
Micro-Armed Bandit: Lightweight & Reusable Reinforcement
Learning for Microarchitecture Decision-Making
Gerasimos Gerogiannis

University of Illinois at Urbana-Champaign
USA

gg24@illinois.edu

Josep Torrellas
University of Illinois at Urbana-Champaign

USA
torrella@illinois.edu

ABSTRACT
Online Reinforcement Learning (RL) has been adopted as an effec-
tive mechanism in various decision-making problems in microarchi-
tecture. Its high adaptability and the ability to learn at runtime are
attractive characteristics in microarchitecture settings. However, al-
though hardware RL agents are effective, they suffer from two main
problems. First, they have high complexity and storage overhead.
This complexity stems from decomposing the environment into a
large number of states and then, for each of these states, bookkeep-
ing many action values. Second, many RL agents are engineered
for a specific application and are not reusable.

In this work, we tackle both of these shortcomings by designing
an RL agent that is both lightweight and reusable across different
microarchitecture decision-making problems. We find that, in some
of these problems, only a small fraction of the action space is useful
in a given time window. We refer to this property as temporal
homogeneity in the action space. Motivated by this property, we
design an RL agent based on Multi-Armed Bandit algorithms, the
simplest form of RL. We call our agent Micro-Armed Bandit.

We showcase our agent in two use cases: data prefetching and
instruction fetch in simultaneous multithreaded (SMT) processors.
For prefetching, our agent outperforms non-RL prefetchers Bingo
and MLOP by 2.6% and 2.3% (geometric mean), respectively, and
attains similar performance as the state-of-the-art RL prefetcher
Pythia—with the dramatically lower storage requirement of only
100 bytes. For SMT instruction fetch, our agent outperforms the
Hill Climbing method by 2.2% (geometric mean).

CCS CONCEPTS
• Computer systems organization; • Computing methodolo-
gies→ Reinforcement learning;

KEYWORDS
Reinforcement Learning, Microarchitecture, Machine Learning for
Architecture, Multi-Armed Bandits, Prefetching, Simultaneous Mul-
tithreading

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3623780

ACM Reference Format:
Gerasimos Gerogiannis and Josep Torrellas. 2023. Micro-Armed Bandit:
Lightweight & Reusable Reinforcement Learning for Microarchitecture
Decision-Making. In 56th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’23), October 28-November 1, 2023, Toronto, ON,
Canada.ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3613424.
3623780

1 INTRODUCTION
Over recent years, Machine Learning (ML) has received widespread
attention in the architecture community due to its ability to effi-
ciently model complex patterns, optimize system operation, and
adapt to dynamic workloads. ML has found a myriad of applications
in processor microarchitecture, ranging from predictors [10, 37, 72],
prefetchers [27, 62], and cache replacement policies [59, 61] to re-
source management and control [15, 19]. Online Reinforcement
Learning (RL) [12, 69] is a subclass of ML algorithms that is partic-
ularly well-suited for microarchitecture decision-making problems.
In online RL, agents interact with their environment without having
to pre-train with an offline dataset. This enables better adaptability
and generalization to previously unseen environment configura-
tions.

Hardware agents that employ RL [11, 34, 35, 50, 64, 83–85] typ-
ically decompose the environment into a complex set of states,
where the RL agent tries to discover the best actions that maximize
its reward. Such actions cause transitions between states. Although
this approach is effective, it has high complexity, as it introduces
the need to track action values and transition probabilities for many
different states. In the resource-constrained environment of proces-
sor microarchitecture, this results in significant storage overhead.
In addition, most of these RL agents are engineered for a specific
problem and are not reusable. Designing, validating, and integrating
a new RL hardware agent in a processor every time a new potential
use case emerges is very costly.

To address these problems, our work introduces a lightweight
and reusable hardware RL agent. We find that, in some microar-
chitecture decision-making problems, only a small fraction of the
action space is useful in a given time window. We refer to this
property as temporal homogeneity in the action space. We show that,
when this property is present, the problem can be roughly modeled
using a single RL state.

Based on this insight, we explore the effectiveness ofMulti-Armed
Bandit (MAB) algorithms [54, 73], which are the RL flavor with
the lowest complexity. Due to their simplicity, they are especially
suitable for decision-making in highly area-constrained settings
like a processor’s pipeline. Specifically, we design an RL agent
that implements the Discounted Upper Confidence Bound (DUCB)

https://doi.org/10.1145/3613424.3623780
https://doi.org/10.1145/3613424.3623780
https://doi.org/10.1145/3613424.3623780

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

algorithm [24] in hardware. We call our agent Micro-Armed Bandit
or Bandit.

We showcase Bandit for two decision-making problems that
have sufficient temporal homogeneity in their action space to be
tackled with MABs. Firstly, we use Bandit to orchestrate simple and
widely adopted non-RL L2 data prefetchers—i.e., next-line, stride,
and stream prefetchers. Secondly, we use it to control the instruction
fetch policy in simultaneous multithreaded (SMT) processors [75].
In particular, in the second use case, we introduce a novel design
space for SMT instruction fetching that customizes both the thread
fetch priority [74] and the thread fetch gating [17] policies.

Our simulation-based evaluation suggests that Bandit is effec-
tive. In the data prefetching use case, for single-core experiments,
Bandit outperforms non-RL prefetchers Bingo [7] and MLOP [60]
by 2.6% and 2.3% (geometric mean), respectively, and attains similar
performance as the state-of-the-art RL prefetcher Pythia [11]—with
the dramatically lower storage requirement of only 100 bytes. In
addition, Bandit attains good performance in four-core experiments
and outperforms Pythia by 2.5% in bandwidth-constrained scenar-
ios. In the SMT instruction fetch use case, Bandit outperforms the
Hill Climbing method [17] by 2.2% (geometric mean).

Overall, this paper’s contributions are:
• The concept of temporal homogeneity in the action space, which
enables low overhead RL for microarchitecture decision-making.
• The adoption of Multi-Armed Bandits as an efficient and reusable
learning mechanism for such problems.
• The Micro-Armed Bandit, an RL agent that implements the Dis-
counted Upper Confidence Bound algorithm in hardware and a
simulation-based evaluation of its performance for data prefetching
and SMT instruction fetching.
• A new design space for SMT instruction fetching that customizes
both the thread fetch priority and thread fetch gating policies.

2 BACKGROUND
2.1 Online Reinforcement Learning
RL [12, 69] is a subclass of ML algorithms that targets action se-
lection problems. Commonly, an RL agent interacts with its envi-
ronment by trying different actions and receiving feedback in the
form of a reward. The goal is to learn the optimal balance between
exploration (trying new actions) and exploitation (selecting the best-
known action) to maximize the accumulated reward in the long
term. Exploration is necessary for an RL algorithm because it helps
the agent better understand the dynamics of its environment. The
duration of an agent’s interaction with its environment is called an
RL episode.

In online RL, agents interact with their environment without
having to pre-train with an offline dataset. As a result, online RL
has several attractive characteristics [11, 18] for microarchitecture
decision-making problems compared to other methods such as Su-
pervised Machine Learning [15, 19, 33, 39, 41, 43, 46] and Formal
Control [29, 45, 51–53]. In comparison with traditional ML, on-
line RL eliminates the need for offline data collection. It provides
better adaptability and generalizes to environment configurations
not encountered before. As an example, consider an agent that is
trained offline using the SPEC benchmarks [66, 67]. Ensuring high
performance in unseen workloads stemming from graph analytics

or cloud applications is non-trivial. Even if the offline dataset is
large enough to include a diverse set of benchmarks, there are no
guarantees that the agent will adapt successfully to unforeseen
system conditions such as power fluctuations. When compared
to Formal Control, online RL does not depend on an offline static
model of the system and does not require the actions to be linearly
correlated with their outcomes [18]. For these reasons, online RL is
an attractive solution for action selection problems in microarchi-
tecture.

2.2 RL Problem Formulations

S1 S2

Ay,R1y

Ax,R1x

Ax,R2x

Ay,R2y

S1

Ay,R1y

Ax,R1x

MDP-RL Contextual

Bandits

Multi-Armed

Bandits

(b)(a) (c)

S2

Ay,R2y

Ax,R2x

S

Ay,Ry

Ax,Rx

Figure 1: Examples of states and actions in different RL prob-
lem formulations. 𝑆 represents states, 𝐴 represents actions,
and 𝑅 represents rewards. The arrows illustrate state transi-
tions.

There are multiple RL problem formulations, which differ in
how they model the environment. They have different levels of
complexity. The level of complexity of a formulation is directly
correlated with the implementation complexity of the RL agent in
hardware. In this section, we describe three alternative formulations.
In addition, we identify a common property of microarchitectural
problems that enables the use of the RL flavor with the lowest
complexity.
(1) Markov Decision Process-based Reinforcement Learning
(MDP-RL): Modeling the environment as a Markov Decision Pro-
cess (MDP) [9] is the most general and highest-complexity problem
formulation. The environment is decomposed into many states and,
in each state, different actions yield different rewards. The actions
cause non-deterministic transitions between states. Before deciding
on an action, the agent considers its current state as well as the
states it might transition to after taking that action. Figure 1(a)
shows a simple MDP environment with 2 states (S1 and S2). In each
state, two actions are possible (Ax and Ay). After the agent selects
an action, it receives a reward (𝑅𝑖 𝑗), which depends on both the
current state and the selected action.

The high complexity of MDP-RL stems from the requirement of
bookkeeping action values and transition probabilities for each dis-
tinct state of the environment. Popular algorithms in this category
include Q-Learning [80] and SARSA [55, 69]. Numerous works pro-
pose hardware agents that model the environment as an MDP. For
example, Ipek et al. [34] propose a SARSA-based memory controller
that uses the number and characteristics of reads and writes in the
transaction queue to encode the state. Cohmeleon [85] proposes a
Q-Learning-based agent to orchestrate accelerator coherence in het-
erogeneous SoCs. The Pythia L2 prefetcher [11] is based on SARSA
and can be customized to use different data flow and control flow
features to encode the state.

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

40
3.g

cc
41

0.b
wa

ve
s

42
9.m

cf_
1

42
9.m

cf_
2

42
9.m

cf_
3

43
3.m

ilc
43

6.c
ac

tu
s

43
7.l

es
lie

_1
43

7.l
es

lie
_2

43
7.l

es
lie

_3
43

7.l
es

lie
_4

45
0.s

op
lex

45
9.G

em
s_

1
45

9.G
em

s_
2

45
9.G

em
s_

3
46

2.l
ibq

_1
46

2.l
ibq

_2
47

0.l
bm

47
1.o

mne
tp

p
47

3.a
sta

r
48

1.w
rf_

1
48

1.w
rf_

2
48

2.s
ph

inx
_1

48
2.s

ph
inx

_2
48

3.x
ala

nc
60

3.b
wa

ve
s

60
7.c

ac
tu

s
61

9.l
bm

_1
61

9.l
bm

_2
61

9.l
bm

_3
62

1.w
rf_

1
62

1.w
rf_

2
62

3.x
ala

nc
62

8.p
op

2
64

9.f
ot

on
ik

65
4.r

om
s

AV
ER

AG
E

Application

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Fr
eq

ue
nc

y

Frequency of most selected Frequency of second most selected

Figure 2: Frequency of the top 2 most selected actions by Pythia in SPEC applications during a trace of 1B instructions.

(2) Contextual Bandits: Modeling a decision-making problem
with Contextual Bandits [5, 58] abstracts away the state transition
probabilities. State transitions can still occur but they are not in-
fluenced by the agent’s actions. Figure 1(b) shows a Contextual
Bandit environment. The agent can take actions. However, any
transition between states is not a consequence of selecting an ac-
tion. Instead, the system randomly transitions between states due to
other effects. The agent observes the context associated with each
state and tries to determine the best action for a given context to
maximize its accumulated reward. Contextual Bandits are a lower
complexity problem formulation than MDP-RL but still require the
bookkeeping of action values for each state. The most notable ap-
plication of Contextual Bandits in microarchitecture is the Context
Prefetcher [50], which utilizes both hardware and compiler-injected
software context to decide on the appropriate prefetching actions.
(3) Multi-Armed Bandits (MABs): Multi-Armed Bandits (MABs)
[54, 73] collapse the environment into a single state as displayed in
Figure 1(c). The goal is to identify the single best action that yields
the highest reward while minimizing time spent trying sub-optimal
actions. In MAB terminology, the available actions are referred to
as arms. MABs have significantly lower complexity than the two
previous methods because there is a single state and, therefore, only
a single value needs to be tracked per action. Although MABs’ low
complexity makes them attractive for resource-constrained settings,
their application to microarchitecture has not been investigated.

