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Abstract

Speculative parallelization aggressively runs hard-
to-analyze codes in parallel. Speculative tasks gen-
erate unsafe state, which is typically buffered in
caches. Often, a cache may have to buffer the state
of several tasks and, as a result, it may have to hold
multiple versions of the same variable. Modifying
the cache to hold such multiple versions adds com-
plexity and may increase the hit time. It is better to
use logging, where the cache only stores the last ver-
sions of variables while the log keeps the older ones.
Logging also helps to reduce the size of the specula-
tive state to be retained in caches.

This paper explores efficient software-only log-
ging for speculative parallelization. We show that
such an approach is very attractive for programs
with tasks that create multiple versions of the same
variable. Using simulations of a 16-processor CC-
NUMA, we show that the execution time of such
programs on a system with software logging is on
average 36% shorter than on a system where caches
can only hold a single version of any given variable.
Furthermore, execution takes only 10% longer than
in a system with hardware support for logging.

1 Introduction

Speculative thread-level parallelization attempts to
extract parallelism from hard-to-analyze codes like
those with pointers, indirectly-indexed structures, in-
terprocedural dependences, or input-dependent pat-
terns. The idea is to break the code into tasks and
speculatively run some of them in parallel. A com-
bination of software and hardware support tracks
memory accesses at run time and, if a dependence
violation occurs, the state is repaired and parallel ex-
ecution resumes. Many different schemes have been

proposed, ranging from software-only [6, 14, 15] to
hardware-based [3, 5, 7, 10, 11, 12, 13, 16, 18, 19,
21, 23], and targeting small systems [5, 7, 11, 12,
16, 19] or scalable ones [3, 6, 13, 14, 15, 18, 21, 23].

As a speculative task runs, it generates state that
cannot be merged with main memory because it
is unsafe. Different schemes handle the buffering
of speculative state differently. In some schemes,
each task uses its own private range of storage ad-
dresses [6, 14, 15, 22]. In most schemes, how-
ever, tasks buffer the speculative state dynamically
in caches [3, 5, 11, 13, 18] or write buffers [7, 19].
If the cache or buffer overflows due to conflicts or
insufficient capacity, the processor has to stall or
squash the task.

The size of the speculative state to be buffered by a
processor depends on the working set size of individ-
ual tasks and on the load imbalance between tasks.
Indeed, task load imbalance may force a processor
to buffer the state of several speculative tasks at a
time, which increases the overall speculative state
size. Many of these tasks may be finished, but are
still speculative because a predecessor task is still
running.

Buffering the speculative state of several tasks at
a time may be challenging. Specifically, such state
may contain individual variables that have been writ-
ten by several tasks. Such variables are common in
applications that have quasi-privatization access pat-
terns. In this case, the buffer must be organized to
hold several speculative versions of the same vari-
able. Furthermore, for these variables, it is prefer-
able to keep the last version handier, since it is more
likely to be needed next.

Past work on speculative parallelization takes dif-
ferent approaches to handle this multi-version prob-



lem. Many schemes do not address this issue.
Thus, it must be assumed that the processor stalls or
squashes the task before creating a second local ver-
sion of a speculative variable. Other schemes pro-
pose redesigning the cache to hold multiple specula-
tive versions of the variable, e.g. in different ways of
a set-associative cache [3, 17]. This approach com-
plicates cache operation and may increase cache hit
time. Finally, other schemes propose to store only
last versions in the cache and automatically displace
older speculative versions to a hardware-managed
undo log [21, 23]. With logging, before a task over-
writes a speculative version generated by a previous
task, the hardware saves the version in the log. Log-
ging is attractive because it reduces the size of the
speculative state to be retained in caches and keeps
last versions handier. However, this solution requires
non-trivial hardware support.

Since logging has many advantages but also a
hardware cost, this paper explores buffering multi-
ple versions through efficient software-only logging.
Logs are declared as plain user data structures and
are managed in software. We present one efficient
implementation. Simulations of a 16-processor CC-
NUMA show that software logging is very attractive
for programs with tasks that create multiple versions
of the same variable. The execution time of such
programs on a system with software logging is on
average 36% shorter than on a system where caches
can only hold a single version of any given variable.
Furthermore, execution takes only 10% longer than
in a system with hardware support for logging.

