Morphable Multithreaded Memory Tiles (M3T)*
Joseph Torrellas (University of Illinois at Urbana-Champaign) Ben Abbott (Southwest Research Institute) Ted Bapy (Vanderbilt University) Bob Bassett, David Ngo (BAE SYSTEMS) Hubertus Franke, Jose Moreira (IBM Research)

Impact
- Influenced IBM CyclopsE chip with polymorphic support
- Sped up Sphinx speech processing about 2.5x through polymorphism
- Estimated 60x reduction in size, weight, and power per speech channel
- Estimated 20x reduction in cost per speech channel

Templates
- Provide routines required by application
- Use
 - generic: threads, C, C++, ...
 - specialized – (possibly architecture specific):
 - Brook, StreamIt, StreamC/Kernel, assembly
 - MPI, Corba?

Streaming
- Native mode for M3T/Cyclops
- GNU -- C/C++/Fortran
- Augmentation with superscalar possible
- MPI, Corba possible (not currently supported)

Threaded
- Use cache interest group coding as routing network
- Support SIMD via fast barrier
- Utilize thread units as imagine clusters
- Compiler/macro/template support needed

Model
- Architecture specific details:
 - ALU, memory, etc.
 - Template constraints
 - Application requirements
 - Optimization goals
 - System constraints
 - Tool choice structure

New Ideas
- M3T morphs into VLIW, MIMD and TaskScalar templates
- Polymorphism at every stage of the system
- M3T morphs on demand within application

Builder/Runtime
- Search design space based on models/templates
- Generate application framework (glue code) and configuration files within MSI constraints
- Utilize existing
 - Compilers/linkers based on template choice
 - Hardware specific morphware

Compiler
- Transformation based on three templates
 - MIMD, TaskScalar, VLIW
- Target to two morphable architectures
 - M3T, Cyclops
- Support automatic and manual parallelization