MABs are less powerful than the other two RL problem formula-
tions. However, they can still be applied to the microarchitecture
domain. Consider a scenario where the same action is repeatedly
optimal for a large enough time period inside an RL episode. In
this case, the action is temporally optimal regardless of the environ-
ment’s state and the whole state space can collapse into a single
state. We refer to this property as temporal homogeneity in the action
space.

Figure 3 provides examples of (fully) temporal homogeneous
and temporal heterogeneous action spaces. In the figure, the whole
action space consists of two actions: 𝐴𝑥 and 𝐴𝑦. Figure 3(a) shows
an environment with a fully temporal homogeneous action space.
It shows the sequence of optimal actions over time for two different
RL episodes (e.g., the execution of 2 different benchmarks). We see
that, in Episode 1, action 𝐴𝑥 is always optimal, while in Episode 2,
𝐴𝑦 is always optimal. On the other hand, Figure 3(b) shows an en-
vironment with a temporal heterogeneous action space, where the
optimal action changes rapidly with time during the same episode.
Note that temporal homogeneity does not require the same action

to be optimal during the whole episode. Instead, it imposes optimal-
ity requirements for a time period long enough so that the MAB
agent can detect the appropriate action. As we will see in Section 3,
high temporal homogeneity is present in some microarchitectural
problems. This property enables the effective use of the simple
MAB RL flavor.

Ay Ay Ay Ay Ay …Episode 2

Ax Ax Ax Ax Ax …Episode 1

Ax Ax Ay Ax Ay …Episode 2

Ax Ay Ax Ay Ay …Episode 1

(a) (b)

time

Temporal Heterogeneous

Action Space

Fully Temporal Homogeneous

Action Space

Figure 3: Examples of temporal homogeneous and heteroge-
neous action spaces.

3 MOTIVATION
This section examines the viability of using MAB algorithms to
attack two different microarchitectural action selection problems:
(i) data prefetching and (ii) instruction fetching in simultaneous
multithreaded (SMT) processors.

3.1 Temporal Homogeneity in Prefetching
In data prefetching, a hardware agent reacts to a request for a line
at address 𝑋 by also prefetching a set of cache lines that are likely
to be accessed in the near future. Spatial prefetching algorithms
typically specify the lines to be prefetched through degree (𝑑) and
offset (𝑜) parameters. The addresses of the prefetched lines are
𝑋 + 𝑜 , 𝑋 + 2 × 𝑜 , ... 𝑋 + 𝑑 × 𝑜 . In this case, prefetching can be
formulated as an RL decision-making problemwith the action space
corresponding to the selection of the prefetch degree and offset.
It is well known that different degrees and offsets work best for
different scenarios [23, 28, 30, 38, 42]. In this section, we examine
the temporal homogeneity of the prefetching action space.

Characterizing the temporal homogeneity of the prefetching
action space requires identifying the optimal prefetching action at
every point in the program. Unfortunately, this is a non-trivial task.
Consequently, we use as a proxy the actions taken by Pythia [11],
which is a spatial MDP-RL prefetcher that shows high performance.
Pythia supports 16 different offsets and four different degrees, for
a total of 64 actions. We profile the frequency of the two most
popular Pythia actions in SPEC traces for a duration of 1 billion
instructions. Section 6 presents more details about our methodology.
Figure 2 displays our findings. On average, the most selected action
in each application accounts for 60% of the total selections, while the
second most selected accounts for 15% of the total action selections

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

PC
PCPC

Fetch Unit

ICache

PC
Instruction

Queue

Reorder

Buffer

Integer

Register File

Rest of Processor Pipeline

Common Occupancy

Fetch Gating

Threshold

Hill

Climbing

Algorithm

>>>

Fetch Gating Policy

ICount
remaining

threads

(not fetch-gated)

Fetch

Priority Policy

1

2
ICount

final thread

selection

Figure 4: Pipeline structures and fetch priority & gating policy in [17]. Threads that exceed the occupancy threshold in either
the Instruction Queue, Register File, or ROB are fetch-gated. The remaining threads are prioritized using ICount.

of Pythia. In other words, for a duration of 1 billion instructions, 3%
of the action space accounts for 75% of the total action selections.
Note that the most selected action is different in each application.

The data suggests that the prefetching action space has high
temporal homogeneity but not a perfect one. Also recall that MABs
cannot distinguish between environment states (e.g., between cache
line addresses or between PCs). Hence, using a MAB agent to di-
rectly select a single best degree and offset for all the cache lines
would often not work. Instead, we leverage the following observa-
tion: conventional and widely-adopted non-RL prefetchers such as
the stride and stream prefetchers can already distinguish between
environment states to some extent. For example, the PC-based stride
prefetcher can concurrently support different offsets for different
PCs. Thus, instead of using the MAB agent to directly determine the
prefetch degrees and offsets, we use it as a coordinator of various
conventional lightweight prefetchers—in a manner similar to [38].
Section 5 provides more details about how we employ our agent
towards this goal, and Section 7 presents its effectiveness.

3.2 Policies for Fetch Priority and Gating of
SMT Threads

An important factor that affects performance in SMTprocessors [75]
is the policy that determines which thread to fetch instructions from.
In [74], different fetch priority policies were investigated. They give
priority to threads based on different microarchitectural metrics:
Branch Count (BrC) prefers to fetch from threads that have fewer
branch instructions in the Reorder Buffer (ROB); ICount (IC) favors
threads with fewer occupied entries in the Instruction Queue (IQ);
and LSQCount (LSQC) prioritizes threads with fewer entries in the
Load-Store Queue (LSQ). The Round Robin (RR) policy alternates
between threads in a round-robin manner without considering any
microarchitectural metric.

Choi and Yeung [17] introduce an adaptive mechanism for the
fetch gating of threads. The mechanism dynamically sets a per
thread occupancy threshold for hardware structures using a Hill
Climbing algorithm. If the occupancy of a thread in the IQ, the
Integer Register File (IRF), or the ROB exceeds this threshold (which
is the same for all the structures) the thread is fetch-gated. The best
threshold is determined by trial epochs, dynamically increasing the
allowed entries for one thread by 𝛿 units at the expense of the other
threads. An interesting property of the optimal thresholds is that

they aremostly temporally stable as shown in [17]. This is consistent
with what we observed for prefetching in Section 3.1. Finally, Choi
and Yeung determine the priority of the non fetch-gated threads
using ICount.

In our work, we call the combination of the thread fetch gating
policy and the thread priority policy the fetch Priority & Gating
(PG) policy. Figure 4 illustrates the pipeline structures and the fetch
PG policy used by Choi and Yeung. In the rest of the paper, we refer
to the fetch PG policy used by Choi and Yeung as the Choi policy.

Because the fetch gating policy uses thresholds, it does not pre-
vent threads with high ILP from utilizing a large number of entries
in the shared hardware structures. A thread with high ILP can be al-
lowed to use most of the hardware structure entries, while one with
low ILP may be restricted to fewer entries—if this entry distribution
maximizes performance.

The fetch gating and the fetch priority policies do not accomplish
the same goal; instead, they complement one another. Consider the
times when none of the threads is fetch-gated. One still needs to
select which thread to fetch from. In addition, in contrast to fetch
gating, not all the fetch priority policies are based on measuring the
stress that different threads place on hardware structures. Specifi-
cally, the Round Robin (RR) and Branch Count (BrC) policies take
different approaches.

3.3 Extending the Choi Algorithm
Although the Choi policy is very effective, it has limited adaptability.
First, it always uses ICount for the non fetch-gated threads. Second,
its fetch gating policy is fixed: it fetch-gates a thread if its occupancy
of the IQ, IRF, or ROB exceeds a given threshold. As a result, the
fetch gating policy is unaware of the occupancy of other pipeline
structures such as the LSQ. In addition, in some workloads, threads
may use resources asymmetrically, and it may be best to disregard
the occupancy of certain hardware structures. For example, assume
a 2-threaded scenario where we limit the occupancy of all three
structures to 50%. However, one thread wants to use more entries
from the ROB and does not need to use as many entries from the
IQ, while the other thread has the opposite behavior. Under the
Choi policy, both threads are conservatively fetch-gated, while
the pipeline could support more instructions. In this case, one
could exclude monitoring the occupancy of the ROB or the IQ (or
both) from the fetch gating policy and attain higher performance.

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

xa
la

nc
_x
z

xa
la

nc
_le

el
a

le
el
a_

xz
de

ep
_x

z
ca

ct
_x
z

m
cf

_x
z

xa
la

nc
_d

ee
p

m
cf

_le
el
a

gc
c_
xz

m
cf

_d
ee

p
gc

c_
m

cf
gc

c_
le
el
a

de
ep

_le
el

a
ex

ch
a_

le
el

a
gc

c_
de

ep
ca

ct
_d

ee
p

ca
ct

_le
el
a

m
cf

_e
xc

ha
xa

la
nc

_e
xc

ha
ex

ch
a_

xz
gc

c_
ex

ch
a

pe
rl_
ex

ch
a

ex
ch

a_
de

ep
ca

ct
_m

cf
pe

rl
_m

cf
pe

rl
_d

ee
p

pe
rl

_x
al

an
c

pe
rl

_x
z

ca
ct

_e
xc

ha
pe

rl
_g

cc
m

cf
_x
al
an

c
gc

c_
xa

la
nc

ca
ct

_p
er
l

pe
rl

_le
el

a
ca

ct
_lb

m
xz

_lb
m

xa
la
nc

_lb
m

m
cf

_lb
m

gc
c_
lb
m

pe
rl

_lb
m

ex
ch

a_
lb

m
le
el
a_

lb
m

de
ep

_lb
m

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

LS
QC

_0
11

0

LS
QC

_0
10

1

LS
QC

_0
11

0

LS
QC

_1
00

1

LS
QC

_0
00

0

LS
QC

_1
11

1

IC
_1

11
1 LS
QC

_1
10

1

IC
_0

00
0

IC
_1

11
1

RR
_1

01
0

RR
_0

11
1

RR
_1

01
1

RR
_1

11
1

RR
_1

11
1

RR
_1

11
1

LS
QC

_1
11

0

IC
_0

00
0

RR
_1

01
1

IC
_1

11
0

IC
_1

01
0

LS
QC

_1
11

0

IC
_0

11
1

RR
_1

01
1

RR
_1

11
0

LS
QC

_1
10

1

IC
_0

00
0

IC
_1

11
1

IC
_0

11
1

RR
_0

11
1

RR
_0

01
1

IC
_0

00
0

LS
QC

_0
10

1

IC
_0

00
1

Br
C_

00
00

Br
C_

10
00

IC
_0

11
1

IC
_1

11
1

RR
_1

11
0

IC
_1

11
0

IC
_1

11
1

IC
_1

01
1

LS
QC

_0
00

0

Best-performing policy
Worst-performing policy

Figure 5: IPC change relative to the Choi policy of the best- and the worst-performing fetch PG policies among the ones we
consider for different multithreaded SPEC17 mixes. The policy that performs the best for each mix is added as a label. For the
best policy, the thread that committed the most instructions in the mix appears in bold.

As we show next, determining which structures to monitor is an
interesting use case for RL-based decision-making mechanisms.

To mitigate the aforementioned limitations, we consider many
fetch PG policies beyond the Choi one. Specifically, we consider
the four fetch priority policies of Section 3.2 (BrC, IC, LSQC, and
RR), and fetch gating policies based on the occupancies of zero or
more of the following hardware structures: IQ, LSQ, ROB, and IRF.
We represent these fetch PG policies as 𝑋_𝑏3𝑏2𝑏1𝑏0, where 𝑋 is the
fetch priority policy and can be {BrC, IC, LSQC, RR}, and 𝑏3𝑏2𝑏1𝑏0
are bits that denote whether the fetch gating policy monitors the
occupancy of the IQ, LSQ, ROB, or IRF, respectively.