This paper is organized as follows: Section 2 in-
troduces speculative parallelization and versioning;
Section 3 introduces the speculation protocol used;
Section 4 presents efficient software logging; Sec-
tion 5 discusses our evaluation environment; and
Section 6 presents the evaluation.

2 Speculative Parallelization and
Versioning

2.1 Basics of Speculative Parallelization
When several tasks run under speculative paralleliza-
tion, they have a relative order imposed by the se-
quential code they come from. Consequently, we use
the terms predecessor and successor tasks. If we give
increasing IDs to successor tasks, the lowest-ID task
still running is called non-speculative, while its suc-
cessors are called speculative.

The set of variables that a speculative task writes
is typically kept buffered away in the cache [3, 5, 11,

13, 18] or write buffer [7, 19]. These variables can-
not be merged with main memory because they are
unsafe. They are called the speculative state. Only
when the task becomes non-speculative can its spec-
ulative state be merged with main memory.

When the non-speculative task finishes, it com-
mits. Any state that it kept buffered can be
merged with memory and the non-speculative status
is passed to a successor task. When a speculative
task finishes, it cannot commit. The processor that
ran it can start to execute another speculative task,
but the cache has to be able to hold speculative state
from the two (or more) uncommitted tasks. Thus, in
order to distinguish which of these tasks produced
a particular cached variable, we associate a task-ID
field with each variable (or line) in the cache.

2.2 Multiple Local Speculative Versions

In some cases, the speculative tasks that share a
given cache as a reservoir for their speculative state
may try to generate multiple versions of the same
variable. This occurs, for example, in codes with
quasi-privatization access patterns. In this case, if
we have a simple cache, we may decide to support
only a single version of each variable and, when a
second local version is about to be created, stall the
processor or squash the task.

One alternative approach that has been proposed
is to redesign the cache to hold multiple versions of
the same variable at a time [3, 17]. The cache must
be able to buffer several lines with the same address
tag but different task-IDs. For example, Figure 1-(a)
shows a cache with three versions of line 0x400 gen-
erated by task-IDs i, j, and k. These lines can go into
different ways of the same set in a set-associative
cache [3, 17].

Unfortunately, this approach adds complexity to
the cache. In addition, the extra comparisons needed
affect a sensitive timing path and may increase the
cache hit latency. Moreover, since all the versions
share the cache, the chance of line displacements due
to capacity or conflict increases. The result may be
lower performance, since existing schemes typically
prevent the displacement of speculative versions to
memory by either squashing the task or stalling the
processor.

A final shortcoming of this approach is that it
makes it equally hard to access any of the versions
of a given variable. Instead, we would like to be able
to access the last version of the variable faster. Such
a version is the one generated by the youngest task
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Figure 1: Two ways of keeping multiple local speculative versions.

that ran on the processor and wrote the variable. It is
the version that will be needed to satisfy any subse-
quent load by this task or younger ones.

The older versions are much less likely to be ac-
cessed. For example, they may be accessed by a read
request from an old task running on a second proces-
sor. Since we expect these events to be relatively
infrequent, we could afford to make accesses to non-
last versions a bit slower.

Our proposed approach is to keep last versions in
the cache, and copy non-last versions to a software
log structure, mapped to the virtual space of the ap-
plication. A natural implementation of the log is a
list of records that are placed in memory contigu-
ously in real time. In general, a log record includes
the previous version of the variable (before it is over-
written), its address, the producer task-ID, and the
overwriting task-ID. Log records can be displaced
from the cache and possibly even bypass it to mini-
mize space contention with last versions. Figure 1-
(b) shows a cache with its associated log organiza-
tion in memory. Version k is the last one.

3 Speculation Protocol Used

To give a concrete example of how a software log
could be used, we use a speculative parallelization
protocol similar to the one in [21]. That protocol in-
cluded a hardware-based logging scheme presented
in [23] that worked in the background with fairly lit-
tle overhead. In this paper, we take that protocol and
explore an inexpensive software implementation of
logging.

