
log entry for a chunk in QuickRec (Figure 4). Of the 128 bits, in
most cases, only 80 bits are used for RnR. The remaining bits are
mostly used for debugging and characterization of the hardware.
If we eliminated them, we would get the average log sizes labeled
REDUCED-AVG in Figure 7a. Further log size reductions can be
attained with improved bit encoding.

Figure 7b shows the memory bandwidth requirements of log-
ging. The figure is organized as the previous one and shows band-
width in KB per second. From the average bars, we see that the
bandwidth for 4 threads is 40 KB/s and 43 KB/s for input and chunk
logs, respectively. These numbers, when combined, represent only
0.3% of the 24 MB/s bandwidth available in our prototype (Ta-
ble 1). Hence, the effect of logging on bus and memory contention
is very small. If we use the 80-bit chunk entries for the log (bars la-
beled REDUCED-AVG in Figure 7b), the bandwidth requirements
are slightly lower.

To reason about the bandwidth requirements of QuickRec’s log-
ging on modern computers, consider the following. A modern
multicore computer cycles at a higher frequency than our proto-
type, but it also has higher memory bandwidth. To understand the
impact of these changes, we recompiled and ran our benchmarks
on a dual socket Xeon server with 2.6 GHz E5-2670 processors.
We measured the elapsed time (and speedup over our prototype)
of the 4-threaded applications and scale the bandwidth numbers
accordingly. Assuming the 80-bit log entry per chunk, we ob-
tained an average bandwidth consumption across the benchmarks
of 17.9 MB/s (and 61.1 MB/s for Ocean-NC, which is bandwidth-
intensive). Given that the E5-2670 processor provides a memory
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Figure 8: Chunk size characterization.

bandwidth of up to 6.4 GB/s per core, the logging accounts for only
0.07% on average (and 0.23% in Ocean-NC) of the available band-
width of 4 cores. Based on these estimates, we conclude that the
bandwidth usage is negligible and will not have a negative impact
on the performance of real systems.

If we compress the logs using gzip’s default DEFLATE algo-
rithm, we attain an average compression ratio of 55% for chunk
logs and 88% for input logs. Hence, the average 4-threaded bench-
mark can be recorded for almost three days before filling up a ter-
abyte disk.

Finally, Figure 7a and Figure 7b also suggest that both the log
sizes and the bandwidth requirements scale reasonably as the num-
ber of threads increases from 1 to 8.

4.2.2 Chunk Characterization

Figure 8a shows the average size of the chunks in terms of retired
x86 instructions. Figure 8b shows the distribution of chunk sizes
for 4-threaded runs. On average, the size of a chunk for 4-threaded
runs is 39K. However, Figure 8b shows that, while many chunks
are large (e.g., more than 80% of the chunks in Barnes, LU, and
LU-NC are larger than 10,000), there are many chunks with fewer
than 1,000 instructions. For three benchmarks, there is a significant
fraction of zero-sized chunks, which mostly result from explicitly
terminating a chunk unconditionally at input events. This effect can
be avoided by changing Capo3 or the hardware.

Figure 9 details the chunk termination reasons, using the cate-
gories shown in Table 2, except that exceptions, chunk-size over-
flows, and TLB invalidations are grouped together in Other. From

the figure, we see that the largest contributor to chunk termination
is cache line evictions. In the QuickRec hardware, a chunk must
be terminated if a line that is evicted from the L2 hits the read set
or the write set in the same core. This is because subsequent snoop
requests to that line are not delivered to the MRR; they are filtered
out by the L2. Techniques to mitigate this behavior will contribute
to reducing the number of chunks.
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Figure 9: Chunk termination reasons.

Conflicts due to WAR, RAW, WAW and WAB are the second
most prevalent reason of chunk terminations. Another frequent rea-
son is explicit chunk termination with XTC. This termination rea-
son is common when we have more threads than processors (i.e., in
the 8-threaded runs). In this case, there are many context switches
which use XTC. This reason is also common if the benchmark has
numerous input events, such as signals or system calls, which re-
quire explicit use of XTC to obtain a total order of events. For
example, this is the case for Raytrace and Ocean-NC, which, as
shown in Figure 8b, have a large number of zero-sized chunks.

To deal with instruction reordering and instruction atomicity vi-
olations, QuickRec appends RSW and IAV information to chunk
entries. Figure 10 displays the fraction of chunks that are associ-
ated to non-zero RSW and/or IAV values. The figure reveals that
such chunks are common. For 4-threaded runs, an average of 16%
of the chunks are RSW or IAV chunks. In fact, both RSW-only and
IAV-only chunks are common. One interesting case is that of Radix,
where the fraction of IAV chunks is over 40%. The reason is that
Radix has a long-running tight loop with several multi-memory-
operation instructions. FFT has many RSW-only chunks, which re-
sult from executions where loads and stores are interleaved. Over-
all, RnR systems must be designed to handle these cases.
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Figure 10: RSW and IAV characterization.

4.3 Performance Measurements
To measure the overhead of QuickRec’s different components,

we ran each benchmark in five different configurations. First, na-



tive is the normal execution with no recording. Second, in hw-only,
the MRR hardware is enabled and writes chunk data to main mem-
ory, but otherwise no other component of the system is enabled.
This configuration measures the overhead of the extra memory traf-
fic generated by the MRR. Third, in input, the RSM only logs the
sources of input non-determinism described in Section 3.2 and the
MRR is disabled. Fourth, chunk augments the hw-only configura-
tion by having the RSM dump the CMEM buffers to a file; no input
is recorded. Finally, combined is a full recording run where both
input and chunk data are processed by the RSM. To reduce the OS-
induced noise, each configuration is run five times and the results
are averaged. Each run executes with four threads.

Figure 11 shows the execution time of each configuration nor-
malized to the execution time of native. The figure shows that,
in most benchmarks, recording both input and chunk logs only in-
curs a 2–4% overhead. The main exceptions are Ocean-NC and
Raytrace, which suffer an overhead close to 50%. As indicated in
Figure 7a, these two benchmarks perform substantial synchroniza-
tion, which involves frequent calls to the futex() system call and,
often, results in putting threads to sleep. On average across all of
the benchmarks, the recording overhead is 13%.
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Figure 11: Execution time with each recording configuration for
four-threaded executions. The bars are normalized to the execution
time of native.

Interestingly, the recording overhead is entirely due to the soft-
ware stack. Indeed, the hardware overhead, as shown in hw-only,
is negligible. We also see that the software overhead is primarily
due to input logging, rather than chunk logging. Overall, future
work should focus on optimizing the software stack and, in partic-
ular, input logging — specifically, removing the serialization in the
recording of input events.

Figure 12 shows the processor time (the time processors spend
doing useful work for the applications) separated into user and sys-
tem time. For each benchmark, we show three bars: one for the
recorded application itself (App), one for the driver that reads the
input log from memory and writes it to disk (Input), and one for the
driver that reads the chunking log from the memory and writes it to
disk (Chunking). For each benchmark, the bars are normalized to
the processor time of the application.

The figure shows that most of the processor time is spent run-
ning the application. On average, the drivers add little overhead.
Only the two benchmarks with large logs in Figure 7a spend no-
ticeable time in the drivers. Finally, most of processor time in these
applications is user time.

To understand the sources of overhead in QuickRec, Figure 13
breaks down the total processor cycles into four categories. First,
App time are the cycles spent executing instructions not resulting
from Capo3 overhead. Second, Input overhead (working) are the
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Figure 12: Total time that the processors spend working on the
applications divided into user and system time.

cycles spent in Capo3 code managing the input events. Third, In-

put overhead (sleeping) are the cycles spent in Capo3 waiting on
synchronization in order to enforce a total order of input events. Fi-
nally, Chunking overhead are the cycles spent in Capo3 code man-
aging the chunking log. The figure shows the breakdown for dif-
ferent thread counts. As the figure indicates, for 4- and 8-threaded
runs, the main overhead of Capo3 is due to enforcing a total order
of input events. We are looking into optimizations and/or alterna-
tive designs for this component.
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Figure 13: Breakdown of the total processor cycles for different
thread counts.

Figures 14 and 15 present detailed breakdowns of the input and
chunking overheads, respectively, for different thread counts. In
each figure, the overheads are normalized to the overhead of the
1-threaded execution for the given benchmark.

Figure 14 divides the overhead of input recording and manage-
ment into the contributions of system calls, copy to user (CTU),
and other events. In each case, the figure separates working and
sleeping overheads. The figure shows that the sleeping overhead
resulting from serializing the system calls is by far the largest com-
ponent for 4- and 8-threaded runs. In particular, FFT’s normalized
overhead for 4- and 8-threaded runs is high. The reason is that FFT

has minimal overhead with 1 thread and has many synchronization-
induced futex() calls with 4 or more threads.

Figure 15 depicts a similar breakdown for the chunk-management
overhead. The overhead is divided into execution of XTC instruc-
tions (Chunk term), execution of XFC instructions (CBUF flush),
allocation of a new CMEM buffer (Buffer allocation), putting a
CMEM buffer in the work queue (To workqueue) and Other. The
latter is dominated by the overhead of saving and restoring MRR
registers in a context switch. We see that Buffer allocation and
Other dominate.
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Figure 14: Breakdown of the normalized overhead of input record-
ing and management. CTU stands for Copy To User.
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Figure 15: Breakdown of the normalized chunk-management over-
head.

5. VALIDATION USING REPLAY
A critical aspect of the design and implementation of a recording

system is to validate it with replay. Replaying recorded logs enables
full assurance that the recording system captures the correct and
complete information. Therefore, in this section we discuss the
replayer from the perspective of its validation of QuickRec.

We implemented the replayer using the Pin [20] binary instru-
mentation framework. We chose this approach for three reasons.
First, user-level binary instrumentation is operating-system inde-
pendent (similar to PinPlay [28]), which enables replay to occur on
a machine that is independent from the QuickRec system. Second,
Pin operates at speeds faster than existing instruction-set simula-
tors, while maintaining an acceptable level of observability. Third,
using Pin, we can extend the replayer by integrating other analysis
tools, such as race detectors [2, 33] and debuggers [19].

5.1 High-Level Implementation Description
To correctly replay a recorded execution, the replayer requires

the executed code (binary and libraries, including self-modified
code), and the program inputs and shared-memory access inter-
leaving experienced during the recorded execution. Prior to replay,
the static code is extracted from the log files. Self-modified code,
which is not present in the log files, is re-generated by the replayed
execution. Non-deterministic inputs are made deterministic by in-
jecting the appropriate recorded data into the replayed execution at
appropriate execution points. For most system calls (e.g., read()),
this operation involves emulating the system call, by: (i) injecting
the logged data into the program if there is a logged copy_to_user()

entry, and (ii) setting the return values as defined in the input log.

However, there are a few system calls, such as thread creation and
termination, that are re-executed to recreate the proper kernel state.

Chunk ordering is accomplished by counting instructions as they
are replayed, and stopping when the counter reaches the logged
chunk size. In addition, the replayer enforces the logged chunk
order, based on the recorded timestamps.

5.1.1 Chunks with Non-Zero RSW or IAV Counts

To handle the IA memory model correctly, the replayer needs to
take into account the values of the RSW and IAV counts. Specif-
ically, to support TSO, the replayer simulates a thread-local store
buffer. On a store operation, the replayer writes the address and
value of the store to the local store buffer — instead of committing
the store to the global memory. On a load operation, the replayer
first checks the local store buffer. If the address is not found, it loads
the value from the global memory. Then, at the end of the chunk,
the replayer drains the stores from the local store buffer, except for
a number equal to the RSW count of the chunk, and commits their
values to the global memory. The stores remaining in the local store
buffer are committed as part of the next chunk.

To handle non-zero IAV counts, the replayer needs to know the
number of memory transactions involved in the execution of each
instruction. When the replayer finds a chunk whose IAV is non-
zero, after executing the chunk, it emulates the execution of the
memory transactions of the first instruction after the chunk, one at a
time. The replayer stops when the number of memory transactions
is equal to the IAV count. The remaining memory transactions of
the instruction are emulated at the beginning of the next chunk.

5.2 Validating the Complete System
Prior to full-system tests, we developed multiple levels of system

validation. We began with RTL simulations to validate the MRR
hardware without software, while we used Simics [21] simulations
to validate Capo3. Next, we integrated Capo3 with QuickRec and
developed tests to independently exercise the recording function-
alities of input non-determinism and shared-memory interleaving.
Last, we tested the complete system with our benchmarks.

When bugs were found during full-system tests, the major chal-
lenge was pinpointing their origin. In QuickRec, bugs can originate
from either the replayer, the recording hardware, or the recording
software; distinguishing between the three is usually non-trivial. In
our experiments, the most common type of bug manifestation was
a divergence between the memory state or the control flow of the
recorded and replayed executions. There are many reasons why a
divergence can occur, and being able to pinpoint the root cause of
such a divergence is critical.

The most obvious location to check for divergent executions is
where non-deterministic input events are logged. This is because,
during recording, Capo3 saves the contents of the processor reg-
isters at the entry of system calls. Hence, the replayer can com-
pare the state of the processor registers before a system call to the
recorded state. This provides a clear detection point of divergence.
Moreover, a system call should result in a chunk termination and,
therefore, should be the last instruction of the chunk it belongs to.
This provides another divergence check.

Unfortunately, non-deterministic input events are infrequent and,
therefore, insufficient to detect the root cause of most divergences
— the source of divergence can be thousands of instructions be-
fore the system call. Therefore, a more fine-grained mechanism to
detect divergences was needed.

For this purpose, we added a branch-tracing module in the FPGA
hardware. It collects the history of branches executed — like the
Branch Trace Store of today’s IA processors. With this informa-



tion, the replayer can compare the control flow of the recorded
execution with that of the replayed execution. This is a powerful
method to detect divergences, since if either the record or replay
system has a bug, then the replayed execution typically leads to a
different control flow. Also, with branch traces, the detection point
of a divergence tends to be close to its source.

5.2.1 Hardware Instruction Counting Bug

With branch tracing, we found one particularly noteworthy hard-
ware bug. In the water benchmark, we found that a system call
was not aligned with the end of the chunk during replay, indicating
a bug in the system. The replayer was encountering a system call
two instructions prior to the expected end of the chunk. At first, the
problem appeared to be a control-flow divergence manifesting as
different instruction counts between the log and replayed execution.
However, the branch traces revealed no control-flow divergence.
Further investigation showed that the hardware was miscounting
instructions when handling floating-point exceptions. Without a
confirmation from the branch traces regarding no control-flow di-
vergence, it would have been very difficult to pinpoint this bug.

6. RELATED WORK
RnR systems can be classified into software-only and hardware-

assisted. Software-only RnR systems (e.g., [5, 8, 9, 10, 11, 18,
27, 28, 32, 34]) run on commodity hardware and use modified
runtime libraries, compilers, operating systems or virtual-machine
monitors to capture sources of non-determinism. These software-
based approaches are either inherently designed for uniprocessor
executions or suffer significant slowdown when applied to multi-
processor executions. DoublePlay [35] attempts to make replay
on commodity multiprocessors more efficient. To capture memory
non-determinism, it timeslices a multithreaded execution into sep-
arate epochs and re-executes each epoch sequentially on a single
processor. Hence, for each epoch, it only needs to record the order
in which threads are scheduled in the second execution. However,
DoublePlay cannot capture all data races and, therefore, cannot be
used as a general solution for concurrency debugging. In addition,
it requires an extra execution to record thread ordering. Finally, it
needs to use modified binaries (in particular, a modified libc).

Hardware-assisted solutions use hardware to record memory ac-
cess order. Some approaches modify coherence transactions in con-
ventional directory-based protocols (e.g., [3, 13, 23, 24, 26, 39, 40])
and some are based on snoopy protocols (e.g., [12, 25, 30, 31]).
Some approaches (e.g., [39, 40]) record dependences between pairs
of instructions. This strategy can produce large logs and increase
associated overhead. To reduce this overhead, chunk-based tech-
niques have been proposed (e.g., [7, 12, 13, 23, 24, 30, 31, 36]).
DeLorean [23] and Capo [24] are chunk-based schemes that use
speculative multithreading hardware to achieve replay parallelism.

In terms of the hardware, QuickRec resembles CoreRacer [31]
the most. While the chunking and the instruction reordering are
handled similarly, the main differences are on the implementation
of instruction atomicity violation, and on the integration of input
recording and chunking. LReplay [7] extends a multiprocessor sys-
tem with a pending period-based mechanism for recording thread
interleaving, and uses large CAM structures to deal with instruc-
tion reordering. LReplay is evaluated using RTL simulation and
does not discuss issues related to system software.

All of these hardware-assisted approaches have only been mod-
eled using simulation, and often without considering the necessary
software support. As such, they have generally ignored practical
aspects of RnR systems. The QuickRec system is the first work to
evaluate RnR across the entire stack using real hardware.

7. LESSONS LEARNED
The main lessons we learned from this effort are:

• Clearly, to maximize the chance that RnR is considered for adop-
tion, it is critical to minimize the number of touch points that it
requires on current processor hardware. QuickRec demonstrates
that chunk-based recording can be implemented with low-enough
implementation complexity and few-enough touch points to make
it attractive to processor vendors.
• By far the biggest challenge of implementing RnR is dealing with
the idiosyncrasies of the specific architecture used, as they funda-
mentally permeate many aspects of the hardware and software. Ex-
amples of idiosyncrasies are the memory consistency model and
the CISC nature of the architecture.
• The design of the deterministic replayer must account for the
micro-architectural details of the system, if it is to reproduce the
execution exactly. This was altogether neglected by prior replay
work. In fact, such micro-architectural details substantially in-
crease the replayer’s complexity, in turn impacting the usage mod-
els and potentially the ability to create non-proprietary replay tools.
• A new research direction is to investigate replay techniques that
reduce or abstract away the complexity mentioned. Such tech-
niques may hinge on commodity hardware, or may require hard-
ware extensions to enable replay software.
• The design of the recording software stack can considerably im-
pact the hardware design, as well as the overall performance. For
instance, to properly record kernel-mode instructions
(e.g., copy_to_user() calls), we had to make non-trivial changes to
the hardware-software interface (Section 3.5). Also, the software
stack is responsible for practically all of the QuickRec recording
overhead.
• The main performance overhead in QuickRec is in the software
layer collecting and managing the input logs. A seemingly unim-
portant issue such as the serialization of input-event processing has
become our most obvious bottleneck. Recording input events very
efficiently is an area were further work is needed.
• The performance analysis clearly suggests that, with a slightly-
improved software stack, RnR can be used in always-on manner,
enabling a potentially-large number of new RnR uses. Additional
features may need to be added, such as checkpointing and log com-
pression to reduce log file sizes in long-running programs.
• Finally, full-system prototyping is required to understand RnR
issues related to architecture idiosyncrasies, hardware-software in-
teraction, and true performance bottlenecks.

8. CONCLUSIONS AND FUTURE WORK
RnR of multithreaded programs on multicores has high potential

for several important uses: debugging applications, withstanding
machine failures, and improving system security. To make RnR
systems practical, this paper has contributed in three ways.

First, we presented the implementation of QuickRec, the first
multicore IA-based prototype for RnR of multithreaded programs.
The prototype includes an FPGA instantiation of a Pentium multi-
core and a Linux-based full software stack.

Second, we described several key implementation aspects in Quick-
Rec. We showed how to efficiently handle x86 instructions that
produce multiple memory transactions, and detailed the elaborate
hardware-software interface required for a working system.

Third, we evaluated QuickRec and demonstrated that RnR can be
provided efficiently in real IA multicore machines. We showed that
the rate of memory log generation is insignificant, given today’s
bus and memory bandwidths. Furthermore, the recording hardware
had negligible performance overhead. However, the software stack



induced an average recording overhead of nearly 13%. Such over-
head must come down to ensure always-on use of QuickRec.

Based on this work, we suggest focusing future research on sev-
eral directions. First, to reduce the software stack overhead, it is
important to record input events very efficiently — specifically, in
a partially-ordered manner. This will reduce recording overhead,
and truly enable always-on RnR.

Second, much emphasis should be placed on the replay aspect of
RnR. We need approaches that are tolerant of, and abstract away,
the micro-architectural details of the recording platform. Other-
wise, proprietary details will stifle the development of replay sup-
port. We need creative ways of combining hardware and software
support for replay.

Finally, we need to develop and demonstrate many uses of the
RnR technology that solve real problems of multicore users. The
areas of parallel program development tools and security-checking
aids seem particularly ripe for development.
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ABSTRACT
Detecting data races in parallel programs is important for both soft-
ware development and production-run diagnosis. Recently, there
have been several proposals for hardware-assisted data race detec-
tion. Such proposals typically modify the L1 cache and cache co-
herence protocol messages, and largely lose their capability when
lines get displaced or invalidated from the cache. To avoid these
shortcomings, this paper proposes a novel approach to hardware-
assisted data race detection. The approach, called SigRace, relies
on hardware address signatures. As a processor runs, the addresses
of the data that it accesses are automatically encoded in signatures.
At certain times, the signatures are automatically passed to a hard-
ware module that intersects them with those of other processors. If
the intersection is not null, a data race may have occurred.

This paper presents the architecture of SigRace, an implemen-
tation, and its software interface. With SigRace, caches and co-
herence protocol messages are unmodied. Moreover, cache lines
can be displaced and invalidated with no effect. Our experiments
show that SigRace is signicantly more effective than a state-of-
the-art conventional hardware-assisted race detector. SigRace nds
on average 29% more static races and 107% more dynamic races.
Moreover, if we inject data races, SigRace nds 150% more static
races than the conventional scheme.

Categories and Subject Descriptors
B [Hardware]: B.3 Memory Structures,B.3.2 Design Styles. Sub-
jects: Shared memory; B.3.4 [Reliability, Testing, and Fault-
Tolerance]: Error checking.

General Terms
Design, Measurement, Reliability.
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SigRace, Signature, Timestamp, Data Race, Concurrency Defect,
Happened-Before.
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1. INTRODUCTION
With the widespread use of multicore hardware, parallel pro-

gramming is likely to become more prevalent. At the same time,
concurrency bugs are likely to take on a higher prole and become
a very costly problem. Consequently, it is crucial to continue de-
veloping more effective techniques to detect and x them.

An important type of concurrency bug is a data race. A data
race occurs when two threads access the same variable without an
intervening synchronization and at least one of the accesses is a
write. The erroneous program behavior caused by the race may
only appear under certain access interleavings, making debugging
data races notoriously hard.

For this reason, data race detection has been the subject of much
work (e.g., [5, 8, 12, 14, 15, 16, 17, 18, 19, 22, 24, 26, 27, 29,
30]), including the development of commercial software tools for
race debugging (e.g., [8, 26]) and even the proposal of special hard-
ware structures in the machine (e.g., [12, 18, 19, 30]). In general,
there are two approaches to nding data races, namely the lock-
set approach, as in Eraser [24], and the happened-before one, as
in Thread Checker [8]. The lockset approach is based on the idea
that all accesses to a given shared variable should be protected by
a common set of locks. Consequently, it tracks the set of locks
held while accessing each variable. It reports a violation when the
currently-held set of locks (lockset) at two different accesses to the
same variable have a null intersection.

The happened-before approach relies on epochs. An epoch is
a thread’s execution between two consecutive synchronization op-
erations. Each processor has a logical clock, which identies the
epoch that the processor is currently executing. In addition, each
variable has a timestamp, which records at which epoch the pro-
cessor accessed it. When another processor accesses the variable,
it compares the variable’s timestamp to its own clock, to determine
the relationship between the two corresponding epochs: either one
logically happened before the other, or the two logically overlap.
In the latter case, we have a race.

Race detectors that use these algorithms in software typically in-
duce about 10–50x slowdowns on programs [8, 14, 22, 24]. Such
slowdowns can distort the timing of races identied in production
runs, and make them hard to nd. For this reason, there have
been several recent proposals for race detectors with hardware as-
sists [12, 18, 19, 30]. Such schemes should be effective at debug-
ging races in production runs. However, they detect races by aug-
menting the cache state and the coherence protocol. Specically,
they tag each cache line with a timestamp [12, 18, 19] or a lock-
set [30], perform additional operations on local/external access to



the cache, and piggyback information on cache coherence protocol
messages. L1 caches and coherence protocol units are key hard-
ware structures, either time-critical or complicated. In addition, if
a line is displaced or invalidated from the cache, these systems typ-
ically lose the ability to detect races involving the line.

This paper proposes a novel approach to hardware-assisted data
race detection that overcomes these limitations. Our approach,
called SigRace, relies on hardware address signatures. As a pro-
cessor runs, the addresses of the data that it accesses are automat-
ically encoded in signatures. At certain times, the signatures are
automatically passed to a hardware module that intersects them to
those of other processors. If the intersection is not null, a data race
may have occurred. With SigRace, there are no changes to the
cache or the cache coherence protocol messages, and there are no
critical-path operations performed on local/external access to the
cache. Moreover, lines can be displaced or invalidated from caches
without affecting SigRace’s ability to detect data races.

This paper presents the architecture of SigRace, an implemen-
tation, and its software interface. Application code is unmodied.
Our experiments show that SigRace is signicantly more effective
than a state-of-the-art conventional hardware-assisted race detector.
SigRace nds, on average, 29% more static races and 107% more
dynamic races. Moreover, if we inject data races, SigRace nds
150% more static races than the conventional scheme.

This paper is organized as follows: Section 2 gives a background;
Sections 3 and 4 describe the SigRace architecture and implemen-
tation; Section 5 evaluates SigRace; and Section 6 concludes.

2. BACKGROUND

2.1 Logical Timestamps for Happened-Before
Lamport’s happened-before relation [9] in a multithreaded en-

vironment states that an event α happened before another β if (i)
both are performed by the same thread and α precedes β in pro-
gram order, or (ii) α is a release and β is an acquire on the same
object, or (iii) for some other event γ, α happened before γ and γ
happened before β. If α happened before β or vice-versa, the two
events are ordered; otherwise, they are concurrent or unordered.
The happened-before algorithm for race detection nds out whether
two memory accesses to the same location that are performed by
different threads are unordered and at least one is a write. This
algorithm only detects races that actually occur during execution.

In a typical implementation, each thread maintains a logical vec-
tor clock, which has as many components as number of threads [7].
If thread t has a vector clock vct[.], then the element vct[t] con-
tains the time of the thread itself and, given another thread u, vct[u]
contains the latest time of u “known” to t. When t performs a syn-
chronization operation, it starts a new Epoch and increments vct[t].
Suppose that, after t performed a release on object S, u acquires S.
In this case, u increments vcu[u] and, in addition, updates the rest
of vcu[.] as follows: vcu[i] = max(vcu[i], vct[i]) for every i �= u.
Here, vct[.] is the vector clock of thread t after the release oper-
ation. We refer to the value of a thread’s vector clock during an
epoch as the epoch’s Timestamp. Figure 1(a) shows an example
execution with epoch timestamps.

We determine whether there is a happened-before relation be-
tween two epochs by comparing their timestamps. Specically,
if epoch f of thread t has timestamp vcf

t [.] and epoch g of thread
u has timestamp vcg

u[.], then f happened before g if and only if
vcf

t [t] < vcg
u[t] and vcf

t [u] < vcg
u[u]. For example, in Figure 1(a),

the epoch after the acquire in Thread 2 happened before the epoch
after the second acquire in Thread 0.
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(b)
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Acquire

Release

[0,0,0]

[1,0,0]

[2,0,0]

[3,2,2]

[2,1,0]

[2,2,0]

[0,0,0][0,0,0]

[2,2,1]

[2,2,2]Acquire

(a)

Sync

Sync

Epoch Block

Block

Figure 1: Example of execution of three threads with epoch
timestamps in brackets (a), and definitions in a thread’s execu-
tion (b).

2.2 Hardware Schemes for Race Detection
There are at least four proposals for hardware-assisted data-race

detectors, namely Min and Choi’s [12], ReEnact [19], CORD [18]
and HARD [30]. They all detect races by tagging the state in the
caches as it is being accessed, and then piggybacking the tags on
cache coherence protocol messages between processors so that they
can be compared.

ReEnact and CORD use the happened-before approach. They
tag each cache line with timestamp information, and send and com-
pare timestamps at least at every coherence action (invalidation of
cached line or external read of a dirty cached line). In ReEnact, the
tag is an index into a table of vector-clock timestamps. In CORD,
the tag is four scalar timestamps (two for read and two for write),
and two sets of read-write bits per word. HARD uses the lockset
approach and, therefore, only handles locks properly. It tags each
cache line with two special state bits, and a bit vector that repre-
sents the lockset for the line. These bits are checked at every ac-
cess to the line, and are kept coherent by the coherence protocol as
if they were data. Finally, Min and Choi use the happened-before
approach for only nested doall loops. They tag each cache line with
a set of read and write bits for each doall nesting level, and perform
tag checking at every cache access.

In all these schemes, the hardware can easily detect an address
and an instruction involved in a race on the y. Then, to reveal the
other (or several other) instructions involved in the same race to the
programmer, it is necessary to roll back and re-execute the code
section. For example, ReEnact [19] executes under thread-level
speculation. If a race is detected, it rolls back execution to the most
recent checkpoint, places a watchpoint on the racing address, and
re-executes. The machine then captures all the accesses to the rac-
ing address. In addition, re-execution is also necessary to discard
false-positive races. They occur because some of these hardware
schemes tag the cache at line-size granularity. Consequently, ac-
cesses from different processors to different words of the same line
(false sharing) may appear as races. Re-execution disambiguates
this case.

Overall, these schemes have two shortcomings. First, they mod-
ify the L1 cache, the operations performed on some local/external
accesses to L1, and the cache coherence protocol messages. These
are key hardware structures, either time-critical or complicated to
design and debug. Second, when a line is displaced or invalidated
from the cache, the system loses its ability to detect a data race for
that line. An exception is CORD, which keeps some timestamp in-



formation in memory. We would like a design that decouples cache
and coherence protocol from race detection, and has a longer de-
tection window than that provided by cache residence.

2.3 Hardware Address Signatures
A hardware address signature is a long register (e.g., 2Kbits long)

where the memory addresses accessed by the processor are auto-
matically hash-encoded and accumulated using a Bloom lter [2].
Signatures have been used in the Bulk system [4] and several sub-
sequent multiprocessor designs (e.g., [3, 13, 28]) to detect data de-
pendences between threads in thread-level speculation and transac-
tional memory. Signatures are efciently operated on in hardware
using simple logic (e.g., bit-wise AND of signatures to nd com-
mon addresses). From a signature, it is only possible to obtain a
superset of the addresses that were originally encoded in the sig-
nature. Consequently, operations on signatures may produce false
positives, although not false negatives.

In this paper, we use signatures to detect data races. While
HARD [30] used a Bloom lter to encode locksets for efcient ma-
nipulation, this is the rst paper that uses address signatures for
happened-before race detection.

3. SIGNATURE-BASEDRACEDETECTION

3.1 Overview of the Idea
The idea of SigRace is to automatically record the set of ad-

dresses accessed by the processor in a code section in hardware
signatures. At appropriate intervals, the signatures and the epoch
timestamp are automatically passed to an on-chip hardware module
called Race Detection Module (RDM). The RDM keeps the signa-
tures and the timestamp in an in-order queue assigned to the initiat-
ing processor, and compares them to the entries of queues assigned
to other processors using very efcient signature operations. The
comparison quickly determines whether there has been a potential
data race.

SigRace addresses the two shortcomings of existing hardware-
assisted schemes. First, there are no L1 cache modications, no
critical-path operations performed on local/external accesses to L1,
and no cache coherence protocol message changes. Signature gen-
eration, storage, and comparison are decoupled from caches and
coherence protocol. Second, lines can be displaced or invalidated
from caches without SigRace losing the ability to detect data races.
In practice, the RDM necessarily has limited storage capacity, and
old signatures are discarded when room is needed, also limiting the
race detection window. We will see, however, that SigRace’s race
detection capability is higher than that of cache-based systems.

Like all of the currently-proposed hardware schemes (Section
2.2), SigRace needs to rely on rollback and re-execution to pro-
vide the full set of racing instructions to the programmer, and to
disambiguate false-positive races. However, using signatures in-
troduces two differences. First, since SigRace detects races lazily
when signatures are compared, SigRace without re-execution can-
not provide any of the racing instructions. In contrast, since the
currently-proposed schemes detect the race eagerly, they can plau-
sibly detect one of the racing instructions without re-execution.

The second difference is the source of false-positive races. Un-
like currently-proposed schemes, SigRace does not suffer false pos-
itives due to false sharing. This is because SigRace encodes fine-
grain (e.g., word) addresses in signatures. Accesses to different
words of the same line do not induce a data race report. How-
ever, address aliasing in signatures may induce false positives in
SigRace. This is because signatures represent a superset of the ad-
dresses that were encoded [4]. False negatives are not possible.

For simplicity, we want SigRace to support the rollback and re-
execution largely in software. Consequently, SigRace does not use
thread-level speculative execution. Reads and writes commit as
usual. We use the ReVive checkpointing/rollback mechanism pro-
posed by Prvulovic et al. [20]. After rollback and re-execution to
the race, an analysis phase takes place. We envision rollback, re-
execution, and analysis to be transparent to the user, who should
at worst notice a slight slowdown when many false data races are
detected.

Address collection into signatures is disabled and enabled in
software at kernel entries and exits, respectively, and, optionally,
at library entries and exits. This typically improves race detection.
Moreover, the programmer can disable address collection during
the execution of certain code sections. Finally, signatures are as-
signed to software threads rather than to hardware contexts.

In the following, we describe SigRace’s operation under three
stages: normal execution, re-execution, and race analysis. For sim-
plicity of presentation, this section assumes one thread per proces-
sor and no thread migration. The implementation of SigRace is left
for Section 4.