Table 1 shows some examples of these fetch PG policies. For
example, IC_0000 uses ICount as the fetch priority policy and does
not consider the occupancy of any structure when fetch gating.
Thus it does not perform fetch gating; it is the original ICount
policy of Tullsen et al. [74]. IC_1110 uses ICount and fetch-gates
a thread whose utilization of the IQ, LSQ, or ROB is above the
threshold. IC_1011 corresponds to the Choi policy.

Table 1: Examples of different fetch PG policies.

Policy
Mnemonic

Fetch
Priority

Fetch-gate if occupancy of any of
these structures exceeds threshold:
IQ LSQ ROB IRF

IC_0000 ICount no no no no
BrC_1000 Branch Count yes no no no
IC_1110 ICount yes yes yes no
IC_1111 ICount yes yes yes yes
LSQC_1111 LSQ Count yes yes yes yes
RR_1111 Round Robin yes yes yes yes

In this way, we have a total of 64 (4 ∗ 24) different fetch PG
policies. We tested all of them for a set of 43 2-threaded workloads
from SPEC17 [67] (refer to Section 6 for our methodology). For each
of the workloads, Figure 5 shows the IPC change relative to the
Choi policy of the best- and the worst-performing fetch PG policies
among the ones we consider. The policy that performs the best for
each mix is added as a label. For the best policy, the thread that
committed the most instructions in the mix appears in bold.

From the figure, we see that different fetch PG policies work best
in different application mixes. In addition, there is significant IPC
variation between the best- and the worst-performing policies in an
application mix. Selecting a bad policy can decrease performance
by more than 40% compared to IC_1011.

Application mixes consisting of lbm attain large speed-ups. In
this case, policies that use LSQC as the fetch priority policy or con-
sider LSQ occupancy when fetch gating (i.e., x1xx) offer substantial
speedups (13–30%) over IC_1011. Note that these policies still allow
the thread that benefits the most from memory-level parallelism to
get more LSQ entries, if this distribution of entries maximizes the
average performance. As discussed in [71], in a fully dynamically
shared pipeline (with no LSQ-aware fetch gating mechanism) lbm
frequently tends to aggressively consume all of the SQ entries, leav-
ing the other thread with close to none SQ entries. In such cases, an
LSQ-aware gating or priority mechanism prevents the exhaustion
of the SQ entries by a single thread. Such policies result in a higher
average IPC than the LSQ-unaware IC_1011.

Overall, the temporal stability of the threshold of the Hill Climb-
ing algorithm in combination with the heterogeneity in the optimal
fetch PG policy across different applications is fertile ground for
MAB-based decision-making mechanisms.

4 MULTI-ARMED BANDIT ALGORITHMS FOR
MICROARCHITECTURE

In this section, we focus on different Multi-Armed Bandit (MAB)
algorithms and discuss their implications for decision-making prob-
lems in microarchitecture.

Table 2: MAB algorithm variables.
Variable Definition
arm Action available to the MAB agent

bandit step
Time duration that the agent is idle waiting to observe the
reward from its previous arm selection

𝑟𝑖 Average reward that previous selections of arm i have yielded
𝑛𝑖 Number of times that arm i has been selected in the past
𝑛𝑡𝑜𝑡𝑎𝑙 Total number of times that all arms have been selected in the past
𝑟𝑠𝑡𝑒𝑝 Reward received at the end of a bandit step

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

Table 3: Multi-armed bandit algorithm variants.

𝜖-Greedy Upper Confidence Bound Discounted Upper Confidence Bound

nextArm 𝑎𝑟𝑚 ←
{
argmax{𝑟𝑖 } 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 1 − 𝜖
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑟𝑚 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝜖

𝑎𝑟𝑚 ← argmax{𝑟𝑖 + 𝑐

√︄
ln(ntotal)

𝑛𝑖
} 𝑎𝑟𝑚 ← argmax{𝑟𝑖 + 𝑐

√︄
ln(ntotal)

𝑛𝑖
}

updSels
𝑛𝑎𝑟𝑚 ← 𝑛𝑎𝑟𝑚 + 1
𝑛𝑡𝑜𝑡𝑎𝑙 ← 𝑛𝑡𝑜𝑡𝑎𝑙 + 1

𝑛𝑎𝑟𝑚 ← 𝑛𝑎𝑟𝑚 + 1
𝑛𝑡𝑜𝑡𝑎𝑙 ← 𝑛𝑡𝑜𝑡𝑎𝑙 + 1

𝑛𝑖 ← 𝛾 × 𝑛𝑖 ,∀𝑖 ∈ [1, 𝑀]
𝑛𝑎𝑟𝑚 ← 𝑛𝑎𝑟𝑚 + 1

𝑛𝑡𝑜𝑡𝑎𝑙 ← 𝛾 × 𝑛𝑡𝑜𝑡𝑎𝑙 + 1

updRew 𝑟𝑎𝑟𝑚 ←
(𝑟𝑎𝑟𝑚 ∗ (𝑛𝑎𝑟𝑚 − 1) + 𝑟𝑠𝑡𝑒𝑝)

𝑛𝑎𝑟𝑚
𝑟𝑎𝑟𝑚 ←

(𝑟𝑎𝑟𝑚 ∗ (𝑛𝑎𝑟𝑚 − 1) + 𝑟𝑠𝑡𝑒𝑝)
𝑛𝑎𝑟𝑚

𝑟𝑎𝑟𝑚 ←
(𝑟𝑎𝑟𝑚 ∗ (𝑛𝑎𝑟𝑚 − 1) + 𝑟𝑠𝑡𝑒𝑝)

𝑛𝑎𝑟𝑚

4.1 General Template for MAB Algorithms
The variables used in a MAB algorithm are shown in Table 2. An
𝑎𝑟𝑚 refers to a specific action available to the MAB agent, while
the 𝑏𝑎𝑛𝑑𝑖𝑡 𝑠𝑡𝑒𝑝 is defined as the time duration for which the agent
is idle waiting to observe the outcome of its previous arm selection.
For every arm 𝑖 , two variables are needed: the average reward 𝑟𝑖
that previous selections of this arm have yielded; and the number of
times 𝑛𝑖 that this arm has been selected in the past. Finally, 𝑛𝑡𝑜𝑡𝑎𝑙
refers to the total number of selections of all arms and 𝑟𝑠𝑡𝑒𝑝 is the
reward received at the end of a bandit step.

Algorithm 1 General template for MAB algorithms
1: Inputs:𝑀 arms
2: Variables: 𝑟𝑖 : average reward of arm i,

𝑛𝑖 : number of times that arm i has been selected

Initial Round Robin Phase
3: 𝑛𝑡𝑜𝑡𝑎𝑙 ← 0
4: for 𝑡 = 1 to𝑀 do
5: 𝑎𝑟𝑚 ← 𝑡

6: 𝑛𝑎𝑟𝑚 ← 1
7: 𝑛𝑡𝑜𝑡𝑎𝑙 ← 𝑛𝑡𝑜𝑡𝑎𝑙 + 1
8: // receive reward at the end of the bandit step
9: 𝑟𝑎𝑟𝑚 ← 𝑟𝑠𝑡𝑒𝑝
10: end for

Main Loop
11: for 𝑡 = 𝑀 + 1 to∞ do
12: 𝑎𝑟𝑚 ← nextArm()
13: updSels(𝑎𝑟𝑚)
14: // receive reward at the end of the bandit step
15: 𝑟𝑎𝑟𝑚 ← updRew(𝑟𝑠𝑡𝑒𝑝)
16: end for

Algorithm 1 provides a general template for MAB algorithms. For
compactness, we use 𝑟𝑎𝑟𝑚 and 𝑛𝑎𝑟𝑚 instead of 𝑟𝑖=𝑎𝑟𝑚 and 𝑛𝑖=𝑎𝑟𝑚 ,
respectively, in our notation. The algorithm takes the number of
arms available𝑀 . It begins with an initial round robin phase, during
which all arms are tried once. 𝑟𝑎𝑟𝑚 is set to the 𝑟𝑠𝑡𝑒𝑝 received during
that arm’s step, and 𝑛𝑎𝑟𝑚 is set to 1. Then, the main loop of the algo-
rithm begins, which lasts for as long as the agent keeps interacting

with the environment. The main loop consists of three basic func-
tions, which depend on the specific MAB algorithm used. Those
are nextArm(), which selects the next arm to be tried; updSels(arm),
which updates the number of selections 𝑛𝑎𝑟𝑚 for the currently se-
lected arm and potentially other arms; and updRew(𝑟𝑠𝑡𝑒𝑝), which
updates the reward 𝑟𝑎𝑟𝑚 for the currently selected arm after the
bandit step is over and the 𝑟𝑠𝑡𝑒𝑝 has been collected.

4.2 Three MAB Algorithms
The implementations of these three functions define how a MAB
algorithm handles the exploration-exploitation tradeoff. We now
discuss the implementations of these functions for three MAB al-
gorithms: 𝜖-Greedy, Upper Confidence Bound (UCB), and Discounted
Upper Confidence Bound (DUCB). Their concise implementation is
shown in Table 3.
(a) 𝜖-Greedy: 𝜖-Greedy [4] is the simplest of the algorithms dis-
cussed. As shown in Table 3, the nextArm function selects with
probability 1 − 𝜖 the arm that has the highest average reward so
far (argmax{𝑟𝑖 }), and with probability 𝜖 a random arm. 𝜖 is an
algorithm hyperparameter that is directly related to the degree of
exploration: large values of 𝜖 mean that the agent is eager to explore
more and exploit less. The updSels and updRew functions are also
simple. In updSels, 𝑛𝑎𝑟𝑚 and 𝑛𝑡𝑜𝑡𝑎𝑙 are incremented. In updRew, the
𝑟𝑠𝑡𝑒𝑝 is added to the running average. 𝜖-Greedy is used in prior
MDP-RL works [11, 50, 64] as an exploration technique (not as a
standalone algorithm).
(b) Upper Confidence Bound (UCB): Two shortcomings of 𝜖-
Greedy is that the exploration picks random arms and is non-
decaying. The problem with randomized exploration is that very
bad arms and nearly-optimal ones have similar probabilities to be
explored. Consider an example from the microarchitecture domain
with two different actions. In the past, one action has resulted in
low IPCs and the other in high IPCs. 𝜖-Greedy will keep on ex-
ploring the two with equal probability. In addition, non-decaying
exploration means that the agent will keep on exploring at the same
rate as time passes, even if it has acquired enough certainty about
the quality of each arm.

The Upper Confidence Bound (UCB) algorithm [3] tries to solve
both problems.While it uses the same updSels and updRew functions
as 𝜖-Greedy, it uses a more sophisticated exploration method in
the nextArm function, as shown in Table 3. The next arm to be
selected is the one with the highest arm potential. The potential is

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

the sum of the arm’s average reward so far 𝑟𝑖 plus a term added as

a "bonus" given by 𝑐
√︃

ln(ntotal)
𝑛𝑖

. This term is the exploration factor.
In this expression, 𝑐 is an algorithm hyperparameter, which we
call exploration constant. It controls the degree of exploration. If an
arm has not been selected much in the past, 𝑛𝑖 is small compared
to ln(ntotal), and that arm’s exploration factor is large. That arm
will be favored for selection. The exception is if the arm’s 𝑟𝑖 is
unacceptably low, in which case preference will be given to other
arms. As time passes and different arms are tried, exploration decays
since ln(n)

𝑛 tends to 0 as 𝑛 increases.
(c) Discounted Upper Confidence Bound (DUCB): The Dis-
counted Upper Confidence Bound (DUCB) [24] is an extension to
the UCB algorithm that is suitable for non-stationary (i.e., highly
varying) environments. These environments are common in mi-
croarchitectural problems since the behavior of benchmarks changes
with time. In these cases, we want to forget the past behavior that
we observed.

As shown in Table 3, DUCB shares the nextArm and updRew
functions with UCB, but employs a different updSels function. In
updSels, all selections 𝑛𝑖 are discounted by a 𝛾 constant, which is
a hyperparameter that is less than 1. 𝛾 acts as a forgetting factor.
For the currently selected arm, 𝑛𝑎𝑟𝑚 is first discounted by 𝛾 and
then incremented by 1. As time progresses, since the 𝑛𝑖 for rarely
selected arms is discounted, the exploration factor for such arms
grows, and the arms are possibly retried. This enables the capture
of varying behaviors of an arm. Since DUCB is more dynamic than
UCB, it is less likely to get trapped in suboptimal arms than UCB.

