
An Updated Evaluation of ReCycle

Abhishek Tiwari and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

{atiwari,torrellas}@cs.uiuc.edu

Abstract
Process variation reduces a pipeline’s maximum attainable fre-

quency by creating unbalance in the stage delays. As a result, the
pipeline ends up cycling with a period close to that of the slow-
est pipeline stage. ReCycle was proposed in ISCA 2007 as a
framework for comprehensively applyingcycle time stealingto bal-
ance the stage delays under process variation, thereby allowing the
pipeline to cycle with a period close to the average latency of the
stages.

This paper duplicates the evaluation of ReCycle with more re-
alistic pipeline and critical path models than in the original paper.
Most notably, we do not assign one cycle to the feedback path of
each pipeline loop. As a result, our pipeline contains five single-
cycle loops. This is significant because these loops are not amenable
to cycle time stealing.

In this updated environment, ReCycle is able to regain on av-
erage only 40% of the performance lost to process variation. In
contrast, in the original paper, ReCycle regained 64%. Moreover,
we find that further adding Donor stages does not significantly in-
crease performance. Consequently, we propose to extend the Donor
algorithm by applying Forward Body Biasing (FBB) to single-cycle
loops when they become critical. With ReCycle, Donor stages, and
FBB, we regain on average 90% of the performance lost to variation
— still short of the roughly 110% regained by ReCycle and Donor
stages alone in the original ReCycle paper.

1. Introduction
Process variation has been identified as a key problem facing

microprocessor design in the sub-45nm regime. Process variation
refers to the fluctuation in transistor properties such as switching
speed, across different transistors on a chip or across chips. Due to
process variation, some pipeline stages of a processor end up having
longer path delays. In this case, the entire pipeline ends up being
clocked at a lower frequency than nominal.

ReCycle was proposed in ISCA 2007 [8] as a technique to mit-
igate this performance degradation caused by process variation. It
relies on the observation that while the processor frequency is de-
termined by the slowest pipeline stage, other stages in the pipeline
are faster and end up wasting a significant portion of their cy-

cle time. Consequently, ReCycle comprehensively usescycle time
stealing[1] to transfer this timing slack from the fast stages to the
slower ones, thereby allowing the slow stages to take more than one
clock period to evaluate their results. As a result, the clock period
of the processor is no longer equal to the maximum stage delay; it
ends up becoming close to the average stage delay in the slowest
pipeline loop. ReCycle provided a framework to comprehensively
apply cycle time stealing within pipeline loops.

ReCycle further improves the pipeline frequency by inserting
empty Donor stages in the slowest (orcritical) pipeline loop — the
one that, by having the longest average stage delay, determines the
processor cycle time. Donor stages “donate” timing slack to other
stages in the loop and reduce the average stage delay within the
loop.

The performance improvements obtained by ReCycle and Donor
stages depend on the structure of the pipeline loops. In the orig-
inal ReCycle paper, the feedback path of each pipeline loop was
assumed to take one cycle. This is not very realistic. Moreover, it
especially distorts tight, single-cycle pipeline loops, which it trans-
forms into two-cycle loops. Such loops now appear to be less crit-
ical than they realistically are, because ReCycle can move time be-
tween the pipeline stage cycle and the feedback path cycle. In real-
ity, single-cycle loops are not amenable to cycle time stealing.

In this paper, we replicate the evaluation of the ReCycle paper
from ISCA 2007 with more realistic pipeline and critical path mod-
els than in the original paper. Most notably, we do not assign one
cycle to the feedback path of each pipeline loop. Instead, the feed-
back path consumes a fraction of the cycle time assigned to the last
stage of the loop. As a result, our pipeline retains several single-
cycle loops.

In this new environment, ReCycle recovers on average only 40%
of the performance lost to process variation. In contrast, in the orig-
inal paper, ReCycle regained 64%. Moreover, we find that further
adding Donor stages does not significantly increase performance.
Consequently, we propose to extend the Donor algorithm by apply-
ing Forward Body Biasing (FBB) to single-cycle loops when they
become critical. With ReCycle, Donor stages, and FBB, we regain
on average 90% of the performance lost to variation — still short of
the roughly 110% regained by ReCycle and Donor stages alone in
the original ReCycle paper.

