An Updated Evaluation of ReCycle

Abhishek Tiwari and Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://fiacoma.cs.uiuc.edu
{atiwari,torrellas}@cs.uiuc.edu

Abstract cle time. Consequently, ReCycle comprehensively gye time
o s . . stealing[1] to transfer this timing slack from the fast stages to the
Process variation reduces a pipeline’s maximum attainable fre- X
. . slower ones, thereby allowing the slow stages to take more than one
quency by creating unbalance in the stage delays. As a result, th . ; .
- ) ) . clock period to evaluate their results. As a result, the clock period
pipeline ends up cycling with a period close to that of the slow-

est pipeline stage. ReCycle was proposed in ISCA 2007 as gf the processor is no longer equal to the maximum stage delay; it

. . . . ends up becoming close to the average stage delay in the slowest
framework for comprehensively applyirgcle time stealingp bal- L . .
e . ipeline loop. ReCycle provided a framework to comprehensively
ance the stage delays under process variation, thereby allowing t

5 . . e
pipeline to cycle with a period close to the average latency of theapply cycle time stealing within pipeline loops.
stages.

ReCycle further improves the pipeline frequency by inserting
This paper duplicates the evaluation of ReCycle with more re_empty Donor St"%ges in the slowest (oitical) pipeline loop the
T " ; - one that, by having the longest average stage delay, determines the
alistic pipeline and critical path models than in the original paper. . b N
. rocessor cycle time. Donor stages “donate” timing slack to other
Most notably, we do not assign one cycle to the feedback path o - L
S T N . stages in the loop and reduce the average stage delay within the
each pipeline loop. As a result, our pipeline contains five single-

S Ipop.
cycle Ioops. This is significant because these loops are not amenab% 'Fl)'he performance improvements obtained by ReCycle and Donor
o cycle_tlme stealing. . . . stages depend on the structure of the pipeline loops. In the orig-
In this updated environment, ReCycle is able to regain on avsal ReCycle paper, the feedback path of each pipeline loop was
% of the performance lost to process variation. In ' g - .
erage only 40% o P P assumed to take one cycle. This is not very realistic. Moreover, it
contrast, in the original paper, ReCycle regained 64%. Moreover . . . g L L !

) . L . especially distorts tight, single-cycle pipeline loops, which it trans-

we find that further adding Donor stages does not significantly in-, . .
forms into two-cycle loops. Such loops now appear to be less crit-

crease performance. Consequently, we propose to extend the Dongr

. ; T : iICal than they realistically are, because ReCycle can move time be-
algorithm by applying Forward Body Biasing (FBB) to single-cycle ween the pipeline stage cycle and the feedback path cycle. In real-
loops when they become critical. With ReCycle, Donor stages, an pip gecy P yce.

. o ingle-cycle | re not amenabl le tim ling.
FBB, we regain on average 90% of the performance lost to variation Y sihgie-cycie loops are ot amenable tq cycle time stealing
In this paper, we replicate the evaluation of the ReCycle paper

J— 1 0, i
still short of the roughly 110% regained by ReCycle and Donorfrom ISCA 2007 with more realistic pipeline and critical path mod-

stages alone in the original ReCycle paper. els than in the original paper. Most notably, we do not assign one
: cycle to the feedback path of each pipeline loop. Instead, the feed-
1. Introduction back path consumes a fraction of the cycle time assigned to the last
Process variation has been identified as a key problem facingtage of the loop. As a result, our pipeline retains several single-
microprocessor design in the sub-45nm regime. Process variatiogf/cle loops.
refers to the fluctuation in transistor properties such as switching Inthis new environment, ReCycle recovers on average only 40%
speed, across different transistors on a chip or across chips. Due & the performance lost to process variation. In contrast, in the orig-
process variation, some pipeline stages of a processor end up havifitfl paper, ReCycle regained 64%. Moreover, we find that further
longer path delays. In this case, the entire pipeline ends up beingdding Donor stages does not significantly increase performance.
clocked at a lower frequency than nominal. Consequently, we propose to extend the Donor algorithm by apply-
ReCycle was proposed in ISCA 2007 [8] as a technique to miting Forward Body Biasing (FBB) to single-cycle loops when they
igate this performance degradation caused by process variation. fecome critical. With ReCycle, Donor stages, and FBB, we regain
relies on the observation that while the processor frequency is de2n average 90% of the performance lost to variation — still short of
termined by the slowest pipeline stage, other stages in the pipelin&e roughly 110% regained by ReCycle and Donor stages alone in
are faster and end up wasting a significant portion of their cy-the original ReCycle paper.