4.3 Modifications for Microarchitecture
Environments

During our evaluation, we found two algorithm modifications that
result in higher performance in microarchitecture environments.
The first one is related to the fact that, in all of our use cases, we use
IPC as the MAB reward, which can vary drastically across different
benchmarks. At the same time, we use a common exploration con-
stant 𝑐 for all benchmarks. Recall that the potential of an arm in UCB

and DUCB is given by 𝑟𝑖 + 𝑐
√︃

ln(ntotal)
𝑛𝑖

. This leads to the following
unwanted effect: for low-IPC benchmarks, 𝑟𝑖 is small and the effect
of the exploration factor 𝑐

√︃
ln(ntotal)

𝑛𝑖
is relatively more prominent

than in high-IPC benchmarks. As a result, MAB algorithms end up
exploring a lot more in low-IPC benchmarks.

To mitigate this unwanted effect, we modify the MAB algorithm
as follows. First, after the initial round robin phase of Algorithm 1
is completed, we calculate the average initial reward across all
arms (𝑟𝑎𝑣𝑔). Then, we use 𝑟𝑎𝑣𝑔 to normalize: (1) the 𝑟𝑎𝑟𝑚 calculated
during the initial round robin phase for each arm and (2) every new
𝑟𝑠𝑡𝑒𝑝 collected during the main loop of the algorithm. This ensures
that there is much less variation in exploration across benchmarks.

The second modification is related to our observation that when
many cores are running MAB algorithms concurrently, inter-core
interference phenomena can affect the bandit exploration. For ex-
ample, assume that a core selects a very aggressive arm that causes
DRAM bandwidth starvation for other cores. Then, those cores may
mistakenly attribute the drops they are observing in their IPCs to

the arm that they are currently exploring. This can lead to cores
getting trapped in suboptimal actions.

To address this problem, a core 𝑝 independently restarts the
initial round robin phase of the algorithm with a small probability
𝑟𝑟_𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑜𝑏 during the main loop execution, but without re-
setting the already-collected 𝑟𝑖 and 𝑛𝑖 values. With this design, 𝑝
has a chance to re-evaluate all the arms again in a more stable envi-
ronment, as it can be assumed that all the other cores have reached
a steady state and little exploration is in progress. While this is not
a perfect solution, it addresses the problem to some extent.

5 MICRO-ARMED BANDIT DESIGN
We design a lightweight microarchitectural agent that implements
MAB algorithms in hardware. We call the agentMicro-Armed Bandit
or Bandit for short. In this section, we describe its functionality
and microarchitecture. We focus on the DUCB algorithm since
our evaluation (Section 7) reveals that it is the highest-performing
one. We discuss how Bandit can be used for prefetching and SMT
fetch PG policy selection. While our work focuses on these two use
cases, we anticipate that Bandit will find applications in other mi-
croarchitectural decision-making problems with sufficient temporal
homogeneity in their action space.

5.1 Microarchitecture and Functionality
Bandit has a simple microarchitecture. It consists of two tables,
an arithmetic unit, and some control logic. The two tables are the
nTable and the rTable, and each has as many entries as the number
of arms. The nTable contains, for each arm 𝑖 , the number of times
that 𝑖 has been selected so far (𝑛𝑖); the rTable contains, for each arm
𝑖 , the current value of its reward (𝑟𝑖). The arithmetic unit executes
the arithmetic operations in the nextArm, updSels, and updRew
functions of Table 3 in hardware. The control logic triggers the
selection of the next arm to apply, communicates the selected arm
to the controlled microarchitecture units (e.g., data prefetcher or
instruction fetch unit), and waits until the bandit step is over to
read the values of the appropriate hardware performance counters
into the Bandit microarchitecture. The latter will update its state
so that it is ready for the next arm selection. This process repeats
continuously.

Figure 6 shows the steps in more detail. Figure 6(a) shows the
implementation of the nextArm function. The hardware sequen-
tially reads the nTable and rTable for all the arms, calculates the
corresponding potentials, and selects the arm with the highest po-
tential as the new arm. Then, in Figure 6(b), the Bandit control logic
communicates the arm selection to the controlled entity—in the fig-
ure, the L2 data prefetcher and the instruction fetch unit of an SMT
core. In the background while the arm selection is communicated,
the Bandit updates the nTable (Figure 6(c)) according to the logic
of function updSels shown in Table 3.

Once the bandit step is over, the Bandit arithmetic unit receives
the appropriate hardware performance counters, computes the
step’s reward (𝑟𝑠𝑡𝑒𝑝), and accumulates it into the rTable entry of the
corresponding arm (Figure 6(d)). The figure assumes that the reward
is the core’s average IPC. Hence, the arithmetic unit receives the
total number of committed instructions by the CPU core, subtracts
from it the number of committed instructions at the end of the

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

rTablenTable

Arithmetic Unit

(a) Next Arm Selection

.

.

.

for

all

arms

.

.

.

current

 max

Next Line

PF

Stream

PF

Stride

PF

new arm

ON/OFF degree degree

Fetch Unit Fetch Unit

priority policy gating policy

new arm
OR

(b) Communicate Arm Selection

(c) Update Selections

nTable

Arithmetic Unit

.

.

.

for

all

arms

rTablenTable

arm

Arithmetic Unit
committed insts

(d) Update Reward

bandit step

duration

Figure 6: Micro-Armed Bandit microarchitecture.

previous bandit step, and divides the result by the step duration in
cycles (calculated similarly through hardware counters). The result
is the step’s IPC or 𝑟𝑠𝑡𝑒𝑝 . We will see in Section 5.4 that some of the
operations in Figure 6(a) and Figure 6(d) can be performed before
the bandit step is over.

5.2 Prefetching Use Case
We use Bandit to control the degree and type of a set of light-
weight and widely adopted L2 prefetchers. This set includes a next-
line (NL) prefetcher, a stream prefetcher, and a PC-based stride
prefetcher. A bandit arm encodes whether the NL prefetcher is
on or off, the degree of the stream prefetcher, and the degree of
the stride prefetcher (Figure 6(b)). A degree of zero means that
the corresponding prefetcher is off. We assume that, like in the
POWER7 [40], the prefetcher degrees can be controlled through
programmable registers. Hence, Bandit communicates its selected
arm to the prefetchers by writing to the programmable registers.
We define the duration of a bandit step as a certain number of L2
demand accesses.

5.3 SMT Instruction Fetch Use Case
We use Bandit to control the fetch PG policy of an SMT processor
as introduced in Section 3. The processor additionally runs the Hill
Climbing algorithm [17] to determine the best occupancy thresh-
old to trigger thread fetch gating. Bandit runs on top of the Hill
Climbing algorithm and does not control the occupancy threshold.
A bandit arm encodes which fetch priority policy will be used and
which pipeline structures will be considered for fetch gating (Fig-
ure 6(b)). The bandit step duration is defined as a certain number of
Hill Climbing epochs, where a different threshold is tested in each
epoch [17]. After this specific number of epochs, Bandit is invoked
to select the next arm. The Hill Climbing algorithm requires the ex-
ecution of some epochs before it can pick a good enough threshold
for a given arm. For this reason, we use a larger bandit step during
the initial round robin phase of the MAB algorithm (Algorithm 1).
By holding the selected arm stable for a longer period of time, the
Hill Climbing algorithm is given more time to converge, and the
𝑟𝑠𝑡𝑒𝑝 received in this phase of the algorithm is more representative
of the true capabilities of the arm. We refer to this initial bandit step

as the bandit step-RR. After the initial round robin phase is over,
we decrease the bandit step to a smaller number of epochs during
the main loop of the algorithm. Section 6.3 describes how we select
appropriate values for the bandit steps. Finally, every time the arm
changes, the Hill Climbing threshold of the old arm is saved, and
the one for the new arm is restored.

5.4 Storage Overhead and Latency
Bandit has a tiny storage overhead, which scales linearly with the
number of arms. Assuming that 𝑟 is stored using a single-precision
floating-point data type and 𝑛 is stored using an unsigned integer
data type, the storage overhead per arm is 8B. For the maximum
number of arms in our evaluation, which is 11 (Section 6), the total
storage overhead is less than 100B. This low number is a direct
result of not decomposing the agent’s environment into individual
states but instead treating it as a single MAB state as explained
in Section 2.2 and Figure 1. In comparison, Pythia, which is an
MDP-RL agent, requires 24KB just to store the state-action values.

The main operation that contributes to Bandit’s latency is the
selection of the next arm (Figure 6(a)). In a naive design, when
the current step’s reward (𝑟𝑠𝑡𝑒𝑝) is received, the agent calculates
the average reward of the current arm (𝑟𝑎𝑟𝑚). Then, it sequentially
calculates the potential for all arms and picks the arm with the
highest potential. Assume that𝑛𝑡𝑜𝑡𝑎𝑙 is available and that 𝑙𝑛(𝑛𝑡𝑜𝑡𝑎𝑙)
is calculated once and reused for all arms, since 𝑛𝑡𝑜𝑡𝑎𝑙 is common.
In this case, computing the potential of an arm involves two reads
(one from the nTable and one from the rTable), a division, a square
root, a multiplication, and an addition (Table 3). By conservatively
assuming a single non-pipelined arithmetic unit and a latency of 20
cycles for each of a square root and a division [22, 32], we estimate
the total latency for picking the highest potential arm among 11
arms to be less than 500 cycles.

In practice, an advanced design takes much less time. Specifically,
while the bandit step is in progress, the agent can compute in the
background the potential of all arms except for the one being tested,
and identify the best among them. It can also compute part of the
𝑟𝑎𝑟𝑚 from updRew in Table 3. When 𝑟𝑠𝑡𝑒𝑝 is finally available, the
critical path involves finishing the computation of the tested arm
reward (𝑟𝑎𝑟𝑚), calculating the potential of the tested arm, compar-
ing it to the potential of the best arm identified so far, and picking
the best of the two. This operation takes about 50 cycles.

To be conservative, in our evaluation, we assume a critical path
of 500 cycles as if the potentials of all the 11 arms are computed
in the critical path. Still, this number is negligible compared to the
total duration of a bandit step in our evaluation, which corresponds
to 1,000 L2 demand accesses for prefetching and 128k cycles for
SMT fetch priority and gating, as described in Section 6.

6 EVALUATION METHODOLOGY
6.1 Evaluation Environment
We evaluate Bandit and other prior microarchitecture proposals
through simulation for both the prefetching and the SMT instruc-
tion fetch use cases. For the prefetching use case, we use the trace-
driven Champsim [25] simulator, which is the standard choice for
such studies [13, 36, 77, 78]. We build on the framework released by
Pythia, which has integrated multiple prefetchers with Champsim.

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

For fairness, we use the exact same parameters as the ones used in
the Pythia paper for the simulated cores, memory subsystem, and
prior prefetchers. The core resembles an Intel Skylake [81] and the
parameters are given in Table 4. The prefetcher is associated with
the L2: it is trained on L1 cache misses and fills prefetched lines
into L2 and LLC. We additionally simulate a configuration with
alternative cache sizes (i.e., L2=1MB and LLC/core=1.5MB). We run
both single-core and 4-core experiments.

Table 4: CPU parameters in prefetching experiments.
Fetch Width: 6 LQ/SQ Size: 72/56 entries
Decode Width: 6 IRF/FRF Size: 256/256 regs
Issue Width: 8 Frequency: 4 GHz
Commit Width: 4 L1: 32KB 8-way
IQ Size: 128 entries L2: 256KB 8-way
ROB Size: 256 entries LLC/core: 2MB 16-way

For the SMT use case, since Champsim does not offer a very
detailed pipeline model and does not support SMT, we use Gem5
v20 [14]. In more detail, we build on top of the framework released
by SecSMT [70, 71], which has added full support for SMT in the
out-of-order core model of Gem5. Similar to SecSMT, we assume
that all the pipeline structures (including ROB, IRF, and LSQ) are
dynamically shared between threads. We use the exact same param-
eters as the SecSMT paper. The parameters are shown in Table 5.
The architecture again resembles an Intel Skylake core.