2. Background
2.1. Pipeline Evaluated

In this paper, we evaluate ReCycle with a more realistic model
of the Alpha 21264 pipeline [3] than in the original ReCycle pa-

FPRegFPQFPMap

IntExecIntMap IntQ IntReg

8

LdStUBpred

2

3

4

5

6

9

10 12

1

711IF

FPMul

FPAdd

Dcache

(a) Pipeline structure used in ReCycle.

IF
Bpred

IntMap

FPMap

IntQ

FPQ

IntReg IntExec

FPReg

LdStU

FPAdd
FPMul

Dcache

1

2

3

4

5

6

9

10

7

8

12

11

(b) Pipeline structure used in this paper.

Figure 1: Simplified version of the Alpha 21264 pipeline used in the original ReCycle paper (a) and in this paper (b).

per [8]. Specifically, in the original paper, the feedback paths in
all of the pipeline loops were modeled to take one pipeline cycle.
This is not very realistic and especially distorts tight pipeline loops:
it transforms loops composed of a single pipeline stage into two-
cycle loops. Such loops now appear to be less critical than they are,
because ReCycle can move time between the pipeline stage cycle
and the feedback path cycle.

In contrast, in this paper, we model the feedback path to take part
of the time assigned to the last pipeline stage of the corresponding
loop. Consequently, a feedback path does not add any additional
cycle to its loop. In particular, a loop composed of a single pipeline
stage truly takes one single cycle. Such a loop now retains its critical
effect: it is not possible to transfer time between the logic part of
the stage and the feedback path.

Figures 1(a) and (b) show the simplified Alpha 21264 pipeline
used in the original ReCycle paper and the one used in this paper,
respectively. The long boxes represent pipeline stages, while the
short boxes are the pipeline registers between them. Some of the
long boxes are in fact multiple pipeline stages separated by pipeline
registers, as shown with the dashed lines. For example, the IF has
three pipeline stages separated by pipeline registers. We put multi-
ple stages under the same box like in IF to indicate that the critical
paths in the stages are so spatially intertwined, that the values of the
systematic component of process variation parameters are assumed
to be the same for the stages. Lines between logical stages represent
communication links.

The figures show the front end of the pipeline followed by the
stages in the integer datapath along the top, the stages in the float-
ing point data path along the bottom, and the load-store unit and
cache in the middle. While a real processor has more communica-
tion links, these figures show only those that were considered most
important or most time-critical. For example, the write back links
are not shown, since write back is less time-critical. A total of 12
feedback paths (and therefore loops) are shown and labeled. Ta-
ble 1 describes the loops. In increasing numerical order, these loops
will be referred to like in the original ReCycle paper as:fetch, iren,
fpren, iissue, fpissue, ialu, fpadd, fpmul, bmiss, ildsp, fpldsp, and
ldfwd.

In Figure 1(a), each feedback path starts and ends in a pipeline
register and, therefore, is assigned one cycle. In Figure 1(b), each
feedback path starts inside a pipeline stage and ends in a pipeline
register. It is assigned part of the stage’s delay.

In Figure 1(b), there are five single-cycle loops, namely the inte-
ger and floating-point rename loops, the integer and floating-point

Name Description Fdbk Components
Path

Fetch Dependence between 1 IF, Bpred, 1
PC and Next PC

Int Dependence between 2 IntMap, 2
rename inst. assigning a rename
FP tag and a later one 3 FPMap, 3
rename reading the tag
Int Dependence between 4 IntQ, 4
issue the select of a
FP producer inst. and the 5 FPQ, 5
issue wakeup of a consumer
Int ALU Forwarding 6 IntExec, 6
FPAdd from execute 7 FPAdd, 7
FPMul to execute 8 FPMul, 8
Branch Mispredicted IF, Bpred, IntMap
mispred. branch 9 IntQ, IntReg,

IntExec, 9
Int load 10 IntQ, LdStU,
misspecul Load miss Dcache, 10
FP load replay 11 FPQ, LdStU,
misspecul Dcache, 11
Load Forwarding from load IntExec, 9, IF, Bpred,
forward to integer execute 12 IntMap, IntQ, LdStU,

Dcache, 12

Table 1: Loops in the pipeline considered.

issue loops, and the integer execute loop. In Figure 1(a), these loops
took two cycles instead of one because of the cycle-long feedback
paths.

