
Wshp. on Memory Performance Issues, Intl. Symp. on Computer Architecture, June 2001.

Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors

José F. Martı́nez and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign�
martinez,torrellas � @cs.uiuc.edu

ABSTRACT

Multi-threaded applications typically use coarse- or
fine-grain locks to enforce synchronisation when
needed. While fine-grain synchronisation enables
higher concurrency, it often involves significantly
more programming effort than coarse-grain syn-
chronisation. To address this trade-off, this paper
proposes Speculative Locks. Speculative Locks are
based on the concepts and mechanisms of specu-
lative thread-level parallelisation. Threads access
a critical section without synchronising, while the
underlying hardware monitors for conflicting ac-
cesses. If a conflict is detected, threads are rolled
back and restarted on the fly.

Overall, Speculative Locks allow the pro-
grammability of coarse-grain synchronisation while
enabling the concurrency of fine-grain synchronisa-
tion. The presence of a lock owner at all times guar-
antees forward progress, and all in-order conflicts
between owner and speculative thread are tolerated.
Under the right conditions, a system with specu-
lative locks and coarse-grain synchronisation per-
forms about as well as one with conventional locks
and fine-grain synchronisation.

1 INTRODUCTION

The choice of grain size used to synchronise in
multi-threaded applications offers a trade-off be-
tween programmability and concurrency. While
fine-grain synchronisation allows greater thread
concurrency, it often requires greater development
effort and, therefore, results in longer time to mar-
ket. On the other hand, coarse-grain synchronisa-
tion, while restricting concurrency, delivers simpler

and more stable software.

Furthermore, in some extreme cases, both fine-
grain and coarse-grain synchronisation can fail to
deliver the levels of performance expected from a
program. For example, fine-grain synchronisation
may penalise threads with costly overhead, even
though the data accessed by different threads rarely
overlap.

Ideally, we would like to combine the higher
concurrency enabled by fine-grain locking with
the higher programmability and lower overhead of
coarse-grain locking. As an example from the com-
mercial workload domain, we would like to com-
bine the concurrency of tuple-level locking with the
programmability and low overhead of table-level
locking.

Interestingly, a recent development in computer
systems architecture has been hardware support for
speculative thread-level parallelisation [2, 7, 8, 12,
18, 19, 24]. Under such a technique, multiple
threads that may have data and control dependences
with each other are speculatively run in parallel.
Typically, extensions to the cache coherence proto-
col hardware detect any dependence violation at run
time. Any time one such violation is detected, the
offending threads are squashed, rolled back to a safe
state, and then eagerly restarted.

The concept of safe or non-speculative thread
used in speculative thread-level parallelisation is
very appealing for concurrent execution of criti-
cal sections. Indeed, having one such thread that
owns the critical section while allowing others to
traverse it under some conditions guarantees for-
ward progress in case of an access conflict or other
events like cache overflow or context switches.



We present a new scheme, Speculative Locks, for
concurrent execution of critical sections in shared-
memory multiprocessors. We borrow the princi-
ple of speculative thread-level parallelisation from
existing literature to implement an efficient opti-
mistic concurrency scheme. Speculative Locks al-
low the programmability of coarse-grain synchroni-
sation while enabling the concurrency of fine-grain
synchronisation. State commit and squash opera-
tions take constant time. Forward progress is guar-
anteed by the presence of a lock owner at all times,
and all in-order conflicts between owner and spec-
ulative thread are tolerated. Under the right condi-
tions, a system with speculative locks and coarse-
grain synchronisation performs about as well as one
with conventional locks and fine-grain synchronisa-
tion.

2 CONCURRENT EXECUTION OF
CRITICAL SECTIONS

While proper labelling in Release Consistency guar-
antees race-free execution, the ordering restrictions
it introduces are too strong. This is because the con-
ditions for RC affect not only conflicting but all or-
dinary accesses [5]. While it is easy to envision a
weaker version of RC in which restrictions apply
only to conflicting ordinary accesses, a hardware
implementation of such is by no means obvious [1].

