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Abstract
This paper makes the case for using little-known hardware
hooks in COTS (Commodity-Off-The-Shelf) computer sys-
tems to prototype architectural research ideas. We survey a
set of features in Intel processors and chipsets that can help us
estimate the overheads and benefits of proposed architectural
enhancements. We show that these features have diverse uses
in performance evaluation, power management, reliability, and
programming language support.

1 Introduction
It is well-known that architectural simulators are slow and/or
not very accurate. Nevertheless, they are an indispensable tool
in architectural evaluations because they are very flexible and
results are repeatable. While FPGAs and full custom designs
are more accurate, they are significantly more difficult to de-
sign and verify. Furthermore, the results may not be repeat-
able.

In this paper, we argue that there exists an intermediate ap-
proach that, for a set of scenarios, can be a better tradeoff than
either simulation or hardware prototyping. This approach in-
volves using little-known hardware hooks in existing COTS
processors and chipsets that can be used to emulate certain ar-
chitectural enhancements. These hooks allow us to create sim-
ple and efficient prototypes in a short time period. Moreover,
evaluations are significantly faster and more realistic than with
simulations, benchmarks are run to completion, and operating
system and network interactions are accounted for.

In the following, we first list the hardware hooks in a typi-
cal COTS processor (Section 2), describe a set of architectural
ideas that can be prototyped using these hooks (Section 3), and
then conclude.
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Figure 1: Intel chipset architecture.

2 Hardware Hooks
Figure 1 shows the architecture of a typical Intel chipset. The
main components in this system are: processor(s), Memory
Controller Hub (MCH), and IO Controller Hub (ICH).
Processor: We can modify the processor for architectural pro-
totyping by modulating the duty cycle of its clock, applying
dynamic voltage-frequency scaling (DVFS), turning hyper-
threading on and off, and writing back or invalidating caches
or TLBs. Many of these facilities are not available to the nor-
mal user. They are enabled by privileged-mode instructions
that can be issued by a program running with supervisor per-
missions. One way of using such instructions is to embed them
in a kernel module in Linux.
MCH : The MCH controls the main memory, graphics card
and the bus. We can typically change the properties of main
memory (e.g., refresh rate and line scrubbing policy), main
memory access scheduling policies, bus traffic, ECC support,
and memory power management policies by reconfiguring the
MCH. The MCH is visible to system software as a set of PCIX
registers. A subset of these registers were formerly PCI regis-
ters. The current PCIX register set subsumes the PCI registers.
All the PCIX registers are memory mapped and are accessi-
ble by any user with superuser permissions. In Linux, the su-
peruser can access any memory location, including memory-
mapped PCIX registers. By setting the values of these loca-
tions, it is possible to control different attributes of the MCH.
Further details are in [2].
ICH : The ICH controls the attributes of the I/O controller. Its
interface is similar to the MCH. Both of them use PCIX regis-
ters for communication. We can configure the ICH to change
DMA policies and to change the attributes of the controllers
for the USB, disk, LAN, and other devices.

3 Examples of Prototypes
In this section we enumerate a few of the ways in which these
hooks have been (or can be) used to prototype ideas.

3.1 Performance Evaluation

COTS systems can be shaped into different machine configura-
tions for performance evaluation. For example, systems using
the Intel SpeedStep technology can dynamically change their
frequency and the duty cycle of their clock. Moreover, it is
possible to change the latency to main memory and its band-
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width, disable/enable memory banks, and change the timing
of messages to memory. These hooks allow the study of the
effects of memory latency and bandwidth, memory size, and
processor frequency on system performance. Current proces-
sors also have an extensive set of hardware performance coun-
ters [1] that can provide further insights.

We can also change multiprocessor-related characteristics.
For example, we can dynamically change the number of pro-
cessors or the number of hardware contexts. We can also
change the memory ordering, e.g., from TSO to PSO in
SPARC processors.

Finally, another interesting feature is the ability to dynami-
cally remap DRAM addresses. This is useful, for example, to
optimize accesses that follow scatter-gather patterns, through
physical memory remapping. Such support could emulate the
schemes proposed in the Impulse project [9].

3.2 Power and Temperature Management

The typical means of system reconfiguration for power and
temperature management is some form of dynamic voltage
and/or frequency scaling. We can do it by slowly ramping
up the voltage and waiting for the PLL to relock, or by mod-
ulating the duty cycle of the clock as in Pentium-M [4]. We
can also estimate power consumption, temperature, and their
phases using hardware performance counters [5, 6].

In an Intel system, it is also possible to regulate the power
and temperature of the memory. Each DIMM has a counter
that counts the activity in a certain window of time. It then
compares this activity to a threshold to identify temperature or
power violations. If the activity exceeds the threshold, then
traffic to that DIMM is regulated. It is possible to modify the
thresholds and thus control memory temperature and power.

3.3 OS and Compiler

There are multiple ways in which COTS systems can be made
to emulate special support for OS and compiler features. For
example, it is possible to configure modern Intel systems in
virtual machine mode. In this case, the system separates part
of the memory space. This memory space can be used as a
scratch pad, can implement an in-memory buffer for storing
encrypted data, or can be used to run a separate OS. We can
then have specific policies for I/O and interrupt handling.

Another example has to do with support for run-time type
checking and security. The Pentium memory space has several
segments [3]. Each segment descriptor has a 4-bit type field
that can be set by the user. As a result, the user can set a seg-
ment to contain only objects of typeX. If any task that is not
supposed to touch an object of typeX accesses the segment,
there is an exception. This feature can be used to support com-
piler optimizations. It can also be used for security research.
For example, let us assume that objects of typeX are classi-
fied. With this feature, we can ensure that accesses to these
objects are password-protected.

3.4 I/O

The attributes of I/O devices can be changed by reconfiguring
the ICH. For example, it is possible to change the temperature
and power thresholds of the disk. This is useful to researchers
who are studying performance-power tradeoffs for disks. We
can also change the DMA policy from burst mode to cycle-
stealing mode. This can be done dynamically in response to
changes in application characteristics.

3.5 Reliability

There are several examples of using the proposed techniques
as tools for reliability research. For example, [7] focuses on
detecting memory leaks in a real system. The authors mark a
set of suspected main memory addresses by corrupting their
ECC. If these addresses are later accessed, there is an ECC
failure. At that point, the debugging software strikes the ad-
dresses out of the list of addresses suspected of being involved
in a memory leak. In this work, the authors not only reconfig-
ure the MCH to allow software to corrupt the ECC; they also
turn the scrubbing hardware off, so that the incorrect ECCs are
not corrected.

As another example, [8] looks at the problem of cycle-
accurate deterministic replay for hardware debugging. The
authors perform multiple changes to emulate a fully-
deterministic computer system. They include: increasing the
bus latencies to deterministically set the message transmission
delays to worst case, change the refresh and scrubbing policies
to make them deterministic, and write back and flush caches
and TLBs to perform checkpoints. The first two changes are
achieved by setting the appropriate bits in the MCH. Writing
back and flushing caches and TLBs is accomplished by using
the WBINVD instruction.

4 Conclusion
We observe that there are a multitude of hardware hooks in
COTS systems that can be used to emulate hardware features
for architecture research. We encourage the research commu-
nity to take a close look at them.
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