3.2 Normal Execution under SigRace
The execution of a thread is logically divided into epochs, which

are the dynamic instructions committed between synchronization
operations (Figure 1(b)). The latter include, e.g., acquiring a lock,
releasing it, waiting on a ag, setting a ag, or crossing a barrier.
Under SigRace, each processor keeps the timestamp of the current
epoch, which is encoded and updated as per Section 2.1. In addi-
tion, the processor has a Read (R) and a Write (W) Signature. When
a load or a store commits, a hardware Bloom lter as in [4] auto-
matically hash-encodes and accumulates the address loaded from
or stored to, respectively, into the correct signature.

Ideally, a processor can keep its timestamp and R and W signa-
tures to itself until the end of the epoch. At that point, they are
made visible to all other processors, to check for data races. In
practice, long epochs would cause the signatures to accumulate so
much state that any operation on them would likely induce many
false positives due to aliasing [4]. Consequently, when the proces-
sor has committed a certain number of dynamic instructions that
we call a Block without nding a synchronization operation, the
hardware automatically passes the timestamp and signatures to the
RDM. Figure 1(b) shows the resulting execution: a block nishes
when either a certain number of dynamic instructions have been
committed or a synchronization operation is found.

The exact actions taken when a block in processor i nishes for
either reason are as follows (Figure 2). First, the hardware automat-
ically dumps the timestamp and R and W signatures into a memory-
mapped FIFO queue of registers in the RDM called BlockHisto-
ryQueue[i] (Step 1 in the gure). To save network bandwidth, the
data is transferred in compressed format. The R and W signatures
are then cleared. Finally, if the block nished because of a synchro-
nization operation, library software updates the epoch timestamp
and then saves it in a log in memory to keep a trail of timestamp
changes — which is useful if we need to roll back execution.

At the RDM, simple hardware automatically compares the in-
coming data to entries in all the other BlockHistoryQueue[.] (Step
2 in the gure). Specically, for a given BlockHistoryQueue[j], the
incoming timestamp TSi0 gets compared to TSj0, TSj1, etc — in
sequence order starting from the latest one available. Such compar-
isons stop as soon as one of the j timestamps is found to precede the
incoming timestamp — in this case, due to transitivity, all earlier j
timestamps will also precede the incoming one. Then, for all times-
tamp pairs found to be unordered (e.g., TSi0 and TSjN ), simple
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Figure 2: Operations when a block finishes. In the figure, TS, R, andW refer to timestamp and read and write signature, respectively.
In any BlockHistoryQueue[k], entries for older blocks have higher subscripts.

signature functional units compute Ri0 ∩ WjN , Wi0 ∩ RjN , and
Wi0∩WjN (Step 3 in the gure). If any of these is not null, the two
blocks have accessed the same location(s) without synchronization
and at least one wrote. We have detected a data race — or a false
positive. We call these two blocks and their corresponding threads
the Conflicting Blocks and Threads.

A BlockHistoryQueue[k] is a FIFO queue. When it overows,
information on the displaced blocks is lost. We have lost the ability
to detect data races in those blocks. We accept this limitation to
keep overheads to a minimum.

3.3 Re-Execution under SigRace
When a pair of Conicting Blocks is found, we want to identify

for the user the exact instructions and address(es) involved in the
race(s), and to weed out any false positive transparently to the user.
In our design, an exception forces all processors to roll back to
the previous checkpoint and enter the Re-execution mode. In this
section, we describe the checkpointing support and the re-execution
process.

3.3.1 Checkpointing Support
The SigRace design that we present needs a low-overhead check-

pointing scheme. Ideally, such a scheme would already be in place
for reliability purposes, and SigRace would reuse it. One possible
scheme is ReVive [20], which performs incremental memory-state
checkpointing. With ReVive, all processors are interrupted at in-
tervals of several milliseconds, at which point, a software handler
creates a global light-weight checkpoint. The checkpoint consists
of saving the register state of all processors and writing back all the
dirty cache lines to memory. Then, during execution, the memory
controller logs every rst update to a main memory location since
the previous checkpoint (i.e., the log saves the value in memory
before the rst write-back of a dirty line from caches to the loca-
tion). Rolling back to the previous checkpoint involves undoing the
trail of memory updates from this log until the checkpoint, and then
restoring the registers. The ReVive design in Prvulovic et al. [20]
adds a 6.3% execution time overhead.

In addition, the kernel collects and buffers the inputs to the pro-

gram during Normal execution — such as interrupts, system call
returns, and I/O input — and passes them to the re-execution at
appropriate times. Support similar to this is provided by Flash-
back [25] and Rx [21], which require no hardware modications.

With these two mechanisms, we will now see that SigRace re-
executes following the same paths until the rst data race is found.

3.3.2 Re-Execution Operation
Re-execution forces the application to follow the same order of

epochs as in the original execution, and leaves each thread at the
beginning of the epoch that the thread was executing when the race
was detected. This is shown in Figure 3, where a race was de-
tected at the points shown in Figure 3(a), and re-execution brings
the threads to points A, B, C, and D in Figure 3(b). Note that re-
execution does not bring each thread to the actual block that it was
executing when the race was detected. This is because we do not
rely on the ability to reproduce block boundaries exactly.

Checkpoint
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Sync

Sync

Sync

Sync
Sync

Sync

Sync

Thread0 Thread1 Thread2 Thread3

(b)

Sync

Sync

Sync

Sync
Sync

Sync
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Thread0 Thread1 Thread2 Thread3

(a)

Race
Data

Figure 3: Detection of a data race during Normal (a) and Re-
execution (b) modes.

To reproduce the order of epochs, SigRace uses the history of
logged timestamps (Section 3.2). They encode the history of syn-
chronization operation orders — i.e., which thread completed a
synchronization operation before which other thread. SigRace uses
these timestamps to follow the same synchronization orders.



Specically, each processor has a Thread Re-execution Times-
tamp (TRT) register into which, as it re-executes, it successively
loads the timestamps logged since the checkpoint. Recall that each
timestamp was saved after the processor went past a synchroniza-
tion operation. In addition, there is a shared software structure in
memory called Global Re-execution Timestamp (GRT) that con-
tains the most up-to-date logical time of each processor during the
re-execution. In other words, while the TRT is the “thread view”
of the current re-execution time, the GRT is the “true global view”.
Each processor compares its TRT to the GRT to see when the other
processors have executed all the earlier epochs and the processor
can proceed. Proceeding means for the processor to perform its
next synchronization operation, update its own component of the
GRT, execute its next epoch, and read its next logged timestamp
into its TRT.

The actual algorithm is as follows. Let us call grt[.] the GRT
and trtp[.] the TRT of processor p. Each i in grt[i] is the lat-
est epoch from processor i that has been executed. For example,
Figure 4 repeats the timeline of Figure 1(a) and shows with an ar-
row the current position of each replaying processor. As a result,
grt[.] = [2, 1, 0]. All processors are waiting at a synchronization
operation and we need to decide which one(s) to execute next. Each
processor has loaded into its trt the timestamp it had after the syn-
chronization (e.g., trt1[.] = [2, 2, 0]). When a given processor p
nds that grt[i] ≥ trtp[i] for all i �= p, then processor p executes
the synchronization operation, sets grt[p] = trtp[p], executes its
next epoch, and loads its next logged timestamp into trtp[.]. The
last two operations are not performed if there is no next logged
timestamp. In the gure, the only processor for which the inequal-
ity is true is Processor 1. Consequently, Processor 1 will execute
the release and set GRT to [2,2,0]. Since it has no further timestamp
logged, it will wait there.
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Figure 4: Re-execution using the logged timestamps.

3.4 Race Analysis under SigRace
When all threads have reached their last logged timestamp, ex-

ecution enters the Analysis mode. In this mode, only the threads
involved in the data race execute, while the others stall. Specif-
ically, rst, the two processors executing the Conicting threads
load into a local register called the Conflict Signature the intersec-
tion of the two Conicting blocks’ signatures — namely the union
of Ri0 ∩ WjN , Wi0 ∩ RjN , and Wi0 ∩ WjN as per Section 3.2.
The Conict Signature holds the hashed address(es) involved in

the race. Then, the two Conicting threads execute normally up to
their next synchronization points, while the hardware automatically
intersects their loads and stores against the Conict Signature. Ev-
ery time a non-null intersection occurs, a trap is triggered, which
records the memory address and the PC. Finally, when both threads
have reached their next synchronization points, a software handler
compares the record of trapping addresses in both processors, to
see if there are common addresses. If so, SigRace has found a data
race, which it reports to the user. Otherwise, it was only a false
positive and is ignored.

As each Conicting thread reaches its next synchronization point,
it may have executed past its Conicting block. This is ne, since
it enables us to capture as many of the references involved in the
data race(s) as possible.

After the Analysis step, execution seamlessly returns to the Nor-
mal mode of execution. This is enabled by the fact that SigRace
continued to perform timestamp/signature logging and signature
intersection during Re-execution and Analysis modes — exactly
like it did during Normal mode. In this way, the trail of timestamps
and signatures is up to date at the point where Analysis completes
and all processors resume Normal execution.

Because the Analysis step may push program execution beyond
what was executed before the rollback, it is possible that the Anal-
ysis step discovers new data races. To address this case, SigRace
proceeds as follows. Every time two blocks are found to conict
during Analysis (Ri0 ∩ WjN , Wi0 ∩ RjN , or Wi0 ∩ WjN are not
null), a handler compares their intersection against the contents of
the Conict Signature. If the latter is a superset, no action is taken
because this race is already being processed (call it Race1). Oth-
erwise, the handler saves the signature intersection and records the
need to analyze the new data race (call it Race2) later. In this case,
after Race1 is fully analyzed, execution is rolled back, and we pro-
ceed to perform Re-execution and Analysis for Race2. Note that
we cannot analyze the two races concurrently because, by the time
we detect the presence of Race2, processors have already issued
some of the references associated with it.

Overall, to minimize the amount of re-execution, SigRace is de-
signed as follows. When a processor in Normal execution detects
a pair of Conicting blocks, it does not immediately request a roll-
back. Instead, it continues executing for several more blocks (e.g.,
5–10) or until it synchronizes, before interrupting all other proces-
sors and requesting rollback. The goal is to collect as many poten-
tial races as possible. During Analysis, the Conict Signature of
each processor contains the racing addresses of all the races that
the processor is involved in characterizing. In this way, multiple
races are analyzed concurrently. Finally, SigRace also saves the
Conict Signatures of the races that it has nished analyzing. In
this way, if SigRace has to re-execute the same code a second time,
it can ignore the race already analyzed.

4. SIGRACE IMPLEMENTATION
Our implementation of SigRace requires some hardware and soft-

ware changes to a chip multiprocessor. The hardware changes are
the Race Detection Module (RDM) and some additions to the per-
processor cache hierarchy. The cache tag and data arrays are un-
modified. Also, SigRace does not use speculative multithreading.
On the software side, SigRace needs an augmented synchroniza-
tion library. In this section, we describe the hardware and software
components, and then how SigRace is virtualized to make it usable.

4.1 Hardware Modifications
The RDM is a simple on-chip hardware module that is connected

to the on-chip network. As shown in Figure 5(a), it contains the



BlockHistoryQueue[.], which stores past timestamps (TS) and sig-
natures for all the processors (Section 3.2). It also includes func-
tional units that operate on signatures (like in Bulk [4]) and times-
tamps.

(b) Additions to the Private Cache Hierarchy
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Figure 5: Hardware support needed by SigRace.

SigRace also requires some per-processor hardware that is placed
in the cache hierarchy in a module that interfaces with the proces-
sor, the cache and the network (Figure 5(b)). The module includes
storage for the current epoch timestamp and the current block’s R
and W signatures. The addresses hashed into signatures have a ner
granularity than cache line, so that false sharing of a line does not
trigger incorrect data race alarms. A good choice is to use word ad-
dresses. The module also includes the Thread Re-Execution Times-
tamp (TRT) for re-execution (Section 3.3) and the Conict Signa-
ture for analysis (Section 3.4). There are two ags, namely the
Operation Mode (OM) that denotes whether the hardware is in Nor-
mal, Re-execution, or Analysis mode, and the Conflicting Thread
(CT) that denotes whether the thread is a Conicting one (Sec-
tion 3.2). There is also a Committed Instruction Counter. When the
latter reaches the maximum value set for a block — or an approxi-
mate value, since there is no need to be exact — it sends a signal to
terminate the current block. The SigRace controller then initiates
the following actions: dump TS, R and W into the corresponding
BlockHistoryQueue[i], and clear R, W, and the Committed Instruc-
tion Counter.

The TS and R and W signatures are compressed before being
sent to the on-chip network, and decompressed as they get into
the RDM. We call these network messages the Summarymessages.
Their compressed size is ≈100 bytes — for 2 signatures of 2 Kbits
each and a 160-bit timestamp. This is less than the size of two
cache lines, and is sent out every time a block completes (≈2,000
committed instructions). Summary messages from the same pro-
cessor need to arrive at the RDM in order; messages from different
processors can arrive in any order. This centralized RDM design
is ne for the small numbers of processors considered in this paper
(8). In large, distributed machines, the RDM can be distributed as
well.

4.2 Software Interface
High-level synchronization constructs such as M4 macros [11]

and OpenMP directives [6] are commonly used by programmers
and parallelizing compilers. These constructs can enable SigRace
transparently. Specically, we rewrite such constructs to encapsu-
late the SigRace operations. As a result, the application code does
not need be modied at all, and all we need is to relink it with the
new M4 or OpenMP library.

To accomplish this, we start by adding three processor instruc-
tions that operate on local SigRace structures (Table 1). Two of
the instructions (collect_on and collect_off) enable and disable the
collection of addresses into signatures, and the counting of com-
mitted instructions. A variation of these instructions could per-
form these actions only on a range of addresses. These instruc-
tions are used to prevent the signatures from being polluted by un-
related accesses (such as those from the OS or the instrumentation
added to the macros) or by obviously-private accesses (e.g., those
to the stack). They can also be used to mark a benign data race
or an epoch that should skip the checking. The other instruction
(sync_reached) is invoked when execution reaches a synchroniza-
tion operation. Specically, it is invoked immediately before per-
forming a release-type operation and immediately after performing
a successful acquire-type operation. It tells the SigRace controller
to dump TS, R and W into the RDM, clear R, W, and the Com-
mitted Instruction Counter, and increment the counter in TS that
corresponds to the local thread.

Instruction Description
collect_on Collect addresses into R and W, and count

committed instructions.
collect_off Do not collect addresses into R or W, or

count committed instructions.
Dump TS, R, and W into the RDM. Clear R,

sync_reached W and the Committed Instruction Counter.
Increment the counter in TS that
corresponds to the local thread.

Table 1: Instructions to manage SigRace structures.

For simplicity, we assume that these instructions make their side
effects visible only when they commit — like the updates of sig-
natures by loads and stores. A design where these actions happen
earlier in the pipeline can also be conceived.

With these instructions, we can build new macros for all the
synchronization primitives. As an example, we consider the M4
macros for UNLOCK and LOCK. Table 2 shows the conventional
implementation and the one adapted for SigRace in Normal exe-
cution mode (SN_UNLOCK and SN_LOCK). In the SigRace ver-
sion, synchronization variables have a lock and a timestamp eld
— shown as $1.lock and $1.timestamp, respectively.

In SN_UNLOCK, before unlocking the lock eld of the variable,
the sync_reached instruction executes (Table 2). Then, the TS of
the processor — which has already been updated by sync_reached
— is saved in the timestamp eld of the variable (Line 3). Then,
the lock is released. Finally, the updated TS is explicitly saved in a
TS log in memory, in case it is needed for re-execution (Line 5). In
SN_LOCK, after the lock is acquired and sync_reached executed,
the new TS is generated. This is done by taking the current TS —
which is already updated by sync_reached — and the value stored
in timestamp, and applying the algorithm of Section 2.1 (shown as
GenerateTS). Finally, the TS is saved in the TS log.

Finally, we need to augment the macros to work for all exe-



Opera- Implemen- Code
tion tation

Unlock

Conven- 1: UNLOCK(‘{
tional 2: unlock($1);}’)

1: SN_UNLOCK(‘{
SigRace 2: sync_reached;
(Normal 3: $1.timestamp = TS;
Execution 4: unlock($1.lock);
Mode) 5: AppendtoTSLog(TS,TSLog);

6: }’)

Lock

Conven- 1: LOCK(‘{
tional 2: lock($1);}’)

1: SN_LOCK(‘{
SigRace 2: lock($1.lock);
(Normal 3: sync_reached;
Execution 4: TS = GenerateTS(TS,
Mode) 5: $1.timestamp);

6: AppendtoTSLog(TS,TSLog);
7: }’)

Table 2: UNLOCK and LOCK macros: conventional imple-
mentation and one for SigRace in Normal execution mode.

cution modes. As an example, Table 3 shows the resulting nal
S_UNLOCK macro, which builds on top of SN_UNLOCK. The
code is surrounded by collect_off and collect_on to prevent these
accesses from polluting the signatures. If the OM ag indicates
we are in Re-execution mode, we load the next timestamp from the
old timestamp log into the TRT (Line 4), and spin until the GRT
reaches the appropriate value (Line 5) (Section 3.3). If, instead,
we are in Analysis mode, we have completed the execution of an
epoch in this mode in one of the Conicting threads. It is now time
to analyze the record of traps observed (Line 8) (Section 3.4) and,
depending on the outcome, proceed in Normal mode.

Irrespective of the mode, we then need to perform the unlock
operation (Line 11) as was described in Table 2. Then, if we are
in Re-execution mode, we update the GRT with the corresponding
counter from the TRT (Line 13) and then check if the old timestamp
log is empty. If so, we set the mode to Analysis (Line 15) and
check the CT ag to see if this is a Conicting thread. If so, we
set up the Conict Signature and continue execution (Section 3.4).
Otherwise, the thread stalls until the Conicting threads complete
the analysis. After that, we return to Normal mode. Similar code is
generated for the other synchronization constructs.

4.3 SigRace Virtualization
Previous discussions have largely used thread and processor in-

terchangeably. In reality, SigRace has to function in an environ-
ment where threads migrate across processors and the number of
threads and processors may be different. In this section, we con-
sider this environment. We do it in three steps. First, we allow
threads to migrate across processors but the number of threads and
processors is the same (Migration environment). Second, we aug-
ment Migration to allow the number of threads to be different (and
typically larger) than the number of processors; some threads are
waiting for an available processor (Multiplex environment). Fi-
nally, we augment Multiplex to allow processors that support mul-
tiple hardware contexts (Multithreaded environment). We discuss
each environment under Normal execution, and then consider the
Re-execution and Analysis modes.

1: S_UNLOCK(‘{
2: collect_off
3: if (Flags.OM == Re-execution){ /* Re-exec. mode? */
4: LoadfromTSLog(TRT,OldTSLog);
5: WhileNotMyTurn(TRT,GRT) {};
6: }
7: else if (Flags.OM == Analysis){ /* Analysis mode? */
8: AnalyzeRecordOfAccesses(); /* Analyze data */
9: Flags.OM = Normal; /* End of Analysis mode */
10: }
11: SN_UNLOCK($1)
12: if (Flags.OM == Re-execution){ /* Re-exec. mode? */
13: UpdateGRT(TRT,GRT);
14: if (OldTSLogEmpty) {
15: Flags.OM = Analysis; /* Analysis mode */
16: if (Flags.CT) { /* One of the Conicting threads? */
17: LoadConictSignature();
18: /* Set up the Conict Signature. Continue */
19: }
20: else { /* Not Conicting thread */
21: StallUntilEndAnalysis(); /* Stall */
22: Flags.OM = Normal; /* End of Analysis */
23: }
24: }
25: }
26: collect_on
27: }’)

Table 3: Resulting UNLOCK macro for SigRace.

4.3.1 Enabling Thread Migration
Epoch timestamps and signatures belong to threads rather than

processors. Consequently, in the Migration environment, the times-
tamp is saved when a thread is pre-empted and restored on the pro-
cessor where the thread runs next. Signatures are not saved and re-
stored because, on thread pre-emption, the currently-running block
nishes. At that point, the signatures are sent to the RDM and then
cleared.

The threads of a program have a statically-assigned SigRaceID,
which goes from 0 to the number of threads in the program minus
one. They use their SigRaceID to index into vector clocks of pro-
cessors and array of BlockHistoryQueues in the RDM. Specically,
counter i in a vector clock belongs to the thread with SigRaceID =
i, irrespective of which processor the thread is currently running
on. Such thread always updates counter i in the vector clock of the
processor it is running on. Moreover, signatures from that thread
will always be dumped on BlockHistoryQueue[i] in the RDM.

In this environment, the hardware in Figure 5 is affected as fol-
lows. First, the components in Figure 5(b) belong to a thread. Con-
sequently, the operating system saves and restores them on context
switch — except for the signatures and the Committed Instruction
Counter, which are cleared. Second, the RDM in Figure 5(a) in-
cludes a new hardware structure. It is an indirection table called
the CoreToThread table. This table has as many entries as cores in
the chip. It contains the mapping between core number and SigRa-
ceID of the thread currently running on the core. The operating
system updates the table on context switches. During execution,
when the RDM receives a message from core j, the hardware reads
CoreToThread[j]. It then uses the value read, say i, to store signa-
tures and timestamp in BlockHistoryQueue[i].



4.3.2 Different Thread & Processor Numbers
The hardware for the Multiplex environment extends the one for

Migration by supporting a range of SigRaceID values larger than
the number of cores. Specically, each vector clock in processors
and each (software) timestamp eld in sychronization variables is
sized up to have as many counters as the maximum range of SigRa-
ceID (Figure 6(a)). Similarly, the RDM has as many BlockHisto-
ryQueues as the maximum range of SigRaceID, and the width of
the CoreToThread table is increased accordingly (Figure 6(b)).

Counter for Thread i

Maximum Range of SigRaceID

(a) Vector Clock

(b) Race Detection Module (RDM)

CoreToThread

BlockHistoryQueues

Num
Cores

...

Figure 6: Supporting more threads than cores.

Before a program runs, it declares the number of threads that it
will use, and the hardware and software structures mentioned are
sized accordingly. While the program runs, the RDM intersects
an incoming signature message against all BlockHistoryQueues —
even those that belong to threads that are currently not running.

4.3.3 Enabling Multiple Contexts per Processor
The Multithreaded environment extends the Multiplex one in

that each hardware context in a processor counts as an additional
virtual core. This requires increasing the number of counters in the
vector clocks and in the timestamp elds of synchronization vari-
ables, and the number of BlockHistoryQueues in the RDM.

Each hardware context has a copy of the hardware shown in Fig-
ure 5(b). Moreover, the messages that processors send to the RDM
have to include both the core ID and the hardware context ID within
the core. Only then can the RDM identify the appropriate Block-
HistoryQueue to update.

4.3.4 Re-Execution and Analysis Modes
In all three environments described, threads are re-executed with-

out any scheduling constraints. Specically, Re-execution does not
need to reproduce the thread schedule followed during the Normal
execution. All that is required is that the order of successful syn-
chronization operations be the same as in the Normal execution.
This is ensured by reading the timestamp log from memory (Sec-
tion 3.3.2) and enforcing it. At worst, in the Multiplex environment,
performance may suffer because a thread that owns a critical lock
may be temporarily not scheduled, preventing other thread from
making progress.

In addition, re-execution does not need to reproduce the same
block sizes as in the Normal execution. The reason is that Re-

execution brings the threads to the beginning of epochs, rather than
to specic blocks within epochs.

The checkpointing support described in Section 3.3.1 can still be
used. Such support is able to return the memory state of the whole
machine to a certain point in the past — without knowing about
the number of threads in the program or how they were scheduled.
If, however, it is desired to checkpoint only one of several applica-
tions that may be running, a different, application-level checkpoint
design is needed. Such a design is outside this paper’s scope.

As expected from the discussion on the Normal execution mode,
there are a few structures used during Re-execution that need to
change. First, the TRT (Figure 5(b)) is thread-private, and is saved
and restored on context switch. In addition, the TRT and GRT have
as many counters as the range of SigRaceIDs in the program. More-
over, threads use their SigRaceID to index into the TRT register,
irrespective of what core they are currently running on.

Finally, the Analysis mode requires no change, since only the
conicting threads are participating in the execution. Both the Con-
ict Signature and the Conict Thread structures (Figure 5(b)) are
thread-private variables and the hardware saves and restores them
on context switch.

5. EVALUATION
To evaluate SigRace, we consider four issues: (1) the signature

conguration, which determines the number of false positives, (2)
the block size and number of entries in each BlockHistoryQueue[i],
which determine the window of monitored execution, (3) the effec-
tiveness of SigRace in detecting data races, and (4) the overheads
of SigRace. In the following, we rst overview the experimental
setup and then consider each issue in turn.

5.1 Experimental Setup
Since we are interested in the high-level parameters of SigRace,

we use the PIN [10] binary instrumentation tool to design a sim-
ulator of the SigRace hardware, and run the applications on a real
8-processor shared-memory machine. This approach has the bene-
t of execution-driven simulation without incurring the slow speeds
of typical cycle-accurate simulators. Table 4 shows the default pa-
rameters used in the simulation.

Num. of processors: 8 Timestamp size: 8 x 20 = 160 bits
L1 size: 32 Kbytes Sig. size: 2 Kbits each R and W
L1 line size: 64 bytes Block size: 2,000 committed instr.
Coh. protocol: MESI BlockHistoryQueue[i] size:
Checkpt. interval: 1 M 16 entries

committed instr./proc.
Benchmarks:

SPLASH2 kernels: FFT, Cholesky, LU
SPLASH2 applications: Barnes, Volrend, Ocean, Radiosity,

Raytrace, Water-ns, Water-spatial
PARSEC kernels: Dedup, Streamcluster
PARSEC applic: Blackscholes, Fluidanimate, Swaptions

Table 4: Default parameters used in the evaluation.

We model an 8-core chip multiprocessor where 32-Kbyte L1
caches are connected in a multistage network and kept coherent
with a MESI cache coherence protocol. The timestamp size is very
conservatively set to 160 bits. The default values for the size of
signatures, block, and BlockHistoryQueue[i] are set according to
the sensitivity analyses presented later. We take periodic global
checkpoints. A checkpoint is created as soon as a processor has



committed 1 M instructions. We use the checkpointed information
as a starting point of our Re-execution and Analysis algorithms.

We evaluate SigRace with the SPLASH2 and PARSEC [1] bench-
marks. These benchmarks are representative of parallel workloads
and exhibit a variety of memory access patterns. For SPLASH2, we
use the default inputs, while for PARSEC, we use the simmedium
input size. We report data for 10 SPLASH2 and 5 PARSEC bench-
marks. As shown in Table 4, we separate them into SPLASH2
kernels, SPLASH2 applications, PARSEC kernels, and PARSEC
applications.

5.2 Signature Configuration
We test multiple signature congurations, denoted as Bi_Sj . We

rst partition the address into 2 portions. The possible congura-
tions are the Bi in Table 5. Then, we use multiple Bloom lters in
parallel using the H3 hash function as in [23] — half of them pro-
cess one portion while the other half the other. The congurations
are the Si in Table 6.

Conguration Address Partition
LSB USB

B1 8 24
B2 10 22
B3 16 16

Table 5: Address partitions. LSB and USB stand for Lower
and Upper Sliced Bits.

Conguration # of Bloom Bits per Bloom Sig Size
Filters (k) Filter (n) (k × n)

S1 16 256 4Kbit
S2 16 128 2Kbit
S3 16 64 1Kbit
S4 8 512 4Kbit
S5 8 256 2Kbit
S6 8 128 1Kbit

Table 6: Signature organizations.

We run the applications and count the number of signature in-
tersections that indicate a collision while there is none. The ratio
of this number over the total number of signature intersections is
the false-positive rate. Figure 7(a) shows the average false-positive
rate of the applications for our default parameters. In the rest of the
paper, we use B2_S2, where the false-positive rate is 1.57%.
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Figure 7: False positive rate versus signature configuration (a)
and versus block size (b).

5.3 Block and BlockHistoryQueue[i] Size
If we choose a large SigRace block then, with the same Block-

HistoryQueue[i] (BHQ[i]) size, we can monitor a larger instruction
window for possible data races. However, as the block size in-
creases, the signature false-positive rate also increases. Figure 7(b)
shows the false-positive rate for different block sizes beyond our
default of 2,000 committed instructions. Sync means terminating
a block only at synchronizations. We see that larger blocks induce
more false positives.

For a given block size, if we increase the number of entries in
BHQ[i], we cover a larger instruction window. However, we have
to do more signature operations and the BHQ takes more area.

To evaluate these issues, we run the applications with different
numbers of entries in BHQ[i] and different block sizes. When the
RDM checks an incoming signature against a BHQ[i], the hardware
operates on each of the entries in the BHQ[i] until it nds a block
that is a predecessor of the incoming one. If there is such a prede-
cessor, then SigRace does not lose any race detection opportunity.
We call this event a Hit. Otherwise, SigRace loses race detection
opportunity beyond the oldest entry in BHQ[i]. We are interested
in the execution window that starts at the previous checkpoint and
ends at the block just before the oldest entry in BHQ[i]. We call it
the Lost Detection Window.

Figure 8(a) shows the lost detection window as a percentage of
the checkpoint interval, while Figure 8(b) shows the hit rate of a
signature against a BHQ[i], and Figure 8(c) shows the number of
timestamp comparisons in a BHQ[i] per signature until hitting in
the BHQ[i] or exhausting all full BHQ[i] entries. All gures have
the same X axis and share the same legend.

16 32 64

Number of BHQ[i] Entries

20.0
30.0
40.0
50.0
60.0
70.0
80.0

H
it 

R
at

e 
(%

)

(a)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

Lo
st

 D
et

ec
-

tio
n 

W
in

do
w

 (%
)

2,000 Inst/Block
4,000 Inst/Block

8,000 Inst/Block
16,000 Inst/Block

Sync/Block

(b)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 N
um

 o
f

C
om

pa
ris

on
s 

pe
r B

H
Q

[i]

(c)

Figure 8: Lost detection window (a), hit rate (b), and number
of timestamp comparisons (c) for different numbers of BHQ[i]
entries and block size. All figures share the same legend.



Finding Existing Races Finding Injected Races
Application Ideal SigRace SigRace W-ReEnact Racy Static Races Found Runs w/ Races Found

Stat Dyn Stat Dyn Stat Dyn Runs SigRace W-ReEnact SigRace W-ReEnact
FFT – – – – – – 25/25 600 150 25 25
Cholesky 16 19964 16 3539 16 388 3/25 2 2 1 1
LU – – – – – – 25/25 28 75 25 25
Barnes 11 4416 11 719 6 419 1/25 3 1 1 1
Volrend 27 26846 27 11607 18 6858 23/25 345 74 23 21
Ocean 1 29 1 29 1 6 7/25 8 8 7 7
Radiosity 15 59307 15 16951 12 14660 8/25 29 11 8 6
Raytrace 4 30 4 17 3 12 21/25 66 53 21 21
Water-ns – – – – – – 5/25 2 4 1 2
Water-spatial 8 82 4 27 2 3 3/25 6 6 3 3
Dedup – – – – – – 3/25 0 0 0 0
Streamcluster 13 68566 12 14307 12 436 6/25 7 2 5 2
Blackscholes – – – – – – 0/25 0 0 0 0
Fluidanimate – – – – – – 12/25 95 90 12 12
Swaptions – – – – – – – – – – –
Total 95 179240 90 47196 70 22782 142/350 1191 476 132 126

Table 7: Effectiveness of SigRace and ReEnact with per-word timestamps in finding existing races and injected races.

We see that, as the number of BHQ[i] entries increases, the lost
detection window decreases (Figure 8(a)) and the hit rate increases
(Figure 8(b)). However, we have to do more timestamp compar-
isons until a hit or BHQ[i] exhaustion (Figure 8(c)), and the BHQ
takes more area. On the other hand, for a xed number of BHQ[i]
entries, as the block size increases, we lose less window (Figure
8(a)), the hit rate increases (Figure 8(b)) and the number of com-
parisons decreases (Figure 8(c)) — however, we saw in Figure 7(b)
that false positives increase. Overall, we choose as default a block
size of 2,000 committed instructions and 16 entries in BHQ[i]. This
leads to an average of 20% loss in detection window.

5.4 SigRace Effectiveness

5.4.1 Data Race Detection
To assess SigRace’s effectiveness, we use it to nd (i) existing

data races in our applications and (ii) races that we inject in the
applications. We also simulate a cache-based race detector, namely
a version of ReEnact [19] with per-word timestamps (W-ReEnact).
Table 7 shows the results.

Columns 2-7 (Finding Existing Races) list the number of races
found by Ideal Sigrace, SigRace, and W-ReEnact. Ideal SigRace is
a SigRace where each BHQ[i] keeps information for all the blocks
between consecutive checkpoints — rather than for 16 blocks as in
SigRace. Races are identied by the two instructions involved in
the race and the address accessed. The table counts both static and
dynamic races. Dynamic races are the dynamic instances of static
races.

The table shows that 8 of the applications have data races. These
races include, for example, reads of shared structures outside a crit-
ical section before accessing them inside the critical section. They
are likely to be all benign races. However, we believe that it is
important for any race detector to detect even benign races. This
is because, often, benign races are a symptom that the code has a
bug or something that the programmer does not understand. In any
case, as described in Section 4.2, if the programmer wants SigRace
to skip checking for these races, he can mark the code with col-
lect_off.

The table shows that SigRace detects 90 static and 47,000 dy-
namic races. Compared to W-ReEnact, SigRace detects on average

29% more static races and 107% more dynamic races. SigRace’s
substantially higher effectiveness is due to its ability to monitor a
longer window of program at a time. Finally, compared to Ideal
SigRace, SigRace detects on average 95% of the static races and
26% of the dynamic ones.

We also inject races. For each application, we perform 25 runs.
In each run, we randomly eliminate one dynamic lock-unlock pair
or one dynamic barrier. Since the Swaptions code synchronizes
with fork/joins, we could not subject it to this experiment. While
these are contrived examples, they provide some insight.