Fig. 1 shows an example of two threads compet-
ing for access to a critical section. Suppose that the
leftmost thread is granted access first. In the figure,
arrows show some of the ordering restrictions im-
posed by RC. Conflicting accesses to location X are
successfully made non-competing by ordering them
through release and acquire operations of threads 1
and 2, respectively, as solid arrows show. However,
many other unnecessary restrictions are introduced,
represented by dotted arrows in the figure. To elim-
inate these, the programmer could implement the
lock at a finer grain, provided that he can determine
that only the store and load accesses to X are con-
flicting. In practice, this may prove impossible, or it
may require a non-trivial effort that the programmer
is unwilling to invest.

We want to eliminate all competing pairs within
the critical section, while avoiding superfluous or-
dering restrictions. One way of doing this is to pro-

REL

ACQ

REL

ACQ

Thread 1 Thread 2

LD XST X

Figure 1: Critical section under RC, in which
Thread 1 has gained access first. Empty
boxes represent non-conflicting ordinary ac-
cesses. Ordering restrictions introduced by
the release-acquire pair are shown, and dotted
lines represent superfluous restrictions.

ceed optimistically as if no conflicting accesses ex-
ist, and use hardware to correct inconsistencies on
the fly and eagerly restart offending threads. In the
absence of conflicts at run time, several threads can
effectively execute the critical section concurrently.
Further, they may achieve partial concurrency in the
presence of some conflicting accesses, since offend-
ing threads are restarted eagerly. We propose one
such mechanism in the next section.

3 SPECULATIVE LOCKS

In this section we present Speculative Locks. First,
we give a high-level description, and then propose
an implementation using a device that we call Spec-
ulative Concurrency Unit (SCU). Our discussion as-
sumes a properly labelled program under RC.

3.1 High-Level Description

A speculative lock allows threads to execute mem-
ory operations that belong to the critical section
without actually owning it. Threads only need to
request the speculative lock in order to enter its crit-
ical section. Only one thread at a time can own
the lock. A thread granted access to a critical sec-
tion without ownership of its lock is deemed spec-
ulative. Owner and speculative threads are free to
execute memory operations inside the critical sec-
tion. However speculative threads may not commit



their results to the rest of the system until they are
granted ownership. As in conventional locks that
follow RC, threads in the critical section may also
execute memory operations past the release point,
but speculative threads may not commit these until
ownership is granted, either.

When a thread is granted ownership of a specu-
lative lock we say that the thread has acquired the
lock, and the thread is considered non-speculative.
Threads not competing for the critical section are
also regarded as non-speculative. Non-speculative
threads commit their memory operations as they
complete. A thread may release a speculative lock
only when (1) it has been granted ownership, and
(2) it has issued and completed all its memory oper-
ations within the critical section.

Speculative locks must preserve the semantics of
conventional locks, i.e. the final outcome must be as
if the threads had gained access to the critical sec-
tion one at a time. In particular, a speculative lock
must ensure that conflicting accesses by a specula-
tive thread and the owner are executed in order, i.e.
the owner’s first, followed by the speculative’s. If
the system detects an out-of-order conflict between
a speculative and a non-speculative thread, it must
squash the former and force a roll-back to the ac-
quire point. Ordering is undefined among specu-
lative threads, thus if two speculative threads issue
conflicting accesses, one of them is squashed and
restarted. Overall, therefore, speculative threads op-
erate optimistically, assuming no out-of-order con-
flicting accesses with non-speculative threads and
no conflicting accesses at all with other speculative
threads. In all cases, non-speculative threads, in par-
ticular the owner, must not be disturbed in order to
guarantee forward progress.