2. Background

2.1. Pipeline Evaluated

In this paper, we evaluate ReCycle with a more realistic model
of the Alpha 21264 pipeline [3] than in the original ReCycle pa-



9

‘ 9

2 4 6
fintvap H | ~{intReg}{ | -finExec] 2 :
10 12 [IniMap |- HD (]
1
Dcache 10
0 ] —hasoP (LT
IF 1
"
-FPMap
QD
3 5
8 3 5
(a) Pipeline structure used in ReCycle. (b) Pipeline structure used in this paper.

Figure 1: Simplified version of the Alpha 21264 pipeline used in the original ReCycle paper (a) and in this paper (b).

per [8]. Specifically, in the original paper, the feedback paths in H Name H Description ‘ Fdbk ‘ Components H
all of the pipeline loops were modeled to take one pipeline cycle. = = = Path =
This is not very realistic and especially distorts tight pipeline loops: Fetc Egp:r?d e paween 1] IR Bpred.1
it transforms loops composed of a single pipeline stage into two- || Tnt Dependence between 2 ntMap, 2
cycle loops. Such loops now appear to be less critical than they are, fFeF[‘ame 't’;St-a izséggt';gr gnrg”am“ . —
because ReCycle can move time between the pipeline stage cycl€| \ename regdmg the tag P
and the feedback path cycle. Int Dependence between 4 ntQ, 4
i ; issue the select of a

In centrast, in this paper, we mede_l the feedback path to take pert B producer inst. and the = PGS
of the time assigned to the last pipeline stage of the corresponding|| issue wakeup of a consumer
loop. Consequently, a feedback path does not add any additional|| Int ALU Forwarding 6 IntExec, 6

f i i inali FPAdd from execute 7 FPAdd, 7
cycle to its loop. In par_tlcular, a loop composed of a sm_gle_plpe_ll_ne A to exocute = FPMULS
stage truly takes one single cycle. Such aloop now retains its critical [ granch Mispredicted IF, Bpred, IntMiap
effect: it is not possible to transfer time between the logic part of mispred. branch 9 IntQ, IntReg,

IntExec, 9
the s_tage and the feedback path. o o rrload 10 Tnio. LSt
Figures 1(a) and (b) show the simplified Alpha 21264 pipeline misspecul || Load miss Dcache, 10
used in the original ReCycle paper and the one used in this paper,|| FPload | replay 11 EPQ,hLdSltltJ,

. . . . misspecu cache,
respectively. The Iong bexes represent pipeline stages, while the—=+ Forwarding from Toad TniExec, 9, IF, Bpred,
short boxes are the pipeline registers between them. Some of the| forward to integer execute 12 | IntMap, IntQ, LdStU,
long boxes are in fact multiple pipeline stages separated by pipeline Dcache, 12
registers, as shown with the dashed lines. For example, the IF has Table 1: Loops in the pipeline considered.

three pipeline stages separated by pipeline registers. We put multj- . .
ple stages under the same box like in IF to indicate that the critical>Su® loops, and the integer execute loop. In Figure 1(a), these loops

paths in the stages are so spatially intertwined, that the values of thte’Ok two cycles instead of one because of the cycle-long feedback

systematic component of process variation parameters are assu

to be the same for the stages. Lines between logical stages represe.ntAS a result of the changes o the feedbaek path I.atepcy men-
communication links. tioned above, some constraints associated with the pipeline stages