In [21], speculative accesses are marked with spe-
cial load and store instructions that trigger the pro-
tocol. In each node, the first speculative access to a
shared data page prompts the OS to allocate a page of
local time stamps in the local memory of the node.
These time stamps will record, for each word, the

ID of the youngest local task that writes the word
(PMaxW), and the ID of the youngest local task that
reads it without writing it first (PMaxR1st). The lat-
ter operation is also called exposed load. These local
time stamps are needed by the protocol, and are au-
tomatically updated by dependence-detecting hard-
ware with small overhead [21].

4 Efficient Software Logging

4.1 Log Operations

A logging system must support four operations,
namely saving a new record in the log (Insertion),
finding a record in the log (Retrieval), unwinding
the log to undo tasks (Recovery), and freeing up log
records after their information is useless for retrieval
or recovery (Recycle).

Figure 2 shows simple per-processor software
structures that we use for logging. The log buffer
is broken down into fixed-sized sectors that will be
used to log individual tasks. The compiler estimates
the size of the sectors and log buffer based on the
number of writes in a task and the number of tasks
per processor that are likely to be uncommitted at a
time, respectively.
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Figure 2: Simple per-processor software
structures that we use for logging.



When a task starts running, it is dynamically as-
signed an entry in the Task Pointer Table and one
sector in the Log Buffer. Free sectors are obtained
from the Free Sector Stack. Each entry in the Task
Pointer Table has two pointer fields: Next that points
to the next entry to fill, and End that points to the end
entry to check for overflow. If the task needs more
entries than a sector, we dynamically assign another
sector and link it to the previous one, while we set
the Overflow bit and update the End pointer. If the
Free Sector Stack runs out of entries, we resize the
Log Buffer and Stack accordingly.

Insertion. Insertion is the most overhead-sensitive
operation since it occurs frequently. At compile
time, the compiler instruments stores in the code
with instructions to save a log record. As shown in
Figure 2, a record includes the following informa-
tion about the variable that is about to be updated:
its virtual address (the only one the software knows),
its value before the update, and its producer Task-ID
(PMaxW). PMaxW is obtained from the local time-
stamp page (Section 3). After the record is inserted
at run time, the Next pointer is incremented. At the
end of a task, all the records that it generated are in
contiguous locations in one or more sectors, easily
retrievable through the Task Pointer Table with the
task ID.

Recycle. When a processor finishes a task, it tries
to commit it [21]. Based on the resulting value of
the commit point, it can identify which of the entries
in its Task Pointer Table correspond to committed
tasks. The data in those tasks’ sectors will not be
needed in the future and, therefore, the sectors can
be recycled. Consequently, we invalidate the corre-
sponding Task Pointer Table entries and return the
sectors to the Free Sector Stack.

Recovery and Retrieval. Recovery occurs when we
need to undo tasks after the detection of an out-of-
order RAW dependence. Retrieval occurs when an
in-order RAW dependence cannot simply be satis-
fied by the underlying coherence protocol because
the requested version is not in a cache: another task
running on the producer processor has overwritten
the variable, pushing the desired version into the log.
Since these two cases happen infrequently, we solve
them with software exception handlers that access
the logs.

4.2 Insertion Overhead

Inserting a record in the log of Figure 2 involves col-
lecting the items to save, saving them in sequence us-

ing the Next pointer, and advancing the pointer. Fig-
ure 3 shows the MIPS assembly instructions added
before every speculative store that we log. All mem-
ory accesses in the figure are non-speculative. Over-
all, we need 9 instructions: 1 to check for sector
overflow, 6 to collect and insert the information, 1
to increment the pointer, and 1 to update the cached
time stamp.

Figure 3 shows two special instructions, namely
load half-word time stamp (lh ts) and store half-word
time stamp (sh ts). These are special instructions that
load the 16-bit PMaxW local time stamp of the vari-
able, and update it (the cached copy only), respec-
tively. lh ts loads the time stamp so that it can be
saved in the log. sh ts updates the cached copy with
the ID of the executing task. This is done to prevent
the cached copy from becoming stale. The reason is
that the time stamp pages in memory are read and
updated in hardware by the speculation protocol as
it tries to detect dependence violations (Section 3).
They cannot be updated in software.

We can reduce the overhead of the instrumenta-
tion by noting that the log only needs to save the
value overwritten by the first store to the variable in
the task. Consequently, for variables accessed with
speculative accesses, we can modify the instrumen-
tation in Figure 3 to dynamically test whether or not
a store is a first store in the task, and log only if it is.
Such testing can be done by comparing the PMaxW
of the variable with the ID of the executing task. If
they are the same, the store is not a first store. A de-
tailed discussion of this topic is beyond the scope of
this paper.

