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Abstract— Recently-proposed processor microarchitectures
that generate high Memory Level Parallelism (MLP) promise
substantial performance gains. However, current cache hierar-
chies have Miss-Handling Architectures (MHAs) that are too
limited to support the required MLP — they need to be
redesigned to support 1-2 orders of magnitude more outstanding
misses. Designing scalable MHAs can be tricky: they must
minimize cache lock-up time and deliver high bandwidth while,
at the same time, keeping the area consumption reasonable.

This paper characterizes how cache misses behave in two
latency-tolerant processor architectures: one with checkpointed
value prediction; and the other a plain large-window proces-
sor. Based on the characterization, we present a set of MHA
requirements for latency-tolerant processors. Our experiments
use SPECint and SPECfp benchmarks and multiprogramming
mixes.

I. INTRODUCTION

A flurry of recent proposals for novel superscalar microar-
chitectures claim to support very high numbers of concur-
rent, in-flight instructions and, as a result, substantially boost
performance [1]–[7]. These microarchitectures typically rely
on processor checkpointing with speculative execution and
even retirement. They often seek to overlap cache misses by
using predicted values for the missing data, by buffering away
missing loads and their dependents, or by temporarily using an
invalid copy of the missing data. Examples of such microarchi-
tectures include Runahead [5], CPR [1], Out-of-order Commit
processors [3], CAVA [2], CLEAR [4], and CFP [6], among
others. It is hoped that these microarchitectures will deliver
major performance gains over conventional superscalars.

Not surprisingly, these microarchitectures also generate
dramatic increases in Memory Level Parallelism (MLP) —
broadly defined as the average number of outstanding memory
system accesses at a time [8]. For example, one of these
designs assumes support for up to 128 outstanding L1 misses
at a time [6]. To reap the benefits of these microarchitectures,
cache hierarchies have to be designed to support this level of
MLP.

Current cache hierarchy designs are woefully unsuited to
support this level of demand. Even in designs for high-end
processors, the norm is for L1 caches to support little more
than a handful of outstanding misses at a time [9]–[11]. For
example, Pentium 4 only supports 8 outstanding misses at a
time [12]. Unless the architecture that handles misses (i.e., the
Miss Handling Architecture (MHA)) is re-designed to support
1-2 orders of magnitude more outstanding misses, there will
be little gain to realize from the new microarchitectures.

This paper presents extensive data on how L1 cache misses
behave under high MLP. We show that state-of-the-art MHAs
for L1 caches are unable to leverage new latency-tolerant
processor microarchitectures. In addition, we present MHAs
requirements suitable for latency-tolerate processors that ex-
ploit high degrees of memory-level parallelism. Finally, we
examine the effectiveness of one bus prioritization scheme
under high MLP.

The paper is organized as follows: Section II presents
background information on MHAs; Section III describes the
experimental setup we used in our characterization; Section IV
characterizes MHAs under high MLP and summarizes its
requirements; Section V shows two possible MHA designs and
discusses some design constrains; and Section VI concludes.

II. BACKGROUND

A. Miss Handling Architectures (MHAs)

The Miss Handling Architecture (MHA) is the logic and
resources needed to support outstanding misses in a cache.
Kroft [13] proposed the first MHA that enabled a lock-
up free cache (one that does not block the processor on a
miss) and supported multiple outstanding misses at a time. To
support an outstanding miss, he introduced a Miss Informa-
tion/Status Holding Register (MSHR). An MSHR stores the
address requested, the size and type of the request, and other
information. Kroft organized the MSHRs into an MSHR file
accessed after the L1 tag detects a miss (Figure 1(a)). He also
described how store misses on blocks that are outstanding can
buffer their data using the MSHR, enabling forwarding. A
subsequent load to the same address can read the data, rather
than waiting for memory.
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Fig. 1. Examples of Miss Handling Architectures (MHAs).



Scheurich and Dubois [14] described an MHA for lock-up
free caches in multiprocessors. They described the organiza-
tion of an MSHR that keeps information on all the misses
outstanding on a given cache line. They showed the tight
relationship between the cache coherence protocol and the
MHA algorithms. Later, Sohi and Franklin [15] evaluated the
bandwidth advantages of using cache banking in non-blocking
caches. They showed a design where each cache bank has its
own MSHR file (Figure 1(b)) but did not discuss the MSHR
itself.