The figures show the front end of the pipeline followed by the also change. Specifically, in the pipeline of Figure 1(a), the setup

stages in the integer datapath along the top, the stages in the flozﬁ[]d,holfj conetramts for a feedback path originating in regisied
ing point data path along the bottom, and the load-store unit an(‘?nd'ng In registey were:

cache in the middle. While a real processor has more communica- §; + Tfeeapack.delay + Tsetup < Top + 65

tion links, these figures show only those that were considered most §; + Tceavack.detay > 65 + Thold

important or most time-critical. For example, the write back links ) )
are not shown, since write back is less time-critical. A total of 12 Wher?Tffed”“’“fdel“l{ is the delay of the feedback patfe» is
feedback paths (and therefore loops) are shown and labeled. TH€ PiPeline’s clock period/.c.., andT}iq are the setup and hold

ble 1 describes the loops. In increasing numerical order, these Iooﬁgn'_es’ respectively, a_nd is Fhe _ClOCk ekew at the correspondin'g
will be referred to like in the original ReCycle paper &atch iren, register [8]. In the revised pipeline of Figure 1(b), these constraints

fpren iissue fpissue ialu, fpadd fpmul bmiss ildsp, fpldsp and are replaced by:

Ided . . . . 61 + Tstage,delay + Tfeedback,delay + Tsetup S TCP + 5f
In Figure 1(a), each feedback path starts and ends in a pipeline §; 4+ Ty;agc detay + Tfeedback.detay = 05 + Thold

register and, therefore, is assigned one cycle. In Figure 1(b), each

feedback path starts inside a pipeline stage and ends in a pipeline WN€réTstage.detay is the delay of the logic in the last pipeline
register. It is assigned part of the stage’s delay. stage of the loop. The total number of constraints for ReCycle re-

In Figure 1(b), there are five single-cycle loops, namely the inte-Mains the same.

ger and floating-point rename loops, the integer and floating-point



2.2. Variation Model

To model process variation, we use the same model as in the 5,
original ReCycle paper, namely, the model in [6]. We model the 5,

within die (WID) variation in transistor threshold voltage:4) and é 16
effective channel lengthZ(. ;). The WID variation is subdivided 2 12
into randomandsystematicomponents. Each of these components i} 8
is assumed to be normally distributed. The systematic variation® 4
is modeled as a multivariate normal distribution with a Spherical 0

spatial correlation; the random variation is modeled as an uncorre- Ry, Ten, Pre,, "5, i, U Dy, o, P ’2747%/%,0
lated normal distribution at the transistor level. All assumptions on N

Vin and L ¢ ¢ variation are the same as in the original ReCycle pa- Pipeline loop
per [8]. In particularV;,’s variation has an overadt/ . of 0.09 and
a correlation range for systematic variation of 0.5. We model a @
CMP with four cores.
The transistor delays are computed fréa, and L.s¢ using 35
the alpha power law [5]. To increase accuracy, the distribution and«,m gg
timing of the critical paths in a pipeline stage used in this papers 20

differs slightly from the model used in the original ReCycle paper% 10
Specifically, the latter assumed that the number of critical paths ine 2
a pipeline stage is proportional to the area of the stage. In this pa-

Bty oy Borg e Tor. Uy Bos T, b o, By,
. " L . L (o) 7 Pre,, “Ssy, ) G P ) S P
per, we use the more realistic critical path distribution and timing g & Sue™ sy Ay Mg 0 g, ey

described in [6]. That model uses, for logic stages, experimental Pipeline loop
data from Ernset al. [2] and, for memory stages, extensions to
the model of Mukhopadhyagt al. [4]. In this model, we set the (b)

O'eggtra//l, of Dezira 10 0.028.
Table 2 classifies the pipeline stages based on whether thefyigure 2: Histogram of critical pipeline loops in the updated eval-

are modeled as containing mostly logic, a small SRAM structure Uation (a) and the original evaluation (b).

or a large SRAM structure. SRAM structures are sized usin

CACTI [7]. Their critical path is composed of decode, wordline,

bitline, and sense amplifier. The combination of wordline driver,

gponent of process variation parameters, and (3) the fraction of wire

delay in the loop. Specifically, loops with a large number of stages

wordline, pass transistor, bitline, and sense amplifier is modeled Will be able to average out inter—stz_age delay variatior_1 better. There-
' ’ ' re, they are less likely to be critical. From the figure, we see

three transistor dfelays plus wire delay. Th? access time of Iarg&at the branch misprediction looprfis9 and the load forwarding
SRAM structures is set to three cycles, of which one is taken by th?oop (dfwd) are almost never critical because of the large number

decoder. The access time of small SRAM structures is set to on . . .
cycle, equally divided into decoder delay, wordline delay, and thegf stages in these loops. On the other hand, single-cycle loops like