4.3 Alternative: Hardware-Only Logging

In the evaluation section, we will compare our soft-
ware logging system to a hardware-only implemen-
tation of logging described in [23]. The latter uses a
logging module embedded in the directory controller
of each node. Log record insertion is done in the
background with no overhead visible to the program.
Similarly, recycling has practically no overhead. The
log is kept in memory, therefore avoiding cache pol-
lution.

5 Evaluation Methodology

5.1 Simulation Environment

We use an execution-driven simulation system based
on MINT [20] to model in detail a CC-NUMA with
16 nodes. Each node contains a fraction of the shared
memory and directory, as well as a 4-issue dynamic



; r1 = upper limit of the sector. r2 = address in memory to insert the log record
; offset(r3) = address of the variable to update. r5 = ID of the executing task
bgt r1, r2, insertion ; check for sector overflow
... allocate another sector

insertion:
addu r4, r3, offset ; compute address of variable
sw r4, 0(r2) ; store in log
lh_ts r4, offset(r3) ; load the 16-bit PMaxW time stamp
sw r4, 4(r2) ; store as a full word in log
lw r4, offset(r3) ; load value of variable
sw r4, 8(r2) ; store in log
addu r2, r2, log_record_size ; increment pointer
sh_ts r5, offset(r3) ; update cached PMaxW

Figure 3: Instructions added before an instrumented speculative store.

superscalar. The processor has a 32-entry instruction
window and 4 Int, 2 FP, and 2 Ld/St units. It supports
8 pending loads and 16 stores. It also has a 2K-entry
BTB with 2-bit saturating counters. Each node has
a 2-way 32-Kbyte L1 D-cache and a 4-way 2-Mbyte
L2, both with 64-byte lines and a write-back policy.
Contention is accurately modeled. The average no-
contention round-trip latencies from the processor to
the on-chip L1 cache, L2 cache, memory in the local
node, and memory in a remote node that is 2 and 3
protocol hops away are 1, 12, 60, 208 and 291 cycles,
respectively.

We use release consistency and a cache coher-
ence protocol like that of DASH. Pages of shared
data are allocated round-robin across the nodes. We
choose this allocation because our applications have
irregular access patterns and the tasks are dynami-
cally scheduled; it is virtually impossible to optimize
shared data allocation at compile time. Private data
are allocated locally.

For speculation, we use the protocol of Section 3.
In the evaluation, we simulate all software over-
heads, including allocation and recycling of log sec-
tors, and the dynamic scheduling and committing of
tasks. We wrote software handlers for parallel recov-
ery after a dependence violation and to retrieve data
from logs. In addition, a processor that allocates a
page of time stamps is penalized with 4,000 cycles.

5.2 Workload
We use a set of scientific applications where a large
fraction of the code is not analyzable by a paral-
lelizing compiler. These applications are: Apsi from
SPECfp2000 [8], Track and Bdna from Perfect [1],
Dsmc3d from HPF-2 [4], P3m from NCSA, and Tree
from Univ. of Hawaii [9]. We use the Polaris paral-
lelizing compiler [2] to identify the non-analyzable
sections and prepare them for speculative paralleliza-
tion. The source of non-analyzability is that the de-

pendence structure is either too complicated or un-
known because it depends on input data. For exam-
ple, the code often has doubly-subscripted accesses
to arrays. The code also has sections that have com-
plex control flow, with conditionals that depend on
array values and jump to code sections that modify
the same or other arrays. In these sections, Polaris
marks the speculative references, which will trigger
speculation protocol actions. Polaris also identifies
store instructions that may need to be logged, and
we instrument them according to Section 4.

Table 1 shows the non-analyzable sections in each
application. These sections are loops. The table lists
the weight of these loops relative to the total sequen-
tial execution time of the application (%Tseq), with
the I/O excluded. This value, which is obtained on a
single-processor Sun Ultra 5 workstation, is on aver-
age 51.4%. The table also shows the number of invo-
cations of these loops during program execution, the
average number of iterations per invocation, and the
average number of instructions per iteration. Note
that all the data presented in the evaluation, includ-
ing speedups, refer only to the code sections in the
table.