Eventually, a speculative lock is released by its
owner. Speculative threads that have already com-
pleted all accesses within the critical section without
being squashed due to conflicts with other threads
can commit their memory operations and become
non-speculative at once. Then, one of the specula-
tive threads inside the critical section, if any, will
acquire the lock, also committing its memory oper-
ations. This is equivalent to a conventional lock in
which the owner releases the lock; then, all specu-
lative threads past the release point, in some order,
acquire the lock, execute the critical section, and re-

A

B

C

D

E

ACQUIRE

RELEASE

Figure 2: Example of a speculative lock.
Dashed and solid circles denote specula-
tive and non-speculative threads, respectively.
Thread � is currently the owner of the lock.

lease the lock; and finally, another thread competing
for the lock acquires ownership and enters the criti-
cal section.

Fig. 2 shows an example of a speculative lock
with five threads. Threads � and � are non-
speculative, while threads � , � , and � are spec-
ulative. Thread � is currently the owner of the lock.
Thread � is also in the critical section, but it does
not own the lock and hence its speculative state.
Threads � and � have executed the critical section
completely and are now executing the code after the
release point, but they remain speculative since they
still have not acquired the lock. Lastly, thread � is
non-speculative since it has not reached the acquire
point.

If thread � now leaves the critical section, threads
� and � can become non-speculative at once, and
thread � becomes the new lock owner, turning non-
speculative as well. This is equivalent to a conven-
tional lock whose critical section is traversed in or-
der �����	�
�	������ or ���������������� .

3.2 Implementation

Our implementation of speculative locks builds
inexpensively on top of a conventional shared-
memory multiprocessor with small modifications to
the cache hierarchy and cache coherence protocol.
The core of our implementation is the Speculative
Concurrency Unit (SCU). The SCU sits next to the
cache and is comprised by an array of Speculative
bits with as many entries as cache lines, a single
Owner and a single Release bit, one extra cache line,



SPECULATIVE
BITS

CACHE LINE

CONTROL LOGIC

EXTRA CACHE LINE

SCU

RELEASE BIT

OWNER BIT

Figure 3: Speculative Concurrency Unit. No-
tice the Speculative bits by each cache line and
the additional logic that comprise the device.
Three cache lines are shown.

and some small control logic. Fig. 3 depicts a cache
and its SCU. For the sake of simplicity, we will as-
sume a single level of cache; extension to multiple
levels is straightforward if inclusion is preserved. In
a multi-level cache hierarchy, the SCU would be as-
sociated to the most external cache, while the other
caches would have simple logic support.

Traditional systems use different operations to
implement acquire and release operations, such
as Test&Set (T&S), Test&Test&Set (T&T&S),
Load Linked/Store Conditional, Compare&Swap,
or Fetch&Op [3]. The processor usually spins us-
ing one of these operations until the lock becomes
available.

We decouple this task from the processor and
make the SCU do it instead. Specifically, once the
processor reaches the acquire point, it issues a re-
quest to its SCU with the address of the lock. The
SCU records the address in the extra cache line,
resets the Owner and Release bits, and initiates a
“spin-locking” loop. To give a concrete example,
we will assume that the SCU uses T&T&S.

Meanwhile, the processor checkpoints its inter-
nal state and then continues execution past the ac-
quire point. State checkpointing is a feature already
present in existing processors, such as the MIPS
R10000 [23]. Memory accesses by the processor
past the acquire point are deemed speculative by the
SCU if the Owner bit is not set.

Handling of the Lock

The SCU remembers the speculative accesses by
setting the Speculative bit of the cache lines ac-
cessed in speculative mode by the local thread.
Aside from this fact, all speculative accesses are
handled by the underlying cache coherence proto-
col. There is one small exception: should a specula-
tive thread perform a first access to a cache line that
resides dirty in any cache, including its own, the co-
herence protocol must force a write-back, in order
to keep a safe copy in main memory at all times.
Cache lines whose Speculative bit is set may not be
evicted.