As a result of the changes to the feedback path latency men-
tioned above, some constraints associated with the pipeline stages
also change. Specifically, in the pipeline of Figure 1(a), the setup
and hold constraints for a feedback path originating in registeri and
ending in registerj were:

δi + Tfeedback delay + Tsetup ≤ TCP + δf

δi + Tfeedback delay ≥ δf + Thold

whereTfeedback delay is the delay of the feedback path,TCP is
the pipeline’s clock period,Tsetup andThold are the setup and hold
times, respectively, andδ is the clock skew at the corresponding
register [8]. In the revised pipeline of Figure 1(b), these constraints
are replaced by:

δi + Tstage delay + Tfeedback delay + Tsetup ≤ TCP + δf

δi + Tstage delay + Tfeedback delay ≥ δf + Thold

whereTstage delay is the delay of the logic in the last pipeline
stage of the loop. The total number of constraints for ReCycle re-
mains the same.

2.2. Variation Model
To model process variation, we use the same model as in the

original ReCycle paper, namely, the model in [6]. We model the
within die (WID) variation in transistor threshold voltage (Vth) and
effective channel length (Leff). The WID variation is subdivided
into randomandsystematiccomponents. Each of these components
is assumed to be normally distributed. The systematic variation
is modeled as a multivariate normal distribution with a Spherical
spatial correlation; the random variation is modeled as an uncorre-
lated normal distribution at the transistor level. All assumptions on
Vth andLeff variation are the same as in the original ReCycle pa-
per [8]. In particular,Vth’s variation has an overallσ/µ of 0.09 and
a correlation rangeφ for systematic variation of 0.5. We model a
CMP with four cores.

The transistor delays are computed fromVth and Leff using
the alpha power law [5]. To increase accuracy, the distribution and
timing of the critical paths in a pipeline stage used in this paper
differs slightly from the model used in the original ReCycle paper.
Specifically, the latter assumed that the number of critical paths in
a pipeline stage is proportional to the area of the stage. In this pa-
per, we use the more realistic critical path distribution and timing
described in [6]. That model uses, for logic stages, experimental
data from Ernstet al. [2] and, for memory stages, extensions to
the model of Mukhopadhyayet al. [4]. In this model, we set the
σextra/µ of Dextra to 0.028.

Table 2 classifies the pipeline stages based on whether they
are modeled as containing mostly logic, a small SRAM structure,
or a large SRAM structure. SRAM structures are sized using
CACTI [7]. Their critical path is composed of decode, wordline,
bitline, and sense amplifier. The combination of wordline driver,
wordline, pass transistor, bitline, and sense amplifier is modeled as
three transistor delays plus wire delay. The access time of large
SRAM structures is set to three cycles, of which one is taken by the
decoder. The access time of small SRAM structures is set to one
cycle, equally divided into decoder delay, wordline delay, and the
rest. As in the original ReCycle paper, we assume that wire delay
is unaffected by variation. For this reason, considering stages like
Bpred, IntMap, andFPMapas logic stages (even though they also
contain small tables) is a conservative assumption.

Mostly logic Bpred, IntMap, FPMap, IntExec, FPAdd, FPMul
Small SRAM IntQ, LdStU, FPQ, FPReg, IntReg
Large SRAM Dcache, IF

Table 2: Classification of pipeline stages.

We repeat every experiment 10,000 times. We use a statistics
package to generate specific instantiations of the variation maps.
Like in the original ReCycle paper, the default pipeline has a per-
stage useful logic depth equal to 17FO4.