6 Evaluation

We compare multiprocessors that support no log-
ging, software logging, or hardware logging. Under
no logging, a node can only hold in its cache hier-
archy a single version for each variable; if the pro-
cessor is about to overwrite a local version produced
by an uncommitted task, the processor stalls. For
software logging, we use our scheme of Sections 4.1
and 4.2. Finally, for hardware logging, we use the
support of Section 4.3.

Figure 4 compares the execution time of these
three systems, called NoLog, Sw, and Hw, respec-



Appl Non-Analyzable % of # of Iters per Instruc
Sections (Loops) Tseq Invoc Invoc per Iter

P3m pp do100 56.5 1 97336 69165
Tree accel do10 79.1 41 1024 28746
Apsi run do[20,30,40,50,60,100] 29.3 900 63 102639
Bdna actfor do240 44.2 1 1499 103339
Dsmc3d move3 goto100 41.2 80 46777 5442
Track nlfilt do300 58.1 56 502 5577

Average 51.4 180 24533 52484

Table 1: Application characteristics. In Apsi, we use an input grid of 512x1x64. In P3m, while the loop
has 97,336 iterations, we only use the first 9,000 iterations in the evaluation. Finally, in Dsmc3d, the data
corresponds to unrolling the loop 15 times.

tively. They run on 16 processors. For each appli-
cation, the bars are normalized to NoLog and broken
down into execution of instructions (Useful), wait-
ing on data, control, and structural pipeline hazards
(Hazard), synchronization (Sync), waiting on data
from the memory system (Memory), and stall when
attempting to overwrite an uncommitted version in
NoLog (Stall). A sixth category, measuring the exe-
cution of software handlers for data recovery and re-
trieval, is too small to be seen. Finally, the numbers
on top of each bar show the speedup relative to the
sequential execution of the code, with all the appli-
cation data placed on the local memory of the single
active processor.

A comparison between NoLog and Sw reveals the
benefits of software logging. With software logging,
processors do not stall when they overwrite local un-
committed versions. Thus, Stall disappears. How-
ever, software logging introduces extra instructions
and memory system accesses to generate and main-
tain the log. As a result, it tends to have higher Use-
ful and Memory times. Indirectly, the other times
(Hazard and Sync) may also increase.

To understand these results, note that logging is
most beneficial in applications that have both quasi-
privatization access patterns and load imbalance.
P3m, Tree, Apsi, and Bdna have quasi-privatization
patterns and, of them, P3m and Tree have the largest
imbalance. These observations are consistent with
Figure 4. The figure shows that P3m, Tree and,
to a lesser extent, Apsi and Bdna have Stall un-
der NoLog. Sw removes all Stall and speeds up
these applications, especially P3m and Tree. For
Dsmc3d and Track, the difference between NoLog
and Sw is an indirect effect of the different data lay-
outs, which cause different cache conflicts, and the
different execution timings, which result in differ-
ent dependence violations found at run time. Over-
all, software logging is effective: Sw is on average
36% faster than NoLog for the four applications with

quasi-privatization patterns. If we take the average of
all the applications, the speedup of the 16-processor
execution increases from 4.3 under NoLog to 6.1 un-
der Sw.

The Hw system also eliminates the Stall time like
the Sw system. Furthermore, it induces negligible
overheads. The cost, of course, is special hardware
support. Comparing Sw to Hw, we see the overhead
of software logging. From the figure, we see that
this overhead is very modest. Indeed, for the four
applications with quasi-privatization patterns, the av-
erage overhead is only 9% of the Sw execution time.
Therefore, we conclude that software logging is effi-
cient as well as effective.

7 Conclusion

A good solution to buffer speculative state with
multi-version variables is to enhance a cache hier-
archy with logs. In this paper we show that soft-
ware logging is inexpensive and delivers high perfor-
mance for applications with quasi-privatization pat-
terns and load imbalance. Using simulations of a 16-
processor CC-NUMA, we show that the execution
time of such applications on a system with software
logging is on average 36% shorter than on a system
where caches can only hold a single version of any
given variable. Furthermore, execution takes only
10% longer than in a system with hardware support
for logging.
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