We now go back to the SCU, at the time it exe-
cuted T&T&S to compete for ownership. The first
access in T&T&S is a read request on the lock vari-
able. If the read reveals that the lock is already set,
the SCU keeps spinning locally on it until the copy
is updated externally (which typically signals a re-
lease operation by the owner). When the lock be-
comes available, the SCU attempts a T&S opera-
tion. If the operation fails, the SCU goes back to
the spin-test. Otherwise, the Owner bit is set and all
Speculative bits are cleared in one shot, effectively
committing all values to the system in an instant.

Early Release

As in conventional locks, a processor issues a lock
release only after it has completed all its memory
operations within the critical section. Upon detect-
ing the lock release, typically a store operation on
the lock variable, the SCU checks the Owner bit. If
it is already set, all the SCU does is reset the value
of the lock variable, which effectively releases the
lock in the system. If, instead, the Owner bit is still
not set, the SCU does not reset the lock variable, but
sets the Release bit. The SCU then keeps waiting
for ownership. In neither case is the execution of
the speculative thread interrupted. Remember that
threads in the critical section can execute instruc-
tions after the release point.

When a SCU that does not yet own the lock re-
ceives an external invalidation to the lock variable1,

1We assume that the only exclusive request to the lock vari-
able that can take place is the lock release by the lock owner.
If other exclusive accesses (e.g. T&S operations, exclusive
prefetches, etc.) are allowed, the system must differentiate this
invalidation message from others.



the Release bit is first checked. If the bit is set,
the SCU knows that the thread has completed all
memory operations prior to the release, and can ag-
gressively assume that ownership is acquired and re-
leased instantly. Therefore, all Speculative bits are
cleared in one shot and the SCU regards the critical
section as successfully traversed. In this case, the
T&S operation will never take place, allowing other
speculative threads to compete for the lock.

Conflicting Accesses

If a node receives an external invalidation for a
cache line marked Speculative, or an external read
for a dirty cache line marked Speculative, the SCU
realises that a conflict has taken place. It then forces
a squash by invalidating in one shot all dirty lines
with the Speculative bit set, resetting the Release bit
and all Speculative bits, and forcing the processor to
roll back to its shadow state. Notice that we do not
invalidate lines that have been speculatively read but
not modified, since they are consistent with main
memory. If the requested speculative line was itself
dirty, the node will reply to the home node without
supplying any data, forcing the home node to re-
gard the state for that line as stale and supply a clean
copy from memory to the requestor. This is similar
to the case in conventional MESI protocols where
a node is queried by the directory for a clean line
in state Exclusive that was silently replaced. Exter-
nal requests to cache lines not marked Speculative
are processed normally. Non-speculative threads, in
particular the owner, can never be squashed, since
none of their cache lines is ever marked. This allows
all in-order conflicting accesses between owner and
speculative threads to be tolerated without causing
squashes.

Notice that the SCU does not differentiate be-
tween external requests triggered by speculative or
non-speculative threads. This could potentially lead
to a ping-pong effect involving multiple, recalcitrant
speculative threads that issue conflicting memory
accesses. Fortunately, the owner of the critical sec-
tion is never affected by this, thus forward progress
is always guaranteed. The ping-pong effect between
speculative threads can be easily limited by turning
off speculation in a lock for a thread exceeding a
certain number of restarts.

Cache Overflow

To preserve data integrity, cache lines whose Spec-
ulative bit is set cannot be selected as replacement
victims upon a cache miss. In the event of a memory
access not being serviceable due to lack of evictable
entries (cache overflow), the node stalls until own-
ership of the lock is granted or a squash is triggered.
Stalling does not jeopardise correctness because,
again, the fact that there is an owner thread at all
times that cannot stall guarantees forward progress:
the lock will be eventually release, handing owner-
ship to another thread. To reduce the chances of a
stall due to overflow, a victim cache extended with
Speculative bits can be provided in a manner similar
to [2].