3. Evaluation
3.1. Timing Issues

In any given pipeline, the loop with the longest average stage
delay limits the ability of ReCycle to further reduce the pipeline
clock period. This loop is called thecritical one. Figure 2(a) shows
the number of times that each pipeline loop is critical for the batch
of 10,000 pipelines considered in this paper.

The probability of criticality of a pipeline loop depends on three
factors: (1) the number of pipeline stages in the loop, (2) whether
some of these stages share the same value for the systematic com-

fetch
iren fpren

iissue
fpissue

ialu fpadd
fpmul

bmiss
ildsp

fpldsp
ldfwd

Pipeline loop

0
4
8

12
16
20
24

%
 p

ip
el

in
es

(a)

fetch
iren fpren

iissue
fpissue

ialu fpadd
fpmul

bmiss
ildsp fpldsp

ldfwd

Pipeline loop

%
 p

ip
el

in
es

0
5

10
15
20
25
30
35

(b)

Figure 2: Histogram of critical pipeline loops in the updated eval-
uation (a) and the original evaluation (b).

ponent of process variation parameters, and (3) the fraction of wire
delay in the loop. Specifically, loops with a large number of stages
will be able to average out inter-stage delay variation better. There-
fore, they are less likely to be critical. From the figure, we see
that the branch misprediction loop (bmiss) and the load forwarding
loop (ldfwd) are almost never critical because of the large number
of stages in these loops. On the other hand, single-cycle loops like
integer and floating-point rename (iren andfpren) and integer exe-
cute (ialu) are frequently critical. The frequent criticality of these
loops is clearer in this paper than in Figure 7 of the original Recycle
paper [8], which we repeat in Figure 2(b).

As indicated in Section 2.1, several pipeline stages are mod-
eled to have the same systematic component of variation parame-
ters. This includes, for example, the three stages in IF. These stages
are only able to average out theirrandomcomponent of variation.
Therefore, loops that contain this type of stages are more likely to
be critical than other loops with the same total number of stages.
We can see this from thefpaddandfpmulloops. Each of the FPAdd
and FPMul functional units has 4 stages, which have the same sys-
tematic component of variation. Therefore, these loops are critical
more often than thefetchloop.

Finally, since wires are not subject to variation in the model,
loops with a higher fraction of wire delay will be less affected by
variation, and hence less likely to be critical. This explains why
the single-cycle integer and floating-point issue loops (iissueand
fpissue) are less frequently critical than the other single-cycle loops:
iissueand fpissueconsist of SRAM structures dominated by wire
delay, whileiren, fpren, andialu are modeled as logic stages.

Overall, given that single-cycle loops are often critical, ReCycle
will necessarily be less effective than in the pipeline model used
in the original ReCycle paper. This can be seen from Figure 3(a),
which shows the average and maximum time skew that ReCycle

inserts per pipeline register, as we reduce the useful logic depth of
the pipeline stages from the default 17FO4 to 6FO4. The skews are
shown relative to the stage delay of a no-variation pipeline of the
same logic depth of the stages. For clarity, Figure 3(b) shows the
corresponding figure from the original ReCycle paper, which was
Figure 9(b).

17 16 15 14 13 12 11 10 9 8 7 6
Useful logic per stage(F04)

0

10

20

30

40

50

R
el

at
iv

e
sk

ew
(%

)

Maximum skew Average skew

(a)

R
el

at
iv

e
sk

ew
 (%

)

Useful logic per stage (FO4)

(b)

Figure 3: Skew versus logic depth inserted by ReCycle in the up-
dated evaluation (a) and the original evaluation (b).

The skew is a measure of the stage unbalance in the pipeline
loops. In both figures, both the average and maximum skews tend
to increase as we decrease the logic depth. The reason is that,
for shorter stages, the random component of the variation is more
prominent, increasing the unbalance. However, while the average
and maximum skews were 10–15% and around 40%, respectively,
in the original paper, they are only 5–7% and around 30%, respec-
tively, in Figure 3(a). Consequently, ReCycle is less effective in this
paper.