Table 5: CPU parameters in SMT experiments.
Fetch Width: 16B LQ/SQ Size: 72/56 entries
Decode Width: 5 uops IRF/FRF Size: 180/164 regs
Issue Width: 8 uops Frequency: 3.3 GHz
Commit Width: 8 uops L1: 32KB 8-way
IQ Size: 97 entries L2: 4MB 16-way
ROB Size: 224 entries LLC: No L3

In our simulation, we model a conservative latency of 500 cycles
at the end of each Bandit step, until the next arm is selected. During
those cycles, the prefetcher and the SMT scheduler do not stall
but continue operating with the previously selected arm. This 500-
cycle latency is negligible compared to the duration of a bandit step
which, as shown in Table 6, is 1,000 L2 demand accesses for the
prefetching experiments, and 128k cycles for the SMT instruction
fetch experiments.

6.2 Applications
To evaluate Bandit for prefetching, we use a large collection of
traces spanning different application suites, including SPEC06 [66],
SPEC17 [67], PARSEC [49], Ligra [63], and CloudSuite [21]. For
SPEC06 and SPEC17we use the traces from the 3rd Data Prefetching
Championship (DPC-3) [2]. For CloudSuite, we use traces provided
by the 2nd Cache Replacement Championship (CRC-2) [1]. For
Ligra and PARSEC, we use the traces released by Pythia.

For single-core experiments, we simulate 1 billion (B) instruc-
tions to capture as many program dynamics as possible.

When a trace is less than 1B instructions, we create two new
traces. One is created by concatenating the original trace multiple
times until 1B instructions are reached; another is created by ex-
tending the original trace with smaller traces from different phases

of the same program until 1B instructions are reached, to simu-
late highly-dynamic scenarios. We evaluate both traces and report
the average result. Note that, if we stop execution when short
traces are consumed, some of the prefetchers may not have time
to reach steady-state behavior, potentially leading to inaccurate
performance results.

For 4-core experiments, to reduce the simulation time, we sim-
ulate until each core has completed 250M instructions. Similar to
Pythia, we simulate two types of scenarios for 4-core experiments.
First, we assign the same application to every core (forming homo-
geneousmixes). Second, we assign different applications to different
cores (forming heterogeneous mixes).

Since Gem5 is execution-driven, for our SMT evaluation, we
capture simpoints [26] from 22 SPEC17 applications using the ref-
erence input set. From those applications, we create 226 2-threaded
combinations and simulate until each thread has completed 150M
instructions. We also simulate an environment where each thread
has to complete 250M instructions.

6.3 Bandit Tuning and Hyperparameters
To tune the different algorithm hyperparameters (e.g., 𝑐 , 𝛾 , bandit
step duration, and Hill Climbing 𝛿 in SMT), we use a small subset of
our applications, which we will refer to as the tune set. For prefetch-
ing, we use 46 SPEC traces as the tune set, while for SMT, we use
43 2-threaded mixes stemming from 10 applications. We do not
include non-SPEC traces in the prefetching tune set since we want
to test the Bandit’s adaptability to completely unseen application
suites. This is conservative since Pythia uses more traces spanning
different application suites when tuning its hyperparameters. By
trying different parameter values in the tune set, we identify the
best combinations and use them for our evaluation. Table 6 dis-
plays those parameter values. Note that, similar to the original Hill
Climbing paper, we define 𝛿 (Section 3.2) in terms of IQ entries.
In the prefetching use case, we tune the hyperparameters using
the cache sizes of Table 4. We do not retune Bandit (or any other
prefetcher) for the experiment with the alternative cache sizes.

Table 6: Parameters for the SMT thread fetch PG policies and
data prefetching policies.

SMT Thread Fetch Priority and Gating Data Prefetching
Bandit Algorithm: DUCB Bandit Algorithm: DUCB
𝛾 : 0.975 𝛾 : 0.999
c: 0.01 c: 0.04
Arms: 6 # Arms: 11
Bandit Step-RR: 32 HillClimb Epochs Bandit Step: 1000 L2 acc
Bandit Step: 2 HillClimb Epochs # Trackers in Streamer : 64
Hill Climbing Epoch: 64k cycles # Trackers in Stride: 64
Hill Climbing 𝛿 : 2 rr_restart_prob (4 cores): 0.001

We use 11 bandit arms for prefetching. Table 7 displays the
semantics of these arms. For SMT, we prune the number of arms
from 64 to the 6 that are displayed in Table 1. The combination of
those 6 arms achieved performance very close to the best static
performance of all 64 possible fetch PG policies in the tune set.

6.4 Comparison to Prior Proposals
For prefetching, we use the simple IP-Stride prefetcher [23] as our
baseline prefetcher. Furthermore, we compare our design against
the state-of-the-art Pythia, MLOP [60], and Bingo [7] L2 prefetchers.
We additionally combine Bandit at L2 and a simple IP-stride at

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

Table 7: Arms used for prefetching.
Arm id 0 1 2 3 4 5 6 7 8 9 10

NL On/Off Off Off On Off Off Off Off Off On Off Off
Stride Degree 0 0 0 0 2 4 0 8 0 0 15
Streamer Deg. 4 0 0 2 2 4 6 6 8 15 15

L1 and compare it against the state-of-the-art multi-level IPCP
prefetcher [48]. For SMT, we compare our design against ICount
(IC_0000) and the Choi policy (IC_1011) (Section 3). For the tune
set, we additionally evaluate Bandit against the best static arm
selection, by exhaustively keeping individual arms stable for the
full experiment duration and selecting the best-performing arm
on a per-application basis. We do this experiment to evaluate how
close Bandit gets to an oracle that statically selects the best arm.

Although our evaluation reveals that DUCB is the best algorithm
choice for Bandit, for the tune set, we additionally evaluate the
other 2 MAB algorithms and also compare against simple heuristics
that do not use MAB algorithms for the exploration. For simplicity,
in the 4-core prefetching experiments and the SMT experiments,
we evaluate performance based on the sum of the achieved IPCs by
all threads. However, Bandit can easily optimize other metrics, such
as the average weighted IPC [65] or harmonic mean of weighted
IPC [44] by simply changing the Bandit reward and training Hill
Climbing using the appropriate metric [17].

6.5 Area and Power
To estimate Bandit’s area and power, we use CACTI [8] for the
nTable and rTable, and the numbers from [56] for the arithmetic
floating-point unit. We use the area and power scaling factors
from [68] to scale down to 10nm. At 10nm, the total area and power
of a single Bandit agent are 0.00044𝑚𝑚2 and 0.11𝑚𝑊 , respectively.
To estimate the relative overheads in a real CPU design, we focus
on a server-class 40-core Intel Icelake [31] with a TDP of 270W and
a total die area of 628𝑚𝑚2 [57]. Assuming that each core of the
processor is equipped with one Bandit agent, the relative area and
power overheads of all Bandits are less than 0.003%.

7 EVALUATION
7.1 Performance Using the Tune Set
First, we present the results of our evaluation using the tune set.
The experiments evaluate all bandit algorithms of Section 4, the
best static arm selection algorithm, and two additional heuristic
exploration methods. We call these two methods the Single and
the Periodic exploration heuristics. The former stops exploring
after the initial round robin phase of Algorithm 1, and keeps the
arm that performed the best during that initial phase; the latter
alternates between periodic phases of round robin exploration of all
arms and exploitation of the best arm. We augment Periodic with a
moving average buffer similar to the one in the POWER7 adaptive
prefetcher [38]. This section aims to provide insights regarding the
performance of bandit algorithms. We tune the parameters of all
the algorithms to achieve good performance.

We start with the prefetching use case. Table 8 shows the min,
max, and geometric mean IPC across all tune traces for Pythia, Sin-
gle, Periodic, 𝜖-Greedy, UCB, and DUCB as a percentage of the IPC
of the best static arm. We observe that DUCB is the best algorithm

in terms of geometric mean and min performance, while Pythia is
the best for max performance. By holistically modeling the environ-
ment through a single state, bandit algorithms are able to explore
effectively. Despite their simplicity, UCB and DUCB show better
geometric mean performance than Pythia in the tune set.

Table 8: Min, max, and geometric mean IPC of several heuris-
tic and bandit algorithms as a percentage of the IPC of the
best static arm for the prefetching use case.

Pythia Single Periodic 𝜖-Greedy UCB DUCB

min 88.7 72.8 80.3 89.8 88.6 95.0

max 102.5 100.0 99.8 99.9 100.0 101.6

gmean 98.4 96.5 94.1 97.3 98.8 99.1

When it comes to the highest max performance, we observe that
Pythia outperforms the best static arm by 2.5%. This is because not
all applications exhibit sufficient temporal homogeneity in their
action space. However, as explained, temporal homogeneity is the
common case. Interestingly, the maximum performance of DUCB
is also above the best static arm. As we will see later, this is due to
coarse-grained dynamic phases inside an application, during which
different arms are optimal. DUCB, which is more appropriate than
UCB for such scenarios, is able to detect and adapt to phase changes.
Naturally, Single displays the lowest min performance since the
one-time exploration can lead to very bad choices. The performance
of Periodic and 𝜖-Greedy is low due to their randomized and non-
decaying exploration.

Similar results are presented in Table 9 for the SMT instruction
fetch use case. In this table, we also add the Choi policy for reference.
The geometric mean performance of DUCB normalized to the best
static arm is slightly lower than the one in prefetching (Table 8). We
also see that, once again, the max performance of DUCB exceeds
the best static arm. We found out that the reason for this is not
because the applications have significant phase changes. Instead, it
is likely because of the operation of the Hill Climbing algorithm.
In the best static arm experiments, the Hill Climbing algorithm
can get trapped in local maxima. With DUCB, alternating between
different fetch PG policies during exploration injects noise in the
IPC that helps Hill Climbing escape those maxima.

Table 9: Min, max, and geometric mean IPC of several heuris-
tic and bandit algorithms as a percentage of the IPC of the
best static arm for the SMT thread fetch use case.

Choi Single Periodic 𝜖-Greedy UCB DUCB

min 77.2 77.8 88.4 92.0 90.9 92.2

max 101.0 101.1 100.4 100.5 101.1 101.4

gmean 94.5 96.8 97.2 97.8 98.4 98.6

Figure 7 visualizes the exploration that different algorithms per-
form for different applications. Each plot shows the index of the
arm explored as a function of time. The plots in the same row
correspond to a specific algorithm (Best Static, Single, UCB, and

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

0

10
Ar

m
 In

de
x

Best
Static

cactus (Prefetch)

IPC: 1.24

(a-0)

0

10

mcf (Prefetch)

IPC: 0.20

(b-0)

0

5

Ar
m

 In
de

x

gcc-lbm (SMT)

IPC: 0.90

(c-0)

0

5

cactus-lbm (SMT)

IPC: 0.76

(d-0)

0.00 0.25 0.50 0.75 1.00
1e9

0

10

Ar
m

 In
de

x

Single
IPC: 0.90

(a-1)

0 2 4
1e9

0

10

IPC: 0.20

(b-1)

0 2 4 6
1e8

0

5

Ar
m

 In
de

x

IPC: 0.70

(c-1)

0 1 2 3 4
1e8

0

5

IPC: 0.76

(d-1)

0 2 4 6 8
1e8

0

10

Ar
m

 In
de

x

UCB
IPC: 1.24

(a-2)

0 2 4
1e9

0

10

IPC: 0.20

(b-2)

0 1 2 3
1e8

0

5

Ar
m

 In
de

x

IPC: 0.89

(c-2)

0 1 2 3 4
1e8

0

5

IPC: 0.77

(d-2)

0 2 4 6 8
Time (cycles) 1e8

0

10

Ar
m

 In
de

x

DUCB
IPC: 1.23

(a-3)

0 2 4
Time (cycles) 1e9

0

10

IPC: 0.21

(b-3)

0 1 2 3
Time (cycles) 1e8

0

5

Ar
m

 In
de

x

IPC: 0.89

(c-3)

0 1 2 3 4
Time (cycles) 1e8

0

5

IPC: 0.77

(d-3)

Figure 7: Exploration performed by different algorithms (rows of plots) for different applications (columns of plots).