3.3 Multiple Locks

Only one lock at a time can be handled by the SCU.
Subsequent locks must be handled as conventional
synchronisation accesses beyond the first one. We
envision a lock acquire procedure to be programmed
so that it reads the state of the SCU. If the SCU is
available, the program then uses it to run the lock
speculatively as we have seen so far. If, instead, the
SCU is busy, the program deals with the lock us-
ing conventional T&T&S code. Locks so handled
will expose speculative threads to squashes due to
conflicts on the lock variables themselves. When
squashed, they will roll back to the acquire point of
the first lock, controlled by the SCU. Further dis-
cussion of this situation is beyond the scope of this
paper.

3.4 Summary

The SCU is a simple hardware device that imple-
ments speculative locks at a modest cost and re-
quires few modifications to the cache hierarchy and
coherence protocol. The most salient features of our
scheme are:

– Threads operate optimistically, assuming no con-
flicting accesses with other threads. Conflicting ac-
cesses are detected on the fly by the coherence pro-
tocol, and offending threads are squashed and ea-
gerly restarted.

– Commit and squash operations take constant time,
irrespective of the amount of speculative data or the



number of processors.

– Forward progress is guaranteed by forcing one
lock owner to exist at all times. The owner can never
be squashed due to conflicts, or stall due to cache
overflow.

– All in-order conflicting accesses between the
owner and a speculative thread are tolerated and
thus do not cause squashes.

4 EVALUATION

4.1 Experimental Set-Up

We evaluate the potential of speculative locks by
simulating a simplified synthetic version of the
TPC-C OLTP benchmark. The results show the
advantages of a system featuring speculative locks
over a conventional configuration.

We use a simplified synthetic model of TPC-C
composed of five branches, five tellers per branch,
and a number of accounts per teller that ranges from
five to one thousand. Locks can be placed at any
level: account, teller, branch, or even global. Fig. 4
depicts such a system.

A 64-way multiprocessor hosting the OLTP sys-
tem processes one million transactions. Each trans-
action is modelled as follows. First, it computes
the branch, teller, and account to access using three
random numbers. Then, it secures whatever lock
is necessary. After some internal pre-processing, it
reads the balance from the account, performs some
internal manipulation, and writes the updated bal-
ance to the account. Finally, it does some internal
post-processing, and then it releases the lock. The
duration of the pre-processing, balance manipula-
tion, and post-processing is chosen randomly. We
use a uniform distribution with a range of one to
seven time units.

We model configurations with conventional and
speculative locks. In the case of conventional locks,
a transaction whose lock is already taken blocks.
When the owner frees it, a new owner is chosen ran-
domly among the contendants. In the case of specu-
lative locks, a transaction starts processing whether
its lock is available or not. The hardware mon-
itors for conflicting accesses to the accounts, and
squashes and restarts offending transactions on the
fly as needed.

ACCOUNT

TELLER

BRANCH

Figure 4: Organisation of the synthetic on-line
transaction processing system used in the eval-
uation.

1

2

3

4

5

10 100 1000

N
or

m
al

is
ed

 E
xe

cu
tio

n 
T

im
e

Accounts per Teller

Global
Branch

Teller
Account

Figure 5: Execution time of different systems
featuring speculative locks, normalised to that
of a system that uses fine-grain (per account)
conventional locks. Curves for speculative
locks at all possible grain sizes (account, teller,
branch, and global) are shown.

A processor is assigned transactions dynamically,
but it cannot initiate a new transaction until the res-
ident one has graduated. Speculative transactions
must wait for ownership of the lock before gradu-
ating. To the disadvantage of our scheme, trans-
actions do nothing beyond the release point. This
will stall the processor if the lock is still unavailable
by the time its transaction hits the release point. If
transactions had work to do past the release point,
they could continue processing while pending own-
ership.