: i : integer and floating-point renamigen andfpren) and integer exe-
rest. As in the original ReCycle paper, we assume that wire dela 9 gp eel prer) 9

Yute falu) are frequently critical. The frequent criticality of these
is unaffected by variation. For this reason, considering stages Iiko]a falu) q y 4 y

Bpred IntMap, andFPMapas logic stages (even though they also oops is clearer in this paper than in Figure 7 of the original Recycle

i Il tables) i i i paper [8], which we repeat in Figure 2(b).
contain small tables) is a conservative assumption. As indicated in Section 2.1, several pipeline stages are mod-

Mostly Togic Bpred, IntMap, FPMap, IntExec, FPAAd, FPMU eled to have the same systematic component of variation parame-

Small SRAM || IntQ, LdStU, FPQ, FPReg, IntReg ters. This includes, for example, the three stages in IF. These stages

Large SRAM ]| Dcache, IF are only able to average out theimdomcomponent of variation.
Table 2: Classification of pipeline stages. Therefore, loops that contain this type of stages are more likely to

We repeat every experiment 10,000 times. We use a statistidde critical than other loops with the same total number of stages.

package to generate specific instantiations of the variation map&Ve can see this from ttpaddandfpmulloops. Each of the FPAdd

Like in the original ReCycle paper, the default pipeline has a per-and FPMul functional units has 4 stages, which have the same sys-

stage useful logic depth equal to 17FO4. tematic component of variation. Therefore, these loops are critical
more often than thétchloop.
H Finally, since wires are not subject to variation in the model,
3. Evaluatlon loops with a higher fraction of wire delay will be less affected by
3.1. Timing Issues variation, and hence less likely to be critical. This explains why

In any given pipeline, the loop with the longest average stag h_e single-cycle integer and_ f_Ioatlng-pomt |ssuenloam£meand
pissu¢ are less frequently critical than the other single-cycle loops:

delay limits the ability of ReCycle to further reduce the pipeline ! . A ; -
clock period. This loop is called theitical one. Figure 2(a) shows iissueand fpissueconsist of SRAM structures dominated by wire
delay, whileiren, fpren andialu are modeled as logic stages.

the number of times that each pipeline loop is critical for the batch . ! .
Overall, given that single-cycle loops are often critical, ReCycle

of 10,000 pipelines considered in this paper. il iv be | fractive than in the pipell del d
The probability of criticality of a pipeline loop depends on three V" Necessartly be less efiective than in the pipeliné model use

factors: (1) the number of pipeline stages in the loop, (2) whethef" the original ReCycle paper. This can be seen from Figure 3(a),

some of these stages share the same value for the systematic co\“ﬁhICh shows the average and maximum time skew that ReCycle



inserts per pipeline register, as we reduce the useful logic depth of
the pipeline stages from the default 17FO4 to 6FO4. The skews are

shown relative to the stage delay of a no-variation pipeline of the ) 1.27 -
same logic depth of the stages. For clarity, Figure 3(b) shows the % 1.0
corresponding figure from the original ReCycle paper, which was g_ ’
Figure 9(b). o 0.87
5 0.67
>
= 0.4
[ Maximum skew I Average skew | ‘_5 g
50 0 0.2
< o
< 40 0 \ \ \
230 Var ReCycle  NoVar
22
3 10 (@)
@
0
17 16 15 14 13 12 11 10 9 8 7 6
Useful logic per stage(F04) -
0 1.27 + ]
(2) 104 &
© 1.0
g 0.8
- Max E 0.67
: . £ 0.4
—5) g [ — D o e C_d -
25 o 0.27
FN . 04
£ S S 0 |

I I
] Var ReCycle  NoVar

I I I I
17 16 15 14 13 12 11 10 9 8 7 6
Useful logic per stage (FO4)