Columns 8-12 (Finding Injected Races) show the detection ca-
pability of SigRace and W-ReEnact. Column 8 (Racy Runs) shows
the fraction of those 25 runs that actually created races. Then,
Columns 9-10 show the number of static races found by SigRace
and W-ReEnact, respectively. We see that, on average, SigRace
nds 150% more static races than W-ReEnact. This again shows
the higher effectiveness of SigRace. Interestingly, there are two ap-
plications where W-ReEnact nds more races (LU and Water-ns).
This is because, while SigRace typically monitors a longer program
window, there are cases when lines remain in the caches for a long
time. In this case, W-ReEnact can detect racing accesses that are
far apart in the code (over 50,000 instructions apart in these exam-
ples). In general, it can be argued that races where the accesses
are far apart are least dangerous, since the chances that these ac-
cesses appear in reverse order in a different run are lower. Finally,
Columns 11-12 show the number of runs in which SigRace and W-
ReEnact found at least one race. Again, the number for SigRace is
higher.

5.4.2 Opportunity to Detect Data Races
SigRace has an advantage when addresses are in BHQ[.] and not

in caches, while W-ReEnact has an edge in the opposite case. In
this section, we estimate the frequency of each case. For simplicity,
in this experiment only, signatures encode line addresses.

Of all the cache lines with shared data being displaced or inval-
idated from a cache, Figure 9(a) shows the fraction whose address
is strictly present (not just due to aliasing) in the corresponding
BHQ[i]. The gure shows the average for different cache sizes
and application sets. For the 32KB default cache, the weighted av-
erage fraction is ≈59%. Then, Figure 9(b) shows the number of



displacements or invalidations of lines with shared data per million
instructions executed. For the 32KB default cache, the weighted
average can be shown to be ≈2,800. Overall, roughly speaking,
compared to SigRace, W-ReEnact loses detection opportunity for
0.59×2,800=1,652 lines per million instructions.

32KB 64KB 128KB

Cache Size

0

20

40

C
ac

he
d 

Li
ne

s 
in

 D
is

p 
B

lo
ck

 (%
)

Splash2-kernels
Splash2-apps

Parsec-kernels
Parsec-apps

(a)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0

10

20

Li
ne

s 
pe

r B
lo

ck

(b)

32KB 64KB 128KB

Cache Size

0
20
40
60
80

100

D
is

p 
an

d 
In

va
l

in
 B

H
Q

[i]
 (%

)

(c)

32KB 64KB 128KB

Cache Size

0k

2k

4k

6k

D
is

p 
an

d 
In

va
l

pe
r M

ill 
In

s

(d)

Figure 9: Opportunities for SigRace and W-ReEnact to detect
races. Charts (a), (b), and (c) share the same legend.

Given a block being displaced from a BHQ[i], Figure 9(c) shows
the fraction of addresses in the block’s signatures that are not any-
where else in BHQ[i] and that are in the cache. For the 32KB
cache, the weighted average fraction is ≈13%. Figure 9(d) shows
the number of addresses of lines with shared data that are encoded
in the signatures of one block. This number is on average 14.
Overall, since SigRace executes ≈500 blocks per million instruc-
tions, compared to W-ReEnact, SigRace loses detection opportu-
nity for 0.13×14×500=910 lines per million instructions. While
these numbers give approximate information only, they show W-
ReEnact loses more opportunities.

5.5 SigRace Overheads
We estimate the instruction, SRAM memory, bandwidth, and

checkpointing overheads of SigRace. To estimate the instruction
overhead, we run each application until the rst true data race is
fully analyzed. In the process, some false positives may occur. We
count as instruction overhead all the instructions executed in Re-
execution and Analysis modes to characterize the true data race
and all the false positives found from the beginning of the program
until that point. We stop after analyzing the rst true race because
then the programmer would stop execution. If the application has
no true data race, we insert one in a random location.

Figure 10(a) shows the resulting instruction overhead as a per-
centage of committed instructions. The average bar is the mean of
all the applications. The overhead depends on several things, most
notably how far from the previous checkpoint is the conict de-
tected, and the rate of false positives. We see that, on average, the
instruction overhead due to re-execution is 22%. About two thirds
of it is caused by false positives.
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Figure 10: Instruction (a), bandwidth (b), and checkpoint-
related (c and d) overheads.

From Figure 5, we see that the main SRAM memory overhead
of SigRace per processor includes: a 16-entry BHQ[i] in the RDM
(each entry containing a timestamp and a R and W signature), one
extra timestamp and R and W signatures, the TRT, and the Conict
signature. Since timestamps are 160 bits and signatures 2K bits,
this results in 8512 bytes in the RDM and 808 bytes in the cache
hierarchy — independently of the cache size.

To compute the bandwidth overhead of SigRace, we count how
many bytes of timestamp-signature messages (compressed) are de-
posited on the network. Figure 10(b) shows such number per 1,000
instructions committed. We see that, on average, the bandwidth
overhead is 63 bytes per thousand committed instructions.

Finally, we measure some overheads of checkpointing every 1M
instructions. As per Section 3.3.1, the memory controller saves
the value overwritten by every rst memory update. Figure 10(c)
shows that, on average, this amounts to 29KB of log per processor
between checkpoints. Also, at the point of checkpoint, the dirty
lines in the cache are written back. As shown in Figure 10(d), this
corresponds to, on average, 4.8KB of writebacks per processor.

6. CONCLUSIONS AND FUTUREWORK
This paper proposed SigRace, a novel approach to hardware-

assisted data race detection that overcomes shortcomings of pre-
vious hardware proposals. To detect races, SigRace does not rely
on cache state or coherence protocol messages. Instead, it relies on
hardware address signatures. With SigRace, there are no changes
to the cache or the cache coherence protocol messages, and there
are no critical-path operations performed on local/external access
to the cache. Moreover, lines can be displaced or invalidated from
caches without affecting SigRace’s ability to detect data races.

We presented the architecture of SigRace, an implementation,
and its software interface. Application code is unmodied. Our
experiments showed that SigRace is signicantly more effective
than a state-of-the-art conventional hardware-assisted race detector.
SigRace found on average 29% more static races and 107% more
dynamic races. Moreover, if we inject data races, SigRace found
150% more static races than the conventional scheme. Finally,



SigRace had an average instruction overhead due to re-execution
of 22%, a bandwidth overhead of 63 bytes per thousand committed
instructions, and an SRAM memory overhead of ≈9KB per pro-
cessor.

We are continuing our work in two main directions. The rst one
involves eliminating or minimizing the need to perform checkpoint-
ing — possibly at the cost of more re-execution. The second one
involves improving the scalability of the happened-before clocks
and RDM design.
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Easing the programmer’s burden does not 
compromise system performance or increase 
the complexity of hardware implementation. 

BY JOSEP TORRELLAS, LUIS CEZE, JAMES TUCK,  
CALIN CASCAVAL, PABLO MONTESINOS, WONSUN AHN,  
AND MILOS PRVULOVIC 

In the past, architectures were de-
signed primarily for performance or 
for energy efficiency. Looking ahead, 
one of the top priorities must be for 
the architecture to enable a program-
mable environment. In practice, pro-
grammability is a notoriously difficult 
metric to define and measure. At the 
hardware-architecture level, program-
mability implies two things: First, the 
architecture is able to attain high ef-
ficiency while relieving the program-
mer from having to manage low-level 
tasks; second, the architecture helps 
minimize the chance of (parallel) pro-
gramming errors. 

In this article, we describe a 
novel, general-purpose multicore 
architecture—the Bulk Multicore—
we designed to enable a highly pro-
grammable environment. In it, the 
programmer and runtime system 
are relieved of having to manage the 
sharing of data thanks to novel sup-
port for scalable hardware cache co-
herence. Moreover, to help minimize 
the chance of parallel-programming 
errors, the Bulk Multicore provides 
to the software high-performance se-
quential memory consistency and also 
introduces several novel hardware 
primitives. These primitives can be 
used to build a sophisticated program-
development-and-debugging environ-
ment, including low-overhead data-
race detection, deterministic replay 
of parallel programs, and high-speed 
disambiguation of sets of addresses. 
The primitives have an overhead low 
enough to always be “on” during pro-
duction runs. 

The key idea in the Bulk Multi-
core is twofold: First, the hardware 
automatically executes all software 
as a series of atomic blocks of thou-
sands of dynamic instructions called 
Chunks. Chunk execution is invisible 
to the software and, therefore, puts no 
restriction on the programming lan-
guage or model. Second, the Bulk Mul-
ticore introduces the use of Hardware 
Address Signatures as a low-overhead 
mechanism to ensure atomic and iso-
lated execution of chunks and help 

MULTICORE CHIPS AS commodity architecture 
for platforms ranging from handhelds to 
supercomputers herald an era when parallel 
programming and computing will be the norm. 
While the computer science and engineering 
community has periodically focused on advancing 
the technology for parallel processing,8 this time 
around the stakes are truly high, since there is 
no obvious route to higher performance other 
than through parallelism. However, for parallel 
computing to become widespread, breakthroughs 
are needed in all layers of the computing stack, 
including languages, programming models, 
compilation and runtime software, programming 
and debugging tools, and hardware architectures. 

At the hardware-architecture layer, we need to 
change the way multicore architectures are designed. 

The Bulk Multicore 
Architecture 
for Improved 
Programmability
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maintain hardware cache coherence. 
The programmability advantages of 

the Bulk Multicore do not come at the 
expense of performance. On the con-
trary, the Bulk Multicore enables high 
performance because the processor 
hardware is free to aggressively reor-
der and overlap the memory accesses 
of a program within chunks without 
risk of breaking their expected behav-
ior in a multiprocessor environment. 
Moreover, in an advanced Bulk Mul-
ticore design where the compiler ob-
serves the chunks, the compiler can 
further improve performance by heav-
ily optimizing the instructions within 
each chunk. Finally, the Bulk Multi-
core organization decreases hardware 

design complexity by freeing proces-
sor designers from having to worry 
about many corner cases that appear 
when designing multiprocessors. 

Architecture 
The Bulk Multicore architecture elim-
inates one of the traditional tenets of 
processor architecture, namely the 
need to commit instructions in order, 
providing the architectural state of the 
processor after every single instruc-
tion. Having to provide such state in 
a multiprocessor environment—even 
if no other processor or unit in the 
machine needs it—contributes to the 
complexity of current system designs. 
This is because, in such an environ-

ment, memory-system accesses take 
many cycles, and multiple loads and 
stores from both the same and dif-
ferent processors overlap their execu-
tion. 

In the Bulk Multicore, the default 
execution mode of a processor is to 
commit chunks of instructions at a 
time.2 A chunk is a group of dynami-
cally contiguous instructions (such as 
2,000 instructions). Such a “chunked” 
mode of execution and commit is a 
hardware-only mechanism, invisible 
to the software running on the pro-
cessor. Moreover, its purpose is not to 
parallelize a thread, since the chunks 
in a thread are not distributed to other 
processors. Rather, the purpose is to I
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addresses. 
In the Bulk Multicore, the hard-

ware automatically accumulates the 
addresses read and written by a chunk 
into a read (R) and a write (W) signa-
ture, respectively. These signatures 
are kept in a module in the cache hi-
erarchy. This module also includes 
simple functional units that operate 
on signatures, performing such op-
erations as signature intersection (to 
find the addresses common to two 
signatures) and address membership 
test (to find out whether an address 
belongs to a signature), as detailed in 
the sidebar. 

Atomic chunk execution is sup-
ported by buffering the state gener-
ated by the chunk in the L1 cache. 
No update is propagated outside the 
cache while the chunk is executing. 
When the chunk completes or when a 
dirty cache line with address in the W 
signature must be displaced from the 
cache, the hardware proceeds to com-
mit the chunk. A successful commit 
involves sending the chunk’s W sig-
nature to the subset of sharer proces-
sors indicated by the directory2 and 
clearing the local R and W signatures. 
The latter operation erases any record 
of the updates made by the chunk, 
though the written lines remain dirty 
in the cache. 

The W signature carries enough 
information to both invalidate stale 
lines from the other coherent caches 
(using the δ signature operation on W, 
as discussed in the sidebar) and en-
force that all other processors execute 
their chunks in isolation. Specifically, 
to enforce that a processor executes a 
chunk in isolation when the processor 
receives an incoming signature Winc, 
its hardware intersects Winc against 
the local Rloc and Wloc signatures. If any 
of the two intersections is not null, it 
means (conservatively) that the local 
chunk has accessed a data element 
written by the committing chunk. 
Consequently, the local chunk is 
squashed and then restarted. 

Figure 2 outlines atomic and iso-
lated execution. Thread 0 executes 
a chunk that writes variables B and 
C, and no invalidations are sent out. 
Signature W0 receives the hashed ad-
dresses of B and C. At the same time, 
Thread 1 issues reads for B and C, 
which (by construction) load the non-

improve programmability and perfor-
mance. 

Each chunk executes on the pro-
cessor atomically and in isolation. 
Atomic execution means that none of 
the chunk’s actions are made visible 
to the rest of the system (processors or 
main memory) until the chunk com-
pletes and commits. Execution in iso-
lation means that if the chunk reads a 
location and (before it commits) a sec-
ond chunk in another processor that 
has written to the location commits, 

then the local chunk is squashed and 
must re-execute. 

To execute chunks atomically and 
in isolation inexpensively, the Bulk 
Multicore introduces hardware ad-
dress signatures.3 A signature is a 
register of ≈1,024 bits that accumu-
lates hash-encoded addresses. Figure 
1 outlines a simple way to generate a 
signature (see the sidebar “Signatures 
and Signature Operations in Hard-
ware” for a deeper discussion). A sig-
nature, therefore, represents a set of 

Figure 1 in the main text shows a simple implementation of a signature. The bits of an 
incoming address go through a fixed permutation to reduce collisions and are then 
separated in bit-fields Ci. Each field is decoded and accumulated into a bit-field Vj in the 
signature. Much more sophisticated implementations are also possible. 

A module called the Bulk Disambiguation Module contains several signature 
registers and simple functional units that operate efficiently on signatures. These 
functional units are invisible to the instruction-set architecture. Note that, given a 
signature, we can recover only a superset of the addresses originally encoded into the 
signature. Consequently, the operations on signatures produce conservative results. 

The figure here outlines five signature functional units: intersection, union, test 
for null signature, test for address membership, and decoding (δ). Intersection finds 
the addresses common to two signatures by performing a bit-wise AND of the two 
signatures. The resulting signature is empty if, as shown in the figure, any of its bit-
fields contains all zeros. Union finds all addresses present in at least one signature 
through a bit-wise OR of the two signatures. Testing whether an address a is present 
(conservatively) in a signature involves encoding a into a signature, intersecting the 
latter with the original signature and then testing the result for a null signature. 

Decoding (δ) a signature determines which cache sets can contain addresses 
belonging to the signature. The set bitmask produced by this operation is then passed 
to a finite-state machine that successively reads individual lines from the sets in the 
bitmask and checks for membership to the signature. This process is used to identify 
and invalidate all the addresses in a signature that are present in the cache. 

Overall, the support described here enables low-overhead operations on sets of 
addresses.3  

Signatures and Signature 
Operations in Hardware 

Operations on signatures. 
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speculative values of the variables—
namely, the values before Thread 0’s 
updates. When Thread 0’s chunk com-
mits, the hardware sends signature W0 
to Thread 1, and W0 and R0 are cleared. 
At the processor where Thread 1 runs, 
the hardware intersects W0 with the 
ongoing chunk’s R1 and W1. Since W0 
∩ R1 is not null, the chunk in Thread 1 
is squashed. 

The commit of chunks is serial-
ized globally. In a bus-based machine, 
serialization is given by the order in 
which W signatures are placed on the 
bus. With a general interconnect, seri-
alization is enforced by a (potentially 
distributed) arbiter module.2 W sig-
natures are sent to the arbiter, which 
quickly acknowledges whether the 
chunk can be considered committed. 

Since chunks execute atomically 
and in isolation, commit in program 
order in each processor, and there is 
a global commit order of chunks, the 
Bulk Multicore supports sequential 
consistency (SC)9 at the chunk level. 
As a consequence, the machine also 
supports SC at the instruction level. 
More important, it supports high-
performance SC at low hardware com-
plexity. 

The performance of this SC imple-
mentation is high because (within 
a chunk) the Bulk Multicore allows 
memory access reordering and over-
lap and instruction optimization. As 
we discuss later, synchronization in-
structions induce no reordering con-
straint within a chunk. 

Meanwhile, hardware-implementa-
tion complexity is low because memo-
ry-consistency enforcement is largely 
decoupled from processor structures. 
In a conventional processor that is-
sues memory accesses out of order, 
supporting SC requires intrusive pro-
cessor modifications. For example, 
from the time the processor executes 
a load to line L out of order until the 
load reaches its commit time, the 
hardware must check for writes to L 
by other processors—in case an in-
consistent state was observed. Such 
checking typically requires sending, 
for each external coherence event, a 
signal up the cache hierarchy. The sig-
nal snoops the load queue to check for 
an address match. Additional modifi-
cations involve preventing cache dis-
placements that could risk missing a 

coherence event. Consequently, load 
queues, L1 caches, and other critical 
processor components must be aug-
mented with extra hardware. 

In the Bulk Multicore, SC enforce-
ment and violation detection are per-
formed with simple signature inter-
sections outside the processor core. 
Additionally, caches are oblivious to 
what data is speculative, and their tag 
and data arrays are unmodified. 

Finally, note that the Bulk Mul-
ticore’s execution mode is not like 
transactional memory.6 While one 
could intuitively view the Bulk Multi-
core as an environment with transac-
tions occurring all the time, the key 
difference is that chunks are dynamic 
entities, rather than static, and invis-
ible to the software. 

High Programmability 
Since chunked execution is invisible 
to the software, it places no restriction 
on programming model, language, 

or runtime system. However, it does 
enable a highly programmable envi-
ronment by virtue of providing two 
features: high-performance SC at the 
hardware level and several novel hard-
ware primitives that can be used to 
build a sophisticated program-devel-
opment-and-debugging environment. 

Unlike current architectures, the 
Bulk Multicore supports high-per-
formance SC at the hardware level. 
If we generate code for the Bulk Mul-
ticore using an SC compiler (such as 
the BulkCompiler1), we attain a high-
performance, fully SC platform. The 
resulting platform is highly program-
mable for several reasons. The first is 
that debugging concurrent programs 
with data races would be much easier. 
This is because the possible outcomes 
of the memory accesses involved in 
the bug would be easier to reason 
about, and the debugger would in 
fact be able to reproduce the buggy 
interleaving. Second, most existing 

Figure 1. A simple way to generate a signature. 

. . .

Figure 2. Executing chunks atomically and in isolation with signatures. 
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software correctness tools (such as 
Microsoft’s CHESS14) assume SC. Veri-
fying software correctness under SC is 
already difficult, and the state space 
balloons if non-SC interleavings need 
to be verified as well. In the next few 
years, we expect that correctness-veri-
fication tools will play a larger role as 
more parallel software is developed. 
Using them in combination with an 
SC platform would make them most 
effective. 

A final reason for the program-
mability of an SC platform is that it 
would make the memory model of 
safe languages (such as Java) easier 
to understand and verify. The need to 
provide safety guarantees and enable 
performance at the same time has re-
sulted in an increasingly complex and 
unintuitive memory model over the 
years. A high-performance SC memo-
ry model would trivially ensure Java’s 
safety properties related to memory 
ordering, improving its security and 
usability. 

The Bulk Multicore’s second fea-
ture is a set of hardware primitives 
that can be used to engineer a sophis-
ticated program-development-and-
debugging environment that is always 
“on,” even during production runs. 
The key insight is that chunks and 
signatures free development and de-
bugging tools from having to record 
or be concerned with individual loads 
and stores. As a result, the amount of 
bookkeeping and state required by 
the tools is substantially reduced, as 
is the time overhead. Here, we give 
three examples of this benefit in the 
areas of deterministic replay of paral-
lel programs, data-race detection, and 
high-speed disambiguation of sets of 
addresses. 

Note, too, that chunks provide an 
excellent primitive for supporting 
popular atomic-section-based tech-
niques for programmability (such as 
thread-level speculation17 and trans-
actional memory6). 

Deterministic replay of parallel pro-
grams with practically no log. Hard-
ware-assisted deterministic replay 
of parallel programs is a promising 
technique for debugging parallel 
programs. It involves a two-step pro-
cess.20 In the recording step, while 
the parallel program executes, spe-
cial hardware records into a log the 

order of data dependences observed 
among the multiple threads. The log 
effectively captures the “interleaving” 
of the program’s threads. Then, in the 
replay step, while the parallel program 
is re-executed, the system enforces 
the interleaving orders encoded in the 
log. 

In most proposals of determinis-
tic replay schemes, the log stores in-
dividual data dependences between 
threads or groups of dependences 
bundled together. In the Bulk Multi-
core, the log must store only the total 
order of chunk commits, an approach 
we call DeLorean.13 The logged infor-
mation can be as minimalist as a list 
of committing-processor IDs, assum-
ing the chunking is performed in a 
deterministic manner; therefore, the 
chunk sizes can be deterministically 
reproduced on replay. This design, 
which we call OrderOnly, reduces the 
log size by nearly an order of magni-
tude over previous proposals. 

The Bulk Multicore can further re-
duce the log size if, during the record-
ing step, the arbiter enforces a certain 
order of chunk commit interleaving 
among the different threads (such as 
by committing one chunk from each 
processor round robin). In this case 
of enforced chunk-commit order, the 
log practically disappears. During the 
replay step, the arbiter reinforces the 
original commit algorithm, forcing 
the same order of chunk commits as 
in the recording step. This design, 
which we call PicoLog, typically incurs 
a performance cost because it can 
force some processors to wait during 
recording. 

Figure 3a outlines a parallel execu-
tion in which the boxes are chunks 
and the arrows are the observed cross-
thread data dependences. Figure 3b 
shows a possible resulting execution 
log in OrderOnly, while Figure 3c 
shows the log in PicoLog. 

Data-race detection at production-
run speed. The Bulk Multicore can 
support an efficient data-race detec-
tor based on the “happens-before” 
method10 if it cuts the chunks at syn-
chronization points, rather than at 
arbitrary dynamic points. Synchroni-
zation points are easily recognized by 
hardware or software, since synchro-
nization operations are executed by 
special instructions. This approach 

The Bulk Multicore 
supports  
high-performance 
sequential memory 
consistency at 
low hardware 
complexity. 
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is described in ReEnact16; Figure 4 in-
cludes examples with a lock, flag, and 
barrier. 

Each chunk is given a counter 
value called ChunkID following the 
happens-before ordering. Specifi-
cally, chunks in a given thread receive 
ChunkIDs that increase in program 
order. Moreover, a synchroniza-
tion between two threads orders the 
ChunkIDs of the chunks involved in 
the synchronization. For example, in 
Figure 4a, the chunk in Thread 2 fol-
lowing the lock acquire (Chunk 5) 
sets its ChunkID to be a successor of 
both the previous chunk in Thread 2 
(Chunk 4) and the chunk in Thread 1 
that released the lock (Chunk 2). For 
the other synchronization primitives, 
the algorithm is similar. For exam-
ple, for the barrier in Figure 4c, each 
chunk immediately following the bar-
rier is given a ChunkID that makes it a 
successor of all the chunks leading to 
the barrier. 

Using ChunkIDs, we’ve given a 
partial ordering to the chunks. For 
example, in Figure 4a, Chunks 1 and 
6 are ordered, but Chunks 3 and 4 are 
not. Such ordering helps detect data 
races that occur in a particular execu-
tion. Specifically, when two chunks 
from different threads are found to 
have a data-dependence at runtime, 
their two ChunkIDs are compared. If 
the ChunkIDs are ordered, this is not 
a data race because there is an inter-
vening synchronization between the 
chunks. Otherwise, a data race has 
been found. 

A simple way to determine when 
two chunks have a data-dependence 
is to use the Bulk Multicore signa-
tures to tell when the data footprints 
of two chunks overlap. This opera-
tion, together with the comparison 
and maintenance of ChunkIDs, can 
be done with low overhead with hard-
ware support. Consequently, the Bulk 
Multicore can detect data races with-
out significantly slowing the program, 
making it ideal for debugging produc-
tion runs. 

Enhancing programmability by mak-
ing signatures visible to software. Final-
ly, a technique that improves program-
mability further is to make additional 
signatures visible to the software. This 
support enables inexpensive monitor-
ing of memory accesses, as well as 

We propose that the software interact with some additional signatures through three 
main primitives:18 

The first is to explicitly encode into a signature either one address (Figure 1a) or all 
addresses accessed in a code region (Figure 1b). The latter is enabled by the bcollect 
(begin collect) and ecollect (end collect) instructions, which can be set to collect only 
reads, only writes, or both. 

The second primitive is to disambiguate the addresses accessed by the processor 
in a code region against a given signature. It is enabled by the bdisamb.loc (begin 
disambiguate local) and edisamb.loc (end disambiguate local) instructions (Figure 1c), 
and can disambiguate reads, writes, or both. 

The third primitive is to disambiguate the addresses of incoming coherence 
messages (invalidations or downgrades) against a given local signature. It is enabled 
by the bdisamb.rem (begin disambiguate remote) and edisamb.rem (end disambiguate 
remote) instructions (Figure 1d) and can disambiguate reads, writes, or both. When 
disambiguation finds a match, the system can deliver an interrupt or set a bit. 

Figure 2 includes three examples of what can be done with these primitives: Figure 
2a shows how the machine inexpensively supports many watchpoints. The processor 
encodes into signature Sig2 the address of variable y and all the addresses accessed in 
function foo(). It then watches all these addresses by executing bdisamb.loc on Sig2. 

Figure 2b shows how a second call to a function that reads and writes memory in 
its body can be skipped. In the figure, the code calls function foo() twice with the same 
input value of x. To see if the second call can be skipped, the program first collects 
all addresses accessed by foo() in Sig2. It then disambiguates all subsequent accesses 
against Sig2. When execution reaches the second call to foo(), it can skip the call if two 
conditions hold: the first is that the disambiguation did not find a conflict; the second 
(not shown in the figure) is that the read and write footprints of the first foo() call do not 
overlap. This possible overlap is checked by separately collecting the addresses read 
in foo() and those written in foo() in separate signatures and intersecting the resulting 
signatures. 

Finally, Figure 2c shows a way to detect data dependences between threads running 
on different processors. In the figure, collect encodes all addresses accessed in a 
code section into Sig2. Surrounding the collect instructions, the code places disamb.
rem instructions to monitor if any remotely initiated coherence-action conflicts with 
addresses accessed locally. To disregard read-read conflicts, the programmer can 
collect the reads in a separate signature and perform remote disambiguation of only 
writes against that signature. 

Making Signatures  
Visible to Software

Figure 1. Primitives enabling software to interact with additional signatures:  
collection (a and b), local disambiguation (c), and remote disambiguation (d). 

Figure 2. Using signatures to support data watchpoints (a), skip execution of  
functions (b), and detect data dependencies between threads running on  
different processors (c). 
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and undo and detection of cross-
thread conflicts. However, they also 
have a different goal, namely simplify 
code parallelization by parallelizing 
the code transparently to the user 
software in TLS or by annotating the 
user code with constructs for mutual 
exclusion in TM. On the other hand, 
the Bulk Multicore aims to provide a 
broadly usable architectural platform 
that is easier to program for while de-
livering advantages in performance 
and hardware simplicity. 

Two architecture proposals in-
volve processors continuously execut-
ing blocks of instructions atomically 
and in isolation. One of them, called 
Transactional Memory Coherence and 
Consistency (TCC),5 is a TM environ-
ment with transactions occurring all 
the time. TCC mainly differs from the 
Bulk Multicore in that its transactions 

novel compiler optimizations that re-
quire dynamic disambiguation of sets 
of addresses (see the sidebar “Making 
Signatures Visible to Software”). 

Reduced Implementation 
Complexity 
The Bulk Multicore also has advan-
tages in performance and in hardware 
simplicity. It delivers high perfor-
mance because the processor hard-
ware can reorder and overlap all mem-
ory accesses within a chunk—except, 
of course, those that participate in 
single-thread dependences. In partic-
ular, in the Bulk Multicore, synchroni-
zation instructions do not constrain 
memory access reordering or overlap. 
Indeed, fences inside a chunk are 
transformed into null instructions. 
Fences’ traditional functionality of 
delaying execution until certain ref-
erences are performed is useless; by 
construction, no other processor ob-
serves the actual order of instruction 
execution within a chunk. 

Moreover, a processor can concur-
rently execute multiple chunks from 
the same thread, and memory access-
es from these chunks can also overlap. 
Each concurrently executing chunk 
in the processor has its own R and W 
signatures, and individual accesses 
update the corresponding chunk’s 
signatures. As long as chunks within 
a processor commit in program order 
(if a chunk is squashed, its succes-
sors are also squashed), correctness is 
guaranteed. Such concurrent chunk 
execution in a processor hides the 
chunk-commit overhead. 

Bulk Multicore performance in-
creases further if the compiler gener-
ates the chunks, as in the BulkCom-
piler.1 In this case, the compiler can 
aggressively optimize the code within 
each chunk, recognizing that no other 
processor sees intermediate states 
within a chunk. 

Finally, the Bulk Multicore needs 
simpler processor hardware than cur-
rent machines. As discussed earlier, 
much of the responsibility for mem-
ory-consistency enforcement is taken 
away from critical structures in the 
core (such as the load queue and L1 
cache) and moved to the cache hierar-
chy where signatures detect violations 
of SC.2 For example, this property 
could enable a new environment in 

which cores and accelerators are de-
signed without concern for how to sat-
isfy a particular set of access-ordering 
constraints. This ability allows hard-
ware designers to focus on the novel 
aspects of their design, rather than 
on the interaction with the target ma-
chine’s legacy memory-consistency 
model. It also motivates the develop-
ment of commodity accelerators. 

Related Work 
Numerous proposals for multipro-
cessor architecture designs focus on 
improving programmability. In par-
ticular, architectures for thread-level 
speculation (TLS)17 and transactional 
memory (TM)6 have received signifi-
cant attention over the past 15 years. 
These techniques share key primitive 
mechanisms with the Bulk Multicore, 
notably speculative state buffering 

Figure 4. Forming chunks for data-race detection in the presence  
of a lock (a), flag (b), and barrier (c). 

Figure 3. Parallel execution in the Bulk Multicore (a), with a possible  
OrderOnly execution log (b) and PicoLog execution log (c). 
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are statically specified in the code, 
while chunks are created dynamically 
by the hardware. The second propos-
al, called Implicit Transactions,19 is 
a multiprocessor environment with 
checkpointed processors that regular-
ly take checkpoints. The instructions 
executed between checkpoints consti-
tute the equivalent of a chunk. No de-
tailed implementation of the scheme 
is presented. 

Automatic Mutual Exclusion 
(AME)7 is a programming model in 
which a program is written as a group 
of atomic fragments that serialize in 
some manner. As in TCC, atomic sec-
tions in AME are statically specified 
in the code, while the Bulk Multicore 
chunks are hardware-generated dy-
namic entities. 

The signature hardware we’ve in-
troduced here has been adapted for 
use in TM (such as in transaction-
footprint collection and in address 
disambiguation12,21). 

Several proposals implement data-
race detection, deterministic replay of 
multiprocessor programs, and other 
debugging techniques discussed here 
without operating in chunks.4,11,15,20 
Comparing their operation to chunk 
operation is the subject of future work. 

Future Directions 
The Bulk Multicore architecture is a 
novel approach to building shared-
memory multiprocessors, where the 
whole execution operates in atomic 
chunks of instructions. This approach 
can enable significant improvements 
in the productivity of parallel pro-
grammers while imposing no restric-
tion on the programming model or 
language used. 

At the architecture level, we are ex-
amining the scalability of this organi-
zation. While chunk commit requires 
arbitration in a (potentially distrib-
uted) arbiter, the operation in chunks 
is inherently latency tolerant. At the 
programming level, we are examin-
ing how chunk operation enables 
efficient support for new program-
development and debugging tools, 
aggressive autotuners and compilers, 
and even novel programming models. 
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ABSTRACT
A platform that supported Sequential Consistency (SC) forall codes
— not only the well-synchronized ones — would simplify the task
of programmers. Recently, several hardware architectures that sup-
port high-performance SC by committing groups of instructions at
a time have been proposed. However, for a platform to support SC,
it is insufficient that the hardware does; the compiler has to support
SC as well.

This paper presents the hardware-compiler interface, and the main
compiler ideas forBulkCompiler, a simple compiler layer that works
with the group-committing hardware to provide awhole-system
high-performanceSC platform. We introduce ISA primitives and
software algorithms for BulkCompiler to drive instruction-group
formation, and to transform code to exploit the groups. Our simu-
lation results show that BulkCompiler not only enables a whole-
system SC environment, but also one that actually outperforms
a conventional platform that uses the more relaxed Java Memory
Model by an average of 37%. The speedups come from code opti-
mization inside software-assembled instruction groups.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures — MIMD processors; D.3.2 [Programming Languages]:
Language Classifications — Concurrent, distributed, and parallel
languages; D.3.4 [Programming Languages]: Processors — Com-
pilers, Optimization

General Terms
Algorithms, Design, Performance.

Keywords
Sequential Consistency, Atomic Region, Chunk-Based Architec-
ture, Compiler Optimization.

1. INTRODUCTION
The arrival of multicore chips as the commodity architecture for

many platforms has highlighted the need to make parallel program-
ming easier. While this endeavor necessitates advances in all layers
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of the computing stack, at the hardware architecture layer it re-
quires that multicores be designed to support programmer-friendly
models of concurrency and memory consistency efficiently.

The memory consistency model specifies what values a load can
return in a shared-memory multithreaded program [1]. One such
model is Sequential Consistency (SC). SC mandates that the result
of any execution of the program be the same as if the memory op-
erations of all the processors were executed in some total sequen-
tial order, and those of each individual processor appear in this se-
quence in the order specified by its thread [15]. There is consensus
that software writers prefer that the platform support SC because it
offers the same simple memory interface as a multitasking unipro-
cessor.