In the context of an MHA, it is useful to distinguish between
primary and secondary cache misses. A cache miss on a line
is primary if there is currently no outstanding miss on the line
and, therefore, a new MSHR needs to be allocated. Otherwise,
the miss is secondary. In this case, the existing MSHR for the
line can be augmented to record the new miss, and no request
is issued to memory. In this case, the MSHR for a line keeps
information for all outstanding misses on the line. For each
miss, it contains a subentry (in contrast to an entry, which is
the MSHR itself). Among other information, a subentry for a
read miss contains the ID of the register that should receive
the data; for a write miss, it contains the data itself or a pointer
to a buffer with the data.

MSHRs take significant area. Consequently we cannot have
many MSHRs. If the MHA exhausts its MSHRs or subentries,
and has no space for future misses, it locks-up the cache (or
the corresponding cache bank). From then on, the cache or
cache bank rejects any further request from the processor. This
may eventually lead to a processor stall. The cache remains
locked-up until a memory reply opens up space in the MHA.

Farkas and Jouppi [16] investigated Implicitly- and
Explicitly-addressed MSHR organizations for read misses. In
the Implicit one, the MSHR has a subentry for each word in
the line. On a read miss, the subentry at the corresponding
offset is allocated. In the Explicit organization, any of the
(fewer) subentries in the MSHR can be used by any miss on
the line. However, the subentry needs to save the block offset
of the miss. For the simple processor they evaluate, they use
a 4-MSHR file, and show that, for a 32-byte cache line rarely
more than four subentries are needed.

Finally, there is very limited information on the MHAs
used by current processors. It appears that current designs are
fairly limited and support only a handful of outstanding L1
cache misses at a time [9]–[11]. For example, Pentium 4 only
supports 8 outstanding misses (of primary or secondary type)
at a time [12].

B. Microarchitectures for High MLP

Cherry [17] checkpoints the processor and recycles re-
sources (registers and load/store queue entries) that would
otherwise be unavailable until instruction commit. Recycling
these resources increases the number of instructions in flight.

Runahead execution [5], checkpoints the processor and
retires a missing load, marking the destination register as
invalid. The I-window is unblocked and execution proceeds,
prefetching data into the cache. When the load completes,

execution rolls back to the checkpoint. A related scheme by
Zhou and Conte [7] uses value prediction on missing loads to
continue execution (no checkpoint is made) and re-executes
everything on load completion.

Checkpoint-based value prediction schemes like CAVA [2]
and CLEAR [4] checkpoint on a long-latency load miss,
predict the value that the load will return, and continue
execution using the prediction. Speculative instructions are
allowed to retire. If the prediction is later shown to be correct,
no rollback is necessary.

CPR [1] and Out-of-order Commit [3] processors remove
scalability bottlenecks from the I-window to substantially
increase the number of in-flight instructions. They remove
the ROB, relying on checkpointing (e.g., at low-confidence
branches) to recover in case of misspeculation. CFP [6] frees
the resources of a missing load and its dependent instruc-
tions without executing them. This allows the processor to
continue fetching and executing independent instructions. The
un-executed instructions are buffered and executed when the
data returns from memory.

All these microarchitectures generate a large number of
concurrent memory accesses. These accesses need support at
two different levels, namely at the load/store queue (LSQ)
and at the cache hierarchy level. First, they need a LSQ
that provides efficient address disambiguation and forwarding.
Second, those that miss somewhere in the cache hierarchy need
an MHA that efficiently handles many outstanding misses.
While previous work has proposed solutions for scalable
LSQs [18]–[20], the problem remains unexplored at the MHA
level. Our paper examines this problem.

III. EXPERIMENTAL SETUP

We use execution-driven simulations to evaluate MHA
configurations for the three processors shown in Table I:
Conventional, Checkpointed, and LargeWindow. Conventional
is a 5-issue, 2-context SMT processor. Checkpointed extends
Conventional with support for checkpoint-based value predic-
tion [2], [4]. Its additional parameters in Table I are the Value
Prediction Table and the maximum number of outstanding
checkpoints. Each hardware thread has its own checkpoint, and
each thread can rollback to its checkpoint without affecting the
other thread. LargeWindow is Conventional with a 512-entry
instruction window and 2048-entry ROB.