DUCB); the plots in the same column correspond to a specific ap-
plication (cactus for prefetching, mcf for prefetching, gcc-lbm for
SMT, and cactus-lbm for SMT). Each plot also shows the IPC of the
algorithm/application combination. We do not include 𝜖-Greedy
or Periodic in this figure because their plots are very noisy due to
their non-decaying exploration. The leftmost two applications run
under the prefetching use case, while the rightmost two run under
the SMT thread fetching use case.

The plots show that Best Static does not perform arm exploration
and that Single explores only during the initial round robin phase.
Both UCB and DUCB explore, but DUCB explores more. Different
algorithms choose different arm indices for the same application.
For example, Single may choose a different arm than Best Static.
This results in a dramatic IPC drop in cactus and gcc-lbm. On the
other hand, although UCB and DUCB may frequently not select the
best arm, they select an alternative arm that does equivalently well.
For example, in gcc-lbm, both UCB and DUCB select arm three,
which has a very similar IPC as the optimal arm four.

The mcf plot is an example of howDUCB is able to adapt to phase
changes. At around three billion cycles, a phase change occurs.
DUCB realizes this and starts increasing its exploration rate. Finally,
it settles with a different arm than the one used in the first three
billion cycles. The resulting 0.21 IPC is higher than the 0.20 IPC
of the Best Static algorithm. On the other hand, UCB is unable to
adapt to the phase change and keeps the same arm used in the first
three billion cycles. Also note that, for cactus-lbm, the IPCs of UCB
and DUCB are higher than the Best Static algorithm and no phase
change occurs. This is due to the injection of exploration noise,
which helps the Hill Climbing threshold escape local maxima.

Since DUCB outperforms the other bandit algorithms in the tune
set, in the rest of this section, we focus on this bandit algorithm.

7.2 Performance of Prefetching
7.2.1 Single-core Evaluation. We compare the performance of Ban-
dit to that of the baseline Stride prefetcher, the non-RL prefetchers
MLOP and Bingo, and the MDP-RL prefetcher Pythia. Figure 8 com-
pares the geometric mean IPC of these designs across all the traces

for a single core. All IPC numbers are normalized to a scenario with
no L2 prefetcher.

SPEC06 SPEC17 PARSEC Ligra Cloud Geomean
all suites

Application suite

1.0

1.1

1.2

1.3

1.4

1.5

1.6
Ge

om
ea

n
IP

C
no

rm
al

ize
d

 to
 n

o
L2

 p
re

fe
tc

he
r Stride MLOP Bingo Pythia Bandit

Figure 8: Single-core performance for different state-of-the-
art L2 prefetchers.

We observe that Bandit achieves the best or close to the best per-
formance in all the application suites. When the geometric mean of
all the suites is considered, Bandit outperforms Stride by 9%, Bingo
by 2.6%, MLOP by 2.3%, and Pythia by 0.2%. Remarkably, Bandit
matches the performance of Pythia even though it introduces less
than 100 bytes of storage overhead on a conventional processor
and can be reused across different use cases. In contrast, the storage
overheads of Pythia, MLOP, and Bingo are 25.5KB, 8KB, and 46KB,
respectively. Even if we include in the Bandit’s storage overhead cal-
culation the storage of the NL, stream, and stride prefetchers (which
are already fundamental parts of modern processors), Bandit’s total
storage overhead for prefetching is less than 2KB.

There is a combination of reasons why the simple bandit al-
gorithm matches the performance of the more complex Pythia
algorithm. First, prefetching is characterized by substantial tem-
poral homogeneity (Section 3.1). Secondly, Bandit uses the sophis-
ticated DUCB exploration, while Pythia uses an 𝜖-Greedy action
selection mechanism to explore actions for different states. Finally,
Bandit uses the IPC as the reward, while Pythia assigns rewards
based on prefetch timeliness and accuracy. Therefore, Bandit is de-
signed to maximize performance directly, while Pythia is designed
to maximize performance indirectly through prefetch timeliness
and accuracy.

Figure 9 shows single-core prefetches and LLCmisses normalized
to LLC misses without prefetching (similar to [11]) for NoPrefetch,

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

Stride, Bingo, MLOP, Pythia, 𝐵𝑎𝑛𝑑𝑖𝑡𝐼𝑑𝑒𝑎𝑙 , and Bandit. 𝐵𝑎𝑛𝑑𝑖𝑡𝐼𝑑𝑒𝑎𝑙
does not account for the 500 cycles needed to update the bandit
structures at the end of each bandit step. The figure shows the
prefetches that are timely, the LLC misses that are uncovered (or
that there is a late prefetch that is unable to cover the whole miss la-
tency), and the prefetches that are wrong (i.e., the overpredictions).

NoP
ref

Str
ide

Bing
o

MLO
P

Pyt
hia

Ban
dit

Ide
al Ban

dit
0.0

0.5

1.0

1.5

2.0

2.5

Pr
ef

et
ch

es
 a

nd
 L

LC
 m

iss
es

 n
or

m
al

ize
d

to
 L

LC
 m

iss
es

wi
th

ou
t p

re
fe

tc
hi

ng

Timely Late or Uncovered Miss Wrong

Figure 9: Single-core LLC misses and prefetches classified
into timely, late, and wrong.

The figure suggests that Bandit is a conservative prefetcher. On
average, it reduces the absolute number of wrong prefetches by
66% and 58% compared to Bingo and MLOP, respectively, while
not issuing many more wrong prefetches than Pythia. The fraction
of LLC misses covered with timely prefetches is 49% for Stride,
69% for Bingo, 63% for MLOP, 72% for Pythia, and 67% for Bandit.
This number is slightly lower in Bandit than in Pythia due to cases
of medium temporal homogeneity. However, recall that Bandit is
trained to maximize the end result (i.e., IPC) and not the prefetch
coverage as in Pythia. For this reason, Bandit is able to detect
the configurations that cover the misses that are most critical for
performance. As a result, although covering slightly fewer misses,
Bandit is able to match Pythia’s IPC (Figure 8). Finally, the number
of timely prefetches is very similar in Bandit and in 𝐵𝑎𝑛𝑑𝑖𝑡𝐼𝑑𝑒𝑎𝑙 .
This result suggests that the Bandit latency does not significantly
impact the timeliness of prefetches.

As explained by the Pythia authors [11], Pythia uses information
provided to it about the memory bandwidth usage in the system.
This memory bandwidth usage awareness allows Pythia to sub-
stantially outperform MLOP and Bingo in bandwidth-constrained
system configurations. In Figure 10, we compare the performance of
Bandit and Pythia for different available DRAM bandwidth values
in megatransfers per second (MTPS). Our baseline configuration
has an available DRAM bandwidth of 2400 MTPS, and the figure
performs a sweep using 16 times smaller, 4 times smaller, and 4
times larger available DRAM bandwidth.

0 2000 4000 6000 8000 10000
DRAM MTPS

1.00

1.05

1.10

1.15

1.20

Ge
om

ea
n

IP
C

no
rm

al
ize

d
to

no
 L

2
pr

ef
et

ch
er

Pythia
Bandit

Figure 10: Performance of Pythia and Bandit for different
available DRAM bandwidth values in megatransfers per sec-
ond (MTPS).

From the figure, we see that Bandit performs as well as Pythia
in all configurations. Interestingly, Bandit outperforms Pythia by
2.5% in the most bandwidth-constrained configuration (i.e., for 150
MTPS). This is because the Bandit agent judges actions based on
the end result (i.e., final IPC). Aggressive prefetching actions in
bandwidth-constrained system configurations do not yield good
IPC results. Bandit learns this and outperforms Pythia without
needing to use any bandwidth-related information in its reward
function.

7.2.2 Comparison for Other Configurations. In this section, we con-
sider some architectural variations. Note that we do not retune any
of the prefetchers for the new architectures. Figure 11 repeats the
experiment in Figure 8 in a system with a different cache hierarchy.
We change the L2 size to 1MB and the LLC size to 1.5MB, which
are similar to the sizes used in the Intel Skylake. The rest of the
system parameters are kept the same. We observe that Bandit still
attains better performance than the other prefetchers. When the
geomean of all suites is considered, Bandit outperforms Stride by
9%, Bingo by 1.5%, MLOP by 4.9%, and Pythia by 0.2%.

SPEC06 SPEC17 PARSEC Ligra Cloud Geomean
all suites

Application suite

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ge
om

ea
n

IP
C

no
rm

al
ize

d
 to

 n
o

L2
 p

re
fe

tc
he

r Stride MLOP Bingo Pythia Bandit

Figure 11: Single-core performance for a different cache hi-
erarchy.

We now consider hierarchies with both L1 and L2 prefetch-
ers. They include the multi-level IPCP prefetcher and different
L2 prefetchers (Stride, Pythia, and Bandit) augmented with a sim-
ple stride prefetcher at the L1 cache (Stride_Stride, Stride_Pythia,
and Stride_Bandit). Figure 12 shows the geometric mean IPC of
each of these configurations relative to a scenario with no L1 or L2
prefetcher. The figure shows that the geomean IPC increase over
no-prefetching is 16% for Stride_Stride, 24.5% for IPCP, 24.8% for
Stride_Pythia, and 24.5% for Stride_Bandit. This reveals that Bandit
at L2 in combination with a simple stride at L1 is an excellent op-
tion. Some extensions that could further increase the performance
of Bandit could be: (1) use a second Bandit to control lightweight
prefetchers at L1 or (2) use a single Bandit to control both the L1 and
L2 prefetchers in conjunction. We plan to evaluate such extensions
in future work.

SPEC06 SPEC17 PARSEC Ligra Cloud Geomean
all suites

Application suite

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ge
om

ea
n

IP
C

no
rm

al
ize

d
 to

 n
o

L1
-L

2
pr

ef
et

ch
er Stride_Stride IPCP Stride_Pythia Stride_Bandit

Figure 12: Single-core performance for different multi-level
prefetcher combinations.

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
Application Mix Index

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ba
nd

it
IP

C
re

la
tiv

e
to

 C
ho

i I
PC

Figure 13: Performance of Bandit relative to Choi for 226 2-thread mixes from 22 SPEC17 applications.

SPEC06 SPEC17 PARSEC Ligra Cloud Geomean
all suites

Application suite

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ge
om

ea
n

IP
C

no
rm

al
ize

d
 to

 n
o

L2
 p

re
fe

tc
he

r Stride MLOP Bingo Pythia Bandit

Figure 14: Four-core performance for different state-of-the-
art L2 prefetchers.

7.2.3 Multicore Evaluation. In this section, we evaluate a four-core
architecture. Figure 14 shows the four-core performance for differ-
ent state-of-the-art L2 prefetchers. The four cores of the architecture
all run the same single-threaded application. Looking at the geo-
metric mean of all suites, Bandit outperforms Stride by 6%, MLOP
by 2.4%, and Bingo by 4.0%. However, it performs slightly worse
(by 1.0%) than Pythia. The reason is that, in the 4-core scenario,
the reward is more noisy than in the single-core scenario. Since
four bandits are operating and exploring in parallel, their decisions
interfere. If a bandit chooses an aggressive arm that causes DRAM
bandwidth starvation for the other cores, the bandits of these other
cores may mistakenly attribute the drop in their IPCs to the arm
they are currently exploring. The result could be to get trapped in
suboptimal arms. It can be shown that, for workloads that combine
different applications, the result is similar.

Overall, Bandit’s performance for 4-core mixes is good, espe-
cially considering its tiny storage footprint. In future work, we plan
to investigate alternative rewards that are not very sensitive to
inter-core interference and advanced techniques to orchestrate the
exploration of multiple bandits [18].

7.3 Performance of SMT Thread Fetching
We now consider the SMT fetch policy use case. We compare the
performance when Bandit is used to control the SMT thread fetch
PG policy and when the Choi policy is used. In the evaluation, we
use the 226 2-thread mixes from 22 SPEC17 applications discussed
in Section 6.2. Figure 13 shows the IPC achieved with Bandit relative
to the IPC attained with Choi. In the x-axis, the application mixes
are sorted from lower to higher ratio of Bandit IPC to Choi IPC.