For software that is well synchronized (i.e., one that does not
contain data races), most systems used today support SC with high
performance. This is because synchronization operations totally or-
der those accesses from different threads that, if overlapped, could
result in non-intuitive return values for loads. Unfortunately, much
current software, ranging from user applications to libraries, virtual
machine monitors, and OS, has data races — either by accident or
by design. For these codes, SC is not provided. Moreover, as more
beginner programmers attempt parallel programming on multicores
in the next few years, the number of codes with data races may well
increase.

1.1 Benefits of Supporting SC
Devising a platform that supports SC with high performance for

all codes — including those with data races — would have four key
benefits. The first one is that debugging concurrent programs would
be easier. This is because the possible outcomes of the memory
accesses involved in the bug would be easier to reason about, and
the debugger could in factreproducethe buggy interleaving.

A second benefit stems from the fact that existing software cor-
rectness tools almost always assume SC — for example, Microsoft’s
CHESS [19]. Verifying software correctness under SC is already
hard, and the state space balloons if non-SC interleavings need to
be inspected as well. In the next few years, software correctness
verification tools are expected to play a larger role. Using them in
combination with an SC machine would make them most effective.

A third benefit of SC is that it would make the memory model
of safe languages such as Java easier to understand and verify.
The need to provide safety guarantees and enable performance at
the same time has resulted in an increasingly complex and unintu-
itive memory model over the years. A high-performance SC mem-
ory model would trivially ensure Java’s safety properties related to
memory ordering, and improve its security and usability.

Finally, some programmers want to program with data races to
obtain high performance. This includes, for instance, writers of
OS and virtual machine monitors. If the machine provided SC, the



risk of introducing bugs would be reduced and the code portability
enhanced.

1.2 Goal of the Paper and Contributions
From this discussion, we argue that supporting SC is a worthy

goal. Recently, there have been several proposals for hardware ar-
chitectures that support high-performance SC [3, 4, 6, 11, 12, 29,
32]. Some of these architectures support SC all the time by repeat-
edly committing groups of instructions atomically — called chunks
in BulkSC [6], transactions in TCC [12], or implicit transactions
in checkpointed multiprocessors [29]. Each instruction group exe-
cutes atomically and in isolation, generating a total commit order of
chunks and, therefore, instructions, in the machine. Such properties
guarantee SC. Moreover, thanks to operating in large instruction
groups, the overheads of supporting SC are small. Conceivably,
a similar environment can be attained with a primitive for atomic
region execution such as that of Sun’s Rock [7], if it is invoked
continuously.

Unfortunately, for a platform to support SC, it isnot enoughthat
the hardware support SC; the software — in particular, the compiler
for programs written in high-level languages —has to support SC
as well. For this reason, there have been several research efforts
on compilation for SC [13, 28, 31]. Such efforts have sought to
transform the code to satisfy SC on conventional multiprocessor
hardware. The results have been slowdowns — often significant —
relative to the relaxed memory models of current machines.

Remarkably, with the group-commit architectures, we have an
opportunity to develop a high-performance SC compiler layer. Since
the hardware already supports high-performance SC, all we need is
for the compiler to drive the group-formation operation, and adapt
code transformations to it. With the combination of hardware and
compiler, the result is awhole-system high-performance SC plat-
form. Furthermore, since the hardware guarantees atomic group
execution, the compiler can attempt more aggressive optimizations
than in conventional, relaxed-consistent platforms. The result is
evenhigher performancethan current aggressive platforms.

This paper presents the hardware-compiler interface and the main
ideas for a compiler layer that works in the BulkSC architecture
(as a representative of the group-commit architectures) to provide
whole-system high-performance SC. We call our compiler algo-
rithm BulkCompiler. Our specific contributions include: (i) ISA
primitives for BulkCompiler to interface to the chunking hardware,
(ii) compiler algorithms to drive chunking and code transforma-
tions to exploit chunks, and (iii) initial results of our algorithms
with Java programs on a simulated BulkSC architecture.

Our results use Java applications modified with our compiler al-
gorithms and compiled with Sun’s Hotspot server compiler [22]. A
whole-system SC environment with BulkCompiler and simulated
BulkSC architecture outperforms a simulated conventional hard-
ware platform that uses the more relaxed Java Memory Model by
an average of 37%. The speedups come from code optimization
inside software-assembled instruction chunks.

This paper is organized as follows: Section 2 gives a background;
Sections 3 and 4 describe BulkCompiler and how it manages the
chunks; Sections 5 and 6 evaluate the system; Section 7 assesses
the results, and Section 8 discusses related work.

2. BACKGROUND
We describe the BulkSC architecture and the current approaches

for compiler-driven enforcement of SC.

2.1 BulkSC: High-Performance SC Hardware
In the BulkSC multiprocessor [6], as a processor executes a thread,

it automatically breaks the instruction stream into chunks and com-
mits each chunk atomically. AChunk is a group ofdynamically
contiguous instructions — 2,000 in the current implementation.
This “chunked” mode of execution and commit is a hardware-only
mechanism, which is invisible to the software running on the pro-
cessor.

Each chunk executes on the processoratomicallyand in isola-
tion. This means that none of the actions of the chunk are made vis-
ible to the rest of the system (other processors and main memory)
until when the chunk commits. Moreover, if the chunk reads a lo-
cation and, before it commits, a second chunk in another processor
that has written to the same location commits, then the local chunk
gets squashed and has to re-execute. Atomic chunk execution is
supported by buffering in the L1 cache the state that the chunk is
generating. Moreover, as the chunk executes, a Bloom filter au-
tomatically encodes in aR andW signature, the memory addresses
read and written, respectively. After the chunk completes, the hard-
ware sendsW to an arbiter, which forwards it to other processors.
In the other processors,W is intersected with the local signatures.
A non-null result indicates an overlap of addresses, which causes
the chunk in that processor to get squashed and restarted.

Since chunks execute atomically and in isolation, commit in pro-
gram order in each processor, and the arbiter globally orders their
commit, BulkSC supports SC at the chunk level — and, as a con-
sequence, SC at the instruction level.

This is a high-performance SC implementation because the hard-
ware can reorder and overlap all memory accesses within a chunk
— except, of course, those that participate in single-thread depen-
dences. In particular, synchronization instructions induce no re-
ordering constraint. Indeed,fencesinside a chunk aretransformed
into no-opsby the hardware. Their functionality — to delay ex-
ecution until certain references are performed — is useless since,
by construction, no other processor will observe the actual order of
instruction execution within a chunk. Moreover, a processor can
also overlap the execution of consecutive chunks [6].

2.2 Algorithm for Generating Chunks
In BulkSC, the hardware finishes the current chunk and starts

a new one when the number of dynamic instructions executed ex-
ceeds a certain threshold that we callmaxChunkSize(e.g., 2,000
instructions). There are, however, some events that affect the reg-
ular generation of chunks. Table 1 lists these events and, under
Actions in BulkSC, the actions taken [6]. For example, when the
write set of the chunk is about to overflow the cache, the hardware
commits the current chunk at this point and starts a new chunk. The
last column of the table will be discussed later.

2.3 Compiler-Driven Enforcement of SC
A compiler can take programs with potential data races and trans-

form them to enforce SC even on a machine that implements a re-
laxed memory consistency model [13, 28, 31]. The general idea
is to identify the minimal set of ordered pairs of memory accesses
that should not be re-ordered, and then (1) insert a fence along ev-
ery path between the first and second access in each pair, and (2)
prohibit the compiler from performing any transformation that re-
orders any such pair.

The compiler analysis needed involves first performing Escape
analysis [28], which determines which loads and stores may refer
to memory locations accessed by multiple threads. Then, May-
happen-parallel (or Thread-structure) analysis [20, 28] determines
which memory accesses can happen in parallel. Based on these,
Delay Set analysis [26] determines which of the shared accesses
should not be reordered within a thread.



Event Actions in BulkSC Actions with BulkCompiler Inside Atomic Region
maxChunkSize The hardware commits the current chunk No action
instructions executed and starts a new chunk
Cache overflow The hardware commits the current chunk The hardware squashes the current

at this point, and starts a new chunk chunk and restarts it at the Safe Version point
Data collision The hardware squashes the chunk and re-executes it.Same as in under BulkSC. However, if
with remote If the chunk is squashedM times, then the chunk the chunk size has to be reduced, restart
chunk also reduces its size to minimize collisions the chunk at the Safe Version point
Exceptions When the code wants to perform an uncacheable When the code wants to perform an uncacheable
(including access, the hardware commits the current chunk access, squash the chunk and restart it at the
system calls) at this point, performs the uncached operation, Safe Version point. Do not set up an atomic

and starts a new chunk region to include uncacheable accesses
Interrupts The hardware completes the current chunk and The hardware squashes the current chunk,

then processes the interrupt in a new chunk(s) processes the interrupt, and then restarts the
initial chunk under an atomic region again

Table 1: Events that affect chunk generation.
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Figure 1: Compiler-driven chunking for high performance SC. In the figure, eachij represents a set of instructions.

Unfortunately, the compiler analysis required is very costly both
in runtime and in implementation effort — in part because every
step needs interprocedural analysis. Moreover, all three existing
implementations [13, 28, 31] report noticeable slowdowns relative
to execution of the application under the relaxed model — in some
cases, applications become several times slower. Our paper’s goal
is to deliver SC with even higher performance than current relaxed
models.

3. BULKCOMPILER FOR SC
We submit that an architecture with continuous group commit

such as BulkSC [6], TCC [12], or Checkpointed Multiprocessors [29]
can potentially deliver whole-system (hardware plus software) SC
at a higher performance than conventional machines deliver a re-
laxed memory consistency model. This is because, if the compiler
drives chunk formation appropriately, the atomicity guarantee of
chunks can enable many compiler optimizations inside the chunk.

In particular, we focus on multiprocessor-related issues. We ob-
serve that synchronization and fences can substantially hurt the per-
formance of conventional relaxed-consistency machines. At the
same time, synchronization-aware chunk formation can eliminate
some of these problems, and further enable conventional compiler
optimizations that improve performance.

In this section, we discuss the main ideas, the new instructions
added, and the basics of the algorithms inBulkCompiler— our
compilation layer for group-commit architectures. In a later sec-
tion (Section 7), we briefly discuss how we can also improve the

performance of relaxed memory consistency models in these archi-
tectures and enable new compiler optimizations.

3.1 Main Ideas
A compiler for a group-commit architecture should select the

chunk boundaries so that they (1) maximize the potential for com-
piler optimization and (2) minimize the chance of chunk squash.
Since the design space is large, this paper focuses on the multipro-
cessor related issues of synchronization and fences. In this area,
BulkCompiler relies on one idea to maximize compiler optimiza-
tion and one to minimize squashes.

3.1.1 Maximizing Compiler Optimization
To maximize compiler optimization, BulkCompiler identifieslow

contentioncritical sections (which are mostly in the form of syn-
chronized blocks in Java). Then, it includes one or several of them
and their surrounding code in the same chunk (Figure 1(a)). After
this, each acquire operation (monitorenterinstruction in Java byte-
code) is replaced with a spinning loop, which checks if the synchro-
nization variable is taken usingplain loads. Moreover, all the re-
lease operations (monitorexitin Java bytecode) are removed. Next,
we move the spinning on the locks with plain loads to the top of the
chunk — subject to data and control dependences — to prepare the
code for compiler optimization better. Finally, with the synchro-
nizations removed, we let the compiler aggressively reorder and
optimize the code inside the chunk. The resulting code is shown
in Figure 1(b), where the overlapping sets of instruction denote the



Instruction Functionality
Finishes the current chunk, triggers a register checkpoint in hardware, and starts a new chunk. It

beginAtomic PC takes as argument the program counter (PC) of the entry point to theSafe Versionof the code,
which will be executed if the chunk needs to be chopped into smaller chunks.

endAtomic&Cut Finishes the current chunk and changes the mode of chunking from software-driven to hardware-driven.
The hardware will start a new chunk next.

endAtomic Changes the mode of chunking from software-driven to hardware-driven, enabling the hardware
to finish the current chunk when it wants to (e.g., when the chunk size reachesmaxChunkSize).

squashChunk Squashes the current chunk and restarts it at the Safe Version. It involves clearing the BulkSC signatures,
invalidating the cache lines written by the chunk, and restoring the checkpointed register file.

cutChunk Finishes the current hardware-driven chunk, inducing the hardware to start a new one.
It has no effect if found inside abeginAtomicto endAtomic&Cut(or endAtomic) region.

Table 2: Instructions added so that the compiler manages the chunking.

effect of compiler optimization. Note that checking all the locks at
the beginning of the chunk may slightly reduce concurrency. How-
ever, since we apply this transformation to low-contention critical
sections, such effect is insignificant.

Since the chunk will be executed atomically, there is no need
to acquire and release a lock. However, the chunk still needs to
read the locks with plain loads, to check if any lock is taken. A
lock can be taken if another thread, after failed attempt(s) to exe-
cute its own chunk atomically, reverted to a (non-speculative)Safe
Versionof the code, where it grabbed the lock. We will see in Sec-
tion 3.4 that every atomic region has a corresponding Safe Version,
where any locks are acquired and released explicitly. This is the
same approach followed by the Speculative Lock Elision (SLE) al-
gorithm [23] and its implementation in the Sun Rock [9].

If any of the locks is taken, the code spins. When the owner of
the lock commits the lock release, the spinning chunk will observe
a data collision on the spinning variable. At that point, it will be
squashed and re-started.

By eliminating the synchronization operations, this transforma-
tion improves performance in two ways. First, the processor avoids
performing the costly synchronization operations, replacing acquires
with the much cheaper loads. More importantly, however, is that
this transformation eliminates the constraints on instruction reorder-
ing imposed by synchronization instructions. Indeed, even under
current relaxed memory models, compilers neither move instruc-
tions across synchronization operations nor allocate shared data in
registers across them. This disables many instances of conventional
optimizations such as register allocation, common subexpression
elimination, loop invariant code motion, or redundant code motion,
to name a few. After we remove the synchronization operations, a
conventional compiler can reorder instructions and perform all of
these optimizations.

We can place the spinning on the locks with plain loads at the
end of the chunk, after all the work is done (Figure 1(c)). This
approach makes a difference when one or more locks are taken
by other processors and, therefore, the chunk will eventually be
squashed. In this case, having the spinning at the end of the chunk
can enable prefetching of read-only data for the chunk re-execution.
However, it may also cause exceptions resulting from accessing
data of a critical section while another processor is also accessing
it. Overall, since we apply this transformation to low-contention
critical sections, these effects are not very significant.

Finally, this transformation is especially attractive in Java pro-
grams, which is the environment examined in this paper. This is
because Java programs have many low-contention critical sections
in the form of synchronized methods — often in thread-safe Java
libraries. The synchronized blocks in these methods are compiled
into Java bytecode using themonitorenterandmonitorexitbytecode
instructions surrounding the code in the block.

3.1.2 Minimizing Squashes
The second idea in BulkCompiler is to minimize squashes by

identifyinghigh-contentioncritical sections and tight-fitting a chunk
around it (Figure 1(d)). As in the previous transformation,moni-
torenteris replaced with a loop that checks if the lock is taken using
plain loads.Monitorexit is removed (Figure 1(e)). Tight-fitting the
chunk reduces the chances that different processors collide on this
critical section, and also reduces the number of wasted instructions
per squash. It also enables processors to hand over access to popu-
lar critical sections to other processors sooner, since chunks commit
sooner.

Even after all these transformations, chunks created by the com-
piler can collide at runtime — either on the synchronization vari-
able or on another variable. In this case, they retry as per the default
BulkSC execution. However, there are events that require reducing
the size of the chunk, such as a cache overflow or performing an
uncached memory access. Reducing the chunk size could lead to
non-SC executions if the broken chunk exposes reordered refer-
ences to shared data. To prevent this, BulkCompiler also creates
the Safe Version of the code mentioned before. The Safe Version
does not reorder references to shared variables and includes the
monitorenterandmonitorexitinstructions.

Overall, with these changes on top of high-performance SC hard-
ware, we target a performance higher than that attained with the
relaxed Java Memory Model on conventional hardware, while pro-
viding whole-system SC.

3.2 New Instructions Added
Table 2 shows the instructions added to enable the compiler to

manage the chunking. The principal ones arebeginAtomic, which
marks the beginning of an atomic region, andendAtomic&Cutor
endAtomic, which mark the end.BeginAtomiccauses the BulkSC
hardware to finish the current chunk and start a new one. It also
creates a register checkpoint to revert to if the chunk is squashed.
The instruction takes the program counter (PC) of the entry point to
the Safe Version of the code for the chunk. When the atomic region
is squashed, depending on the reason for the squash, the hardware
returns execution to either thebeginAtomicinstruction or the entry
point to the Safe Version.

EndAtomic&Cutterminates the current chunk and then lets the
BulkSC hardware take over the chunking — the hardware will
start a new chunk next.EndAtomicsimply lets the BulkSC hard-
ware take over the chunking. This means that the current chunk
may continue executing until a total ofmaxChunkSizeinstructions
sincebeginAtomichave been executed. When a chunk is executing
within thebeginAtomicto endAtomic&Cut(or endAtomic) instruc-
tion pairs, reaching themaxChunkSizeinstruction count does not
cause chunk termination. Overall, with these primitives, we sur-
round the groups of low-contention synchronized blocks as in Fig-
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Figure 2: Transforming a large code section. In the figure, eachij represents a set of instructions.

ure 1(b) withbeginAtomicat pointA andendAtomicat pointB; we
surround the high-contention synchronized blocks as in Figure 1(e)
with beginAtomicat pointC andendAtomic&Cutat pointD in the
figure.

To the compiler,beginAtomichas acquire semantics, which means
that it cannot move any escaping reference (i.e., reference to shared
data) that followsbeginAtomicto before it. EndAtomic&Cutand
endAtomichave release semantics, and the compiler cannot move
any escaping reference that precedes them to after them.

The table shows two more instructions, calledsquashChunkand
cutChunk. The former squashes the current chunk and restarts at
the Safe Version. It can be used for speculative compiler opti-
mizations, which sometimes require a rollback after discovering
that they have performed an illegal transformation (e.g., [21]). The
cutChunkinstruction simply finishes the current hardware-driven
chunk, inducing the hardware to start a new chunk. It has no effect
if found inside abeginAtomicto endAtomic&Cut(or endAtomic)
region. Note that if, dynamically,endAtomic&Cut, cutChunk, or
potentiallyendAtomicare immediately followed bybeginAtomic,
the latter does not start a second chunk beyond the one that the
hardware is starting.

3.3 Difference to Transactional Memory
To understand our transformations, it is useful to compare them

to Transactional Memory (TM). The main goal of TM is enhancing
concurrency; the main goal of our transformations is enhancing the
performance of each thread through compiler optimization while
preserving SC. However, since we focus on optimization oppor-
tunities afforded by synchronizations, our use of an SLE-like al-
gorithm also enhances concurrency, especially in high-contention
critical sections.

To see the difference between the two goals, consider a synchro-
nized block that is too large for the hardware to provide atomicity.
Unlike TM, BulkCompiler still benefits from splitting the code into
two atomic regions. This is seen in Figure 2(a), which shows code
with two synchronized blocks protected by locks M1 and M2. As-
sume that BulkCompiler estimates that the code in the M1 block
has a footprint that amply overflows the cache. Further, assume
that it estimates that the code before the M1 block (i1) could be
optimized together with the code inside the block. In this case, it

partitions the code into two atomic regions that it estimates fit in
the cache (Figure 2(b)): one that executesi1 and the beginning of
the first block, and another that executes the rest of the code.

BulkCompiler relies on the hardware guarantee that each region
executes atomically. It transforms the code as shown in Figure 2(c):
synchronization operations become plain accesses and the code is
aggressively reordered and optimized. In particular, in the first
atomic region,monitorenteris replaced with a spinning loop, which
checks if the lock is taken using plain loads. If the lock is free, the
code sets it to taken. If the chunk eventually finishes and commits,
this lock update will be made visible; however, the chunk may be
squashed before committing by the commit of another chunk that
also set the lock. On the other hand, if the lock was not free, the
code spins and will not commit. The chunk will eventually get
squashed, either when the thread is pre-empted from the processor
or when the chunk that releases the lock commits.

In the second atomic region,monitorexit M1simply becomes a
plain write to the lock variable to release it. If the chunk commits,
the write will be visible to the rest of the processors. Note that lock
variable M1 has to be explicitly written as taken or freed, although
the writes can be plain stores. This is because, since the synchro-
nized block is now split into two regions, atomicity is no longer
guaranteed and we have to rely on the value of the variable to pre-
vent illegal interleavings. Finally, the accesses toM2 are replaced
with a spinning loop onM2 with plain loads as described before.
Overall, in all cases, the rest of the code is heavily optimized and
the system satisfies SC.

3.4 Safe Version of the Atomic Region Code
It is possible that an atomic region gets squashed. Recall that

Column 2 of Table 1 showed the events that affect chunks in the
original BulkSC architecture. The last column of the table shows
how we slightly change the BulkSC hardware so that it guarantees
the atomicity of atomic regions.

First, inside an atomic region, the chunk is prevented from finish-
ing when the number of instructions reaches pastmaxChunkSize, to
guarantee that the entire atomic region does in fact commit atom-
ically. Second, since this requirement can result in long atomic
regions, we want to process interrupts as soon as they are received
— rather than waiting until the current chunk completes. Conse-



quently, on reception of an interrupt, the current chunk is squashed,
the interrupt is processed, and then the initial chunk is restarted
from the beginning — using the checkpoint frombeginAtomic.

Finally, to guarantee the atomicity of atomic regions, events that
previously triggered a chunk squash may need to be handled dif-
ferently. These events include (i) cache overflows, (ii) uncacheable
accesses in exceptions (which include system calls), and (iii) data
collisions with a remote chunk. How we handle these events largely
depends on whether the event will (likely) repeat after the chunk is
squashed and restarted.

The events that are unlikely to repeat are most data collisions.
In this case, the atomic region is squashed and then re-executed
from the beginning. The events that repeat are cache overflow, un-
cacheable accesses in exceptions, and repeated data collisions on
the same chunk in pathological cases. Some cases of uncacheable
accesses can be avoided by not including problematic system calls
inside atomic regions. However, the rest of the events are largely
unpredictable and hard to avoid. The atomic region cannot be sim-
ply squashed and re-executed since it will be squashed again.

To make progress in these cases, we would have to commit a
downsized chunk —- i.e., the code up until we cause the cache
overflow, or reach the uncacheable access or the access that causes
the collision. However, this would break the atomicity of the chunk
and, potentially, expose inconsistent or non-SC state. Consequently,
to address these cases, a Safe Version of the code is generated for
each atomic region. This safe code does not rely on atomic execu-
tion to preserve SC. If the atomic region needs to be truncated for
any of the “repeatable” reasons, the chunk is squashed and execu-
tion is transferred to the PC of the Safe Version entry point — as
given in thebeginAtomicinstruction.

The Safe Version of the code acquires and releases locks explic-
itly. Moreover, it also has to satisfy SC. Therefore, BulkCompiler
conservatively identifies all the escaping references in the code us-
ing the algorithm in [16]. Then, it adds a fence at the beginning
of the Safe Version code, and after every escaping reference. The
fences prevent the compiler from reordering the escaping accesses
— and hence ensure SC at a performance cost. The analysis of
Section 2.3 could keep the overheads to a minimum. Figure 2(d)
shows the final code for the example.

Fortunately, part of this performance loss is transparently recov-
ered by the chunking hardware. Specifically, as the BulkSC hard-
ware executes the Safe Version code with hardware-driven chunks,
fences areno-ops(Section 2.1). The accesses that fall in the same
chunk will be overlapped and reordered by the hardware, irrespec-
tive of the presence of the fences. Note also that, since Safe Ver-
sions are rarely executed, they will not hurt the instruction cache
through code bloat noticeably.

4. ALGORITHM DESIGN
In this section, we describe the algorithms that we use and some

of the corner cases encountered.

4.1 Inserting Atomic Regions
At the highest level, our algorithm desires to have all escaping

references contained in atomic regions, and for each region to be as
large as possible to expose the maximum number of optimization
opportunities. Doing this naively, however, will lead to excessive
squashing of atomic regions due to conflicts or cache overflow, and
difficulty in generating code for the Safe Versions of the regions.

The algorithm that we use is shown in Figure 3. This algorithm
is applied to each method in turn. Prior to actually selecting atomic
regions, the algorithm performs aggressive inlining, escape analy-
sis [16], and loop blocking. Inlining reduces the impact of using

an intraprocedural algorithm for selecting atomic regions. Escape
analysis identifies the escaping references in the method, namely
the references to objects that may be accessed by two or more
threads. These references should be enclosed in atomic regions. Fi-
nally, loop blocking transforms inner-most loops into a loop nest,
with a constant bound on the iteration count of the innermost loop.
This allows the innermost loop to be enclosed in an atomic region
that fits in the cache. Loops not containing any escaping references
need not be blocked.

1. Perform aggressive inlining.

2. Perform escape analysis and mark escaping references.

3. Block inner-most loops that have escaping references.

4. Traverse code while enclosing each escaping reference in
an atomic region.

5. Expand each atomic regionr that is immediately control
dependent on statementc. We enclose adjacent statements
s while all the following hold:

a. s is control equivalent tor. If s is not control equivalent
to r, then:

i. if s is inside thec control structure, expandr to
contain the code froms to Ps (the post-dominator
of s). The same applies ifPs is encountered first.

ii. if s = c, first expandr downwards untilPc (the
post-dominator ofc), and then also addc to r. The
same applies ifPc is encountered first.

b. the estimated footprint ofr fits in the cache.

c. s is not in a highly-contended synchronized block that
does not containr.

6. Generate the Safe Version for all the atomic regions.

Figure 3: Algorithm that inserts atomic regions in a method.

The algorithm then begins a traversal of the code, and each es-
caping reference is placed into an atomic region. After all escaping
references are enclosed in atomic regions, a second pass is made
to expand atomic regions and merge them where necessary. In the
second pass, each atomic region is visited in turn. When an atomic
region is visited, it is expanded to enclose code before and after the
atomic region, with limits on this expansion as described shortly.
If the expansion of an atomic regionri encounters another atomic
regionrj , rj is merged intori, forming a single atomic region.

Three conditions need to hold during this expansion process.
The first one is that the atomic region must begin and end at con-
trol equivalent points. Letc be the statement on which regionr
containing escaping referencee is immediately control dependent.
This condition is easily satisfied when the statements encountered
while expanding regionr is control equivalent tor. However, if it
is not control equivalent, care must be taken. Specifically, (1) ifs
is inside thec control structure and the code froms to Ps (the post-
dominator ofs) is small enough so thats to Ps fits in the region,
thens to Ps is added tor. The same applies ifPs is encountered
instead ofs. Moreover, (2) ifs = c, thenr is first expanded to
cover all statements betweenc to Pc (the post-dominator ofc) such
that all statements control-dependent onc are insider, and thenc
is also added tor. The same applies ifPc is encountered instead of
c.

The second condition is that the estimated footprint of the atomic
region fits in the cache. A model is used to estimate the contribution
of each statement to the footprint. However, the available footprint
is assumed exceeded if the algorithm attempts to (1) expand the
atomic region into a loop other than the innermost loop around the
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Figure 4: Examples of chunks with synchronization operations.

escaping referencee, or (2) include in the atomic region a non-
inlined method call.

The third condition is that atomic regions will not expand to con-
tain statements within a highly-contended synchronized block un-
less the escaping referencee is in that block. Ife is in a highly-
contended block, the region will at most be expanded to cover the
highly-contended synchronized block.

The resulting atomic regions start and end at control equivalent
parts of the program. This ensures that all atomic region starts have
a corresponding atomic region end, regardless of the path taken by
the program when executing. It also simplifies the generation of
the code for Safe Versions.

Finally, Safe Versions of the regions are formed by duplicating
the block of code in the atomic regions. A fence is placed at the be-
ginning of the Safe Version code and after every escaping reference,
to ensure that the compiler does not reorder escaping references.

4.2 Lock Compression and Region Nesting
When an atomic region contains multiple synchronized blocks

protected by the same lock, the algorithm introduces a single check
for the lock variable (Figure 4(a)). We call this schemeLock Com-
pression.

It is possible that the code contains nested atomic regions. At
runtime, our chunking hardware flattens them out, and considers
them just one large atomic region. To do this, the hardware keeps
a nesting-level counter, and the chunk ends only at the outermost
endAtomic&Cutor endAtomic. Moreover, when a squash is trig-
gered, the outermost atomic region is squashed and, if appropriate,
its Safe Version is invoked.

4.3 Visibility with Synchronizations
When our algorithm produces an atomic region with accesses to

multiple synchronization variables, there may be interactions be-
tween threads that cause problems ofVisibility. As an example, the
problem occurs when an atomic region in ThreadT0 releases vari-
ableX and acquires variableY, while an atomic region in Thread

T1 releases variableY and acquires variableX. This is shown for
regionsR0andR1 in Figure 4(b). For simplicity, the figure shows
acquire and release operations — in practice, our algorithm will
have replaced them with plain memory accesses to the variables.
In the figure, RegionR0cannot complete and make its release ofX
visible toR1because it is spinning onY, whichT1 holds. R1 is in
a symmetrical situation. The result is deadlock, as both threads are
spinning on the acquires.

The problem is not limited to a pattern where both threads first
release a variable and then acquire a second one. It also occurs
when there is ahandshakepattern between two threads. This pat-
tern is shown in Figure 4(c), using Signal and Wait synchroniza-
tion operations. Again, we show these operations for simplicity,
although our algorithm uses plain accesses. In the figure, Region
R0 signals synchronization variableX (effectively a release) and
then waits onY (effectively an acquire), whileR1 waits onX and
then signalsY. Both threads end up spinning on the waits, unable
to complete the regions.

These visibility problems do not occur with the hardware-driven
chunks of BulkSC [6]. This is because such chunks complete as
soon asmaxChunkSizeinstructions are executed, rather than when
a certain static instruction is reached. In both examples, the threads
would spin in the acquires (or in the waits) until they reachmax-
ChunkSizeinstructions. At that point, they would finish the chunks,
making the two releases (in Figure 4(b)) or the signal toX (in Fig-
ure 4(c)) visible.

Similar visibility problems have been observed by proposals that
integrate locks and transactions [24, 33] and by discussions of trans-
actional memory atomicity semantics [18]. Ziareket al [33] pro-
pose to solve the deadlock problem by detecting that two transac-
tions are not completing, squashing them, and executing lock-based
versions of the code. The authors state that these cases happen
rarely.

BulkCompiler uses a similar approach, which is detailed in Sec-
tion 4.4 and is simpler to implement. However, the problem with
“unpaired” synchronization shown in Figure 4(b) cannot occur for



high-contention critical sections because BulkCompiler tight-fits
the atomic region around the section. For low-contention critical
sections, an unpaired synchronization may be lumped with other
access(es) to synchronization variable(s) within a single atomic re-
gion. However, because of the low contention for the synchroniza-
tion variables, the probability of an interleaving that causes dead-
lock is very low. An alternative design is to have the compiler dis-
able the creation of such atomic regions.

4.4 Visibility with Data Races
If the code is not properly synchronized, data races may produce

the deadlock-prone access patterns discussed above. For example,
Figure 4(d) shows data races that create the handshake pattern. In
this case, the compiler may be unable to detect the possibility of
deadlock — except, perhaps, at the cost of expensive and conser-
vativeMust-aliasanalysis.

To handle this case and other deadlocks at runtime, BulkCom-
piler relies on detecting that two chunks are not completing, squash-
ing them, and then triggering the execution of their Safe Versions.
Note that, in our environment, detecting that chunks are not com-
pleting is easy. Rather than measuring wall-clock time, we count
the number of completed instructions — which is needed by the
BulkSC hardware anyway. If this number is very high, the proces-
sor is likely spinning on a tight loop. At that point, the spinning
chunks are squashed and the Safe Versions executed. One option
for chunks that suffer frequent timeouts is recompilation.

5. EXPERIMENTAL SETUP

5.1 Compiler and Simulator Infrastructure
Our evaluation infrastructure uses two main components: the

Hotspot Java Virtual Machine (JVM) for servers [22] from Sun Mi-
crosystems and a Simics-based [30] simulator of the BulkSC archi-
tecture [6]. Hotspot is an aggressive commercial-grade compiler
with extensive support for just-in-time compilation and adaptive
optimization. It is included in OpenJDK7 [27]. We use Hotspot
to compile both the unmodified applications for a conventional ar-
chitecture, and the applications modified with the BulkCompiler
algorithms for a BulkSC architecture. We report the difference in
performance.

We apply the algorithm described in Section 4.1 to Java source
code using a profile-driven infrastructure that currently requires
substantial hand-holding. We are in the process of automating the
infrastructure. Since we are instrumenting at the Java source code
level, we cannot directly insert our assembly instructions of Sec-
tion 3.2. Instead, we use the JNI (Java Native Interface) to wrap the
instructions in Java methods — at the cost of some overhead.

The resulting modified source is compiled to bytecode, and then
run on the Hotspot JVM. The Hotspot JVM executes on top of
a full-system execution-driven simulator built using Simics [30].
The simulator uses the x86 ISA extended with the BulkCompiler
instructions. The simulator models a BulkSC multiprocessor [6],
including the chunk-based speculative execution, checkpointing,
chunk squash and rollback, signature operation, and the extensions
needed for BulkCompiler. For comparison, we also model a plain,
non-chunk-based multiprocessor.

We model a multicore with 4 single-issue processors running at
4 GHz. Each processor has a 4-way, 64-Kbyte L1 data cache with
64-byte lines. If the cache overflows while executing an atomic
region, the chunk gets squashed. Given that the processor model
is simple, we report performance in number of cycles taken by the
program assuming a constant CPI of 1, irrespective of the instruc-
tion type, or whether an access hits or misses in the cache. In some

of the experiments, we will assign a fixed cost in cycles to each
CAS (Compare-And-Swap) operation. CAS is used to implement
synchronization in the Hotspot JVM. In all cases, the results are
measured after the application has run a sufficient number of in-
structions to warm up the code cache.