3.2. Frequency After Applying ReCycle
We now evaluate the frequency increases delivered by ReCycle.

Figure 4(a) shows the frequency of three different environments:
pipeline with process variation and no ReCycle (Var), pipeline with
variation and ReCycle (ReCycle), and pipeline with no variation
(NoVar). The bars are normalized to the average frequency ofVar.
The Var and ReCyclebars show the range of frequencies for the
different experiments. The figure corresponds to Figure 10 of the
original ReCycle paper forφ=0.5, which we show as Figure 4(b).

The frequency improvement due to ReCycle depends on which
loop contains the slowest stage after variation. If such a loop has
many stages and significant inter-stage delay variation, ReCycle is
likely to improve the pipeline frequency significantly. On the other
hand, if such a stage happens to be in a single-cycle loop, ReCycle
does not improve the frequency at all.

From the figure, we see that, on average, ReCycle improves the
frequency of the pipeline by 6% overVar. Given thatNoVar’s fre-

Var ReCycle NoVar
0

0.2
0.4
0.6
0.8
1.0
1.2

R
el

at
iv

e
fr

eq
ue

nc
y

(a)

Var ReCycle NoVar
0

0.2
0.4
0.6
0.8
1.0
1.2

R
el

at
iv

e
fr

eq
ue

nc
y

(b)

Figure 4: Pipeline frequency of the environments considered, for
the updated evaluation (a) and the original evaluation (b).

quency is 15% higher thanVar’s, ReCycle recovers 40% of the fre-
quency lost to variation. These figures are smaller than the ones
presented in the original ReCycle paper. Indeed, according to Fig-
ure 4(b), the average frequency gains delivered by ReCycle overVar
are 12%, which correspond to 63% of the frequency lost to varia-
tion. Overall, the presence of single-cycle loops results in relatively
smaller gains of ReCycle overVar. Moreover, the corrections made
to the critical path models result in slightly smaller differences be-
tweenNoVarandVar.

Next, we compare the three environments as we vary the useful
logic depth per pipeline stage from 17FO4 to 6FO4. This is shown
in Figure 5(a), where the curves are normalized to theVar frequency
with 17FO4. This figure corresponds to Figure 11 in the original
ReCycle paper, which we show as Figure 5(b).

The two figures show the same trends. As we decrease the logic
depth per stage, the frequency increases for all three environments.
Moreover, the separation between theVar and the other curves in-
creases, which means that process variation hurts the frequency of
a pipeline more.

The main difference between the two figures is that, in this pa-
per, theReCyclecurve is relatively closer to theVar curve than in
the original ReCycle paper. The reason is that, due to the presence
of the single-cycle loops in the pipeline, ReCycle is relatively less
effective than before. Overall,ReCycleincreases the average fre-
quency overVar by about 6% across all the design points. Note that
theVar curve reaches different values in this paper and in the origi-
nal ReCycle paper. This is due to the corrections in the critical path

6 8 10 12 14 16
Useful logic per stage(F04)

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
fr

eq
ue

nc
y

NoVar
ReCycle
Var

(a)

6 8 10 12 14 16 18

1.
0

1.
5

2.
0

2.
5

3.
0

Useful logic per stage(FO4)

R
el

at
iv

e
fr

eq
ue

nc
y

NoVar
ReCycle
Var

(b)

Figure 5: Pipeline frequency for different useful logic depths per
pipeline stage in the updated evaluation (a) and the original evalua-
tion (b).

models.

3.3. Adding Donor Stages and Forward Body Bias
The frequency improvement due to ReCycle is constrained by

the critical loop in the pipeline. To further improve the pipeline fre-
quency, we must find a way to decrease the average stage delay in
the critical loop. In the original ReCycle paper, this was accom-
plished by inserting aDonor stage in the loop. This operation re-
duces the average stage delay in this loop, making another loop the
critical one. Adding a Donor stage increases the pipeline frequency,
but makes the pipeline loop longer, thus decreasing the IPC when
the loop latencies are exposed. The original paper showed that, with
a certain number of loops enhanced with a Donor stage, an overall
higher performance can be obtained.