The three processors have identical memory systems (Ta-
ble I), including two levels of on-chip caches. The exception
is that Checkpointed has one bit per line in its L1 cache to
mark data updated speculatively.

A. Checkpoint-Assisted Value Prediction

Checkpoint-assisted value prediction hides long-latency
misses by providing predicted values for long-latency loads
that reach the head of the reorder buffer and stall the retirement
of subsequent instructions. The processor state is checkpointed
and the missing load is allowed to retire. When the response
from memory arrives, the prediction is validated. If the pre-
diction was correct, execution continues normally; otherwise,



TABLE I
PROCESSORS SIMULATED. IN THE TABLE, RAS AND RT STAND FOR

RETURN ADDRESS STACK AND MINIMUM ROUND-TRIP LATENCY FROM

THE PROCESSOR, RESPECTIVELY. CYCLE COUNTS REFER TO PROCESSOR

CYCLES.

All Memory System

Frequency: 6.5GHz at 65nm
Fetch/issue/comm width: 6/5/5
LdSt/Int/FP units: 4/3/3
SMT contexts: 2
Branch penalty: 13 cyc (min)
RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor (spec. update):

bimodal size: 16K entries
gshare-11 size: 16K entries

I-L1 D-L1 L2
Size: 32KB 32KB 2MB
Assoc: 2-way 2-way 8-way
Line size: 64 64 64
RT: 2 cyc 3 cyc 15 cyc
Ports/Bank: 2 1 1
Banks: – 8 –

HW Pref.: 16-stream strided (bet. L2 and mem.)
Mem Bus Bandwidth: 10GB/s
Mem RT: 650 cyc

Conventional and Checkpointed LargeWindow

I-window/ROB size: 92/192
Int/FP registers: 192/192
Ld/St queue entries: 60/50

Checkpointed Only:
Val. Pred. Table: 2048 entries
Max Outs. Ckps: 1 per context

I-window/ROB size: 512/2048
Int/FP registers: 2048/2048
Ld/St queue entries: 768/768

execution rolls back to the checkpoint. We combine CAVA
and SMT to have a scenario of even higher MLP than what
CAVA already provides. We extend the CAVA implementation
described in [2] to work with SMT processors. This means that
each hardware thread is able to hide its long latency misses
by employing CAVA techniques. Each hardware thread has its
own checkpoint. Rollback to the checkpoint of one hardware
thread does not affect normal execution of the other hardware
thread. While processor checkpointing in SMT is an interesting
design point, it is out of the scope of this paper to discuss its
details.

B. Workloads

We run our experiments using SPECint2000 and
SPECfp2000 codes, and workload mixes that combine
two applications at a time (Table II). From SPECint, we
use all the programs for which a perfect MHA (unlimited
number of MSHRs, subentries, and bandwidth) would make
at least a 5% performance impact in any of the architectures
analyzed — the remaining SPECints do not have enough
misses to make any MHA-enhancing technique worthwhile.
From SPECfp, we use all codes but four that are in Fortran 90
and two that have system calls unsupported by our simulator.
Finally, for the workload mixes, the algorithm followed is to
pair one SPECint and one SPECfp such that one has high
MSHR needs and one low. In addition, one mix combines two
lows, one combines two highs, and yet another one combines
2 SPECfps. Overall, we cover a range of behaviors in the
mixes. In these runs, each application is assigned to one
hardware thread and the two applications run concurrently.

We compile the applications using gcc 3.4 -O3 into MIPS
binaries and use the ref data set. We evaluate each applica-
tion for 0.6-1.0 billion committed instructions, after skipping
several billion instructions as initialization. To compare perfor-
mance, we use committed IPC. When comparing performance
of multiprogramming mixes, we use weighted speedups as
in [21].

TABLE II
WORKLOADS USED IN OUR EXPERIMENTS.