5.2 Experiments and Applications
We start by identifying which synchronization variables in the

application have high contention and which have low contention.
For this, we use Hotspot, which provides options to profile dy-
namic locking behavior. It is as simple as running with an addi-
tional Hotspot argument. This information enables the targeting of
the atomic regions. In addition, our infrastructure uses a simple
model of the data footprint of each code section, which is used to
decide when the atomic region should terminate, to minimize cache
overflow. We often chop loops into multiple blocks of appropriate
sizes in order to put each block inside an atomic region.

For the evaluation, we use the SPECJBB2005 and SPECJVM98
benchmark suites. In addition, we also evaluate two additional
applications with substantial synchronization, namelyMonteCarlo
from SPECJVM2008 andJLex from [2]. Of these applications,
SPECJBB2005 andMonteCarlorun with 4 threads, andMtrt of
SPECJVM98 runs with 2 threads. The rest of SPECJVM98 and
JLex run with a single thread, although they have many synchro-
nized blocks. These synchronizations are in the Java library code,
which includes synchronization because it has to be thread safe.
Each application runs for at least 1B instructions before being mea-
sured.

Finally, among the SPECJVM98 applications, we could not eval-
uateJavacor MpegAudiobecause they are commercial applications
with no source code, which we need for source level instrumenta-
tion. However, we were able to includeJack(another SPECJVM98
commercial application) because it has become open source under
the name of JavaCC. The JavaCC source distribution includes an
input set which is an identical copy of the input set forJackwith a
few syntactic modifications.

6. EVALUATION
In this evaluation, we first describe the optimizations that we en-

able, then present the simulated speedups, and finally characterize
the transformations performed.

6.1 Understanding the Optimizations Enabled
To understand the way in which BulkCompiler’s transformations

enable Hotspot to generate faster code, we analyzed the intermedi-
ate representation of the code generated by Hotspot with and with-
out the BulkCompilerchanges. We did not add any new compiler
optimization to take advantage of chunk-based execution; conven-
tional Hotspot optimizations perform significantly better once Hotspot
is given control of the chunks. The following are some common
patterns seen:

Loop unswitching. This transformation involves moving a loop-
invariant test out of a loop, and then producing two versions of the
loop, one in the if-branch of the test, and the other in the else-
branch. With the removal of the test, the two loop bodies have a
more streamlined control flow and, therefore, the compiler can op-
timize them, creating better-quality code. The presence of synchro-
nization within the loop had prevented this optimization, since it
would have been in violation of the Java Memory Model. However,
after BulkCompiler has wrapped the loop inside an atomic region
and replaced the synchronizations with plain accesses, Hotspot per-
forms this optimization automatically. The Java Memory Model
will not be violated because the hardware guarantees that there are



no intervening conflicting accesses until the atomic region runs to
completion.

Null check elimination. In order to satisfy Java safety guaran-
tees, the compiler needs to insert null checks before every object
reference — unless it is able to prove that the reference is non-null.
If the compiler can prove that two references point to the same ob-
ject, it can safely remove the checks on the second reference. This
situation occurs often inside a loop, where a reference remains in-
variant through all the iterations. In this case, the compiler peels
off the first iteration of the loop, where it inserts all the checks, and
removes the checks from the main body of the loop. Hotspot could
not do this optimization if there were intervening synchronizations
between the references, since it would be illegal. After BulkCom-
piler’s transformations, Hotspot performs this optimization.

Range check elimination. In addition to performing null checks,
the compiler is also required to check that an array reference does
not exceed the boundaries of the array. Like for null checks, if
the compiler is able to prove that an earlier range check subsumes
a later range check, the later check can be removed. Once again,
however, the presence of intervening synchronizations prevented
Hotspot to perform the same loop-peeling optimization in the code
described above. With BulkCompiler’s transformations, Hotspot
performs the optimization.

Loop invariant code motion. Often, the same expression is
computed at every iteration of a loop. A common example is when
the range of an array which does not change in size needs to be
computed repeatedly within a loop. This transformation involves
moving the computation outside the loop. If the loop has synchro-
nizations, Hotspot cannot move the computation. With BulkCom-
piler’s transformations, Hotspot can perform the optimization with-
out violating the Java or SC memory models.

Register allocation. Memory locations that were allocated in
registers cannot survive synchronization boundaries. The data needs
to be stored to memory and loaded back from it, or the Java Mem-
ory Model would be violated. BulkCompiler’s transformations re-
sult in the removal of many register allocation restrictions, which
often result in much more efficient code.

Besides these types of optimizations, the removal of memory
fences done by BulkCompiler gives Hotspot much more room for
code scheduling. Scheduling is especially important for potentially
long delay loads and stores. However, this effect is not evaluated in
our results due to the simplistic timing model used in our simulator.

6.2 Simulated Speedups
To estimate the performance gains enabled by BulkCompiler, we

simulate two environments. The first one (Baseline) is unmodified
Java running on a conventional (i.e., without chunks) multiproces-
sor. The second one (BulkCompiler) is code transformed by Bulk-
Compiler running on a BulkSC multiprocessor.

As indicated before, because of the model used in our simulator,
we report performance in number of cycles taken by the programs
assuming a constant CPI of 1, irrespective of the instruction type.
For this reason, we call the two environments aboveBaseline_1
and BulkCompiler_1. However, it is well known that an impor-
tant source of overhead in implementations of Java is the actual
read-modify-write operations (e.g., CAS) performed in the frequent
synchronizations — in the case of Hotspot, potentially two read-
modify-write operations for each synchronized block, one at the be-
ginning and one the end. BulkCompiler’s transformations replace
these operations with plain accesses. Consequently, in our simu-
lations, we also report results for a second scenario, namely one
where each instruction takes 1 cycle except for the read-modify-
write operations, which take 20 cycles each. The latter is the over-

head measured in our workstations for a read-modify-write oper-
ation. We call the two environmentsBaseline_20andBulkCom-
piler_20for the two architectures.

Since these environments do not include a high-fidelity architec-
tural model, they do not capture how different memory models use
microarchitectures for access overlapping. However, they capture
how the compiler can re-order and transform the code under differ-
ent models, changing the number of instructions executed.

Figure 5(a) shows, for each application, the speedup ofBulk-
Compiler_1overBaseline_1, while Figure 5(b) shows the speedup
of BulkCompiler_20over Baseline_20. The bars also include the
average for the SPECJVM98 applications, and the average for all
the applications. Recall thatBulkCompilerdelivers SC execution,
while Baselineexecutes with the relaxed Java Memory Model.

The figures show thatBulkCompilerdelivers substantial speedups
over Baseline. In the environment where all the instructions have
the same cost, the average speedup ofBulkCompiler_1across all
the applications is 1.23 (or 1.11 if we only consider SPECJVM98).
In the environment where the read-modify-write instructions are
more costly, which we consider to be more realistic, the speedups
are higher. Specifically, the average speedup is 1.37 (or 1.23 if
we only consider SPECJVM98). These results show that awhole-
system SC platform, which guarantees SC at both the compiler and
hardware levels, can deliver higher performance than a state-of-the
art platform that supports the relaxed Java Memory Model (Base-
line).

An analysis of the applications shows that most of them get
speedups, sometimes quite high. The exceptions areJVM-raytrace,
JVM-mtrt, andJVM-compress. We did not get speedups for these
applications largely because they do not contain much synchroniza-
tion in the first place. However, also notice that instrumenting with
atomic regions and enforcing SC did not cause them to slow down
significantly, either. This is despite the fact that we wrap theBulk-
Compilerassembly instructions in JNI calls (Section 5.1), which in-
troduce some overhead. Such overhead would not be present in an
implementation that works on the Hotspot intermediate representa-
tion. Finally, we note that the speedups ofJLexare the same for
BulkCompiler_1andBulkCompiler_20. This is because the locks
in JLexwere mostly in the biased [25] state, which does not use
any read-modify-write operations.

6.3 Characterizing the Transformations
In this section, we characterize the dynamic behavior of the code

transformed by BulkCompiler as it runs on the BulkSC architec-
ture. The data is shown in Table 3, where AR stands for Atomic
Region. In the table, Columns 2–4 show the percentage of dy-
namic instructions inside atomic regions in the program, the num-
ber of dynamic atomic regions, and the average dynamic size of an
atomic region in instructions, respectively. We can see from this
data that our atomic regions cover the great majority of the execu-
tion (74% of the dynamic instructions on average). The remaining
execution largely contains private references. We also see that there
are many dynamic atomic regions and that they are very large —
about 52,000 dynamic instructions on average. These atomic re-
gions are largely loops with small to modest write footprints. The
average atomic region size forJVM-compressis smaller than the
others. This is because system calls interspersed across this appli-
cation force the creation of smaller atomic regions. At this size,
the overhead of our JNI calls becomes more significant and, hence,
we suffer a 6% overhead as can be seen in Figure 5, even with a
negligible squash rate.

Columns 5–7 give more information about these atomic regions,
namely the number of synchronized blocks per region in the origi-
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Figure 5: Speedups ofBulkCompiler_1over Baseline_1(a), and ofBulkCompiler_20over Baseline_20(b).

nal code, and their write and read footprints in number of 64-byte
lines, respectively. We can see that, on average, each atomic re-
gion used to contain about 600 synchronized blocks. By transform-
ing their synchronization operations into plain memory accesses,
we enable many optimizations in Hotspot. As mentioned in Sec-
tion 6.2,JVM-raytrace, JVM-mtrt, andJVM-compressdo not have
much synchronization and, therefore, show no speedups.

We also see that the atomic regions have a small write footprint
(184 lines on average). This allows them to fit inside the cache
without overflows. The read footprint is larger, but recall that, in
BulkSC the read footprintdoes not need to remain in the cache—
signatures keep a record of the lines read [6].

For example,JVM-dbhas a large read footprint but a tiny write
footprint compared to the size of its atomic regions. This is due to
the fact thatJVM-dbspends the bulk of its time sorting its database
index, which involves string comparisons of index entries and swaps
when entries are out of order. The index is only updated on swaps,
which are much less frequent than the number of read accesses re-
quired for the string comparisons. This is the reason for the small
write footprint. However, each access to the index is protected by a
synchronized block, giving BulkCompiler ample optimization op-
portunities. Other applications follow a similar pattern.

Finally, the last column shows the fraction of dynamic instruc-

tions in atomic regions that get squashed. We see that, on average,
only 0.48% of the instructions in atomic regions get squashed. This
represents a tolerable fraction of work lost.

7. DISCUSSION
These experiments are only an initial estimation of the poten-

tial of exposing an architecture with all-the-time group commits
to the compiler. Indeed, we need a high-fidelity model of the mi-
croarchitecture to assess whether BulkCompiler’s higher freedom
to schedule long-latency memory accesses within a large atomic
region translates into performance impact.

Moreover, this paper has focused only on (i) synchronization-
related issues and (ii) enablingconventionalcompiler optimiza-
tions that already exist in Hotspot — such as register allocation or
loop-invariant code motion. BulkCompiler can be augmented with
novel compiler optimizations enabled by the all-the-time group-
commit hardware. Some of these optimizations could focus on
speeding-up single-thread execution — an area explored by Nee-
lakantamet al [21] (Section 8). Other optimizations could specifi-
cally focus on other multithreaded issues such as load imbalance.

Another avenue of research is to apply the memory ordering re-
laxation provided by all-the-time group commits to improve the
performance of other memory consistency models beyond SC. We



Application % of Dyn
Instructions
in ARs

# of
Dynamic
ARs

Dyn AR
Size

# Sync
Blocks
per AR

Write
Footprint
(Lines)

Read
Footprint
(Lines)

% Instructions
in AR
Squashed

SPECJBB05 44.5 323086 19117.2 212 489.4 865.6 0.79
JVM-db 75.8 22451 119176.0 2000 84.4 3123.0 0.40
JVM-jack 29.5 2382 30105.2 792 119.7 229.4 1.31
JVM-jess 62.6 33995 43475.6 102 141.1 449.7 0.27
JVM-raytrace 85.8 61419 19771.1 0 51.7 613.9 0.10
JVM-mtrt 77.5 61627 19589.0 0 305.5 1297.0 0.14
JVM-compress 92.7 1632082 5418.6 0 28.1 144.5 0.04
JLex 97.4 45846 131474.0 317 426.9 705.7 0.91
MonteCarlo 99.9 16778 82535.1 2000 11.0 13.0 0.34
Average 74.0 244407 52295.8 602 184.2 826.9 0.48

Table 3: Characterizing the dynamic behavior of the code transformed by BulkCompiler. AR stands for Atomic Region.

are confident that our techniques can improve the performance of
relaxed memory models as well. Work by Wenischet al [32] and
Blundellet al [3] point to the potential of these ideas.

Finally, this work is applicable beyond BulkSC to all all-the-time
group-commit architectures and, with some extensions, to conven-
tional architectures that support hardware TM.

8. RELATED WORK

8.1 Software-Only Sequential Consistency
There have been three major software-only efforts to enforce SC

in programs that are not well synchronized. The most sophisticated
one is the Pensieve Project [28], which provides SC for Java. Their
SC compiler uses a combination of escape analysis [28], thread-
structure analysis [28], delay set analysis [26, 28], and an optimized
fence-insertion algorithm [10]. All but the fence-insertion algo-
rithm are interprocedural analyses that are fairly complex. Overall,
their method induces slowdowns of over 10% on average over the
relaxed Java Memory Model.

Liblit et al [17] developed an SC version of Titanium [13]. In
the same project, Krishnamurthy and Yelick [14] showed how the
regular structure of SPMD programs could be exploited to reduce
the complexity of delay set analysis in those programs. Finally, Von
Praun and Gross [31] used an object-based analysis for delay set
analysis to determine reference orders that needed to be enforced
because of inter-thread conflicts. Overall, none of these methods
reported speedups for applications, and some reported significant
slowdowns in one or more applications. In contrast, our combined
hardware-software SC scheme delivers speedups over the relaxed
Java Memory Model.

8.2 Exploiting Support for Atomicity
There has been substantial recent work on exploiting hardware

support for atomicity. The Transmeta Code Morphing concept in-
volved aggressively optimizing the code with speculative transfor-
mations [8]. It appears that most of the optimizations were for
single-thread execution. Neelakantamet al [21] sped-up hot sec-
tions of the code by developing an optimized, speculative “trace” of
the code and running it under hardware atomicity. If the code takes
an unexpected control path, the section is squashed and the full
version of the code is executed. They largely focus on optimizing
single-thread execution, typically in loop iterations, although they
mention the application of SLE to critical sections. BulkCompiler
differs in its emphasis on grouping many low-contention critical
sections in a large atomic region to enable conventional optimiza-
tions. It also differs in its goal to support SC.

Carlstromet al [5] take lock-based Java programs and convert
them into transactions. They describe how critical sections and

other constructs are converted into transactions. However, they nei-
ther mention whether this change enables compiler optimizations
nor are they focused on SC. Other authors such as Ziareket al [33]
and Rossbachet al [24] have studied environments that integrate
locks and transactions, finding some of the problems we faced.

Re-writing a critical section with a synchronization-free fast path
executing under atomic hardware, and a slow path with the com-
plete code has been proposed in SLE [23] and used in TM libraries [9].

9. CONCLUSIONS
A platform that provides high-performance SC at the hardware

and software levels for all codes, including those with data races,
will substantially simplify the task of programmers. This paper
presented the hardware-compiler interface, and the main ideas for
BulkCompiler, a compiler layer that works with the BulkSC chunk-
ing hardware to provide awhole-system high-performance SC plat-
form. Our specific contributions included: (i) ISA primitives for
BulkCompiler to interface to the chunking hardware, (ii) compiler
algorithms to drive chunking and code transformations to exploit
chunks, and (iii) initial results of our algorithms on Java programs.

Our results used Java application suites modified with our com-
piler algorithms and compiled with Sun’s Hotspot server compiler.
A whole-system SC environment with BulkCompiler and simu-
lated BulkSC hardware outperformed a simulated conventional hard-
ware platform that used the more relaxed Java Memory Model by
an average of 37%. The speedups came from code optimization
inside software-assembled instruction chunks.

This work is applicable beyond BulkSC to all group-commit ar-
chitectures and, with some extensions, to conventional architec-
tures that support hardware TM. We are now extending BulkCom-
piler to drive novel compiler optimizations for single- and multi-
threading, and to apply them to relaxed memory models as well.
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Abstract—For parallelism to become tractable for mass pro-
grammers, shared-memory languages and environments must
evolve to enforce disciplined practices that ban “wild shared-
memory behaviors;” e.g., unstructured parallelism, arbitrary
data races, and ubiquitous non-determinism. This software
evolution is a rare opportunity for hardware designers to rethink
hardware from the ground up to exploit opportunities exposed
by such disciplined software models. Such a co-designed effort
is more likely to achieve many-core scalability than a software-
oblivious hardware evolution.

This paper presents DeNovo, a hardware architecture moti-
vated by these observations. We show how a disciplined parallel
programming model greatly simplifies cache coherence and
consistency, while enabling a more efficient communication and
cache architecture. The DeNovo coherence protocol is simple
because it eliminates transient states – verification using model
checking shows 15X fewer reachable states than a state-of-the-
art implementation of the conventional MESI protocol. The De-
Novo protocol is also more extensible. Adding two sophisticated
optimizations, flexible communication granularity and direct
cache-to-cache transfers, did not introduce additional protocol
states (unlike MESI). Finally, DeNovo shows better cache hit
rates and network traffic, translating to better performance
and energy. Overall, a disciplined shared-memory programming
model allows DeNovo to seamlessly integrate message passing-
like interactions within a global address space for improved
design complexity, performance, and efficiency.

I. INTRODUCTION

Achieving the promise of Moore’s law will require harness-
ing increasing amounts of parallelism using multicores, with
predictions of hundreds of cores per chip. Shared-memory
is arguably the most widely used general-purpose multicore
parallel programming model. While shared-memory provides
the advantage of a global address space, it is known to
be difficult to program, debug, and maintain [52]. Specif-
ically, unstructured parallel control, data races, and ubiqui-
tous non-determinism make programs difficult to understand,
and sacrifice safety, modularity, and composability. At the
same time, designing performance-, power-, and complexity-
scalable hardware for such a software model remains a major
challenge; e.g., directory-based cache coherence protocols are
notoriously complex [3] and hard to scale and an active
area of research [72, 37, 54, 63, 57]. More fundamentally,
a satisfactory definition of memory consistency semantics
(i.e., specification of what value a shared-memory read should
return) for such a model has proven elusive, and a recent paper
makes the case for rethinking programming languages and
hardware to enable usable memory consistency semantics [4].

*This work is supported in part by Intel and Microsoft through the
Universal Parallel Computing Research Center (UPCRC) at Illinois and by the
National Science Foundation under grant number CCF-1018796. We thank
Craig Zilles for discussions in the initial phase of this project and for the
project name.

The above problems have led some researchers to promote
abandoning shared-memory altogether (e.g., [52]). Some
projects do away with coherent caches, most notably the
48 core Intel Single-Chip Cloud Computer [43], pushing
significant complexity into the programming model. An al-
ternative view is that the above problems are not inherent
to a global address space paradigm, but instead occur due
to undisciplined programming models that allow arbitrary
reads and writes for implicit and unstructured communication
and synchronization. This results in “wild shared-memory”
behaviors with unintended data races and non-determinism
and implicit side effects. The same phenomena result in
complex hardware that must assume that any memory access
may trigger communication, and performance- and power-
inefficient hardware that is unable to exploit communication
patterns known to the programmer but obfuscated by the
programming model.

There is much recent software work on more disciplined
shared-memory programming models to address the above
problems (Section I-B). This paper concerns the first step of a
hardware project, DeNovo, that asks the question: if software
becomes more disciplined, can we build more performance-,
power-, and complexity-scalable hardware? Specifically, this
paper focuses on the impact of disciplined software on the
cache coherence protocol.

A. Hardware Coherence Scaling Issues
Shared-memory systems typically implement coherence

with snooping or directory-based protocols. Although current
directory-based protocols are more scalable than snooping
protocols, they suffer from several limitations:
Performance and power overhead: They incur several
sources of latency and traffic overhead, impacting perfor-
mance and power; e.g., they require invalidation and ac-
knowledgment messages (which are strictly overhead) and
indirection through the directory for cache-to-cache transfers.
Verification complexity and extensibility: They are noto-
riously complex and difficult to verify since they require
dealing with subtle races and many transient states [60, 34].
Furthermore, their fragility often discourages implementors
from adding optimizations to previously verified protocols
– additions usually require re-verification due to even more
states and races.
State overhead: Directory protocols incur high directory
storage overhead to track sharer lists. Several optimized
directory organizations have been proposed, but also require
considerable overhead and/or excessive network traffic and/or
complexity. These protocols also require several coherence
state bits due to the large number of protocol states (e.g., ten
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bits in [63]). This state overhead is amortized by tracking
coherence at the granularity of cache lines. This can result
in performance/power anomalies and inefficiencies when the
granularity of sharing is different from a contiguous cache
line (e.g., false sharing).

Researchers continue to propose new hardware directory
organizations and protocol optimizations to address one or
more of the above limitations [72, 37, 54, 50, 1, 62, 67]; how-
ever, all of these approaches incur one or more of complexity,
performance, power, or storage overhead. Recently, Kaxiras
and Keramidas [45] exploited the data-race-free property of
current memory consistency models to address the perfor-
mance and power costs of the directory-based MESI protocol.
DeNovo is a hardware-software co-designed approach that
exploits emerging disciplined software properties in addition
to data-race-freedom to target all the above mentioned limi-
tations of directory protocols for large core counts.

B. Software Scope

There has been much recent research on disciplined
shared-memory programming models with explicit and struc-
tured communication and synchronization for both deter-
ministic and non-deterministic algorithms [7]; e.g., Ct [33],
CnC [22], Cilk++ [18], Galois [49], SharC [10], Kendo [61],
Prometheus [9], Grace [14], Axum [35], and Deterministic
Parallel Java (DPJ) [21, 20].

Although the targeted disciplined programming models are
still under active research, many of them guarantee determin-
ism. We focus this paper on deterministic codes for three
reasons. (1) There is a growing view that deterministic algo-
rithms will be common, at least for client-side computing [7].
(2) Focusing on these codes allows us to investigate the “best
case;” i.e., the potential gain from exploiting strong discipline.
(3) These investigations will form a basis on which we
develop the extensions needed for other classes of codes in the
future; in particular, disciplined non-determinism, legacy soft-
ware, and programming models using “wild shared-memory.”
Synchronization mechanisms involve races and are used in
all classes of codes; here, we assume special techniques to
implement them (e.g., hardware barriers, queue based locks,
etc.) and postpone their detailed handling to future work. We
also postpone OS redesign work, and hope to leverage recent
work on “disciplined” OS; e.g., [13, 42] and [25].

We use Deterministic Parallel Java (DPJ) [21] as an ex-
emplar of the emerging class of deterministic-by-default lan-
guages (Section II), and use it to explore how hardware can
take advantage of strong disciplined programming features.
Specifically, we use three features of DPJ that are also com-
mon to several other projects: (1) structured parallel control;
(2) data-race-freedom, and guaranteed deterministic semantics
unless the programmer explicitly requests non-determinism
(called determinism-by-default); and (3) explicit specification
of the side effects of parallel sections; e.g., which (possibly
non-contiguous) regions of shared-memory will be read or
written in a parallel section.

Most of the disciplined models projects cited above also
enforce a requirement of structured parallel control (e.g.,
a nested fork join model, pipelining, etc.), which is much
easier to reason about than arbitrary (unstructured) thread
synchronization. Most of these, including all but one of the
commercial systems, guarantee the absence of data races for

programs that type-check. Coupled with structured parallel
control, the data-race-freedom property guarantees determin-
ism for several of these systems. We also note that data races
are prohibited (although not checked) by existing popular
languages as well; the emerging C++ and C memory models
do not provide any semantics with any data race (benign or
otherwise) and Java provides extremely complex and weak
semantics for data races only for the purposes of ensuring
safety. The information about side effects of concurrent tasks
is also available in other disciplined languages, but in widely
varying (and sometimes indirect) ways. Once we understand
the types of information that is most valuable, our future work
includes exploring how the information can be extracted from
programs in other languages.

C. Contributions

DeNovo starts from language-level annotations designed for
concurrency safety, and shows that they can be efficiently
represented and used in hardware for better complexity and
scalability. Two key insights underlie our design. First, struc-
tured parallel control and knowing which memory regions will
be read or written enable a cache to take responsibility for
invalidating its own stale data. Such self-invalidations remove
the need for a hardware directory to track sharer lists and to
send invalidations and acknowledgements on writes. Second,
data-race-freedom eliminates concurrent conflicting accesses
and corresponding transient states in coherence protocols,
eliminating a major source of complexity. Our specific results
are as follows, applied to a range of array and complex
pointer-based applications.
Simplicity: To provide quantitative evidence of the simplicity
of the DeNovo protocol, we compared it with a conventional
MESI protocol by implementing both in the Murphi model
checking tool [29]. For MESI, we used the implementation in
the Wisconsin GEMS simulation suite [56] as an example of
a (publicly available) state-of-the-art, mature implementation.
We found several bugs in MESI that involved subtle data races
and took several days to debug and fix. The debugged MESI
showed 15X more reachable states compared to DeNovo, with
a verification time difference of 173 seconds vs 8.66 seconds.
Extensibility: To demonstrate the extensibility of the DeN-
ovo protocol, we implemented two optimizations: (1) Direct
cache-to-cache transfer: Data in a remote cache may directly
be sent to another cache without indirection to the shared
lower level cache (or directory). (2) Flexible communication
granularity: Instead of always sending a fixed cache line in
response to a demand read, we send a programmer directed set
of data associated with the region information of the demand
read. Neither optimization required adding any new protocol
states to DeNovo; since there are no sharer lists, valid data
can be freely transferred from one cache to another.
Storage overhead: Our protocol incurs no storage overhead
for directory information. On the other hand, we need to
maintain information about regions and coherence state bits
at the granularity at which we guarantee data-race freedom,
which can be less than a cache line. For low core counts, this
overhead is higher than with conventional directory schemes,
but it pays off after a few tens of cores and is scalable
(constant per cache line). A positive side effect is that it is
easy to eliminate the requirement of inclusivity in a shared
last level cache (since we no longer track sharer lists). Thus,
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DeNovo allows more effective use of shared cache space.
Performance and power: In our evaluations, the base De-
Novo protocol showed about the same or better memory
behavior than the MESI protocol. With the optimizations
described, DeNovo saw a reduction in memory stall time of
up to 81% compared to MESI. In most cases, these stall time
reductions came from commensurate reductions in miss rate
and were accompanied with significant reductions in network
traffic, thereby benefiting not only execution time but also
power.

II. BACKGROUND: DETERMINISTIC PARALLEL JAVA

DPJ is an extension to Java that enforces deterministic-by-
default semantics via compile-time type checking [21, 20].
DPJ provides a new type and effect system for express-
ing important patterns of deterministic and non-deterministic
parallelism in imperative, object-oriented programs. Non-
deterministic behavior can only be obtained via certain explicit
constructs. For a program that does not use such constructs,
DPJ guarantees that if the program is well-typed, any two
parallel tasks are non-interfering, i.e., do not have conflicting
accesses.

DPJ’s parallel tasks are iterations of an explicitly parallel
foreach loop or statements within a cobegin block; they
synchronize through an implicit barrier at the end of the
loop or block. Parallel control flow thus follows a scoped,
nested, fork-join structure, which simplifies the use of explicit
coherence actions in DeNovo at fork/join points. This structure
defines a natural ordering of the tasks, as well as an obvious
definition (omitted here) of when two tasks are “concurrent”.
It implies an obvious sequential equivalent of the parallel
program (for replaces foreach and cobegin is simply
ignored). DPJ guarantees that the result of a parallel execution
is the same as the sequential equivalent.

In a DPJ program, the programmer assigns every object
field or array element to a named “region” and annotates every
method with read or write “effects” summarizing the regions
read or written by that method. The compiler checks that (i) all
program operations are type safe in the region type system; (ii)
a method’s effect summaries are a superset of the actual effects
in the method body; and (iii) that no two parallel statements
interfere. The effect summaries on method interfaces allow all
these checks to be performed without interprocedural analysis.

For DeNovo, the effect information tells the hardware
what fields will be read or written in each parallel “phase”
(foreach or cobegin). This enables efficient software-
controlled coherence mechanisms and powerful communica-
tion management, discussed in the following sections.

DPJ has been evaluated on a wide range of deterministic
parallel programs. The results show that DPJ can express a
wide range of realistic parallel algorithms, and that well-tuned
DPJ programs exhibit good performance [21].

III. DENOVO COHERENCE AND CONSISTENCY

A shared-memory design must first and foremost ensure
that a read returns the correct value, where the definition of
“correct” comes from the memory consistency model. Modern
systems divide this responsibility between two parts: (i) cache
coherence, and (ii) various memory ordering constraints.
These are arguably among the most complex and hard to
scale aspects of shared-memory hierarchy design. Disciplined

models enable mechanisms that are potentially simpler and
more efficient to achieve this function.

The deterministic parts of our software have semantics
corresponding to those of the equivalent sequential program.
A read should therefore simply return the value of the last
write to the same location that is before it in the deterministic
sequential program order. This write either comes from the
reader’s own task (if such a write exists) or from a task preced-
ing the reader’s task, since there can be no conflicting accesses
concurrent with the reader (two accesses are concurrent if
they are from concurrent tasks). In contrast, conventional
(software-oblivious) cache coherence protocols assume that
writes and reads to the same location can happen concurrently,
resulting in significant complexity and inefficiency.

To describe the DeNovo protocol, we first assume that the
coherence granularity and address/communication granularity
are the same. That is, the data size for which coherence
state is maintained is the same as the data size corresponding
to an address tag in the cache and the size communicated
on a demand miss. This is typically the case for MESI
protocols, where the cache line size (e.g., 64 bytes) serves
as the address, communication, and coherence granularity.
For DeNovo, the coherence granularity is dictated by the
granularity at which data-race-freedom is ensured – a word for
our applications. Thus, this assumption constrains the cache
line size. We henceforth refer to this as the word based version
of our protocol. We relax this assumption in Section III-B,
where we decouple the address/communication and coherence
granularities and also enable sub-word coherence granularity.

Without loss of generality, throughout we assume private
and writeback L1 caches, a shared last-level on-chip L2 cache
inclusive of only the modified lines in any L1, a single
(multicore) processor chip system, and no task migration. The
ideas here extend in an obvious way to deeper hierarchies
with multiple private and/or cluster caches and multichip
multiprocessors, and task migration can be accommodated
with appropriate self-invalidations before migration. Below,
we use the term phase to refer to the execution of all tasks
created by a single parallel construct (foreach or cobegin).

A. DeNovo with Equal Address/Communication and Coher-
ence Granularity

DeNovo eliminates the drawbacks of conventional directory
protocols as follows.
No directory storage or write invalidation overhead: In
conventional directory protocols, a write acquires ownership
of a line by invalidating all other copies, to ensure later reads
get the updated value. The directory achieves this by tracking
all current sharers and invalidating them on a write, incurring
significant storage and invalidation traffic overhead. In partic-
ular, straightforward bit vector implementations of sharer lists
are not scalable. Several techniques have been proposed to
reduce this overhead, but typically pay a price in significant
increase in complexity and/or incurring unnecessary invalida-
tions when the directory overflows. DeNovo eliminates these
overheads by removing the need for ownership on a write.
Data-race-freedom ensures there is no other writer or reader
for that line in this parallel phase. DeNovo need only ensure
that (i) outdated cache copies are invalidated before the next
phase, and (ii) readers in later phases know where to get the
new data.
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For (i), each cache simply uses the known write effects
of the current phase to invalidate its outdated data before
the next phase begins. The compiler inserts self-invalidation
instructions for each region with these write effects (we
describe how regions are conveyed and represented below).
Each L1 cache invalidates its data that belongs to these regions
with the following exception. Any data that the cache has
read or written in this phase is known to be up-to-date since
there cannot be concurrent writers. We therefore augment
each line with a “touched” bit that is set on a read. A self-
invalidation instruction does not invalidate a line with a set
touched bit or that was last written by this core (indicated by
the registered state as discussed below); the instruction
resets the touched bit in preparation for the next phase.

For (ii), DeNovo requires that on a write, a core register
itself at (i.e., inform) the shared L2 cache. The L2 data
banks serve as the registry. An entry in the L2 data bank
either keeps the identity of an L1 that has the up-to-date
data (registered state) or the data itself (valid state)
– a data bank entry is never required to keep both pieces of
information since an L1 cache registers itself in precisely the
case where the L2 data bank does not have the up-to-date data.
Thus, DeNovo entails zero overhead for directory (registry)
storage. Henceforth, we use the term L2 cache and registry
interchangeably.

We also note that because the L2 does not need sharer lists,
it is natural to not maintain inclusion in the L2 for lines that
are not registered by another L1 cache – the registered lines
do need space in the L2 to track the L1 id that registered
them.
No transient states: The DeNovo protocol has three states
in the L1 and L2 – registered, valid, and invalid
– with obvious meaning. (The touched bit mentioned above
is local to its cache and irrelevant to external coherence
transactions.) Although textbook descriptions of conventional
directory protocols also describe 3 to 5 states (e.g., MSI) [40],
it is well-known that they contain many hidden transient states
due to races, making them notoriously complex and difficult
to verify [3, 65, 70]. For example, considering a simple
MSI protocol, a cache may request ownership, the directory
may forward the request to the current owner, and another
cache may request ownership while all of these messages
are still outstanding. Proper handling of such a race requires
introduction of transient states into the cache and/or directory
transition tables.