4.2 Results

In our experiment we evaluate the performance of
speculative locks at all grain levels: account, teller,
branch, and global. In all four cases, we measure
the execution time considering different number of
accounts per teller, from five to one thousand. We
compare the times obtained against those obtained
for a conventional system that features locks at the
account level, the finest possible grain. Fig. 5 shows
the results.

The results of this experiment show that systems
using speculative locks coarser than the baseline
quickly approach the performance of the latter, as
the number of accounts per teller increases. This is
because the larger number of accounts in the system
makes the probability of conflict smaller, which the
systems with speculative locks exploit. That con-
ventional systems can be closely followed in perfor-
mance by systems featuring speculative locks and
much coarser grain locking is very good news. It
means that we can reduce the programming com-
plexity significantly with coarse-grain locks without
compromising the code performance.

We also observe that systems using speculative
locks perform better the finer the grain is. This is
because, with coarser-grain locks, the competition
for ownership is fiercer, making speculative trans-
actions wait longer to commit before they can be
retired. The chances of conflict for each transaction
increase with the time that it spends in speculative
state. Of course, this effect quickly loses relevance
as the number of accounts increases.

Finally, we note that the system that uses spec-
ulative locks at the account level slightly (but con-
sistently) outperforms the baseline system. This is
despite the fact that, since transactions access a sin-
gle account, all transactions using the same lock
are guaranteed to conflict. Speculative locks out-
perform the baseline because they tolerate conflicts
if they happen in order with the owner, something
that the conventional system cannot exploit.

5 CONCLUSIONS

We have presented Speculative Locks, a hard-
ware mechanism that allows the programmability
of coarse-grain synchronisation while enabling fine-

grain concurrency. We have borrowed the princi-
ple of speculative thread-level parallelisation from
existing literature to implement an efficient scheme
of optimistic concurrency control. Threads access
a critical section concurrently without synchronis-
ing, and the system uses the underlying coherence
protocol to continuously monitor for conflicting ac-
cesses on the fly, rolling back and eagerly restart-
ing offending threads. Commit and squash opera-
tions take constant time, irrespective of the amount
of speculative data or the number of processors.

We maintain a legitimate owner of the critical
section at all times in order to guarantee forward
progress. Owners can neither get squashed due to
conflicts, nor stall due to cache overflow, and all in-
order conflicting accesses between owner and spec-
ulative thread are tolerated without squash.

In the absence of conflicts, the system allows
multiple threads to execute the critical section con-
currently. Further, partial concurrency can be
achieved in the presence of some conflicting ac-
cesses, due to the eager restart mechanism. Under
the right conditions, a system with speculative locks
and coarse-grain synchronisation performs about as
well as one with conventional locks and fine-grain
synchronisation.

REFERENCES

[1] S. V. Adve. Designing Memory Consistency
Models for Shared-Memory Multiprocessors.
Ph.D. thesis, Univ. of Wisconsin at Madison,
December 1993.

[2] M. H. Cintra, J. F. Martı́nez, and J. Torrellas.
“Architectural Support for Scalable Specula-
tive Parallelization in Shared-Memory Multi-
processors”. Intl. Symp. on Computer Archi-
tecture, June 2000.

[3] D. E. Culler and J. P. Singh. Parallel Computer
Architecture: a Hardware/Software Approach.
Morgan Kaufmann Publishers, 1999.

[4] K. Gharachorloo, A. Gupta, and J. L. Hen-
nessy. “Two Techniques to Enhance the Per-
formance of Memory Consistency Models”.
Intl. Conf. on Parallel Processing, August
1991.



[5] K. Gharachorloo, D. E. Lenoski, J. Laudon,
P. Gibbons, A. Gupta, and J. L. Hennessy.
“Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors”.
Intl. Symp. on Computer Architecture, May
1990.

[6] C. Gniady, B. Falsafi, and T. N. Vijaykumar.
“Is SC+ILP=RC?”. Intl. Symp. on Computer
Architecture, June 1999.