In this paper, we repeat the experiments. However, we find that
adding a Donor stage to a single-cycle loop when it is critical results
in an unsurmountable IPC penalty. Consequently, we evaluate two
approaches. One is to add Donor stages only to critical loops that
are longer than one cycle. The second approach is to additionally
apply Forward Body Biasing (FBB) to single-cycle loops when they
are critical. Applying FBB improves the speed of the stage at the
cost of an increase in leakage power [9].

We extend the Donor algorithm so that we add Donor stages to
loops as they become critical and, in the second approach, we ad-
ditionally apply FBB to single-cycle loops as they become critical.
We stop when the performance finishes increasing any further, or we
reach the power limit of 30W per processor. Note that the optimal
configuration of Donor stages and FBB depends on the workload.
Such configuration could either be set once after manufacture, based
on the assumption of a representative workload mix, or it could be
adjusted dynamically based on the currently-running workload. We
call such configurationsStDonor+FBBand DynDonor+FBB, re-
spectively.

In our experiments, we find that, if we just apply ReCycle plus
Donor stages, we obtain negligible performance gains over ReCy-
cle. This is because single-cycle loops quickly become critical.
Consequently, we focus on ReCycle plus Donor stages plus FBB for
critical single-cycle loops. In this environment, Figure 6(a) shows
the average number of Donor stages added to a pipeline, and the
range for the different pipelines. There is a bar for each SPEC ap-
plication, and a bar labeledstatic for the mean across applications.
The latter corresponds to theStDonor+FBBenvironment, while the
other bars correspond to theDynDonor+FBB environment. The
figure also shows the range of values across the experiments. We
can see that the number of Donor stages is typically between 1 and
2. This is a smaller number than in the original ReCycle paper,
which was around 10 — as shown in Figure 6(b). This is largely
because we do not add Donor stages to single-cycle loops. As a
result, Donor stages are likely to be less effective in our pipeline.

am
m

p
applu
apsi
art
crafty
equake
gap
gcc
gzip
m

cf
m

esa
m

grid
parser
sixtrack
sw

im
tw

olf
vortex
vpr
w

upw
ise

static

0
1
2
3
4
5
6

E
xt

ra
 D

on
or

 s
ta

ge
s

(a)

am
m

p

ap
pl

u

ap
si ar
t

cr
af

ty

eq
ua

ke

ga
p

gc
c

gz
ip

m
cf

m
es

a

m
gr

id

pa
rs

er

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

gm
ea

n

E
xt

ra
 D

on
or

 s
ta

ge
s

0

5

10

15

20

(b)

Figure 6: Number of Donor stages used in the updated evaluation
(a) and the original evaluation (b).

Figure 7 plots the average number of stages that receive FBB and
the range for different pipelines. These stages all belong to single-
cycle loops. We can see that we typically apply FBB to about 3

stages. We estimate that, in the worst case, when all 5 stages receive
FBB for a maximum∆Vth of -75mV, we add about 7% to the total
power consumed by each processor (and private caches).

am
m

p
applu
apsi
art
crafty
equake
gap
gcc
gzip
m

cf
m

esa
m

grid
parser
sixtrack
sw

im
tw

olf
vortex
vpr
w

upw
ise

static

0
1
2
3
4
5
6

S

ta
ge

s
F

B
B

Figure 7: Number of stages with forward body bias.

3.4. Overall Performance Evaluation
Finally, Figure 8(a) compares the performance ofVar, NoVar,

ReCycle, ReCycle plus the static application of the Donor algo-
rithm plus FBB (ReCycle + StDonor + FBB), and ReCycle plus
the dynamic application of the Donor algorithm plus FBB (ReCycle
+ DynDonor + FBB). This figure corresponds to Figure 14 of the
original ReCycle paper, which is shown as Figure 8(b). The static
and dynamic Donor environments are generated as in the original
ReCycle paper. Specifically, inDynDonor, we rerun the Donor al-
gorithm at the beginning of each application. Moreover, we assume
that we know the average IPC impact of adding each Donor stage
from a previous profiling run. In the figure, the bars show the aver-
age performance and, except forNoVar, include a segment with the
range of values measured. All bars are normalized to the average
Var.