DeNovo, in contrast, is a true 3-state protocol with no
transient states, since it assumes race-free software. The only
possible races are related to writebacks. As discussed below,
these races either have limited scope or are similar to those
that occur in uniprocessors. They can be handled in straight-
forward ways, without transient protocol states (described
below).
The full protocol: Table I shows the L1 and L2 state
transitions and events for the full protocol. Note the lack of
transient states in the caches.

Read requests to the L1 (from L1’s core) are straightforward
– accesses to valid and registered state are hits and accesses to
invalid state generate miss requests to the L2. A read miss does
not have to leave the L1 cache in a pending or transient state –
since there are no concurrent conflicting accesses (and hence
no invalidation requests), the L1 state simply stays invalid for

the line until the response comes back.
For a write request to the L1, unlike a conventional protocol,

there is no need to get a “permission-to-write” since this per-
mission is implicitly given by the software race-free guarantee.
If the cache does not already have the line registered, it must
issue a registration request to the L2 to notify that it has
the current up-to-date copy of the line and set the registry
state appropriately. Since there are no races, the write can
immediately set the state of the cache to registered, without
waiting for the registration request to complete. Thus, there
is no transient or pending state for writes either.

The pending read miss and registration requests are simply
monitored in the processor’s request buffer, just like those
of other reads and writes for a single core system. Thus,
although the request buffer technically has transient states,
these are not visible to external requests – external requests
only see stable cache states. The request buffer also ensures
that its core’s requests to the same location are serialized to
respect uniprocessor data dependencies, similar to a single
core implementation (e.g., with MSHRs). The memory model
requirements are met by ensuring that all pending requests
from the core complete by the end of this parallel phase (or
at least before the next conflicting access in the next parallel
phase).

The L2 transitions are also straightforward except for
writebacks which require some care. A read or registration
request to data that is invalid or valid at the L2 invokes the
obvious response. For a request for data that is registered by
an L1, the L2 forwards the request to that L1 and updates its
registration id if needed. For a forwarded registration request,
the L1 always acknowledges the requestor and invalidates its
own copy. If the copy is already invalid due to a concurrent
writeback by the L1, the L1 simply acknowledges the original
requestor and the L2 ensures that the writeback is not accepted
(by noting that it is not from the current registrant). For a
forwarded read request, the L1 supplies the data if it has it.
If it no longer has the data (because it issued a concurrent
writeback), then it sends a negative acknowledgement (nack)
to the original requestor, which simply resends the request
to the L2. Because of race-freedom, there cannot be another
concurrent write, and so no other concurrent writeback, to the
line. Thus, the nack eventually finds the line in the L2, without
danger of any deadlock or livelock. The only somewhat less
straightforward interaction is when both the L1 and L2 caches
want to writeback the same line concurrently, but this race also
occurs in uniprocessors.
Conveying and representing regions in hardware: A key
research question is how to represent regions in hardware for
self-invalidations. Language-level regions are usually much
more fine-grain than may be practical to support in hardware.
For example, when a parallel loop traverses an array of
objects, the compiler may need to identify (a field of) each
object as being in a distinct region in order to prove the
absence of conflicts. For the hardware, however, such fine
distinctions would be expensive to maintain. Fortunately, we
can coarsen language-level regions to a much smaller set
without losing functionality in hardware. The key insight is
as follows. For self-invalidations, we need regions to identify
which data could have been written in the current phase. It
is not important to distinguish which core wrote which data.
In the above example, we can thus treat the entire array of
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Readi Writei Readk Registerk Response for Readi Writeback
Invalid Update tag; Go to Registered; Nack to core k Reply to core k If tag match, Ignore

Read miss to L2; Reply to core i; go to V alid and
Writeback Register request to L2; load data;
if needed Write data; Reply to core i

Writeback if needed
V alid Reply to core i Go to Registered; Send data to core k Go to Invalid; Reply to core i Ignore

Reply to core i; Reply to core k
Register request to L2

Registered Reply to core i Reply to core i Reply to core k Go to Invalid; Reply to core i Go to Valid;
Reply to core k Writeback

(a) L1 cache of core i. Readi = read from core i, Readk = read from another core k (forwarded by the registry).

Read miss from core i Register request from core i Read response from Writeback from core i
memory for core i

Invalid Update tag; Go to Registeredi; If tag match, Reply to core i;
Read miss to memory; Reply to core i; go to V alid and load data; Generate reply for pending

Writeback if needed Writeback if needed Send data to core i writeback to core i
V alid Data to core i Go to Registeredi; X X

Reply to core i
Registeredj Forward to core j; Forward to core j; X if i==j go to V alid and

Done Done load data;
Reply to core i;

Cancel any pending
Writeback to core i

(b) L2 cache

TABLE I: Baseline DeNovo cache coherence protocol for (a) private L1 and (b) shared L2 caches. Self-invalidation and touched bits are
not shown here since these are local operations as described in the text. Request buffers (MSHRs) are not shown since they are similar to
single core systems.

objects as one region.
Alternately, if only a subset of the fields in each object in the

above array is written, then this subset aggregated over all the
objects collectively forms a hardware region. Thus, just like
software regions, hardware regions need not be contiguous in
memory – they are essentially an assignment of a color to
each heap location (with orders of magnitude fewer colors in
hardware than software). Hardware regions are not restricted
to arrays either. For example, in a traversal of the spatial tree
in an n-body problem, the compiler distinguishes different
tree nodes (or subsets of their fields) as separate regions; the
hardware can treat the entire tree (or a subset of fields in the
entire tree) as an aggregate region. Similarly, hardware regions
may also combine field regions from different aggregate
objects (e.g., fields from an array and a tree may be combined
into one region).

The compiler can easily summarize program regions into
coarser hardware regions as above and insert appropriate self-
invalidation instructions. The only correctness requirement is
that the self-invalidated regions must cover all write effects for
the phase. For performance, these regions should be as precise
as possible. For example, fields that are not accessed or read-
only in the phase should not be part of these regions. Similarly,
multiple field regions written in a phase may be combined
into one hardware region for that phase, but if they are not
written together in other phases, they will incur unnecessary
invalidations.

During final code generation, the memory instructions gen-
erated can convey the region name of the address being ac-
cessed to the hardware; since DPJ regions are parameterizable,
the instruction needs to point to a hardware register that is
set at runtime (through the compiler) with the actual region
number. When the memory instruction is executed, it conveys
the region number to the core’s cache. A straightforward
approach is to store the region number with the accessed data

line in the cache. Now a self-invalidate instruction invalidates
all data in the cache with the specified regions that is not
touched or registered.

The above implementation requires storing region bits along
with data in the L1 cache and matching region numbers for
self-invalidation. A more conservative implementation can re-
duce this overhead. At the beginning of a phase, the compiler
conveys to the hardware the set of regions that need to be
invalidated in the next phase – this set can be conservative,
and in the worst case, represent all regions. Additionally, we
replace the region bits in the cache with one bit: keepValid.
indicating that the corresponding data need not be invalidated
until the end of the next phase. On a miss, the hardware
compares the region for the accessed data (as indicated by the
memory instruction) and the regions to be invalidated in the
next phase. If there is no match, then keepValid is set. At
the end of the phase, all data not touched or registered
are invalidated and the touched bits reset as before. Further,
the identities of the touched and keepValid bits are
swapped for the next phase. This technique allows valid data
to stay in cache through a phase even if it is not touched or
registered in that phase, without keeping track of regions
in the cache. The concept can be extended to more than one
such phase by adding more bits and if the compiler can predict
the self-invalidation regions for those phases.

Example: Figure 1 illustrates the above concepts. Figure 1(a)
shows a code fragment with parallel phases accessing an array,
S, of structs with three fields each, X, Y, and Z. The X
(respectively, Y and Z) fields from all array elements form
one DeNovo region. The first phase writes the region of X
and self-invalidates that region at the end. Figure 1(b) shows,
for a two core system, the L1 and L2 cache states at the end of
Phase 1, assuming each core computed one contiguous half of
the array. The computed X fields are registered and the
others are invalid in the L1’s while the L2 shows all X fields
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registered to the appropriate cores. (The direct communication
is explained in the next section.)

B. DeNovo with Address/Communication Granularity > Co-
herence Granularity

To decouple the address/communication and coherence
granularity, our key insight is that any data marked touched
or registered can be copied over to any other cache in
valid state (but not as touched). Additionally, for even
further optimization (Section III-D1), we make the observa-
tion that this transfer can happen without going through the
registry/L2 at all (because the registry does not track sharers).
Thus, no serialization at a directory is required. When (if)
this copy of data is accessed through a demand read, it can
be immediately marked touched. The above copy does not
incur false sharing (nobody loses ownership) and, if the source
is the non-home node, it does not require extra hops to a
directory.

With the above insight, we can easily enhance the baseline
word-based DeNovo protocol from the previous section to
operate on a larger communication and address granularity;
e.g., a typical cache line size from conventional protocols.
However, we still maintain coherence state at the granularity
at which the program guarantees data race freedom; e.g., a
word. On a demand request, the cache servicing the request
can send an entire cache line worth of data, albeit with some
of the data marked invalid (those that it does not have as
touched or registered). The requestor then merges the
valid words in the response message (that it does not already
have valid or registered) with its copy of the cache
line (if it has one), marking all of those words as valid (but
not touched).

Note that if the L2 has a line valid in the cache, then an
element of that line can be either valid (and hence sent to
the requestor) or registered (and hence not sent). Thus,
for the L2, it suffices to keep just one coherence state bit at
the finer (e.g., word) granularity with a line-wide valid bit at
the line granularity.1 As before, the id of the registered core
is stored in the data array of the registered location.

This is analogous to sector caches – cache space allocation
(i.e., address tags) is at the granularity of a line but there may
be some data within the line that is not valid. This combina-
tion effectively allows exploiting spatial locality without any
false sharing, similar to multiple writer protocols of software
distributed shared memory systems [46].

C. Flexible Coherence Granularity
Although the applications we studied did not have any data

races at word granularity, this is not necessarily true of all
applications. Data may be shared at byte granularity, and two
cores may incur conflicting concurrent accesses to the same
word, but for different bytes. A straightforward implemen-
tation would require coherence state at the granularity of a
byte, which would be significant storage overhead. 2 Although
previous work has suggested using byte based granularity for
state bits in other contexts [53], we would like to minimize
the overhead.

1This requires that if a registration request misses in the L2, then the L2
obtain the full line from main memory.

2The upcoming C and C++ memory models and the Java memory model
do not allow data races at byte granularity; therefore, we also do not consider
a coherence granularity lower than that of a byte.

We focus on the overhead in the L2 cache since it is
typically much larger (e.g., 4X to 8X times larger) than the
L1. We observe that byte granularity coherence state is needed
only if two cores incur conflicting accesses to different bytes
in the same word in the same phase. Our approach is to make
this an infrequent case, and then handle the case correctly
albeit at potentially lower performance.

In disciplined languages, the compiler/runtime can use the
region information to allocate tasks to cores so that byte
granularity regions are allocated to tasks at word granularities
when possible. For cases where the compiler (or programmer)
cannot avoid byte granularity data races, we require the
compiler to indicate such regions to the hardware. Hardware
uses word granularity coherence state. For byte-shared data
such as the above, it “clones” the cache line containing it in
four places: place i contains the ith byte of each word in the
original cache line. If we have at least four way associativity
in the L2 cache (usually the case), then we can do the cloning
in the same cache set. The tag values for all the clones will
be the same but each clone will have a different byte from
each word, and each byte will have its own coherence state bit
to use (essentially the state bit of the corresponding word in
that clone). This allows hardware to pay for coherence state at
word granularity while still accommodating byte granularity
coherence when needed, albeit with potentially poorer cache
utilization in those cases.

D. Protocol Optimizations

1) Eliminating indirection: Our protocol so far suffers from
the fact that even L1 misses that are eventually serviced by
another L1 cache (cache-to-cache transfer) must go through
the registry/L2 (directory in conventional protocols), incurring
an additional latency due to the indirection.

However, as observed in Section III-B,
touched/registered data can always be transferred for
reading without going through the registry/L2. optimization).
Thus, a reader can send read requests directly to another
cache that is predicted to have the data. If the prediction is
wrong, a Nack is sent (as usual) and the request reissued
as a usual request to the directory. Such a request could
be a demand load or it could be a prefetch. Conversely, it
could also be a producer-initiated communication or remote
write [2, 48]. The prediction could be made in several
ways; e.g., through the compiler or through the hardware by
keeping track of who serviced the last set of reads to the
same region. The key point is that there is no impact on the
coherence protocol – no new states, races, or message types.
The requestor simply sends the request to a different supplier.
This is in sharp contrast to adding such an enhancement to
MESI.

This ability essentially allows DeNovo to seamlessly in-
tegrate a message passing like interaction within its shared-
memory model. Figure 1 shows such an interaction for our
example code.

2) Flexible communication granularity: Cache-line based
communication transfers data from a set of contiguous ad-
dresses, which is ideal for programs with perfect spatial
locality and no false sharing. However, it is common for
programs to access only a few data elements from each line,
resulting in significant waste. This is particularly common
in modern object-oriented programming styles where data
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Direct cache-to-cache 

communication in Phase 2

R = Registered

V = Valid

I = Invalid

…
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…
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…

…
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R C1 V Y2 V Z2

R C1 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

R C2 V Y6 V Z6

(b)
Fig. 1: (a) Code with DeNovo regions and self-invalidations and (b) cache state after phase 1 self-invalidations and direct cache-to-cache
communication with flexible granularity at the beginning of phase 2. Xi represents S[i].X . Ci in L2 cache means the word is registered
with Core i. Initially, all lines in the caches are in valid state.

structures are often in the form of arrays of structs (AoS)
rather than structs of arrays (SoA). It is well-known that
converting from AoS to SoA form often gives a significant
performance boost due to better spatial locality. Unfortunately,
manual conversion is tedious, error-prone, and results in code
that is much harder to understand and maintain, while auto-
matic (compiler) conversion is impractical except in limited
cases because it requires complex whole-program analysis and
transformations [28, 44]. We exploit information about regions
to reduce such communication waste, without changing the
software’s view.

We have knowledge of which regions will be accessed
in the current phase. Thus, when servicing a remote read
request, a cache could send touched or registered data
only from such regions (recall these are at field granularity
within structures), potentially reducing network bandwidth
and power. More generally, the compiler may associate a
default prefetch granularity attribute with each region that
defines the size of each contiguous region element, other
regions in the object likely to be accessed along with this
region (along with their offset and size), and the number of
such elements to transfer at a time. This information can
be kept as a table in hardware which is accessed through
the region identifier and an entry provides the above infor-
mation; we call the table the communication region table.
The information for the table itself may be partly obtained
directly through the programmer, deduced by the compiler,
or deduced by a runtime tool. Figure 1 shows an example of
the use of flexible communication granularity – the caches
communicate multiple (non-contiguous) fields of region X
rather than the contiguous X, Y, and Z regions that would fall
in a conventional cache line. Again, in contrast to MESI, the
additional support required for this enhancement in DeNovo
does not entail any changes to the coherence protocol states
or introduce new protocol races.

This flexible communication granularity coupled with the
ability to remove indirection through the registry/L2 (direc-
tory) effectively brings the system closer to the efficiency
of message passing while still retaining the advantages of
a coherent global address space. It combines the benefits
of various previously proposed shared-memory techniques
such as bulk data transfer, prefetching, and producer-initiated
communication, but in a more software-aware fashion that
potentially results in a simpler and more effective system.

E. Storage Overhead

We next compare the storage overhead of DeNovo to other
common directory configurations.

DeNovo overhead: At the L1, DeNovo needs state bits at
the word granularity. We have three states and one touched bit
(total of 3 bits). We also need region related information. In
our applications, we need at most 20 hardware regions – 5 bits.
These can be replaced with 1 bit by using the optimization
of the keepValid bit discussed in Section III-A. Thus, we
need a total of 4 to 8 bits per 32 bits or 64 to 128 bits per L1
cache line. At the L2, we just need one valid and one dirty
bit per line (per 64 bytes) and one bit per word, for a total of
18 bits per 64 byte L2 cache line or 3.4%. If we assume L2
cache size of 8X that of L1, then the L1 overhead is 1.56%
to 3.12% of the L2 cache size.

In-cache full map directory. We conservatively assume 5
bits for protocol state (assuming more than 16 stable+transient
states). This gives 5 bits per 64 byte cache line at the L1. With
full map directories, each L2 line needs a bit per core for the
sharer list. This implies that DeNovo overhead for just the L2
is better for more than a 13 core system. If the L2 cache size
is 8X that of L1, then the total L1+L2 overhead of DeNovo
is better at greater than about 21 (with keepValid) to 30
cores.

Duplicate tag directories. L1 tags can be duplicated at the
L2 to reduce directory overhead. However, this requires a very
high associative lookup; e.g., 64 cores with 4 way L1 requires
a 256 way associative lookup. As discussed in [72], this design
is not scalable to even low tens of cores system.

Tagless directories and sparse directories. The tagless di-
rectories work uses Bloom filter based directory organization
[72]. Their directory storage requirement appears to be about
3% to over 5% of L1 storage for core counts ranging from
64 to 1K cores. This does not include any coherence state
overhead which we include in our calculation for DeNovo
above. Further, this organization is lossy in that larger core
counts require extra invalidations and protocol complexity.

Many sparse directory organizations have been proposed
that can drastically cut directory overhead at the cost of sharer
list precision, and so come at a significant performance cost
especially at higher core counts [72].
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Processor Parameters
Frequency 2GHz
Number of cores 64
Memory Hierarchy Parameters
L1 (Data cache) 128KB
L2 (16 banks, NUCA) 32MB
Memory 4GB, 4 on-chip controllers
L1 hit latency 1 cycle
L2 hit latency 29 ∼ 61 cycles
Remote L1 hit latency 35 ∼ 83 cycles
Memory latency 197 ∼ 261 cycles

TABLE II: Parameters of the simulated processor.

IV. METHODOLOGY

A. Simulation Environment

Our simulation environment consists of the Simics full-
system functional simulator that drives the Wisconsin GEMS
memory timing simulator [56] which implements the simu-
lated protocols. We also use the Princeton Garnet [8] intercon-
nection network simulator to accurately model network traffic.
We chose not to employ a detailed core timing model due to
an already excessive simulation time. Instead, we assume a
simple, single-issue, in-order core with blocking loads and 1
CPI for all non-memory instructions. We also assume 1 CPI
for all instructions executed in the OS and in synchronization
constructs.

Table II summarizes the key common parameters of our
simulated systems. Each core has a 128KB private L1 Dcache
(we do not model an Icache). L2 cache is shared and banked
(512KB per core). The latencies in Table II are chosen to
be similar to those of Nehalem [36], and then adjusted to
take some properties of the simulated processor (in-order core,
two-level cache) into account.

B. Simulated Protocols

We compared the following 8 systems:
MESI word (MW) and line (ML): MESI with single-word
(4 byte) and 64-byte cache lines, respectively. The original
implementation of MESI shipped with GEMS [56] does not
support non-blocking stores. Since stores are non-blocking in
DeNovo, we modified the MESI implementation to support
non-blocking stores for a fair comparison. Our tests show that
MESI with non-blocking stores outperforms the original MESI
by 28% to 50% (for different applications).
DeNovo word (DW) and line (DL): DeNovo with single-
word (Section III) and 64-byte cache lines, respectively.

For DL, we do not charge any additional cycles for
gathering/scattering valid-only packets. We charge network
bandwidth for only the valid part of the cache line plus the
valid-word bit vector.
DL with direct cache-to-cache transfer (DD): Line-based
DeNovo with direct cache-to-cache transfer (Section III-D1).
We use oracular knowledge to determine the cache that has the
data. This provides an upper-bound on achievable performance
improvement.
DL with flexible communication granularity (DF): Line-
based DeNovo with flexible communication granularity (Sec-
tion III-D2). Here, on a demand load, the communication
region table is indexed by the region of the demand load
to obtain the set of addresses that are associated with that
load, referred to as the communication space. We fix the
maximum data communicated to be 64 bytes for DF. If the
communication space is smaller than 64 bytes, then we choose

the rest of the words from the 64-byte cache line containing
the demand load address. We optimistically do not charge any
additional cycles for determining the communication space
and gathering/scattering that data.
DL and DW with both direct cache-to-cache transfer
and flexible communication granularity (DDF and DDFW
respectively): Line-based and word-based DeNovo with the
above two optimizations, direct cache-to-cache transfer and
flexible communication granularity, combined in the obvious
way.

We do not show word based DeNovo augmented with just
direct cache-to-cache transfer or just flexible communication
granularity because of lack of space, the results were as
expected and did not lend new insights, and the DeNovo word
based implementations have too much tag overhead compared
to the line based implementations.

C. Conveying Regions and Communication Space

Regions for self-invalidation: In a real system, the com-
piler would convey the region of a data through memory
instructions (Section III). For this study, we created an API to
manually instrument the program to convey this information
for every allocated object. This information is maintained in
a table in the simulator. At every load or store, the table is
queried to find the region for that address (which is then stored
with the data in the L1 cache).
Self invalidation: This API call invalidates all the data in
the cache associated with the given region, if the data is not
touched or registered. For the applications studied in
this paper (see below), the total number of regions ranged
from 2 to about 20. These could be coalesced by the compiler,
but we did not explore that here.
Communication space: To convey communication granular-
ity information, we again use a special API call that controls
the communication region table of the simulator. On a demand
load, the table is accessed to determine the communication
space of the requested word. In an AoS program, this set
can be simply defined by specifying 1) what object fields,
and 2) how many objects to include in the set. For six of
our benchmarks, these API calls are manually inserted. The
seventh, kdTree, is more complex, so we use an automated
correlation analysis tool to determine the communication
spaces. We omit the details for lack of space.

D. Protocol Verification

We used the widely used Murphi model checking tool [29]
to formally compare the verification complexity of DeNovo
and MESI. We model checked the word-based protocol of
DeNovo and MESI. We derived the MESI model from the
GEMS implementation (the SLICC files) and the DeNovo
model directly from our implementation. To keep the number
of explored states tractable, as is common practice, we used
a single address / single region (only for DeNovo), two data
values, two cores with private L1 cache and a unified L2 with
in-cache directory (for MESI). We modeled an unordered full
network with separate request and reply links. Both models
allow only one request per L1 in the rest of the memory hierar-
chy. For DeNovo, we modeled the data-race-free guarantee by
limiting conflicting accesses. We also introduced the notion of
phase boundary to provide a realistic model to both protocols
by modeling it as a sense reversing barrier. This enables cross
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phase interactions in both protocols. As we modeled only one
address to reduce the number of states explored, we modeled
replacements as unconditional events that can be triggered at
any time.

E. Workloads
We use seven benchmarks to evaluate the effectiveness of

DeNovo features for a range of dense-array, array-of-struct,
and irregular pointer-based applications. FFT (with input size
m=16), LU (with 512x512 array and 16-byte blocks), Radix
(with 4M integers and 1024 radix), and Barnes-Hut (16K
particles) are from the SPLASH-2 benchmark suite [69].
kdTree [27] is a program for construction of k-D trees which
are well studied acceleration data structures for ray tracing in
the increasingly important area of graphics and visualization.
We run it with the well known bunny input. We use two
versions of kdTree: kdTree-false which has false sharing in
an auxiliary data structure and kdTree-padded which uses
padding to eliminate this false sharing. We use these two
versions to analyze the effect of application-level false sharing
on the DeNovo protocols. We also use fluidanimate (with
simmedium input) and bodytrack (with simsmall input) from
the PARSEC benchmark suite [16]. To fit into the fork-
join programming model, fluidanimate was modified to use
the ghost cell pattern instead of mutexes, and radix was
modified to perform a parallel prefix with barriers instead of
condition variables. For bodytrack, we use its pthread version
unmodified.

V. RESULTS

We focus our discussion on the time spent on memory
stalls and on network traffic since DeNovo targets these
components. Figures 2a, 2b, and 2c respectively show the
memory stall time, read miss counts, and network traffic for all
eight protocols described in Section IV-B for each application.
Each bar (protocol) is normalized to the corresponding (state-
of-the-art) MESI-line (ML) bar.

The memory stall time bars (Figure 2a) are divided into
four components. The bottommost indicates time spent by a
memory instruction stalled due to a blocked L1 cache related
resource (e.g., the 64 entry buffer for non-blocking stores is
full). The upper three indicate additional time spent stalled
on an L1 miss that gets resolved at the L2, a remote L1
cache, or main memory respectively. The miss count bars
(Figure 2b) are divided analogously. The network traffic bars
(Figure 2c) show the number of flit crossings through on-
chip network routers due to reads, writes, writebacks, and
invalidations respectively.

For reference, Figure 2d shows the overall execution time
for all the protocols and applications, divided into time spent
in compute cycles, memory stalls, and synchronization stalls
respectively.

LU and bodytrack show considerably large synchronization
times. LU has inherent load imbalance. Using larger input
sizes would reduce synchronization time, but prohibitively
long simulation times made that impractical for this paper.
Bodytrack has several sequential phases and a limited amount
of parallelism for the input used (only up to 60 threads in
some phases [17]). The idle cores in these phases result in
the high synchronization time.

MESI vs. DeNovo word protocols (MW vs. DW): MW
and DW are not practical protocols because of their excessive

tag overhead. A comparison is instructive, however, to under-
stand the efficacy of selective self-invalidation, independent
of line-based effects such as false sharing. In all cases, DW’s
performance is competitive with MW. For the cases where it
is slightly worse (LU, Barnes and Bodytrack), the cause is
higher remote L1 hits in DW than in MW. This is because
in MW, the first reader forces the last writer to writeback to
L2. Thus, subsequent readers get their data from L2 for MW
but need to go to the remote L1 (via L2) for DW, slightly
increasing the memory stall time for DW. However, in terms
of network traffic, DW always significantly outperforms MW.

MESI vs. DeNovo line protocols (ML vs. DL): DL shows
about the same or better memory stall times as ML. For
LU and kdTree-false, DL shows 62% and 76% reduction in
memory stall time over ML, respectively. Here, DL enjoys
one major advantage over ML: DL incurs no false sharing
due to its per-word coherence state. Both LU and kdTree-false
contain some false sharing, as indicated by the significantly
higher remote L1 hit component in the miss rate count and
memory stall time graphs for ML. In terms of network traffic,
DL outperforms ML except for fluidanimate and radix. Here,
DL incurs more network traffic because registration (write-
traffic) is still at word-granularity (shown in 2c). This can be
potentially mitigated with a “write-combining” optimization
that aggregates individual registration requests similar to a
combining write buffer.

Effectiveness of cache lines for MESI: Comparing MW
and ML, we see that the memory stall time reduction resulting
from transferring a contiguous cache line instead of just a
word is highly application dependent. The reduction is largest
for radix (a large 93%), which has dense arrays and no false
sharing. Most interestingly, for kdTree-false (object-oriented
AoS style with false sharing), the word based MESI does
better than the line based MESI by 39%. This is due to
the combination of false sharing and less than perfect spatial
locality. Bodytrack is similar in that it exhibits little spatial
locality due to its irregular access pattern. Consequently, ML
shows higher miss counts and memory stall times than MW
(due to cache pollution from the useless words in a cache
line).

Effectiveness of cache lines for DeNovo: Comparing DW
with DL, we see again the strong application dependence
of the effectiveness of cache lines. However, because false
sharing is not an issue with DeNovo, both LU and kdTree-
false enjoy larger benefits from cache lines than in the case of
MESI (78% and 63% reduction in memory stalls). Analogous
to MESI, Bodytrack sees larger memory stalls with DL than
with DW because of little spatial locality.

Effectiveness of direct cache-to-cache transfer with DL:
FFT and barnes exhibit much opportunity for direct cache-to-
cache transfer. For these applications, DD is able to signifi-
cantly reduce the remote L1 hit latencies when compared to
DL.

Effectiveness of flexible communication granularity with
DL: DF performs about as well or better than ML and DL for
all cases, except for LU. LU does not do as well because of the
line granularity for cache allocation (addresses). DF can bring
in data from multiple cache lines; although this data is likely
to be useful, it can potentially replace a lot of allocated data.
Bodytrack shows a similar phenomenon, although to a much
lesser extent. As we see later, flexible communication at word
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Fig. 2: Comparison of MESI vs. DeNovo protocols. All bars are normalized to the corresponding ML protocol.

address granularity does much better for LU and Bodytrack.
Overall, DF shows up to 79% reduction in memory stall time
over ML and up to 44% over DL. These results are pessimistic
since we did not transfer more than 64 bytes of data at a time.

Effectiveness of combined optimizations with DL: DDF
combines the benefits of both DD and DF to show either about
the same or better performance than all the other line based
protocols (except for LU for reasons described above).

Effectiveness of combined optimizations with DW: For
applications like LU and bodytrack with low spatial locality,
word-based protocols have the advantage over line based

protocols by not bringing in potentially useless data and/or
not replacing potentially useless data. We find that DW with
our two optimizations (DDFW) does indeed perform better
than DDF for these two applications. In fact, DDFW does
better for 5 out of the 8 applications. This motivates our future
work on using a more software-aware (region based) address
granularity to get the best benefit of our optimizations.

Effectiveness of regions and touched bits: To evaluate
the effectiveness of regions and touched bits, we ran DL
without them. This resulted in all the valid words in the cache
being invalidated by the self-invalidation instruction. Our
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results (not shown in detail) show 0% to 25% degradation for
different applications, which indicates that these techniques
are beneficial for some applications.

Protocol verification results: Through model checking,
we found three bugs in DeNovo and six bugs including two
deadlock scenarios in MESI. Note that DeNovo is much less
mature than the GEMS MESI protocol which has been used
by many researchers. In DeNovo, all bugs were simple to
fix and showed mistakes in translating our internal high level
specification into the implementation (i.e., their solutions were
already present in our internal high level description of the
protocol). In MESI, all the bugs except one of the deadlocks
are caused by protocol races between L1 writebacks and other
cache events. These involved subtle races and took several
days to track, debug and fix. After fixing all the bugs, the
model for MESI explores 1,257,500 states in 173 seconds
whereas the model for DeNovo explores 85,012 states in 8.66
seconds. Our experience clearly indicates the simplicity and
reduced verification overhead for DeNovo compared to MESI.

VI. RELATED WORK

There is a vast body of work on improving the shared-
memory hierarchy, including coherence protocol optimizations
(e.g., [51, 55, 54, 63, 66]), relaxed consistency models [30,
32], using coarse-grained (multiple contiguous cache lines,
also referred to as regions) cache state tracking (e.g., [23,
59, 71]), smart spatial and temporal prefetching (e.g., [64,
68]), bulk transfers (e.g., [11, 26, 38, 39], producer-initiated
communication [2, 48]), recent work specifically for multicore
hierarchies (e.g., [12, 37, 72]), and many more. Our work
is inspired by much of this literature, but our focus is on a
holistic rethinking of the cache hierarchy driven by disciplined
software programming models to benefit hardware complexity,
performance, and power. Below we elaborate on work that is
the most closely related.

The recent SARC coherence protocol [45] exploits the data-
race-free programming model [6], but is based on the con-
ventional directory-based MESI protocol. SARC introduces
“tear-off, read-only” (TRO) copies of cache lines for self-
invalidation and also uses direct cache-to-cache communica-
tion with writer prediction to improve power and performance.
Their results, like ours, prove the usefulness of disciplined
software for hardware. Unlike DeNovo, SARC does not re-
duce the directory storage overhead (the sharer list) or reduce
protocol complexity. Also, in SARC, all the TRO copies are
invalidated at synchronization points while in DeNovo, as
shown in Section V, region information and touched bits pro-
vide an effective means for selective self-invalidation. Finally,
SARC does not explore flexible communication granularity
since it does not have the concept of regions and also it is
susceptible to false sharing.

Other efforts target one or more of the cache coherence
design goals at the expense of other goals. For example, the
work in [51] uses self-invalidations but introduces a much
more complex protocol. The work in [47] does not incur
complexity but requires traffic-heavy flushing of all dirty lines
to the global shared cache at the end of each phase with
some assumptions about the programming model. Another
compiler-hardware coherence approach [58] does not support
remote cache hits, instead they require writes to a shared-
level cache if there is a potential inter-phase dependency.

The SWEL protocol [62] and Atomic Coherence [67] work
to simplify the protocol at the expense of relying on limited
interconnect substrates. SWEL dynamically places read-write
shared data in the lowest common level of shared cache
and uses a bus for invalidation. Atomic Coherence uses
nanophotonics to guard each coherence action with a mutex.
Both protocols eliminate transient states, but limit the network.

Philosophically, the software distributed shared memory
literature is also similar, where the system exploits data-race-
freedom to allow large granularity communication (virtual
pages) without false sharing (e.g., [5, 15, 24, 19]). These
techniques mostly rely on heavyweight mechanisms like vir-
tual memory management, and have struggled to find an
appropriate high-level programming model. Recent work [31]
reduces performance overheads through hardware support.

Some work has also abandoned cache coherence altogether
[41] at the cost of significant programming complexity.

VII. CONCLUSIONS AND FUTURE WORK

This paper takes the stance that disciplined programming
models will be essential for software programmability and
clearly specifiable hardware/software semantics, and asks how
such models impact hardware. The paper shows that race-
freedom, structured parallel control, and the knowledge of re-
gions and effects in deterministic codes enable much simpler,
more extensible, and more efficient cache coherence protocols
than the state-of-the-art. This paper is the first step in exploit-
ing what appears to be a tremendous opportunity to rethink
multicore memory hierarchies driven by disciplined software
models. There are several avenues of future work: extending
the ideas here to the main memory system; extending to
handle other forms of disciplined and non-disciplined codes
(e.g., disciplined non-deterministic codes, synchronization,
and legacy codes); using regions to drive address (cache
allocation) and coherence granularity; more realistic imple-
mentations of the optimizations explored here; and automating
the generation of hardware regions and communication spaces
through a compiler/runtime implementation.
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Abstract
Recent work has shown that disciplined shared-memory program-
ming models that provide deterministic-by-default semantics can
simplify both parallel software and hardware. Specifically, the De-
Novo hardware system has shown that the software guarantees
of such models (e.g., data-race-freedom and explicit side-effects)
can enable simpler, higher performance, and more energy-efficient
hardware than the current state-of-the-art for deterministic pro-
grams. Many applications, however, contain non-deterministic
parts; e.g., using lock synchronization. For commercial hardware to
exploit the benefits of DeNovo, it is therefore necessary to extend
DeNovo to support non-deterministic applications.