(b)

(b)
) _ _ _ Figure 4: Pipeline frequency of the environments considered, for
Figure 3: Skew versus logic depth inserted by ReCycle in the up-the updated evaluation (a) and the original evaluation (b).

dated evaluation (a) and the original evaluation (b).
quency is 15% higher thavlar's, ReCycle recovers 40% of the fre-

The skew is a measure of the stage unbalance in the pipelingyency lost to variation. These figures are smaller than the ones
loops. In both figures, both the average and maximum skews tenSresented in the original ReCycle paper. Indeed, according to Fig-
to increase as we decrease the logic depth. The reason is thae 4(b), the average frequency gains delivered by ReCycledaver
for shorter stages, the random component of the variation is morg,g 12%, which correspond to 63% of the frequency lost to varia-
prominent, increasing the unbalance. However, while the averaggon, Overall, the presence of single-cycle loops results in relatively
and maximum skews were 10-15% and around 40%, respectivelgmajier gains of ReCycle ovir. Moreover, the corrections made

in the original paper, they are only 5-7% and around 30%, respegy, the critical path models result in slightly smaller differences be-
tively, in Figure 3(a). Consequently, ReCycle is less effective in thisyyeenNoVarandVar.

paper. Next, we compare the three environments as we vary the useful
3.2. Frequency After Applying ReCycle logic depth per pipeline stage from 17FO4 to 6FO4. This is shown
érj Figure 5(a), where the curves are normalized tofadrequency

with 17FO4. This figure corresponds to Figure 11 in the original
ReCycle paper, which we show as Figure 5(b).

The two figures show the same trends. As we decrease the logic
depth per stage, the frequency increases for all three environments.
Moreover, the separation between W& and the other curves in-
greases, which means that process variation hurts the frequency of

We now evaluate the frequency increases delivered by ReCycl
Figure 4(a) shows the frequency of three different environments
pipeline with process variation and no ReCyadlar, pipeline with
variation and ReCycleReCyclg, and pipeline with no variation
(NoVan. The bars are normalized to the average frequen&jaof
The Var and ReCyclebars show the range of frequencies for the
different experiments. The figure corresponds to Figure 10 of the” =~

L _ . ; a pipeline more.
original ReCycle paper fap=0.5, which we show as Figure 4(b). L ) . N

The frequency improvement due to ReCycle depends on which The main difference between the two figures is that, in this pa-

loop contains the slowest stage after variation. If such a loop ha%er’ theReCyclecurve is relatively closer to théar curve than in

many stages and significant inter-stage delay variation, ReCycle i fetk? rlg!na: ReC;l/cIIe paper. t;l]'he 4 eallson '; tr(1:at, ldqe to Ithfe plrelsence
likely to improve the pipeline frequency significantly. On the other ol the single-cycle foops In the pipeline, Ret.ycle IS refallvely 1ess

hand, if such a stage happens to be in a single-cycle loop, ReCycFeﬁeCtlve than before. ngralReCycIancreasgs the average fre-
does not improve the frequency at all. gquency ovelar by about 6% across all the design points. Note that

htgeVar curve reaches different values in this paper and in the origi-

frequency of the pipeline by 6% ovshr. Given thatNoVars fre- nal ReCycle paper. This is due to the corrections in the critical path



We extend the Donor algorithm so that we add Donor stages to
loops as they become critical and, in the second approach, we ad-
ﬁgg\é‘;’}&e ditionally apply FBB to single-cycle loops as they become critical.
—~Var We stop when the performance finishes increasing any further, or we
reach the power limit of 30W per processor. Note that the optimal
configuration of Donor stages and FBB depends on the workload.
Such configuration could either be set once after manufacture, based
R S v on the assumption of a representative workload mix, or it could be
6 8 10 12 14 16 adjusted dynamically based on the currently-running workload. We

Useful logic per stage(F04) call such configurationStDonor+FBBand DynDonor+FBB re-

spectively.