SPECint2000 SPECfp2000 Mix

256.bzip2 (bzip2) 188.ammp (ammp) 179.art, 183.equake (artequake)
254.gap (gap) 173.applu (applu) 179.art, 254.gap (artgap)
181.mcf (mcf) 179.art (art) 179.art, 253.perlbmk (artperlbmk)
253.perlbmk (perlbmk) 183.equake (equake) 183.equake, 253.perlbmk (equakeperlbmk)

177.mesa (mesa) 177.mesa, 179.art (mesaart)
172.mgrid (mgrid) 172.mgrid, 181.mcf (mgridmcf)
171.swim (swim) 171.swim, 181.mcf (swimmcf)
168.wupwise (wupwise) 168.wupwise, 253.perlbmk (wupwiseperlbmk)

IV. MISS HANDLING UNDER HIGH MLP

The MLP boost by the new microarchitectures described
puts major pressure on the cache hierarchy, especially at the
L1 level. To handle the pressure on the L1 data cache, we can
use known techniques, such as banking the L1 and making
it set-associative. However, a lesser known yet acute problem
remains, namely that the MHA in the L1 is asked to store
substantially more information and sustain a higher bandwidth
than in conventional designs. This section characterizes how
MHAs affect performance of the processors described in
Table I.

A. Occupancy

Figure 2 shows the distribution of the number of outstanding
L1 read misses at a time.1 It shows the distributions for the
three processors. Each line corresponds to one workload from
Table II.

We see that, for Conventional, most workloads have 16
or fewer outstanding load misses 90% of the time. These
requirements are roughly on a par with the MHA of state-
of-the-art superscalars. On the other hand, Checkpointed and
LargeWindow are a stark contrast, with workloads sustaining
more than 128 outstanding load misses for a significant
fraction of the time.

The misses in Figure 2 include both primary and secondary
misses. Suppose now that a single MSHR holds the state of
all the misses to the same L1 line. In Figure 3, we redraw the
data showing the number of MSHRs in use at a time. We use
an L1 line size of 64 bytes.

Compared to the previous figure, we see that the distri-
butions move to the upper left corner. The requirements of
Conventional are few. For most workloads, 8 MSHRs are
enough for 98% of the time. However, Checkpointed and
LargeWindow have a much greater demand for entries. For
Checkpointed, many workloads need 16-64 MSHRs for a large
fraction of the time. Therefore, the new MHAs need higher
capacity than current designs.

B. Bandwidth

The MHA is accessed at three different times. First, every
L1 miss reads the MHA to see if it contains an MSHR for the
accessed line. In addition, every L1 miss that is not satisfied
by a data forward from the MHA also updates the MHA
to record the miss. Finally, every L1 primary miss induces

1Although we use a write-back L1 cache, we only show read misses so
that the data is also relevant to write-through L1 caches.
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Fig. 2. Number of outstanding L1 read misses at a time in Conventional (a), Checkpointed (b) and LargeWindow (c).
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Fig. 3. Number of L1 MSHR entries in use at a time in Conventional (a), Checkpointed (b) and LargeWindow (c).

another update to the MHA to clean up its MSHR when the
line arrives from the L2.

We compute the number of MHA accesses during 100-cycle
intervals for Conventional, Checkpointed, and LargeWindow.
Figure 4 shows the distribution of the number of accesses per
interval. For Conventional, most workloads have at most 30-40
accesses per interval about 90% of the time. For Checkpointed,
the number of accesses to reach 90% of the time is about
twice that. For LargeWindow, still more accesses are required
to reach 90%. Overall, new MHAs need higher bandwidth than
conventional ones.

C. Capacity

L1 misses can be either primary or secondary, and be
caused by reads or writes. For each case, the MHA needs
different support. For primary misses, it needs MSHR entries;
for secondary ones, it needs subentries. The latter typically
need different designs depending on whether they are for reads
or writes. Given the many outstanding misses, new MHAs
have to be designed to support many misses of every type.

We want to assess the needs in number of entries, read
subentries, and write subentries. For this, we use a single-
bank MHA and vary one parameter while keeping the other
two unlimited. If the varying dimension runs out of space, the
L1 refuses further processor requests until space opens up.

In Figure 5, we vary the number of MSHR entries. Our
workloads benefit significantly by going from 8 to 16, and
less so from 16 to 32, both in Checkpointed and LargeWindow.
Note that this effect is much less pronounced in Conventional,

justifying why current processors support only a handful of
outstanding misses.

In Figure 6(a), we vary the number of read subentries per
MSHR for Checkpointed. Secondary read misses are frequent,
and supporting less than 16-32 read subentries hurts perfor-
mance. In Figure 6(b), we vary the number of write subentries
per MSHR for Checkpointed. Secondary write misses are
also important, and we need around 16 write subentries. An
additional insight is that individual MSHRs typically need read
subentries or write subentries, but rarely both kinds. This data
is shown in Figure 6(c) running with an unlimited MHA. This
behavior is due to read miss and write miss locality.