[7] S. Gopal, T. Vijaykumar, J. Smith, and G.
Sohi. “Speculative Versioning Cache”. Intl.
Symp. on High Performance Computer Archi-
tecture, February 1998.

[8] L. Hammond, M. Wiley, and K. Olukotun.
“Data Speculation Support for a Chip Multi-
processor”. Intl. Conf. on Architectural Sup-
port for Programming Languages and Oper-
ating Systems, October 1998.

[9] M. Herlihy and J. E. B. Moss. “Transactional
Memory: Architectural Support for Lock-Free
Data Structures”. Intl. Symp. on Computer Ar-
chitecture, May 1993.

[10] M. Herlihy. “A Methodology for Implement-
ing Highly Concurrent Data Objects”. ACM
Trans. on Programming Languages and Sys-
tems, Vol. 15, No. 5, November 1993.

[11] M. Herlihy. “Wait-Free Synchronization”.
ACM Trans. on Programming Languages and
Systems, Vol. 11, No. 1, January 1991.

[12] V. Krishnan and J. Torrellas. “A Chip-
Multiprocessor Architecture with Speculative
Multithreading”. IEEE Trans. on Computers,
Special Issue on Multithreaded Architectures,
September 1999.

[13] H. T. Kung and J. T. Robinson. “On Op-
timistic Methods for Concurrency Control”.
ACM Trans. on Database Systems, Vol. 2, No.
6, June 1981.

[14] V. S. Pai, P. Ranganathan, S. V. Adve, and
T. Harton. “An Evaluation of Memory Con-
sistency Models for Shared-Memory Systems
with ILP Processors”. Intl. Conf. on Archi-
tectural Support for Programming Languages
and Operating Systems, October 1996.

[15] P. Ranganathan, V. S. Pai, and S. V. Adve.
“Using Speculative Retirement and Larger In-
struction Windows to Narrow the Performance
Gap between Memory Consistency Models”.
Symp. on Parallel Algorithms and Architec-
tures, June 1997.

[16] M. C. Rinard. “Effective Fine-Grain Syn-
chronisation for Automatically Parallelised
Programs Using Optimistic Synchronisation
Primitives”. ACM Trans. on Computers and
Systems, Vol. 17, No. 4, November 1999.

[17] D. Shasha and M. Snir. “Efficient and Cor-
rect Execution of Parallel Programs that Share
Memory”, ACM Trans. on Programming Lan-
guages and Systems, Vol. 10, No. 2, April
1988.

[18] G. Sohi, S. Breach, and T. Vijaykumar. “Mul-
tiscalar Processors.” Intl. Symp. on Computer
Architecture, pages 414-425, June 1995.

[19] J. G. Steffan, C. B. Colohan, A. Zhai, and T.
C. Mowry. “A Scalable Approach to Thread-
Level Speculation”. Intl. Symp. on Computer
Architecture, June 2000.

[20] J. M. Stone, H. S. Stone, P. Heidelberger, and
J. Turek. “Multiple Reservations and the Okla-
homa Update”. IEEE Parallel and Distributed
Technology, Vol. 1, No. 4, November 1993.

[21] A. Thomasian. “Concurrency Control: Meth-
ods, Performance, and Analysis”. ACM Com-
puting Surveys, Vol. 30, No. 1, March 1998.

[22] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M.
Levy. “Supporting Fine-Grain Synchronisa-
tion on a Simultaneous Multithreading Proces-
sor”. Intl. Symp. on High-Performance Com-
puter Architecture, January 1999.

[23] K. Yeager. “The MIPS R10000 Superscalar
Microprocessor”. IEEE Micro, Vol. 6, No. 2,
April 1996.

[24] Y. Zhang, L. Rauchwerger, and J. Torrel-
las. “Hardware for Speculative Run-Time
Parallelization in Distributed Shared-
Memory Multiprocessors”. Intl. Symp. on
High-Performance Computer Architecture,
February 1998.