We observe that Bandit offers clear benefits over Choi. It outper-
forms Choi by more than 4% in 36 application mixes, and by 36%
in one mix. On the other hand, Choi outperforms Bandit by more
than 4% in only 6 application mixes. These are cases in which the
Bandit exploration is not optimal and settles for policies worse than
Choi (i.e., IC_1011). Overall, including all the mixes, Bandit offers a
2.2% geometric mean speedup over Choi and, although not shown
in the figure, a 7% geometric mean speedup over plain ICount (i.e.,

IC_0000). Finally, we repeated these experiments extending the
simulation duration to 250M instructions from each thread and
observed similar results.

To understand the performance difference between Bandit and
Choi, we focus on the activity of the rename stage of the pipeline of
the core. The rename stage can be stalled, idle, or running (i.e., doing
useful work). Rename is stalled due to full conditions in various
shared pipeline structures—mostly the ROB, IQ, LQ, SQ, and RF.
Rename is idle when the fetch and decode stages have not pushed
any instructions to it, possibly due to fetch gating.

Figure 15 shows, for Choi and Bandit, the average fraction of
cycles that the rename stage is in different states. From left to right,
the bars show cycles stalled due to ROB being full, IQ being full,
LQ being full, SQ being full, and RF being full. The next three bars
are the average fraction of cycles when rename is stalled due to
any structure being full, when rename is idle, and when rename is
running.

ROBFu
ll

Sta
lls IQFu

ll

Sta
lls LQ

Fu
ll

Sta
lls SQ

Fu
ll

Sta
lls RFFu

ll

Sta
lls All

Sta
lls

Ren
am

e

Idl
e

Ren
am

e

Run
nin

g
0
5

10
15
20
25
30
35

Nu
m

be
r o

f c
yc

le
s

(p
er

ce
nt

ag
e)

Choi Bandit

Figure 15: Percentage of cycles when rename is stalled, idle,
or running for Bandit and Choi.

The figure shows that Bandit reduces the fraction of cycles when
rename is stalled and when rename is idle. As a result, it increases
the fraction of running cycles. In particular, Bandit decreases re-
name stalls because it includes arms that are aware of SQ occupancy.
As a result, it decreases the stalls due to SQ full conditions. Impor-
tantly, Bandit decreases rename idle cycles by being able to detect
the criticality of each structure in cases of asymmetric utilization
(Section 3.3). In this way, it eliminates a substantial number of
conservative fetch gating occurrences. As a result, on average, the
fraction of cycles when rename is running is 2.6% higher with
Bandit than with Choi.

8 RELATEDWORK
1. Prefetching: Throughout the years, numerous prefetchers have
been proposed, including adaptive [28, 30, 38] and composite [42,
76] prefetchers. IPCP [48] groups instruction pointers in classes
based on their access patterns and uses a lightweight prefetcher per
class. Jimenez et al. [38] propose heuristic software techniques to

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

control the aggressiveness of the IBM POWER7 stream and stride
prefetchers. Software techniques are not as agile as hardware agents
and cannot detect short-lived program mini-phases. Our Periodic
heuristic is inspired by this work.

The Best Offset Prefetcher (BOP) [47] tries to identify a single
best offset that is used for all cache lines, by scanning all the possible
options and learning the optimal one per epoch. In addition, it
always prefetches with a degree of 1. Although such an approach
would work in cases of perfect temporal homogeneity, it fails to
adapt in scenarios with high (but not perfect) homogeneity, in
which a few different degrees and offsets are optimal (Figure 2). On
the other hand, Bandit controls an adaptable prefetcher mix and
thus can concurrently sustain a few different degrees and offsets in
the same program phase. Hence, it can adapt in cases of high but
imperfect temporal homogeneity. An additional difference is that,
instead of scanning all the possible options as in BOP, Bandit uses
the sophisticated DUCB exploration algorithm.

In the RL domain, the most notable examples are Pythia [11]
and the Context Prefetcher [50], which were discussed in Section 2.
Pythiawas shown to outperform the Context and adaptive POWER7
prefetchers [11]. In our evaluation, we extensively compared Ban-
dit’s performance to Pythia’s and other state-of-the-art prefetch-
ers [7, 48, 60]. Recently, ML and RL-inspired prefetch managers
have been proposed [20, 35] to coordinate multi-level prefetchers.
We believe that Bandit can also be useful to manage multi-level
prefetchers and we plan to test this use case in future work.
2. SMT resource distribution: Apart from the Hill Climbing
algorithm [17], there are other methods for distributing shared
resources in an SMT pipeline. For example, ARPA [79] assigns more
resources to threads based on their usage efficiency. Using Bandit to
augment such alternative methods, in a manner similar to how we
used it for Hill Climbing is an interesting research direction. Some
recent works employ neural networks for SMT processor resource
distribution [16, 82]. However, the high complexity and overhead
of such ML models are hard to justify for resource-constrained
environments such as a processor pipeline.
3. Hardware RL agents for other use cases: Apart from the use
cases that we focused on in this work, hardware RL agents have
been proposed for a variety of other applications. For example, Ipek
et al. [34] propose a SARSA-based memory controller, while Zheng
and Louri [83] propose a NoC design with per-router Q-Learning
agents. Sibyl [64] uses RL for data placement in hybrid storage sys-
tems. Cohmeleon [85] employs Q-Learning to find the best cache
coherence mode for different accelerators in heterogeneous SoCs.
While effective, all of these approaches suffer from the increased
complexity and overhead introduced by decomposing the environ-
ment into multiple states, as explained in Section 2. SOSA [18] is a
cross-layer system for hierarchical SoC management. It employs
a software supervisor that coordinates low-level hardware agents.
Ideas from SOSA could be useful to coordinate multiple Bandits
operating in parallel.

9 FUTUREWORK
We outline two possible future research directions. One of them is to
investigate the applicability of Bandit to other use cases such as the
ones discussed in the last part of Section 8. We plan to investigate

whether the simplified approach followed by Bandit is sufficient
for some of these use cases.

The second direction is to study Bandit extensions with slightly
higher storage needs than the design proposed here, which can
increase performance further. There are many ways in which po-
tential Bandit extensions could utilize additional storage budget.
An obvious way is to increase the action space. For example, for the
prefetching use case, Bandit could also control the target cache level
and/or prefetch throttling mechanisms. An alternative extension is
to use a single Bandit to control multiple ensembles. One example
is to control both the L1 and L2 prefetcher configurations or to
jointly select the prefetcher configuration and the cache replace-
ment policy. Note that the action space size in this case is given
by the product of the action space of each ensemble (e.g., for 10 L1
and 10 L2 prefetcher configurations, there are a total of 100 Bandit
actions).

During our tuning experiments, we observed that different val-
ues of the DUCB hyperparameters (e.g., 𝛾 and 𝑐 in Table 6) worked
best for different applications. This observation motivates an al-
ternative way to utilize any additional storage budget: multiple
low-level Bandits with different hyperparameter values could be
concurrently active, and a high-level Bandit would select the best
one. Finally, although Bandit is unable to discriminate environment
states (Figure 1), it could be augmented with a classifier module
that classifies memory access patterns [6, 48] online. Then, a sepa-
rate Bandit could be used to pick the appropriate actions for each
pattern type.

10 CONCLUSION
Our analysis of some microarchitecture decision-making problems
reveals that, in a given time window, only a small fraction of the
action space is useful. We exploit this observation by modeling the
decision-making as a Reinforcement Learning (RL) environment
using a single state, drastically reducing complexity and storage
requirements. We then design a hardware RL agent implementation
based on Multi-Armed Bandit algorithms that is lightweight and
reusable. We call our RL agent Micro-Armed Bandit or Bandit.

We showcase Bandit in two use cases: data prefetching and
instruction fetch in SMT processors. For prefetching, our agent
outperforms non-RL prefetchers Bingo and MLOP by 2.6% and 2.3%
(geometric mean), respectively, and attains similar performance
as the state-of-the-art RL prefetcher Pythia—with the dramatically
lower storage requirement of only 100 bytes. For SMT instruction
fetch, our agent outperforms the Hill Climbing method by 2.2%
(geometric mean).

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd for their
feedback, which significantly improved the quality of the final
manuscript. We additionally thank Shreya Seth for her help in
making this work possible. This research was funded in part by
an Intel Transformative Server Architecture (TSA) gift; by ACE,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA; and by NSF
grants CCF 2107470, CNS 1956007, and CNS 1763658. Their support
is gratefully acknowledged.

Micro-Armed Bandit: Lightweight & Reusable RL for Microarchitecture Decision-Making MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

REFERENCES
[1] 2nd Cache Replacement Championship (CRC-2). 2017. https://crc2.ece.tamu.edu
[2] 3rd Data Prefetching Championship (DPC-3). 2019. https://dpc3.compas.cs.

stonybrook.edu
[3] Peter Auer. 2003. Using Confidence Bounds for Exploitation-Exploration Trade-

Offs. J. Mach. Learn. Res. 3 (2003), 397–422.
[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of

the Multiarmed Bandit Problem. Machine learning 47 (2002), 235–256.
[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The

Nonstochastic Multiarmed Bandit Problem. SIAM journal on computing 32, 1
(2002), 48–77.

[6] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 513–526.

[7] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 399–411.

[8] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (2017), 25 pages.

[9] Richard Bellman. 1957. A Markovian Decision Process. Journal of mathematics
and mechanics (1957), 679–684.

[10] Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo,
Ataberk Olgun, Mohammad Sadrosadat, and Onur Mutlu. 2022. Hermes: Ac-
celerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–18.

[11] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-
vas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware
Prefetching Framework Using Online Reinforcement Learning. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 1121–1137.

[12] Dimitri Bertsekas. 2019. Reinforcement Learning and Optimal Control. Athena
Scientific.

[13] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and
Daniel A. Jiménez. 2019. Perceptron-Based Prefetch Filtering. In Proceedings of
the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 1–13.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (2011), 1–7.

[15] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated Man-
agement of Multiple Interacting Resources in Chip Multiprocessors: A Machine
LearningApproach. In Proceedings of the 41st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 41). IEEE Computer Society, USA, 318–329.

[16] Shane Carroll and Wei-Ming Lin. 2019. Applied On-Chip Machine Learning
for Dynamic Resource Control in Multithreaded Processors. Parallel Processing
Letters 29, 03 (2019), 1950013.

[17] Seungryul Choi and Donald Yeung. 2006. Learning-Based SMT Processor Re-
source Distribution via Hill-Climbing. In Proceedings of the 33rd Annual Interna-
tional Symposium on Computer Architecture (ISCA ’06). IEEE Computer Society,
USA, 239–251.

[18] Bryan Donyanavard, Tiago Mück, Amir M. Rahmani, Nikil Dutt, Armin Sadighi,
Florian Maurer, and Andreas Herkersdorf. 2019. SOSA: Self-Optimizing Learning
with Self-Adaptive Control for Hierarchical System-on-Chip Management. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 685–698.

[19] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.
O’Boyle. 2010. A Predictive Model for Dynamic Microarchitectural Adaptivity
Control. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’43). IEEE Computer Society, USA, 485–496.

[20] Furkan Eris, Marcia Louis, Kubra Eris, José Abellán, and Ajay Joshi. 2022. Pup-
peteer: A Random Forest Based Manager for Hardware Prefetchers Across the
Memory Hierarchy. ACM Trans. Archit. Code Optim. 20, 1, Article 19 (2022).

[21] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. SIGPLAN Not. 47, 4 (2012), 37–48.

[22] Agner Fog. 2011. Instruction Tables: Lists of Instruction Latencies, Throughputs
and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs. Copenhagen

University College of Engineering 93 (2011), 110.
[23] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. 1992. Stride Directed Prefetch-

ing in Scalar Processors. In Proceedings of the 25th Annual International Symposium
on Microarchitecture (Portland, Oregon, USA) (MICRO 25). IEEE Computer Society
Press, Washington, DC, USA, 102–110.

[24] Aurélien Garivier and Eric Moulines. 2008. On Upper-Confidence Bound Policies
for Non-Stationary Bandit Problems. arXiv arXiv:0805.3415 (2008).

[25] Nathan Gober, Gino Chacon, Lei Wang, Paul V Gratz, Daniel A Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simula-
tor: Architectural Simulation for Education and Competition. arXiv preprint
arXiv:2210.14324 (2022).

[26] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and More Flexible Program Phase Analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[27] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 80). PMLR,
1919–1928.