D. Associativity

MHA capacity is provided by increasing the number of
MSHRs. Intuitively, it would be ideal to have fully associative
MHAs, but this is expensive in hardware. This is addressed by
decreasing associativity. However, by decreasing associativity,
the chances of lockup increase, because if any set fills up,
the MHA stops accepting new requests. Figure 7 shows the
performance of a 32-entry MHA varying associativity. The
plots show that for Checkpointed, 8-way attains almost the
same performance as a fully associative structure. Also, note
that there is a significant drop in performance from 8-way to
4-way. Finally, we observed that LargeWindow is less sensitive
to associativity than Checkpointed, especially for SPECints.

E. Summary of Requirements

The characterization numbers show that latency-tolerant
processors such as Checkpointed and LargeWindow both need
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Fig. 4. Bandwidth required from the MHA for Conventional (a), Checkpointed (b) and LargeWindow (c).
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Fig. 5. Effect of varying the number of MHA entries.
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(a) Read subentries.
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Fig. 6. Sub-entry usage characterization. (a) and (b) are for a Checkpointed processor. (c) was obtained with unlimited read/write
subentries. In (c), S,L,C refers to Conventional, LargeWindow and Checkpointed, respectively.
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Fig. 7. Effect of varying the associativity of a 32-entry MHA.

large capacity with high associativity and support for many
read and write secondary misses. Namely, in terms of capacity,
a 32-entry, 8-way set-associate MHA with support 32 read
subentries and 32 write subentries will offer similar perfor-
mance to an ideal, unlimited MHA. Unlimited write subentries

can be provided by using an Implicit organization [16]. How-
ever unlimited read subentries are very complex to provide.

We showed that Checkpointed and LargeWindow both per-
form significantly more accesses to the MHA per unit of time
than Conventional. That means that an MHA for a high MLP



processors will have to provide sufficient access bandwidth. To
increase MHA bandwidth, we can bank it like the L1 cache
(Figure 1(b)). However, the number of MSHRs in the MHA
is fairly limited due to area constraints. With few MSHRs,
heavy banking may be counter-productive: if the use of the
different MHA banks is imbalanced, one of them may fill
up. If this happens, the corresponding L1 bank locks-up; it
rejects any further requests from the processor to the L1 bank,
potentially stalling the processor. This problem is analogous
to cache conflicts in a banked L1 [22], except that a “conflict”
in a fully-associative MHA bank lasts for as long as all its
entries are in use.

Finally, MSHRs are large structures and also regarded as
fairly intricate structures. For that reason, a requirement for
MHA is to meet a reasonable area and complexity budgets to
keep design costs under control.

V. TWO POSSIBLE HIGH MLP DESIGNS

We look at two designs similar to prior proposals and
scale them to meet the requirements presented in the previous
section. First, consider Unified, a single MSHR file sized
large enough to meet the capacity demands under high MLP;
second, consider Banked, a set of eight MSHR files with one
per cache bank, which may be better suited to meet high
bandwidth demands. For a fair comparison between Unified
and Banked, we select designs of equivalent area (25% of the
L1 cache) as modeled in CACTI [23]. The characteristics of
each design are shown in Table III.

TABLE III
TWO CONVENTIONAL DESIGNS SIZED AT 25% THE SIZE OF THE L1

CACHE.

Name MSHRs Assoc. Rd Sub. Wr Sub.
Unified 16 8 32 Exp. 8 Imp.
Banked 2x8 Full 32 Exp. 8 Imp.

We evaluate the performance of both Unified and Banked in
the context of Checkpointed, LargeWindow, and Conven-
tional processor architectures. We also investigate bus con-
tention of Unified and Banked on Checkpointed.

A. Performance

The performance of Unified and Banked are shown in
Figure 8 in comparison to Current, a conventional design with
8 MSHRs like the Pentium 4, and to Unlimited running on
Checkpointed, LargeWindow, and Conventional. As shown in
Figure 8(a), Unified and Banked outperform Current for almost
all benchmarks. Overall, Unified does better than Banked
because partitioning the MSHR file limits its effective capacity.
However, there are a few cases like art, applu, and few mixes
which include art for which Banked does better. In these
cases, the higher bandwidth afforded by Banked is important.
However, though Unified and Banked are much better than
Current, there is still a significant performance gap when
compared to Unlimited, especially for Mix.