0
0.2
0.4
0.6
0.8
1.0
1.2

R
el

at
iv

e
B

IP
S

Var ReCycle ReCycle+
StDonor+
FBB

ReCycle+
DynDonor+
FBB

NoVar

(a)

(b)

Figure 8: Performance of different environments for the updated
evaluation (a) and the original evaluation (b).

From Figure 8(a), we see that the performance ofReCycleand

NoVar is 4% and 10% higher, respectively, thanVar. This is in
contrast to the original ReCycle paper, whereReCycleandNoVar
were 9% and 14% higher, respectively, thanVar. The corrected
critical path model has decreased the difference betweenVar and
NoVarslightly. More importantly, the combination of more realistic
pipeline model and critical path model has decreased the relative
effectiveness of ReCycle: it is now only able to recover 40% of the
gap betweenVar andNoVar instead of 64% in the original paper.

The figure also shows the impact of applying ReCycle plus
Donor stages plus FBB for single-cycle loops. We see that the static
and dynamic application of the Donor algorithm deliver approxi-
mately the same performance. Such performance is roughly 9%
higher thanVar. Therefore, with this technique, we recover 90%
of the performance lost to variation. This is in contrast to the per-
formance recovered with ReCycle and Donor stages in the original
paper: 107% and 114% of the performance lost to variation depend-
ing on whether we useStDonoror DynDonor, respectively.

Finally, we note that applying ReCycle plus Donor stages does
not improve the performance over ReCycle alone much. We need
an additional technique to speed-up the stage in critical single-cycle
pipeline loops. In this paper, we used FBB. However, other related
techniques such as Adaptive Supply Voltage (ASV) could be used.

4. Conclusions
In this paper, we replicated the evaluation of the ReCycle paper

from ISCA 2007 with more realistic pipeline and critical path mod-
els. Most notably, the pipeline has five single-cycle loops, which
is significant because single-cycle loops are not amenable to cycle
time stealing.

In this more realistic environment, ReCycle only recovered on
average 40% of the performance lost to process variation. In con-
trast, in the original paper paper, ReCycle regained 64%. More-
over, we found that further adding Donor stages did not signifi-
cantly increase performance. Consequently, we proposed to extend
the Donor algorithm by applying Forward Body Biasing (FBB) to
single-cycle loops when they become critical. With ReCycle, Donor
stages, and FBB, we regained on average 90% of the performance
lost to variation — still short of the roughly 110% regained by Re-
Cycle plus Donor stages alone in the original ReCycle paper.

References
[1] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D. Hogen-

miller, E. J. Nowak, and N. J. Rohrer.High Speed CMOS Design Styles.
Kluwer Academic Publishers, 1999.

[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Zeisler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. InInternational Sym-
posium on Microarchitecture, December 2003.

[3] R. E. Kessler. The Alpha 21264 microprocessor.IEEE Micro, 19(2):24–
36, 1999.

[4] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure
probability and statistical design of SRAM array for yield enhancement
in nanoscaled CMOS.IEEE Transactions on Computer-Aided Design,
24(12):1859–1880, December 2005.

[5] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas.Journal of
Solid-State Circuits, 25(2):584–594, 1990.

[6] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas. VARIUS: A model of process variation and resulting tim-
ing errors for microarchitects. InIEEE Transactions on Semiconductor
Manufacturing, February 2008.

[7] D. Tarjan, S. Thoziyoor, and N. Jouppi. CACTI 4.0. Technical Report
2006/86, HP Laboratories, June 2006.

[8] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adaptation
to tolerate process variation. InInternational Symposium on Computer
Architecture, June 2007.

[9] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De. Adaptive body bias for reducing impacts of die-

to-die and within-die parameter variations on microprocessor frequency
and leakage.Journal of Solid-State Circuits, 37(11):1396–1402, 2002.