(@) In our experiments, we find that, if we just apply ReCycle plus
Donor stages, we obtain negligible performance gains over ReCy-
cle. This is because single-cycle loops quickly become critical.
Consequently, we focus on ReCycle plus Donor stages plus FBB for
= critical single-cycle loops. In this environment, Figure 6(a) shows
—— NoVar the average number of Donor stages added to a pipeline, and the
N --- ReCycle range for the different pipelines. There is a bar for each SPEC ap-
plication, and a bar labelestaticfor the mean across applications.
The latter corresponds to tis#Donor+FBBenvironment, while the
other bars correspond to tlizynDonor+FBB environment. The
figure also shows the range of values across the experiments. We
can see that the number of Donor stages is typically between 1 and
2. This is a smaller number than in the original ReCycle paper,
which was around 10 — as shown in Figure 6(b). This is largely
because we do not add Donor stages to single-cycle loops. As a
result, Donor stages are likely to be less effective in our pipeline.

Relative frequency

L e A A
o v o u o

3.0

2.5

Relative frequency
2.0

15

1.0

I I I I I I I
6 8 10 12 14 16 18

Useful logic per stage(FO4)

(b)

Extra Donor stages

OFRP NWMOO
-
=

Figure 5: Pipeline frequency for different useful logic depths per YL RN OSSO O 8§ DL Lo O
pipeline stage in the updated evaluation (a) and the original evalua- %’o%o@ - %39%% % %%‘%6‘%0‘%%’ é’é\%»o’@@%@@%
tion (b). ® 7 %
models.
3.3. Adding Donor Stages and Forward Body Bias @)

The frequency improvement due to ReCycle is constrained by
the critical loop in the pipeline. To further improve the pipeline fre-
quency, we must find a way to decrease the average stage delay ig 20
the critical loop. In the original ReCycle paper, this was accom- % 15
plished by inserting ®onor stage in the loop. This operation re- £ 10
duces the average stage delay in this loop, making another loop th@ 5
critical one. Adding a Donor stage increases the pipeline frequency;
but makes the pipeline loop longer, thus decreasing the IPC when 0 N
the loop latencies are exposed. The original paper showed that, with % BE&°E g S5 E é S é £3 E “;5 > % E
a certain number of loops enhanced with a Donor stage, an overall © @ ER

higher performance can be obtained.

In this paper, we repeat the experiments. However, we find that (b)
adding a Donor stage to a single-cycle loop when it is critical results ) )
in an unsurmountable IPC penalty. Consequently, we evaluate twh9uré 6: Number of Donor stages used in the updated evaluation
approaches. One is to add Donor stages only to critical loops thd@ and the original evaluation (b).
are longer than one cycle. The second approach is to additionally - Figyre 7 plots the average number of stages that receive FBB and
apply Forward Body Biasing (FBB) to single-cycle loops when they e range for different pipelines. These stages all belong to single-

are critical. Applying FBB improves the speed of the stage at thecycle loops. We can see that we typically apply FBB to about 3
cost of an increase in leakage power [9].



stages. We estimate that, in the worst case, when all 5 stages receiMeVar is 4% and 10% higher, respectively, th&ar. This is in
FBB for a maximumAV;, of -75mV, we add about 7% to the total contrast to the original ReCycle paper, wh&eCycleand NoVar
power consumed by each processor (and private caches). were 9% and 14% higher, respectively, thear. The corrected

critical path model has decreased the difference betweemnd

o6 NoVarslightly. More importantly, the combination of more realistic
@5 pipeline model and critical path model has decreased the relative
g’é;‘ % effectiveness of ReCycle: it is now only able to recover 40% of the
g, gap betweewar andNoVarinstead of 64% in the original paper.
* The figure also shows the impact of applying ReCycle plus
0 5 55 000 @oo %é éo‘ o o é PRI Donor stag(_es pIus_FBI_Bfor single-cycle Ioops_. We see that the sta_ltic
33%6% TR B % oecg&%ﬁ‘&% % %% @%é 49% and dynamic application of the Donor algorithm deliver approxi-
© % - % % mately the same performance. Such performance is roughly 9%
higher thanvar. Therefore, with this technique, we recover 90%
Figure 7: Number of stages with forward body bias. of the performance lost to variation. This is in contrast to the per-
formance recovered with ReCycle and Donor stages in the original
3.4. Overall Performance Evaluation paper: 107% and 114% of the performance lost to variation depend-
Finally, Figure 8(a) compares the performancevaf, Novar,  ing on whether we us8tDonoror DynDonor, respectively.