This paper proposes DeNovoND, a system that supports lock-
based, disciplined non-determinism, with the simplicity, perfor-
mance, and energy benefits of DeNovo. We use a combination of
distributed queue-based locks and access signatures to implement
simple memory consistency semantics for safe non-determinism,
with a coherence protocol that does not require transient states,
invalidation traffic, or directories, and does not incur false shar-
ing. The resulting system is simpler, shows comparable or bet-
ter execution time, and has 33% less network traffic on average
(translating directly into energy savings) relative to a state-of-the-
art invalidation-based protocol for 8 applications designed for lock
synchronization.

Categories and Subject Descriptors B.3.2 [Hardware]: Memory
Structures – Cache memories; Shared memory; C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Multiproces-
sors) – Parallel processors

Keywords shared memory, cache coherence, disciplined paral-
lelism, memory consistency, non-determinism

1. Introduction
Shared-memory remains a popular programming model among
multicore programmers and is the de facto model provided by
multicore hardware. It is, however, increasingly evident that un-
bridled “wild” shared-memory programming environments that al-
low data races, ubiquitous non-determinism, unstructured paral-
lelism, and complex memory consistency models make program-
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ming, debugging, testing, and maintaining software difficult [1, 32].
Recent software research has therefore proposed more disciplined
shared-memory programming models that retain the advantage of
a global address space, but make it easier to write safe parallel
programs that are easier to debug, test, and maintain [4–6, 10–
12, 14, 18, 19, 30, 39].

At the same time, providing hardware cache coherence and con-
sistency that can scale in a power-efficient manner to hundreds of
cores is also a significant challenge. There has recently been a surge
in research by academics (see Section 7) and hardware compa-
nies [23, 26] to address this challenge in unconventional ways. In
particular, the DeNovo hardware project observes that disciplined
shared-memory programming models such as mentioned above can
drive a holistic rethinking of the multicore memory hierarchy, pro-
viding more complexity-, performance-, and power-efficient hard-
ware than the state-of-the-art for deterministic programs [17]. This
paper shows that the benefits of disciplined programming and De-
Novo can be extended to non-deterministic programs as well.

DeNovo has used Deterministic Parallel Java (DPJ) as an ex-
ample disciplined programming model [11] to drive its design.
DPJ provides the programmer with a novel region-based type
and effects system to convey the read and write side-effects on
shared-memory for every method. A type-checked DPJ program
is guaranteed deterministic-by-default semantics. That is, unless
non-determinism is explicitly requested, DPJ programs appear de-
terministic and with sequential semantics (the programmer can
debug and test such a program as if it were sequential). Even when
non-determinism is explicitly requested, DPJ provides strong safety
guarantees; e.g., data-race-freedom, strong isolation, and sequential
composition of deterministic code sections [12]. The DPJ compiler
enforces these guarantees by checking that conflicting accesses
from two concurrent tasks – the root cause of non-determinism –
are always identified (as atomic) and always occur within explicitly
marked atomic sections.

DeNovo has so far focused on deterministic programs, and shown
that DPJ’s information and guarantees can be exploited to provide a
simpler and more efficient cache coherence protocol than the state-
of-the-art MESI for such programs [17]. Specifically, DeNovo’s
protocol has the following advantages: (1) The implementation has
no transient states and so is much easier to verify (verification is an
order of magnitude faster) and much easier to extend (incorporat-
ing optimizations did not introduce any protocol state changes). (2)
DeNovo does not rely on writer-induced invalidations; it therefore
eliminates invalidation message traffic and does not require stor-
age overhead for sharer lists in directories, removing a key source
of unscalability. (3) DeNovo keeps coherence state at the granular-
ity at which data is shared and so does not suffer from false shar-
ing (the added state overhead is much less than the reduced direc-
tory state). Overall, compared to MESI, DeNovo is much simpler,
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performs comparably or better than MESI, and is more energy-
efficient (since it reduces cache misses and network traffic) for a
range of deterministic codes.

Although determinism is considered desirable for many ap-
plication classes, there are many common codes that are non-
deterministic or contain parts that are non-deterministic, most com-
monly through lock synchronization. For example, 21 out of 25 of
the PARSEC and SPLASH-2 benchmarks contain locks in some
parts. DeNovo currently cannot run such codes.1 For commercial
hardware to be able to exploit the benefits of DeNovo, it is im-
perative that we develop techniques to support non-deterministic
codes with at least as much performance as conventional systems,
without losing the benefits of DeNovo.

This paper explores exploiting disciplined programming models
to develop simpler and more efficient hardware even for programs
that contain non-determinism. We use DPJ’s safe non-determinism
model (with atomic sections replaced with locks), and show that
simple additions to the DeNovo coherence protocol can support
such non-determinism without giving up on DeNovo’s previous
advantages. We call the resulting system DeNovoND.

For deterministic programs, DeNovo achieves its benefits pri-
marily by recognizing that DPJ explicitly provides the regions that
could be potentially written in a parallel phase (e.g., DPJ’s fore-
ach or cobegin constructs) through its explicit effects. At the start
of a new phase, DeNovo’s cores execute compiler-inserted self-
invalidations to all regions that could have write effects in the previ-
ous phase. Their caches therefore now have only valid data. If any
of this data is updated in the next phase, DPJ’s data-race-freedom
guarantee ensures that only the writing core will read that data,
ensuring up-to-date values for all reads. These observations elimi-
nate the need for writer-induced invalidations, directories, and false
sharing due to cache line driven protocols.

Unlike DeNovo, DeNovoND cannot assume that a parallel phase
will have no conflicting accesses among concurrent tasks any more,
but it knows that such accesses will be protected by the same
lock (this lock may change in a different parallel phase). Further,
such accesses are explicitly identified as atomic accesses in DPJ
programs. Within a critical section, DeNovoND therefore tracks
atomic writes through a signature which is conveyed to the next
acquirer of the lock. The acquirer uses the signature to determine
which data to invalidate in its cache. The strong guarantees given by
DPJ enable an efficient implementation, while still providing free-
dom to express a variety of non-deterministic algorithms. Underly-
ing the above is an implementation for a lock that does not require
directories and a full-fledged MESI protocol – we use a distributed
queue based implementation modeled after the Queue-on-Sync-Bit
(QOSB) lock [20].

Overall, our system retains the advantages of DeNovo while sig-
nificantly expanding the class of programs it supports without com-
promising performance. Specifically, for lock accesses, although
DeNovo’s coherence protocol state machine is extended to handle
the distributed queue, it reuses the state bits from DeNovo’s data ac-
cesses. For data accesses, again, no new externally visible states are
added; the only support needed is a signature per core, the ability
to transfer it to the next acquirer, and to use it for self-invalidation
at subsequent reads. A bit per word at the L1 cache is used as an
optimization. We continue to not have any directories, not have in-
validations, and not incur false sharing.

We compared DeNovoND with a state-of-the-art MESI protocol
for 11 benchmarks with lock synchronization. 3 of these spent more
than 70% of their time in lock acquires, clearly requiring alternate

1 The DeNovo work reports results for some of these benchmarks, but the
parts with locks were either run sequentially or rewritten or not simu-
lated [17].

synchronization techniques for reasonable parallel efficiency that
are out of the scope of this work. We therefore focus on the remain-
ing 8 benchmarks here, although we report results for the above 3 as
well for completeness. We found that DeNovoND performs com-
parably or slightly better than MESI in terms of execution time.
DeNovoND also shows 33% lower network traffic than MESI on
average, which directly translates into energy savings. Performance
optimizations previously proposed for DeNovo (for cache to cache
and flexible granularity data transfer) [17] are applicable to DeN-
ovoND as well without any additional changes, but are orthogonal
to this work and not reported here. Thus, DeNovoND allows us to
extend the benefits of DeNovo to include lock-based (safe) non-
deterministic applications.

Our system shares commonalities with previous software dis-
tributed shared memory consistency models such as lazy release
consistency [27], entry consistency [7], and scope consistency [22]
as well as recent hardware shared-memory work that exploits data-
race-freedom such as SARC [25]. However, none of those systems
distinguish between deterministic and non-deterministic accesses
in a way that is possible with our hardware/software co-designed
approach, and so those systems cannot exploit the corresponding
optimizations. Section 7 discusses the relationship of our work to
prior work in more detail.

While DeNovoND takes a major step in exploiting software dis-
cipline in hardware for a larger class of programs, there is still
much left to future work and outside the scope of one paper. Sec-
tion 8 discusses future work to explore how to incorporate other
key constructs (e.g., pipelined parallelism), and support more com-
plex codes such as legacy codes and operating systems within this
vision.

2. Background
2.1 Deterministic Parallel Java (DPJ)
DPJ is an extension to Java that enforces deterministic-by-default
semantics via compile-time type checking [11, 12]. We first dis-
cuss DPJ without non-deterministic constructs [11]. DPJ provides
parallel constructs of foreach and cobegin to express parallelism
in a structured way as in many current languages (we refer to an
iteration of a foreach loop or a parallel statement of a cobegin as
a task). DPJ provides a new type and effect system for expressing
common patterns of imperative, object-oriented programs. The DPJ
programmer assigns every object field or array element to a named
“region” and annotates every method with read and write “effects”
summarizing the regions read and written by that method (a re-
gion can be non-contiguous in memory). The compiler uses this
information to (i) type-check program operations in the region type
system and (ii) ensure that no two parallel tasks interfere (conflict).

DPJ also provides parallel constructs that are potentially non-
deterministic; i.e., foreach nd and cobegin nd [12]. These con-
structs allow conflicting accesses between their tasks, but require
that such accesses be enclosed within atomic sections, their read
and write effect declarations also include the atomic keyword, and
their region types be declared as atomic. Note that there continue to
be no conflicts allowed between a task from a deterministic parallel
construct and any other concurrent (non-deterministic or determin-
istic) task. The compiler checks that all of the above constraints
are satisfied by any type-checked program, again using a simple,
modular type checking algorithm.

With the above constraints, DPJ is able to provide the follow-
ing guarantees: (1) Data-race freedom. (2) Strong isolation of ac-
cesses in atomic section constructs and all deterministic parallel
constructs; i.e., these constructs appear to execute atomically. (3)
Sequential composition for deterministic constructs; i.e., tasks of
a deterministic construct appear to occur in the sequential order
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implied by the program (even if they contain or are contained
within non-deterministic constructs). (4) Determinism-by-default;
i.e., any parallel construct that does not contain an explicit non-
deterministic construct provides deterministic heap output for a
given heap input. The above guarantees are strong – they not only
ensure sequential consistency but also allow programmers to reason
with very high-level strongly isolated and composable components
such as complete foreach constructs and all atomic sections.

Although DPJ supports atomic sections, this paper assumes we
can convert them to locks. This is possible because by default we
can associate each atomic region with its own lock. For each atomic
section, we can acquire locks for each atomic region that it accesses
in a predefined order. This can be optimized in several ways; e.g.,
by coarsening the locks. An implementation of this algorithm is
outside the scope of this paper. We therefore use hand inserted locks
– for the applications we used, these locks were as provided in the
original application.

2.2 DeNovo for Deterministic Codes
DeNovo divides the coherence problem into two parts:
(1) No stale data: A read should never see stale data in its private

cache(s).

(2) Locatable up-to-date data: When a read misses in its private
cache(s), it should know where to get an up-to-date copy of the
data.

Above, stale and up-to-date are defined by the memory consis-
tency model (sequential semantics, in our case). For (1), DeNovo
recognizes that DPJ explicitly provides the regions that could be
potentially written in a parallel phase (each DPJ parallel construct
such as cobegin and foreach forms a phase, with an implicit barrier
at the join). Before starting a new phase, a core issues compiler-
inserted self-invalidations for all regions that could have write ef-
fects in the previous phase, eliminating all stale data from its private
cache(s).2 For data updated in the current phase, DPJ’s data-race-
freedom guarantee ensures that only the writing core will read that
data, ensuring up-to-date values for all (private) cache hits. For (2),
DeNovo uses a structure called the registry to keep track of one
up-to-date copy of each cache line. This is analogous to a conven-
tional directory, but unlike the latter, it does not track all sharers of
a cache line (eliminating a source of unscalability). With systems
with a shared last level cache, the data bank of the cache doubles
as the registry storing the data or a pointer to it.

The DeNovo protocol has three states, Registered, Valid, and In-
valid. These states are analogous to those in a conventional MSI
directory protocol; Registered is similar to M with the line modified
in a private cache and Valid is similar to S. The DeNovo protocol
state transition diagram also resembles typical textbook pictures
for MSI. A key difference, however, is that real implementations
of MSI have tens of transient states to handle protocol races, in-
troducing significant complexity and making verification difficult.
In contrast, DeNovo has no transient states since it assumes race-
free software, which eliminates virtually all races from the protocol
hardware.

Next we describe the key aspects of the protocol’s operation and
refer to [17] for more details. For easier exposition, we assume a
two level cache hierarchy with a shared L2 without loss of general-
ity, and a line size of one word (this is relaxed below). A read hits
in the L1 if the line is Valid or Registered. A read miss request goes
to the registry (the shared L2) and either finds the data there or a
pointer to the L1 that contains the data in Registered state. In the
latter case, the request is routed to the registered data for service.

2 This requires the cache to store region information as described in [17].

A write to data in Registered state at the L1 updates the data. A
write to data in Valid or Invalid state at the L1 immediately transi-
tions the data to Registered and updates it (no transients) and gener-
ates a registration request (and a writeback if needed). If the data is
not registered elsewhere, the L2 immediately registers it and sends
an acknowledgment. Otherwise, the L2 records the new registra-
tion and forwards the request to the previously registered core to
relinquish its registration. Due to the data-race-free guarantee, reg-
istration transfer occurs only once in a phase (assuming no task mi-
gration, which can also be easily handled [17]), without any danger
of protocol races.

Additionally, as an optimization, L1 contains touched bits that
are set when the corresponding data is read. Due to data-race-
freedom, it is guaranteed that no other core will write such data
in that phase. Thus, “touched” data is up-to-date and does not need
to be invalidated for the next phase. All self-invalidations occur at
the end of the phase – regions with write effects in that phase are
invalidated unless the data is registered or touched. Touched bits
are reset after the invalidation, in preparation for the next phase.

The baseline word-based DeNovo protocol assumes equal ad-
dress/tag allocation, communication, and coherence granularity,
which is the granularity at which data-race-freedom is ensured.
This granularity is a word for the applications evaluated. (Details
about supporting sub-word (byte) granularity can be found in [17].)
DeNovo further observes that any data that is marked touched
or Registered is always up-to-date and can be freely copied from
one cache to another without informing anyone (there is no di-
rectory tracking sharer lists). Thus, the word-based DeNovo pro-
tocol is easily enhanced to operate on larger communication and
address/tag allocation granularities, while still maintaining coher-
ence state at the word granularity.

A natural granularity for communication and allocation is a con-
ventional cache line (e.g., 64 bytes), and the corresponding DeNovo
protocol is referred to as the line based protocol. Here, a responding
cache for a demand request sends a cache line worth of data (poten-
tially with some words marked as invalid) and the valid words in the
response message are merged with the local copy of the cache line
of the requestor. These words are marked as Valid, but not touched
(the touched bit is set when those words are actually read). DeN-
ovoND is designed on top of this line-based protocol.

DeNovo has also explored more flexible communication granu-
larities (more or less than one cache line) and direct L1 to L1 data
transfers. These optimizations are simple with DeNovo and do not
require any new states, but are difficult to incorporate in conven-
tional protocols because they introduce even more transient states.
The same optimizations can be directly applied to DeNovoND as
well, again with no new states for DeNovoND. We do not study
them here since they are orthogonal to the goal of this paper.

The DeNovo protocol we study additionally implements the opti-
mization of write combining where multiple registration requests to
words in a given cache line are combined into one request. This op-
timization was mentioned, but not implemented, in [17] to reduce
write traffic. This optimization is not meaningful for conventional
protocols since conventional store requests always operate on a full
line while DeNovo registrations are for a word.

3. DeNovoND Design Overview
3.1 Basic Assumptions and Definitions
We assume all synchronization occurs through DPJ’s parallel con-
structs (foreach, cobegin, and their nd versions) and through locks.
We assume a barrier at the implicit join associated with the parallel
constructs. We say all concurrent tasks of a given parallel construct
– loop iterations in a foreach and parallel statements in a cobegin –
form a phase.
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For locks, we assume that an atomic section does not call a
parallel construct, as is the case with all our applications. Thus,
all operations of an atomic section occur within a single task and
are enclosed within a lock acquire and release to the same lock
variable (there may be nested locks to different lock variables). We
refer to memory operations within such a lock acquire/release pair
as occurring in a critical section protected by that lock variable.

For data accesses, we assume the ISA provides a mechanism by
which loads and stores can be tagged as accessing atomic regions
with atomic effects (e.g., with a bit in the op-code). The DPJ com-
piler has this information and can generate code with the bit set for
such accesses. We refer to such accesses below as atomic accesses
and to others as non-atomic accesses. Note that the former are reg-
ular data accesses from atomic sections and are not to be confused
with atomic read-modify-writes or the C++ atomic keyword used
for synchronization races.

Without loss of generality, we assume a two level cache hier-
archy. We also assume a shared L2 cache. DeNovoND can be
extended to deeper hierarchies and private last level caches in a
straightforward way (similar to DeNovo [17]).

3.2 Memory Consistency Model
For a correct design, we must first understand the constraints im-
posed by the memory consistency model which specifies what
value a read must return.
Informal model: DPJ provides a very strong consistency model.
It guarantees sequential consistency and hence a total order over
all memory operations (that is consistent with program order). A
read must return the value of the last write to its location as defined
by this total order. DPJ also enforces additional rules that further
constrain this last write for data operations, simplifying reasoning
for software and implementation for hardware as follows.

Non-atomic accesses: DPJ ensures that for a non-atomic access,
there cannot be a conflicting access by another concurrent task in
the same phase. Thus, for a non-atomic read, the last conflicting
write is either from its own task or from a task in a previous
phase. This is identical to DeNovo and we can use the identical
implementation.

Atomic accesses: For atomic accesses as defined above, DPJ
allows conflicting accesses among concurrent tasks, but ensures
that all such accesses to a given location are in critical sections
protected with the same lock. These critical sections must execute
atomically, imposing a total order on all conflicting atomic accesses
within a phase. A read therefore must return the value from the
(unique) last conflicting write from a critical section in the current
phase; if such a write does not exist, then the read must return the
(unique) last conflicting write from the previous phase.
Formal model: We now state the model more formally. Note that
this model is motivated as a specification for hardware and is
therefore at a low level, in terms of individual reads and writes. DPJ
programmers work at a higher level in terms of composition and
serialization of higher level constructs (cobegin, atomic section,
etc.) as described in Section 2.1. Our model can be stated in two
parts for synchronization and data accesses respectively:

(1) Synchronization accesses are sequentially consistent. This
implies a total order between phases and between critical sections
to a given lock variable within a phase; this total order is consistent
with program order.

(2) For conflicting data accesses, X and Y , we define a happens-
before relation, denoted →hb such that X →hb Y iff

Type 1 edge: X’s phase precedes Y ’s phase (by the total order
in (1)), or

Type 2 edge: X and Y are in the same task, and X is before Y
by program order, or

Type 3 edge: X and Y are atomic accesses in critical sections
protected by the same lock variable, and X’s critical section
precedes Y ’s critical section (by the total order in (1)).

Then DPJ’s guarantees ensure that →hb orders all conflicting
accesses, and hardware should ensure that a data read returns the
value of the last conflicting write in →hb order. For a non-atomic
read, the last write is always ordered before it by a type 1 or type 2
→hb edge. For an atomic read, the last write may be ordered before
it by a type 2 or type 3 edge if such a write exists; otherwise, it is
ordered by a type 1 edge.

3.3 Data Coherence Mechanism
The coherence mechanism must simply ensure that a read returns
the value from the write as defined by the consistency model.
As with DeNovo, we divide the coherence mechanism into two
components:
(1) No stale data: A read should never see non-last (stale) data in

its private cache(s).

(2) Locatable up-to-date data: When a read misses in its private
cache(s), it should know where to get the last (up-to-date) copy
of the data.

Above, last is precisely defined by the happens-before order. For
non-atomic accesses, both components above remain identical to
DeNovo since the consistency model requirements are identical.
For atomic accesses, the requirements are met as follows.
No stale data: For the first requirement of no stale data, we use
self-invalidations as with DeNovo, thereby precluding the need
for adding invalidation messages and directories with sharer lists.
Additional self-invalidations are needed with DeNovoND only if
there are conflicting atomic accesses among concurrent tasks in
a phase (otherwise, DeNovo’s self-invalidations at the start of a
phase suffice). In the case of conflicting atomic accesses among
concurrent tasks, we use the happens-before relation to determine
when and what to self-invalidate as follows.

To determine when to self-invalidate, we note that a concurrent
conflicting read must be in a critical section itself and must return
the value of the last write also in a critical section protected by the
same lock in the same phase (type 2 or 3 edge). Thus, it is sufficient
to self-invalidate any time between the start of a critical section and
an atomic read in that section.

To determine what to self-invalidate, we have several choices. We
could invalidate the entire cache (which seems excessive) or only
the atomic regions (for which we would need to keep extra state
to identify in the cache). An alternative is for each core to update
a signature that records all writes to atomic regions, and then to
transfer this signature when the lock is acquired by another core.
On a first atomic read to a location, the acquiring core needs to
check the signature and self-invalidate the location if it is present
in the signature. The acquiring core must forward the union of its
signature and the signatures it has received to the next acquirer.
Locatable up-to-date data: For the second requirement of finding
the value of the last write on a miss, we use ideas similar to
DeNovo. On a write to valid or invalid data, the L1 cache sends
a registration request to the L2. The registrations are required to
complete before the lock release so that conflicting writes from
critical sections are serialized in the right order (it is possible to
postpone the registration completion until the next lock acquire). A
read that misses in the cache simply goes to the registry (L2) to find
the up-to-date value.

Thus we continue with only three states in the protocol as before:
Valid, Invalid, and Registered. The extra work over DeNovo is to
update the signature on atomic writes, send the signature on a lock
transfer, and invalidate appropriately on atomic reads. Section 4.1
discusses each of these steps in more detail.
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3.4 Distributed Queue-based Locks
Our distributed queue-based lock design is modeled after QOSB [20,
24], where the identities of the cores waiting for a lock are main-
tained in a queue of pointers distributed across the waiting cores’
L1 caches and the L2 cache. All requests to a given lock are serial-
ized at the corresponding shared L2 cache bank. The data portion
of the L2 cache entry for a contended lock tracks the last requestor
(i.e., the tail of the queue of waiters), referred to as tailPtr. When
the L2 receives the next request for the lock, it forwards it to the
current tail’s L1. On receiving such a forwarded request, the L1
checks a bit in its copy of the lock word, called the Locked bit, to
determine if the lock is still held or was unlocked. In the former
case, the L1 stores the requestor’s ID in another field of the lock
word, referred to as nextPtr. In the latter case, the L1 responds to
the requestor with its signature and transfers the lock, marking its
own lock word Invalid. When a core releases a lock, its L1 checks
its nextPtr – if not null, it transfers the lock (with the signature)
to the nextPtr core; otherwise, it unsets its Locked bit. We allow
eviction of lock words from the L1 and L2 caches by reusing the
data portion of the lock words in the next level of the memory hi-
erarchy to store lock queue information. This approach relies on
using L2 data banks to store (non-data) metadata, which is similar
to DeNovo’s tracking of registration information for the Registered
state. Section 4.2 discusses our implementation in more detail.

4. Implementation
This section discusses in detail how DeNovoND implements the
memory consistency model and the coherence mechanism de-
scribed in Section 3 using access signatures and the distributed
queue-based lock mechanism. We also qualitatively discuss the
hardware and performance overheads of the implementation.

4.1 Access Signatures for Coherence of Atomic Accesses
DeNovoND’s memory consistency model requires that a read re-
turn the value of the last write preceding it, as ordered by the three
types of happens-before edges described in Section 3. DeNovo al-
ready guarantees that a write ordered by a type 1 or type 2 edge
is seen at a read (the former through self-invalidations at the start
of a new phase and the latter through single core semantics). For a
non-atomic read, a write is ordered only through the above two
edge types; therefore, DeNovo already provides consistency for
such reads. For atomic reads where a previous (atomic) write is or-
dered by a type 3 edge, however, DeNovoND must provide a new
mechanism – it needs to track which data in atomic regions has
been modified in a critical section in the current phase, as well as a
mechanism to efficiently represent and transfer this information on
a successful lock acquire.

We use an “access signature” for the purpose of tracking atomic
writes. A signature is a compact representation of a set at the
expense of precision. Its main functionality includes element in-
sertion, membership query, and flash clear functions. DeNovoND
implements the access signature as a small Bloom filter in hard-
ware [9]. Due to its storage efficiency, simplicity, and low access la-
tency, a hardware Bloom filter has been a popular solution for many
areas including networking and transactional memory [13, 16].

For our Bloom filters, the keys are addresses accessed (i.e.,
atomic regions that have atomic effects in this phase), since we
are interested only in modifications made to those addresses. The
key domain dynamically changes between cores and phases, as a
new set of atomic accesses occurs. To keep the false positive rate
of Bloom filter reasonably low, the size of each Bloom filter should
be determined based on the average size of the key domain. This
turns out to be quite small in our case (256 bits suffice) since we
only track atomic accesses in a given phase (later sections discuss

Figure 1: An example of propagating atomic writes using access signatures.
Assume a and b are in the same cache line.

the size in more detail). We conservatively keep one filter per core
to track all modifications across different critical sections (with dif-
ferent locks) on the same core. Thus, for a system with n cores, we
have a total of n Bloom filters in the system.

The following uses Figure 1 as a running example to show how
DeNovoND uses the Bloom filters. On the left, the figure shows
DPJ style code depicting three variables, a, b, and c in atomic
region xR. It then shows a critical section protected by lock x with
atomic read and write effects on region xR. The right side of the
figure shows an execution with two cores, C1 and C2. C2 acquires
the lock for the critical section first, followed by C1 and then C2
again. The figure also shows the signatures at each core, assuming
a perfect hash function.
On atomic writes: An atomic write (as determined by the op-code
of the store instruction as discussed in Section 3) invokes the same
cache protocol operations as in DeNovo. That is, if the word is not
in Registered state at the L1, a registration request is sent to the
L2. Additionally, the word is updated right away and any required
writeback is sent to the L2 as well.

For DeNovoND, an atomic write additionally inserts the accessed
address into its core’s Bloom filter. To avoid repeating insertion of
the same address to the Bloom filter, we can add an additional bit,
called the “dirty bit,” to mark a memory location already updated in
a given phase. The “dirty bit” is set on the first atomic store request
to a word in a phase, and all dirty bits get unset at the end of a phase.
If a store finds the dirty bit already set, it means the word is already
inserted into the core’s Bloom filter and does not need to be inserted
again. Since this is purely an optimization, we can piggyback the
functionality of a dirty bit on other state bits described below (e.g.,
the touched-atomic bit) – this may result in some extraneous resets,
but does not affect correctness and reduces extra state.

Thus, at the end of a critical section, all addresses modified in the
section are recorded in the core’s filter; i.e., their entries are non-
zero. From Figure 1, every store request to a, b, and c in the lightly
shaded critical sections updates the Bloom filter on C1 and C2. The
second critical section phase on C2 does not update the Bloom filter
since it does not have atomic writes.
On acquire/release: On an acquire, all modifications preceding
the release associated with the acquire are made visible to the
acquirer by transferring the access signature at the releaser. The
releaser compresses and sends the Bloom filter at its core to the
acquirer, when transferring the lock. The acquirer, on receiving
the Bloom filter, updates its own Bloom filter by making a union
of its local Bloom filter and the releaser’s Bloom filter. Figure 1
shows the resulting Bloom filters at the beginning of each critical
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section, of which the lightly shaded entries come from the union
operation. Note that we only send the signature, not the actual data.
On acquire and release points, we also reset the “touched-atomic”
and “prefetch” bits (as will be explained in detail below).
On atomic reads: Atomic reads need to conceptually consult the
signatures obtained from remote releasers to determine if cached
data is valid or stale. If the read is to a word in Registered state in
the L1, then regardless of the signature state, the word is up-to-date
in the cache and the read is a cache hit. If the word is Invalid in L1,
then a normal read request is sent to L2. If the word is in Valid state,
then it is also up-to-date if its address does not appear in the access
signature. If the word is in Valid state and its address hits in the
access signature, then it may or may not be up-to-date depending
on whether it has been previously read in this critical section.

Specifically, if the word has already been read in this critical
section, the previous read brought up-to-date data that is still valid
(since no other core can write to the word during the same critical
section). We identify this situation by using a touched-atomic bit
that is set on the first read of the word in a critical section and reset
at the release – more precisely, it needs to be reset only when the
lock is handed off for another core’s acquire (lock hand-off). Thus,
a read to a word in Valid state with touched-atomic bit set is a cache
hit.

Another case where a valid word may be up-to-date is when it
is obtained as part of a cache line transfer for a demand access to
another word in that line. We would like to take advantage of such
a prefetch as with conventional cache lines and with DeNovo. If
the word comes directly from the L2 or from memory, then it is
definitely valid. If it comes from a remote cache, then it is valid
if that word was marked as touched-atomic or Registered in the
remote cache. In this case, we can conceptually add another bit
called the “prefetch bit” which can be set for prefetched words
with the above properties. These bits must be reset on the next lock
hand-off or the next acquire, whichever happens first. A read that
accesses a valid word with prefetch bit set is considered a cache
hit. Although the touched-atomic and prefetch bits are separately
motivated, both functions can be achieved by a single bit that we
collectively refer to as the touched-atomic bit.

In summary, the touched-atomic bit of a word is set on the first
read of the word in a critical section or for a word prefetched from
L2/memory or from a remote L1 in touched-atomic or Registered
state. The bit is reset on an acquire or lock hand-off, including the
end of the phase. A read to Valid data with touched-atomic bit set
or with an address that misses in the access signature is considered
a hit. Otherwise, the Valid data is no longer up-to-date and must be
marked invalid and a read miss request is issued.

In Figure 1, assume that variables a and b are in the same cache
line. Then C1’s load b will be a hit since C1’s load a will bring
in b as well and set its touched-atomic bit. On the other hand,
load b in C2’s second critical section is a miss. This is because
the preceding load a will read a in its own cache in Registered
state and so will not prefetch b which is registered at C1.

Finally, we note that using a single, plain Bloom filter at each
core to determine what to invalidate is inherently conservative. For
example, it is possible that an address may have been updated be-
fore it had been last seen by a core but not updated again since then;
our system will still invalidate the address on a read (in the same
phase) from that core. In addition, false positives in a finite Bloom
filter cause valid addresses to be invalidated if the filter entry is up-
dated by another address mapped to the same entry. Another source
of imprecision occurs when the signature is transferred well after
the lock release occurs. Such a signature may include addresses
to accesses after the release and before the subsequent acquire –
these do not precede the acquire by happens-before and may lead to
false positives and unnecessary invalidations. Our evaluation, how-

ever, showed that such cases did not occur often for applications
with reasonable lock synchronization; nevertheless, we later dis-
cuss some approaches to mitigate such effects (Section 6).
End of phase actions: At the end of a phase, as with DeNovo,
we insert self-invalidation instructions for all regions with writable
effects in that phase. This includes atomic and non-atomic regions.
Analogous to DeNovo, all data in such regions is invalidated unless
it is registered or its touched bit (for non-atomic regions) is set or
its touched-atomic bit (for atomic regions) is set. All touched and
touched-atomic bits are reset at the end of the phase and all Bloom
filters are cleared.

4.2 Lock Implementation
Tables 1a and 1b describe the state transitions for the L1 and L2
caches respectively for lock words, building on top of the DeNovo
line protocol (as with DeNovo, the coherence states are at word
granularity). We next discuss these in detail.
L1 transitions: There are two states at L1 for a lock word: LockQ
and Invalid. The lock word transitions to LockQ on receiving a
lock request from its core, and stays there until it transfers the
lock (along with the access signature) to nextPtr or until the line
is evicted. While in LockQ state, a bit in the data portion of the lock
entry, called Locked, indicates whether the lock is held or released.
Figure 2 shows the lock word layout at the L1 with a lock queue.

On a lock request by a core, its L1 sets the Locked bit for the
corresponding word. If the word was already in LockQ state, the
L1 informs the core of a successful lock acquire. If the previous
state was Invalid, a lock request is sent to the L2 and the core is
stalled (the cache does not service any further requests from the
core) until the response is received.

On an unlock request to LockQ state, if nextPtr is not null, the
L1 transfers the lock to the nextPtr core and transitions to Invalid.
Otherwise, it unsets Locked. An unlock request to Invalid state
generates a request to the L2. This request is simply a notification
and does not bring back the cache line (the state stays Invalid).

An L1 in LockQ state may receive a remote lock request for-
warded by the L2. If the Locked bit is set, the request is queued
in nextPtr; otherwise, it is serviced immediately by transferring the
lock and changing the state to Invalid. The L1 may also receive a
remote lock request in Invalid state due to a previous writeback.
If this request is only for the signature, it transfers the signature
(along with an implicit lock transfer) to the remote requestor. If the
request is for the lock as well, then it signifies a race between the
L1’s writeback and the remote request at the L2. In this case, L1
returns a Nack to the L2 – we discuss how the L2 responds to the
Nack in detail below.