[28] Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn Eyerman, and Ibrahim
Hur. 2018. Near-Side Prefetch Throttling: Adaptive Prefetching for High-
Performance Many-Core Processors. In Proceedings of the 27th International Con-
ference on Parallel Architectures and Compilation Techniques (Limassol, Cyprus)
(PACT ’18). Association for Computing Machinery, New York, NY, USA, Article
28, 11 pages.

[29] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic Knobs for Responsive Power-Aware
Computing. In Proceedings of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). Association for Computing Machinery,
New York, NY, USA, 199–212.

[30] Ibrahim Hur and Calvin Lin. 2006. Memory Prefetching Using Adaptive Stream
Detection. In Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 39). IEEE Computer Society, USA, 397–408.

[31] Intel. 2021. Intel Xeon Platinum 8380 Processor 60MB Cache 2.30 GHz Product
Specifications. https://ark.intel.com/content/www/us/en/ark/products/212287/
intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html

[32] Intel. 2022. Intel 64 and IA-32 Architectures Software Developer’s Manual.
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-instruction-set-reference-manual-
325383.pdf

[33] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. 2006. Efficiently Exploring Architectural Design Spaces via Predictive
Modeling. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
195–206.

[34] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana. 2008. Self-
Optimizing Memory Controllers: A Reinforcement Learning Approach. In Pro-
ceedings of the 35th Annual International Symposium on Computer Architecture
(ISCA ’08). IEEE Computer Society, USA, 39–50.

[35] Majid Jalili and Mattan Erez. 2022. Managing Prefetchers with Deep Reinforce-
ment Learning. IEEE Computer Architecture Letters 21, 2 (2022), 105–108.

[36] Shizhi Jiang, Qiusong Yang, and Yiwei Ci. 2022. Merging Similar Patterns for
Hardware Prefetching. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 1012–1026.

[37] D.A. Jimenez and C. Lin. 2001. Dynamic Branch Prediction with Perceptrons. In
Proceedings HPCA Seventh International Symposium on High-Performance Com-
puter Architecture. 197–206.

[38] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu,
Pradip Bose, and Francis P. O’Connell. 2012. Making Data Prefetch Smarter: Adap-
tive Prefetching on POWER7. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques (Minneapolis, Minnesota,
USA) (PACT ’12). Association for Computing Machinery, New York, NY, USA,
137–146.

[39] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. 2006. A Predictive
Performance Model for Superscalar Processors. In Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO 39). IEEE
Computer Society, USA, 161–170.

[40] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. 2010.
POWER7: IBM’s Next-Generation Server Processor. IEEE Micro 30, 2 (2010),
7–15.

[41] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip
Roy, Amit Sabne, and Mike Burrows. 2021. A Learned Performance Model for
Tensor Processing Units. In Proceedings of Machine Learning and Systems, Vol. 3.
387–400.

https://crc2.ece.tamu.edu
https://dpc3.compas.cs.stonybrook.edu
https://dpc3.compas.cs.stonybrook.edu
https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Gerasimos Gerogiannis and Josep Torrellas

[42] Sushant Kondguli and Michael Huang. 2018. Division of Labor: A More Effective
Approach to Prefetching. In Proceedings of the 45th Annual International Sympo-
sium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE Press,
83–95.

[43] Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regres-
sion Modeling for Microarchitectural Performance and Power Prediction. In
Proceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (San Jose, California, USA) (ASPLOS
XII). Association for Computing Machinery, New York, NY, USA, 185–194.

[44] Kun Luo, J. Gummaraju, andM. Franklin. 2001. Balancing Thoughput and Fairness
in SMT Processors. In 2001 IEEE International Symposium on Performance Analysis
of Systems and Software. ISPASS. 164–171.

[45] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. 2011. Scalable Power Control for
Many-Core Architectures Running Multi-Threaded Applications. In Proceedings
of the 38th Annual International Symposium on Computer Architecture (San Jose,
California, USA) (ISCA ’11). Association for Computing Machinery, New York,
NY, USA, 449–460.

[46] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 97). PMLR,
4505–4515.

[47] Pierre Michaud. 2016. Best-Offset Hardware Prefetching. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 469–480.

[48] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of Instruction Point-
ers: Instruction Pointer Classifier-based Spatial Hardware Prefetching. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
118–131.

[49] PARSEC. 2010. http://parsec.cs.princeton.edu
[50] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic Locality

and Context-Based Prefetching Using Reinforcement Learning. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). Association for Computing Machinery, New York, NY, USA,
285–297.

[51] Raghavendra Pradyumna Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep
Torrellas. 2016. Using Multiple Input, Multiple Output Formal Control to Maxi-
mize Resource Efficiency in Architectures. In Proceedings of the 43rd International
Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE
Press, 658–670.

[52] Raghavendra Pradyumna Pothukuchi, Joseph L. Greathouse, Karthik Rao, Christo-
pher Erb, Leonardo Piga, Petros G. Voulgaris, and Josep Torrellas. 2019. Tangram:
Integrated Control of Heterogeneous Computers. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
384–398.

[53] Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros Voul-
garis, and Josep Torrellas. 2018. Yukta: Multilayer Resource Controllers to Maxi-
mize Efficiency. In Proceedings of the 45th Annual International Symposium on
Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE Press, 505–518.

[54] Herbert Robbins. 1952. Some Aspects of the Sequential Design of Experiments.
Bull. Amer. Math. Soc. 58, 5 (1952), 527 – 535.

[55] G. Rummery and Mahesan Niranjan. 1994. On-Line Q-Learning Using Connec-
tionist Systems. Technical Report CUED/F-INFENG/TR 166 (11 1994).

[56] Soheil Salehi and Ronald F. DeMara. 2015. Energy and Area Analysis of a Floating-
Point Unit in 15nm CMOS Process Technology. In SoutheastCon 2015. 1–5.

[57] David Schor. 2021. Intel launches 3rd Gen Ice Lake Xeon Scalable. https:
//fuse.wikichip.org/news/4734/intel-launches-3rd-gen-ice-lake-xeon-scalable/

[58] Steven L. Scott. 2010. A Modern Bayesian Look at the Multi-Armed Bandit. Appl.
Stoch. Model. Bus. Ind. 26, 6 (2010), 639–658.

[59] Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a Cost-
Effective Cache Replacement Policy usingMachine Learning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 291–303.

[60] Mehran Shakerinava, Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Multi-Lookahead Offset Prefetching. The Third Data
Prefetching Championship (2019).

[61] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying
Deep Learning to the Cache Replacement Problem. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
413–425.

[62] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A Hierarchical Neural Model of Data Prefetching.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21).
Association for Computing Machinery, New York, NY, USA, 861–873.

[63] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP

’13). Association for Computing Machinery, New York, NY, USA, 135–146.
[64] Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gómez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu.
2022. Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning. In Proceedings of the 49th Annual Inter-
national Symposium on Computer Architecture (New York, New York) (ISCA ’22).
Association for Computing Machinery, New York, NY, USA, 320–336.

[65] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. 2002. Symbiotic Job Schedul-
ing with Priorities for a Simultaneous Multithreading Processor. In Proceedings of
the 2002 ACM SIGMETRICS International Conference onMeasurement andModeling
of Computer Systems (Marina Del Rey, California) (SIGMETRICS ’02). Association
for Computing Machinery, New York, NY, USA, 66–76.

[66] SPEC2006. 2006. https://www.spec.org/cpu2006/
[67] SPEC2017. 2017. https://www.spec.org/cpu2017/
[68] Aaron Stillmaker and Bevan Baas. 2017. Scaling Equations for the Accurate

Prediction of CMOS Device Performance from 180nm to 7nm. Integration (June
2017), 74–81.

[69] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[70] Mohammadkazem Taram. 2022. SecSMT Artifact. https://github.com/mktrm/
SecSMT_Artifact

[71] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
SecSMT: Securing SMT Processors against Contention-Based Covert Channels.
In 31st USENIX Security Symposium (USENIX Security 22). 3165–3182.

[72] Stephen J Tarsa, Chit-Kwan Lin, Gokce Keskin, Gautham Chinya, and Hong
Wang. 2019. Improving Branch Prediction by Modeling Global History with
Convolutional Neural Networks. arXiv preprint arXiv:1906.09889 (2019).

[73] William R Thompson. 1933. On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3-4
(1933), 285–294.

[74] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and
Rebecca L. Stamm. 1996. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor. In Proceedings of the
23rd Annual International Symposium on Computer Architecture (Philadelphia,
Pennsylvania, USA) (ISCA ’96). Association for Computing Machinery, New York,
NY, USA, 191–202.

[75] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous
Multithreading: Maximizing on-Chip Parallelism. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture (S. Margherita Ligure,
Italy) (ISCA ’95). Association for Computing Machinery, New York, NY, USA,
392–403.

[76] Georgios Vavouliotis, Lluc Alvarez, Boris Grot, Daniel Jiménez, and Marc Casas.
2021. Morrigan: A Composite Instruction TLB Prefetcher. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
1138–1153.

[77] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A. Jiménez, andMarc Casas. 2021. Exploiting Page Table
Locality for Agile TLB Prefetching. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (Virtual Event, Spain) (ISCA ’21). IEEE Press,
85–98.

[78] Georgios Vavouliotis, Gino Chacon, Lluc Alvarez, Paul V Gratz, Daniel A Jiménez,
and Marc Casas. 2022. Page Size Aware Cache Prefetching. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 956–974.

[79] Huaping Wang, Israel Koren, and C. Mani Krishna. 2008. An Adaptive Resource
PartitioningAlgorithm for SMT Processors. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (Toronto, Ontario,
Canada) (PACT ’08). Association for Computing Machinery, New York, NY, USA,
230–239.

[80] Christopher J. C. H.Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

[81] WikiChip. 2016. Skylake (client). https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(client)

[82] Huixin Zhan, Victor S. Sheng, and Wei-Ming Lin. 2022. Reinforcement Learning-
Based Register Renaming Policy for Simultaneous Multithreading CPUs. Expert
Syst. Appl. 186, C (2022), 13 pages.

[83] Hao Zheng and Ahmed Louri. 2019. An Energy-Efficient Network-on-Chip
Design Using Reinforcement Learning. In Proceedings of the 56th Annual Design
Automation Conference 2019 (Las Vegas, NV, USA) (DAC ’19). Association for
Computing Machinery, New York, NY, USA, Article 47, 6 pages.

[84] Anastasios Zouzias, Kleovoulos Kalaitzidis, and Boris Grot. 2021. Branch Predic-
tion as a Reinforcement Learning Problem: Why, How and Case Studies. arXiv
preprint arXiv:2106.13429 (2021).

[85] Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Car-
loni. 2021. Cohmeleon: Learning-Based Orchestration of Accelerator Coherence
in Heterogeneous SoCs. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association for
Computing Machinery, New York, NY, USA, 350–365.

http://parsec.cs.princeton.edu
https://fuse.wikichip.org/news/4734/intel-launches-3rd-gen-ice-lake-xeon-scalable/
https://fuse.wikichip.org/news/4734/intel-launches-3rd-gen-ice-lake-xeon-scalable/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://github.com/mktrm/SecSMT_Artifact
https://github.com/mktrm/SecSMT_Artifact
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

	Abstract
	1 Introduction
	2 Background
	2.1 Online Reinforcement Learning
	2.2 RL Problem Formulations

	3 Motivation
	3.1 Temporal Homogeneity in Prefetching
	3.2 Policies for Fetch Priority and Gating of SMT Threads
	3.3 Extending the Choi Algorithm

	4 Multi-Armed Bandit Algorithms for Microarchitecture
	4.1 General Template for MAB Algorithms
	4.2 Three MAB Algorithms
	4.3 Modifications for Microarchitecture Environments

	5 Micro-Armed Bandit Design
	5.1 Microarchitecture and Functionality
	5.2 Prefetching Use Case
	5.3 SMT Instruction Fetch Use Case
	5.4 Storage Overhead and Latency

	6 Evaluation Methodology
	6.1 Evaluation Environment
	6.2 Applications
	6.3 Bandit Tuning and Hyperparameters
	6.4 Comparison to Prior Proposals
	6.5 Area and Power

	7 Evaluation
	7.1 Performance Using the Tune Set
	7.2 Performance of Prefetching
	7.3 Performance of SMT Thread Fetching

	8 Related Work
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