Figure 8(b) shows the performance on LargeWindow. Here,
Banked is better than Unified indicating that bandwidth is more
important for this processor design. However, Banked and
Unified still fall short of Unlimited by a significant fraction.
For Conventional, there are small gains using Unified and
Banked due to the low MLP provided by this processor.

To close the performance gap to Unlimited for Check-
pointed and LargeWindow, we can build larger structures for
either Unified or Banked. However, the size of these structures
may quickly become prohibitive. For example, if we double
the number of MSHRs in either Unified or Banked, the MHA
will be roughly half the size of the cache. Hence, instead of
naively increasing the size of either Unified or Banked, we are
investigating the design of new MHAs at 25% of the cache
that nearly match the performance of Unlimited.

B. Bus Concerns in High MLP

Increasing the maximum number of outstanding misses
obviously increases the pressure on the memory bus. Figure 9
shows the bus contention for Unified and Banked on Check-
pointed normalized to Current. Note that the bus contention
is significantly increased, on average, for each class of bench-
marks.

The primary reason for the high bus contention is the in-
crease in speculative memory requests made by the processor.
In case speculation is successful, these requests have paid off
and improved performance. However, in some cases, pressure
and contention on the bus are so high that demand misses
are put off in favor of earlier less critical requests that have
possibly been squashed in a misspeculation. This situation gets
even worse in chip multiprocessors, where the memory bus is
shared among several cores.

For that reason, we ran some experiments with a memory
bus that supports requests with two priorities, high and low.
We gave high priority to non-speculative read requests and
speculative read requests whose associated predicted value
sent to the processor was of low confidence. All other requests
were given low priority.

Figure 10 shows the results of these experiments. It shows
the speedups of prioritization over no prioritization. Some
applications show little to no difference in performance when
prioritization is used, while others show speedups of as high
as 20%. The numbers on top of the bars show the percentage
of requests that were assigned high priority. This shows that
prioritizing requests might become necessary as the memory
bus contention goes higher.

C. Reusing Load/Store Queue State for Miss Handling

An important concern in the design of an MHA is its
relationship with the Load/Store Queue. It is possible to
conceive a design where the MHA is kept to a minimum
by leveraging the LSQ state. Specifically, we can allocate
a simple MSHR on a primary miss and keep no additional
state on secondary misses — the LSQ entries corresponding to
the secondary misses can keep a pointer to the corresponding
MSHR. When the data arrives from memory, we can search
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Fig. 9. Bus contention normalized to Current in the Checkpointed processor.

the LSQ with the MSHR ID and satisfy all the relevant LSQ
entries.

We argue that this might not be a good design for the
advanced microarchitectures described. First, it induces global
searches in the large LSQ. Recall that scalable LSQ proposals
provide efficient search from the processor-side. The processor
uses the word address to search. In the approach discussed,
LSQs would also have to be searched from the cache-side,
when a miss completes. This would involve a search using
the MSHR ID or the line address, which (unless the LSQ is
re-designed) would induce a costly global search. Such search
is eliminated if the MHA is enhanced with subentry pointer
information.

Second, some of these novel microarchitectures specu-
latively retire instructions and, with them, deallocate their
LSQ entries [2], [4]. Consequently, the MHA cannot rely

on information in the LSQ because, by the time the miss
completes, it may be gone.

Finally, LSQs are time-critical structures. It is best not to
augment them with additional pointer information or support
for additional types of searches. In fact, we claim it is best to
avoid restricting their design at all.

Consequently, we believe the best choice is keeping primary
and secondary miss information in the MHA and not relying
on specific LSQ designs.

VI. CONCLUSIONS

Recently-proposed processor microarchitectures that sub-
stantially increase MLP promise major performance gains.
Unfortunately, the MHAs of current high-end systems are
not designed to support the resulting level of MLP. This
paper provided a quantitative analysis of how MHA design
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Fig. 10. Performance impact of memory request prioritization
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parameters affect the performance of high MLP processors.
Based on that, we compiled a set of requirements for new
MHAs to meet. We scaled two previously proposed MHA
designs to meet some of the requirements and showed that
there is still quite a bit of room for improvement compared to
Unlimited. Finally, we showed that together with significantly
more outstanding misses comes a significantly higher bus
contention.
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