Eviction of lines with lock words at the L1 is similar to DeNovo’s
L1 evictions (not shown in Table 1a). The main difference is that
the writeback message needs to indicate which words are in LockQ
state so that the L2 can perform appropriate action as discussed
below. Table 1a does not show any action for writeback requests
generated by L2 for L1. This is because the L2 does not need to
maintain inclusion with the L1 for lock words (similar to Valid data
in DeNovo). The distributed lock queue constructed in the L1s stays
valid and does not need to be rebuilt on an L2 writeback.
L2 transitions without L1 writebacks: The L2 has two states –
Invalid and Valid. The main source of complexity at the L2 comes
from L1 writebacks of LockQ words; we therefore first discuss L2
transitions without L1 writebacks, indicated by WB=0 in Table 1.

On a lock request in Valid state, the L2 forwards the request to its
tailPtr core and updates the tailPtr with the requesting core’s ID.
A lock request in Invalid state allocates the line for the lock word,
triggers a fetch from memory, and keeps the L2 in Invalid state.
When the response returns, the L2 transitions to Valid and applies
the actions for the Valid state to the lock request (i.e., forwards the
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Lock request from core i Unlock request from core i Response for lock request
from core i

Remote lock request
from core k

LockQ set Locked

if nextPtr != null
send response to nextPtr;
go to Invalid

else
unset Locked

unstall core i;
merge received signature

if Locked is set
nextPtr := k

else
send response to core k;
go to Invalid

Invalid

stall core i;
update tag;
go to LockQ;
set Locked;
send lock request to L2
(writeback if needed)

send unlock request to L2 X
if sig-only request

send response to core k
else

send Nack to L2

(a) L1 cache for core i

Lock request from core i Unlock request
from core i

Lock/Unlock/WB/Nack
response from memory

for core i

Lock writeback
from core i

Nack from core i
for core k

Valid

if WB == 0
fwd req to tailPtr;

else // WB == 1
if Locked is not set

send sig-only req to
lastAcquirer for i;

WB := 0
else // Locked is set

if firstWaiter != null
fwd req to tailPtr

else
firstWaiter := i;

tailPtr := i

if firstWaiter != null
send sig-only req to

i for firstWaiter;
WB := 0

else
unset Locked

X

if firstWaiter == null
copy Locked from

WB message;
lastAcquirer := i;
firstWaiter := nextPtr;
WB := 1;

else // race
if Locked is not set

send sig-only req to
i for firstWaiter

if WB == 0
firstWaiter := k

else
if Locked is not set

send sig-only req to
lastAcquirer for k;

lastAcquirer := null
else

firstWaiter := k

Invalid
update tag;
send data req to memory;
(writeback if needed)

update tag;
send data req to memory;
(writeback if needed)

if not tag match
allocate line;
update tag;
(writeback if needed)

go to Valid;
apply actions for

Lock/Unlock/WB/Nack
as specified in Valid

update tag;
send data req to memory;
(writeback if needed)

update tag;
send data req to memory;
(writeback if needed)

(b) L2 cache
Table 1: State transitions for a lock word. X indicates unreachable states.

request to tailPtr). If the line was deallocated between the request
and the response due to eviction, another line is allocated and the
above action taken.

An unlock request in Valid state can only occur if the unlocking
L1 previously performed a writeback on the lock (i.e., WB=1), and
so is discussed below.

Writebacks generated by the L2 to memory are similar to DeN-
ovo. As we see below, all the lock queue related information needed
at the L2 is maintained as part of the lock word in the L2 – on an
L2 writeback, this information is simply preserved at memory and
made available to the L2 for later use.
Handling L1 lock writeback at the L2: When the L2 receives a
writeback from an L1, it must ensure that it stores all information
needed to construct the lock queue that was stored at the L1. This
information is stored in the data portion of the L2 along with the
tailPtr. An L1 writeback containing a lock word can originate
only from the head of the lock queue in LockQ state because
other cores are either stalled on their lock request or invalidated
after transferring the lock. The L2, therefore, stores the following
information in its data portion on an L1 writeback from core i
(Figure 2 illustrates the L2 data layout with example values before
and after the writeback):3

WB: The WB bit is set to 1 to indicate that the lock has been
evicted from the L1 of the head of the lock queue.

3 Storing these fields in the data bank of the L2 does not limit the number
of cores that can be supported as we can increase the data size of a lock
variable as needed.

Locked: The Locked bit from the writeback message is copied
into the L2 to indicate whether the lock was released (Locked=0)
at the time of the writeback.
lastAcquirer: L2 sets lastAcquirer as i. This is used to forward
the next lock requestor to core i to obtain the access signature.
firstWaiter: L2 copies nextPtr from the writeback message into
its firstWaiter field to indicate the first element in the queue after
the head. On a subsequent unlock, the lock must be transferred
to the firstWaiter core if it is not null.
Next we revisit the transitions for various messages at the L2

when the Valid state has WB=1. On a lock request, if Locked is
not set (writeback occurred after lock release), L2 forwards the re-
quest to the lastAcquirer core. This request is for the access signa-
ture only since we already know that the lock has been released.
If Locked is set (writeback before release), then L2 checks if first-
Waiter is null. If it is not null, then L2 queues the request by for-
warding it to tailPtr. Otherwise, it sets firstWaiter to i since there is
no other waiter in the queue.

Similarly for unlock requests, if firstWaiter is not null, L2 for-
wards the request of firstWaiter to lastAcquirer for the signature
(and implicit lock transfer). Otherwise, the queue is empty. L2 re-
sets Locked, indicating that the evicted head is unlocked now and
is ready to transfer the lock.
Handling races: There can be a race between an L1 lock writeback
from core i and a request for the same lock from another core k.
Thus, before getting the writeback, the L2 can forward core k’s
request to L1. In this case, L1 nacks the request back to L2, which
takes the following actions depending on whether it has already
received the writeback (last column of Table 1b):
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(a)

(b)

Figure 2: Example showing L1 and L2 data layout for the distributed queue-
based lock (a) before writeback and (b) after writeback.

The Nack arrives before the writeback (WB=0): L2 simply sets
firstWaiter to core k. When the writeback arrives, L2 finds its
firstWaiter is not null and its request must be handled. If the Locked
bit in the writeback is unset, L2 knows the lock was released and
so can forward firstWaiter’s request to core i for signature transfer.
If the Locked bit is set, then nothing needs to be done; the lock
transfer to core k will occur when the Unlock arrives.
The Nack arrives after the writeback (WB=1): L2 services core k’s
request using the information stored in the writeback; if Locked is
not set, the request is forwarded to lastAcquirer. Otherwise, k is
stored as the firstWaiter.

The above race is the only one that occurs in the lock protocol.
It involves at most two cores and results in exactly one possible
Nack message that the L2 immediately handles, with no deadlock
or livelock causing actions.

4.3 Overheads
DeNovoND incurs the following overheads over DeNovo.
Hardware Bloom filter: There is one Bloom filter per core. A con-
servative upper bound for its size is the virtual memory size. In
practice, an effective size can be empirically determined by mea-
suring the number of atomic writes to distinct addresses in various
applications. The size must also be large enough to have tolerable
false positive rates. In our system, a relatively small size Bloom fil-
ter of only 256 bits worked well and provided performance similar
to an infinite size Bloom filter for most cases. This is because the
size of the key domain is restricted only to the addresses in atomic
regions, and the filter is flash cleared at the end of a phase.

The quality of the hash function also impacts the efficiency
of Bloom filters [42]. We experimented with two hash functions,
multi-bit selection (similar to the one used in [16]) and H3 (univer-
sal hash function that provides uniformly distributed hash values
[15]), which showed consistent performance across applications.
For our evaluation, we used H3 which worked better with appli-
cations with high false positive rates. Finally, [16] has shown that
Bloom filter operations of element insertion, membership query,
and flash clear can be implemented very efficiently in hardware.
Storage overhead: Our distributed queue-based lock protocol
reuses the L1 and L2 cache data banks to store the waiter queue
information, incurring zero storage overhead for that purpose. It re-
quires one additional state LockQ at L1 to distinguish between lock
and data words. This does not result in any added storage overhead
for L1 state as DeNovo already requires two bits per word for stor-
ing three states (Invalid, Valid, and Registered). With an additional
LockQ state, we now have four states stored in two bits. The two

L2 states for lock words can reuse the L2 per-word state bit of the
baseline DeNovo protocol – lock words simply add new transitions
to the existing L2 states, triggered by lock related messages. Thus,
the lock protocol does not incur any additional storage overhead.
The externally visible protocol states for data accesses also stay
the same as for DeNovo. For efficient tracking of atomic writes,
however, we added a touched-atomic bit per word in the L1 as an
additional state bit (used only by the local core).
Communication and computation overhead: On acquire/release,
the Bloom filter of the releaser is piggybacked on the lock transfer
message. In order to minimize impact on network traffic, we can
compress the Bloom filter using run-length encoding as in [16] or
a Bloom-filter specific compression technique [38]. In our evalua-
tions, we conservatively do not model such compression and charge
the full 256 bits (32 bytes) of network traffic for the Bloom filter at
a lock transfer. When a core receives a lock transfer message along
with the signature, it needs to merge the received Bloom filter with
its own before executing memory instructions in the critical section.
The time for merging can be partially hidden by not blocking the
execution until the first write/read instruction to an atomic region
is issued.

For the distributed queue-based lock, there is an additional over-
head for writeback messages which need to include an additional
bit per word to indicate if the word is in LockQ state so that the
L2 can perform appropriate lock related actions for this word.
This overhead, however, can be compensated by observing that the
writeback message does not have to contain full lock words, but
only the Locked and nextPtr parts. The queue-based lock protocol
also requires new state transitions in response to lock related mes-
sages; however, these do not introduce any new transient states or
interact with the data protocol and can be separately verified.

5. Evaluation Methodology
5.1 Simulation Environment
For our evaluations, we use the Wind River Simics [34] full-system
functional simulator to drive the Wisconsin GEMS detailed mem-
ory timing simulator [35] that we modified to implement our pro-
tocols. We also use the Princeton Garnet [3] interconnection net-
work simulator to model network communication. To keep simula-
tion times reasonable, as is common practice, we employ a simple,
single-issue, in-order core model with blocking loads and 1 CPI
for all non-memory instructions. (Note that DeNovoND does not
require simple cores, but detailed timing simulation of a complex
core would take an inordinate amount of time and we believe would
not qualitatively affect our results.) We also assume 1 CPI for in-
structions executed inside the OS.

Table 2 shows the key parameters of our simulated systems. We
simulate a multicore with 16 cores, a 64KB private L1 data cache
per core (we do not model an Icache), a 16MB shared, NUCA
L2 cache, and 4 memory controllers, all connected by a 2D mesh
network. We configured the miss latencies to approximate those
of the Nehalem processors [21]; e.g., a last-level shared cache
miss (memory hit) costs 190 to 309 cycles on Nehalem (several
of the latencies specify a range, depending on which L2 bank,
remote L1 cache, or memory controller is accessed). We use the
Bloom filter implementation shipped with GEMS [35] with the
H3 hashing function and 256 single-bit entries. We also simulated
configurations with infinite Bloom filter entries for reference.

5.2 Simulated Systems
Our distributed queue-based lock is specifically designed for De-
NovoND, reusing the coherence states of DeNovo, with no added
transient states and limited race interactions. Implementing it on
a conventional MESI-like protocol is possible, but will involve far
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more complexity to deal with interactions with the already exist-
ing numerous transient states and race conditions. On the other
hand, comparing DeNovoND with distributed queue-based locks
and MESI with conventional locking may not be fair to MESI.
We therefore implemented simplified (idealized) queue-based locks
that work for both MESI and DeNovo to isolate the effectiveness of
access signatures. This idealized implementation maintains a “lock
table” which is keyed by a lock variable address and maintains the
waiter queue for each lock. Accesses to this table – creating an en-
try and grabbing the lock, adding a core to the waiter queue, waking
up the first waiter in the queue, etc. – do not incur extra cycles. We
also do not charge traffic overhead for lock and signature transfer
for the idealized lock. Once a core is ready to release the ideal-
ized lock, lock transfer is instant and the next requestor wakes up
immediately. Hence we evaluated the following systems:
MESI: We simulated MESI using idealized queue-based locks
(MIL) and the POSIX pthreads mutex library (MPL). We modi-
fied the original implementation of MESI in GEMS [35] to support
non-blocking writes for a fair comparison with DeNovoND where
writes are non-blocking by default. Atomic instructions used in
pthreads mutex codes are simulated using blocking store fences
for correct execution.
DeNovoND: We simulated DeNovoND with idealized queue-based
locks (DIL) and with distributed queue-based locks (DQL), both
with a 256 bit Bloom filter (DIL-256 and DQL-256)) and, for
reference, an infinite size Bloom filter (DIL-inf and DQL-inf). For
DQL, operations on the lock incur latency consistent with table 2.
For the signature transfer, we add a 256 bit (32 byte) payload to
the lock transfer message and simulate network traffic and latency
accordingly. This is conservative for DQL-256 since the signature
could be compressed. It is aggressive but reasonable for DQL-inf
since DQL-inf is intended to be a best case reference model.

5.3 Workloads
We evaluated 11 benchmarks with lock synchronization, taken
from various suites to represent a range of behavior such as lock
frequency, lock granularity, contention, critical section length, and
shared working-set size. We evaluated barnes (16K particles),
ocean (258×258), and water (512 molecules) from SPLASH-2
[45]; fluidanimate (35K particles) and streamcluster (8,192 points)
from PARSEC 2.1 [8]; tsp (17 cities) as used in [12]; and kmeans
(8,192 points, 24 dimensions, 16 centers), ssca2 (213 nodes),
genome (256 nucleotides), intruder (1,024 traffic flows), and va-
cation (16,384 records) from STAMP [37].

The benchmarks from SPLASH-2 and PARSEC represent tradi-
tional applications designed and optimized to scale well with lock
synchronization. The benchmarks from STAMP and tsp, however,
were originally designed for hardware and software transactional
memory. We ported them to use locks for our simulated systems.
For short transactions, we directly replaced them with critical sec-
tions (tsp, kmeans, ssca2, and intruder). For longer transactions, we
used finer-grained locks (genome, vacation).

We found that 3 out of the 6 transactional applications (genome,
intruder, and vacation) spent > 70% of their execution time on lock
acquire for all studied configurations. Clearly, parallelization us-
ing lock synchronization is inappropriate for these applications, for
both MESI and DeNovoND. We therefore focus our results on the
other 8 applications, referring to them as “lock-efficient” applica-
tions (Section 6.1). For completeness, we separately report results
for the above three lock-inefficient applications (Section 6.2). We
discuss optimizations to improve the performance of DeNovoND
for the lock-inefficient applications, but fundamentally, these must
be parallelized using different techniques for reasonable parallel
speedups. Such techniques (including possibly transactional mem-
ory) are outside the scope of this work.

Core frequency 2GHz
# of cores 16
L1 data cache 64KB, 64 bytes (16 words) line size
L2 (16 banks, NUCA) 16MB, 64 bytes line
Memory 4GB, 4 on-chip controllers
L1 hit latency 1 cycle
L2 hit latency 29 to 61 cycles (bank-dependent)
Remote L1 hit latency 35 to 83 cycles
Memory hit latency 197 to 261 cycles
Network parameters 2D mesh, 16 bit flits
Bloom filter size 256 bits (infinite for reference)
hash function 4 H3

Table 2: Simulated system parameters.

Finally, the lock-inefficient applications showed significant non-
determinism in execution time. Although our timing simulations
are deterministic, they depend on the state of the system when
the application is started (the Simics checkpoint at the start of the
application). For different state, the lock-inefficient applications
showed varying results. We therefore ran each such application
with five different checkpoints for each system and averaged the
results (the same five checkpoints are used for all systems). We
also report the results for the lock-efficient applications averaged
across three different checkpoints, but these applications did not
show much variability across their checkpoints.

6. Performance Results
6.1 Lock-Efficient Applications
Figure 3a shows the execution time for our 8 lock-efficient appli-
cations for the 6 configurations described in Section 5.2. All bars
are normalized to MIL. Each bar is divided into compute time, stall
time due to data memory accesses (henceforth referred to as mem-
ory time), barrier time, and lock acquire time. Since we model non-
blocking lock releases, lock release time is negligible. Since our fo-
cus is on the memory system, Figure 3b blows up the memory time
in each bar of Figure 3a, divided into stalls for L1 misses resolved
at L2, a remote L1, or main memory. Since all modeled systems
implement non-blocking stores, virtually all memory stalls are due
to loads. Figure 4a presents network traffic for the same applica-
tions on MPL and DQL-256 (normalized to MPL), classified by
the message type: load, store, queue lock/unlock, writeback, and
invalidation. The queue lock/unlock traffic exists only in DQL-256
for transferring distributed queue-based locks with signatures. For
MPL, the lock traffic is aggregated with the data load and store traf-
fic. Note that only MPL incurs invalidation traffic. We do not show
network numbers with other configurations because they are ideal-
ized, but we confirmed that the network results for DQL-256 stay
qualitatively similar even when compared to MIL.
MIL vs. DIL-inf: For all 8 applications, DeNovoND shows the
same or slightly better (up to 5%) execution time compared to
MESI with idealized locks and infinite length Bloom filter. Focus-
ing on memory time, again DIL-inf is either the same or better than
MIL. For some applications, DIL is much better than MIL; e.g.,
47% and 84% better for kmeans and tsp respectively. This is be-
cause MIL suffers from false sharing while DIL does not due to its
per-word coherence state.
MPL vs. DQL-inf: Comparing the realistic lock implementations
(but still with infinite Bloom filter size), we find that for all 8 ap-
plications, DQL-inf shows comparable or slightly better execution
time than MPL. In fact, even compared to the idealized lock im-
plementation in MIL, the execution time for DQL-inf is about the
same or better in 7 of 8 cases and only 4% worse in the remain-
ing case (ssca2). In terms of memory time, again DQL-inf is either
comparable or sees large benefits due to the lack of false sharing
relative to both MPL and MIL.
Impact of finite signatures: We next evaluate the impact of re-
stricting the Bloom filter size: DIL-inf vs. DIL-256 and DQL-inf
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(a) Execution time.

(b) Memory stall time.

Figure 3: Total execution time (a) and memory stall time (b) of lock-efficient applications on 6 configurations, normalized to MIL.

(a) Network traffic (lock-efficient). (b) Network traffic (lock-inefficient).

Figure 4: Network traffic of all applications on MPL and DQL-256, normalized to MPL.

vs. DQL-256. The 256 bit Bloom filters show virtually the same
execution times as the infinite length filters. In terms of memory
time, the two Bloom filter sizes are similar for 6 of the 8 appli-
cations. For fluidanimate and kmeans, however, the 256 bit filter
shows a degradation. For kmeans, memory time for DQL-256 con-
tinues to remain significantly better than for both MESI configura-
tions (20% or more better), but for fluidanimate, it is worse by 13%
(the only application where this is the case).

Fluidanimate and kmeans show the above behavior due to a
confluence of a few subtle effects. First, both use critical sections
where an atomic region address that is read is also written. Often
an atomic region address read by a core was also last written by
the same core (either in the previous phase or in a previous critical
section). If this address is still in the core’s cache in modified (for
MESI) or registered (for DeNovoND) state, then the read will be
a hit for both MESI and DeNovoND. Otherwise, if the address
was written back, the read will be a miss for both MESI and
DeNovoND. The difference between the protocols arises for any
other atomic region addresses that come along with such a read
miss as part of the same cache line. If the same core reads such
an address in a subsequent critical section without an intervening
write by another core, then MESI will still hit in the cache but
DeNovoND will have to check against the Bloom filter. This could
require a self-invalidation since the corresponding Bloom filter bit
may be set, resulting in an extra miss over MESI. A smaller Bloom
filter exacerbates this problem since it also results in false positives
on the key domain. Further, the effect is more noticeable in DQL
than in DIL because fluidanimate and kmeans have fine-grained

locks – these locks pollute the cache and cause more replacements,
exacerbating the above effect.
Network traffic: Figure 4a shows that for all the applications,
DQL-256 has much lower traffic than MPL (33% on average, 67%
maximum). This directly translates into energy reduction.

The primary sources of these savings in DeNovoND are as fol-
lows: (1) DeNovoND does not incur any traffic for invalidations,
a significant effect in all applications. (2) Store traffic is reduced
in some applications because store requests in DeNovoND do not
bring in the cache line – they directly write into the L1 word and
only send out a registration request for that word (multiple regis-
trations for a given line are combined and sent on the network as
mentioned in Section 2.2). (3) The net reduction in load misses
(memory time) due to the lack of false sharing (Figure 3b) directly
leads to lower load traffic in several applications. (4) Load traffic
is further reduced because a load response only contains valid or
registered words of a cache line. Since coherence state is preserved
per word, some words may be invalid at the servicing cache.

A source for increased network traffic in DeNovoND is the 32
byte signature with all lock transfers. Figure 4a shows that this
is small in all our applications. It can be further reduced through
compression techniques mentioned in Section 4.3.
Summary: Overall, our results show that for these applications,
the access signature mechanism allows DeNovoND to enjoy all the
benefits of DeNovo even in the presence of lock-based synchro-
nization. Further, the signature size needed is small (32 bytes).
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(a) Baseline. (b) “Write-Once” Atomic Region and Signature Clearing.

Figure 5: Total execution time of lock-inefficient applications on six configurations: (a) baseline, (b) with “write-once” atomic region optimization and signature
clearing (threshold=99%) applied, normalized to the MESI with idealized locks (MIL) configuration.

6.2 Lock-Inefficient Applications
The lock-inefficient applications spend more than 70% of their time
on lock acquires, but are presented here for completeness. Figure 5a
shows their execution times analogous to Figure 3a. There are sev-
eral ways in which these applications differ from the lock-efficient
ones. First, as mentioned earlier, they are dominated by lock ac-
quire time and so need a significantly different algorithm for par-
allelization and/or synchronization. These applications were origi-
nally designed to study transactional memory. Some of them use
patterns for which lock-free synchronization is commonly used.
Supporting such forms of parallelism and synchronization is out-
side the scope of this paper, but forms a key part of our future work.

Second, as discussed in Section 5.3, these applications show
significant non-determinism. Although we report results averaged
over five runs starting from five different Simics checkpoints (the
same five checkpoints for each system), the variability makes com-
paring different systems difficult.

Third, we find that compute time varies across different systems
for each of these applications. Although not shown here, a signif-
icant fraction of compute time comes from the OS (e.g., due to
frequent memory allocations), forming the main source of the com-
pute time variation. (The lock-efficient applications have negligible
OS compute time.) Our results must therefore be understood in the
context of the above caveats.
MIL vs. DIL-inf: For all three applications, DIL-inf shows ob-
servably worse performance than MIL (16% for genome, 36% for
intruder, and 5% for vacation). A large part of the performance
difference appears to come from acquire time; e.g., DIL-inf spends
40% more cycles waiting for lock acquisition than MIL with in-
truder. Though memory time is a very small portion, it affects ac-
quire time by increasing the time spent within critical sections. Our
detailed results show that DIL-inf suffers from higher memory time
than MIL, especially for genome and intruder.

The higher memory time above occurs due to an access pattern
where an address is written only once in a phase and then read
several times. Specifically, genome and intruder use list and hash
table data structures that store “data” or “key-data” pairs of each
entry as a field of the entry object – in these programs, the data is
initialized when a new element is inserted (within a critical section)
but never modified afterwards. A core may read this data later in
different critical sections – DeNovoND will self-invalidate on such
reads since it does not know if there was an intervening write since
the last read. MESI, on the other hand, will hit on such reads if they
happen close enough to exploit temporal locality.

Section 6.2.1 discusses how we can use software information
to remedy the above situation. We believe, however, that a better
solution to this problem is a better synchronization construct –
using locks for such reads is overkill. Such constructs in the context
of DeNovo and DeNovoND are a key part of our future work.
MPL vs. DQL-inf: DQL-inf performs slightly worse than MPL
with genome for the same reason as the comparison between MIL

and DIL-inf. DQL-inf outperforms MPL with intruder and vaca-
tion – for these applications, MPL has significantly higher acquire
time than MIL. MPL’s pthread locks, however, are inherently ineffi-
cient with high lock contention; therefore, this is not a fair compar-
ison for MESI. Thus, little can be deduced here except perhaps that
DeNovoND performance seems to be in the same range as MESI
(this inability to draw a conclusion is an inherent artifact of the
problem studied).
Impact of finite signatures: With smaller Bloom filter sizes, false
positives exacerbate the impact of the conservative invalidations
described above; for genome and intruder – DIL-256 and DQL-
256 perform worse than DIL-inf and DQL-inf by 4% to 10%.

Vacation does not suffer from the conservative invalidations of
genome and intruder, but reveals a different source of inefficiency
with smaller signatures. Figure 5a shows DIL-256 is 8% worse
than DIL-inf, while DQL-256 is 17% worse than DQL-inf for this
application. This is mainly due to its large working set of atomic
data, which can increase the false positive rate if a Bloom filter
is too small. In addition, vacation has only one phase without
any barriers in between; thus the Bloom filters get filled up for
a long period without clearing. This further exacerbates the false
positive rate, resulting in unnecessary self-invalidations and higher
memory times. Section 6.2.1 describes an optimization technique
called signature clearing to deal with this issue.
Network traffic: Figure 4b shows network traffic of the lock-
inefficient applications on MPL and DQL-256. DQL-256 generates
less network traffic (up to 48%) than MPL for all three applications
for reasons similar to that for the lock-efficient applications. In
addition, with relatively high lock contention, repeated accesses
to lock variables can generate increasingly higher network traffic
in MPL. In contrast, distributed queue-based lock request/response
traffic scales in proportion to the number of lock transfers.

6.2.1 Optimizations
Handling “write-once” atomic data: As with the case with in-
truder and genome, once a new entry is created and then inserted
into a data structure (list, hash table, etc.), the “data” portion of
the entry may remain read-only for the entire execution while other
fields of the entry are modified as the structure grows or shrinks.
In this case, classifying the “data” as atomic makes every self-
invalidation after the very first one (the memory location may have
been used and freed before) unnecessary.

DeNovoND can safely get rid of these invalidations by identify-
ing such atomic accesses as made to a “write-once” atomic region.
In addition to general information about atomic regions and effects,
software can allow such “write-once” atomic data to be marked dif-
ferently by using a special region ID or a special op-code for the
write. Then DeNovoND can exploit it to prevent such data from
being self-invalidated as follows. If the data is known to be in a
“write-once” atomic region, DeNovoND does not reset its touched-
atomic bit on lock transfer; therefore, when the data is accessed
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(read) again later, it is treated as if it has been already accessed in
the same critical section (with touched-atomic bit set) and will not
be self-invalidated, thereby eliminating several subsequent misses.

The write-once annotation can be considered to be a generaliza-
tion of final variables in Java; a final variable can only be initialized
once, either at the time of declaration or by the constructor of the
class in which it is declared [40]. Our write-once variables must be
written (at most) once per parallel phase.
Signature clearing: Depending on the atomic write-set size in a
phase, the fixed-size hardware Bloom filter may get saturated (all
bits set) before the phase is over. This drives the false positive
rate very high, resulting in many unnecessary self-invalidations.
Saturated Bloom filters can be flash-cleared by a simple hardware
operation, but it also requires flushing out atomic words in the
cache. Also, the fact that a signature has been cleared in the releaser
should be propagated to the acquirer so that the acquirer can update
its cache according to the new version of the Bloom filter. We
implemented a signature clearing algorithm that carries a vector of
clearing counters per core. When signature clearing is triggered on
a core, its counter is incremented. The vector of clearing counters is
transferred on a lock transfer along with the access signature. The
acquirer compares the received vector with its own, and performs
signature clearing if there exists an element in the received vector
that has a larger counter than the corresponding element in its own
vector. Before the lock is transferred again, the vector is updated to
have up-to-date values.
Performance impact: Figure 5b presents execution times analo-
gous to figure 5a, but with the above optimizations applied.

For genome, all DeNovoND protocols now perform comparable
to the MESI counterpart. Our detailed results show large reductions
in memory time from the write-once optimization (118% to 151%).
Since this reduction mainly comes from atomic accesses within
critical sections, lock contention also improved. Intruder shows
similarly dramatic results in memory time improvement with con-
sequently large improvements in execution time for the DeNovoND
configurations; acquire time is reduced by 36 to 42%, memory time
by 56 to 76%, and overall execution time by 43% on average.

For vacation, DIL-256 and DQL-256 (protocols with finite
Bloom filters) show performance benefits from signature clear-
ing; DIL-256 and DQL-256 were 17% and 8% worse than DIL-inf
and DQL-inf respectively without signature clearing. With signa-
ture clearing, with 99% filter saturation percentage as the trigger
for clearing, the difference is reduced to 5% and 2%.

Overall, the optimizations are quite effective, making the De-
NovoND protocols comparable or better than the corresponding
MESI protocols even for the lock-inefficient applications.

7. Related Work
There has been much research on improving the performance of
memory consistency models by guaranteeing consistency only at
synchronization points. Our work is closest to that of lazy release
consistency (LRC) [27], entry consistency (EC) [7], and scope con-
sistency (ScC) [22]. A key focus of these models is saving invali-
dation network traffic by postponing propagation of modified data
until an acquire. LRC maintains consistency of all shared data at
every lock transfer. EC attempts to reduce traffic by requiring pro-
grammers to bind every shared object with a lock, and transferring
only the bound data objects on a lock transfer. ScC attempts to re-
lax the strict and explicit bindings between data and lock in EC;
instead, it uses “consistency scope” to implicitly associate data and
the acquire/release pair protecting the data. DeNovoND is similar
in that it also assumes a software guarantee for data-race freedom
and association of atomic regions and sections. However, a key dif-
ference between DeNovoND and the above models is that the latter
are designed for software distributed shared memory, keeping co-

herence information at a coarse-grained page granularity and stor-
ing information about modified data in data structures in user space.
DeNovoND focuses on tightly coupled multicores with different
trade-offs. In particular, DeNovoND implements a much simplified
yet effective scheme for tracking modified atomic locked data in
hardware, while leveraging the feature of the baseline system (no
invalidation traffic) for non-atomic data.

REFLEX [33] employs software distributed shared memory with
release consistency to make it easier to program low-power smart-
phones. It uses either eager or lazy update propagation depending
on the initiating core’s power profile. While REFLEX concentrates
on adapting release consistency for low power on heterogeneous
systems, DeNovoND is a more general solution that addresses com-
plexity, performance, and power.

The recent SARC coherence protocol [25] also exploits the data-
race-free programming model, but their goal is to improve the
conventional directory-based protocol [2]. SARC self-invalidates
“tear-off, read-only” (TRO) copies of data to save power. However,
SARC does not eliminate directory storage overhead or reduce pro-
tocol complexity like DeNovoND and its baseline system. Also, the
concept of touched bit, which plays an important role in DeNovo
and DeNovoND is not present in SARC.

Other efforts to improve coherence achieve one or more of our
goals at the expense of other goals. [31] introduces more complex-
ity for self-invalidations and [36] requires writes to go to a shared
cache if there are potential conflicts. SWEL [41] and Atomic Co-
herence [44] rely on specific interconnect substrates to simplify
their protocols. Rigel [28] and Cohesion [29] propose systems with
accelerators using a hybrid memory model based on shared mem-
ory, and employ software-driven invalidation for coherence. How-
ever, Rigel eagerly writes back all dirty lines to the global shared
cache at phase boundaries, causing potentially unnecessary and
bursty network traffic. DeNovoND self-invalidates potentially stale
blocks only, avoiding this unnecessary traffic. Cohesion does not
address existing limitations of software and directory-based hard-
ware coherence mechanisms. Its software coherence issues extra
coherence instructions wasting cycles and network bandwidth since
its coherence tracking is conservative and coarse-grained, while the
hardware directory-based protocol has the same current complexity
and scalability issues. In contrast, DeNovoND starts from a simple
protocol and makes it easy to add various optimizations to improve
performance and energy further without complicating the protocol.

We leverage much prior work on Bloom filters, which have
recently been widely used for access tracking [16, 43, 46]. Typical
prior such usage, however, uses filters in the range of 1K to 2K bits.
DeNovoND is able to achieve competitive performance with 256
bits, with commensurately lower space and computation overheads,
since its key domain is limited to atomic addresses.

8. Conclusion
This paper takes a significant step towards a vision for complexity-
, performance-, and energy-efficient multicores enabled by disci-
plined shared-memory programming practices. Prior work on De-
Novo showed how this vision could be achieved for deterministic
programs. This paper develops DeNovoND, a system that addition-
ally supports disciplined non-determinism with minimal additional
overheads and complexity relative to DeNovo.

DeNovoND exploits a previously developed software-level guar-
antee that non-deterministic (atomic) data accesses are distinguish-
able and protected by a lock. The key insight is to use small and
simple hardware Bloom filters to track and communicate such ac-
cesses across lock transfers, preserving DeNovo’s previous advan-
tages of no transient states, directory overhead, invalidation mes-
sages, or false sharing. Underlying the data transfer mechanism is
a distributed queue-based lock mechanism that uses the cache data
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banks to construct a lock-waiter queue, without additional state bits
or directory storage.

DeNovoND provides comparable or better performance than
MESI with the lock-efficient programs studied here. Further, net-
work traffic is significantly reduced, impacting energy. We also
identified some patterns in lock-inefficient code that did not work
as well with DeNovoND – we showed optimizations to mitigate
those effects, but believe the correct solution lies in alternate forms
of synchronization for such codes.

As future work, we plan to explore broadening the scope of
our vision of hardware-software co-design rooted in disciplined
programming to embrace further programming patterns such as
pipelined parallelism and “lock-free” data structures, as well as
support complex codes such as legacy codes and operating systems.
Our ability to easily extend DeNovo to embrace lock based codes
gives us further confidence in generalizing this vision.
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