ReCycle ReCycle plus the static application of the Donor algo-  Finally, we note that applying ReCycle plus Donor stages does
rithm plus FBB ReCycle + StDonor + FBB and ReCycle plus nhot improve the performance over ReCycle alone much. We need
the dynamic application of the Donor algorithm plus FB®Cycle  an additional technique to speed-up the stage in critical single-cycle
+ DynDonor + FBB). This figure corresponds to Figure 14 of the pipeline loops. In this paper, we used FBB. However, other related
original ReCycle paper, which is shown as Figure 8(b). The statidechniques such as Adaptive Supply Voltage (ASV) could be used.
and dynamic Donor environments are generated as in the original .

ReCycle paper. Specifically, DynDonor, we rerun the Donor al- 4. Conclusions

gorithm at the beginning of each application. Moreover, we assume

that we know the average IPC impact of adding each Donor stagF Inltgg fggg; W_?hrepllcatedl_tht(_e ev_alulgtlon 0(; thi_Rel-Cyfr:e pager
from a previous profiling run. In the figure, the bars show the aver- rom with more realistic pipelin€ and critical path mod-

age performance and, except fdoVar, include a segment with the els. Most notably, the pipeline has five single-cycle loops, which

range of values measured. All bars are normalized to the averaqg significant because single-cycle loops are not amenable to cycle

Var, Ime stealing.

In this more realistic environment, ReCycle only recovered on
average 40% of the performance lost to process variation. In con-
trast, in the original paper paper, ReCycle regained 64%. More-
over, we found that further adding Donor stages did not signifi-
cantly increase performance. Consequently, we proposed to extend
the Donor algorithm by applying Forward Body Biasing (FBB) to
single-cycle loops when they become critical. With ReCycle, Donor
stages, and FBB, we regained on average 90% of the performance
lost to variation — still short of the roughly 110% regained by Re-
Cycle plus Donor stages alone in the original ReCycle paper.

References

() [1] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D. Hogen-
miller, E. J. Nowak, and N. J. Rohrédigh Speed CMOS Design Styles
Kluwer Academic Publishers, 1999.
[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Zeisler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculationldternational Sym-
1= = posium on Microarchitecturddecember 2003.
== —= [3] géE. ggegssler. The Alpha 21264 microproces$BEE Micro, 19(2):24—
, 1999.

[4] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure
probability and statistical design of SRAM array for yield enhancement
in nanoscaled CMOSIEEE Transactions on Computer-Aided Design
24(12):1859-1880, December 2005.

[5] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its

V‘ R d | N ‘V R C‘ | R C‘ ‘ applications to CMOS inverter delay and other formuldsurnal of

ar eLycle ovar eLycle+ elLycle+ Solid-State Circuits25(2):584-594, 1990.
StDonor DynDonor  [6] S.R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas. VARIUS: A model of process variation and resulting tim-
ing errors for microarchitects. IEEEE Transactions on Semiconductor
(b) Manufacturing February 2008.
[7] D. Ta/rjan, S. Thgziyoor, and N. Jouppi. CACTI 4.0. Technical Report
i . i i 2006/86, HP Laboratories, June 2006.
Figure 8 Performance Qf_dlﬁerent er.wlronments for the updated[g] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adaptation
evaluation (a) and the original evaluation (b). to tolerate process variation. International Symposium on Computer
Architecture June 2007.

Relative BIPS
© 000~ =
ON PO OO®MONDN

T T T T T
Var ReCycle ReCycle+ ReCycle+ NoVar
StDonor+  DynDonor+
FBB FBB

1.2

Relative BIPS
00 04 038

From Figure 8(a), we see that the performanc&eCycleand



[9] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-  to-die and within-die parameter variations on microprocessor frequency
drakasan, and V. De. Adaptive body bias for reducing impacts of die-  and leakageJournal of Solid-State Circuit87(11):1396-1402, 2002.



