
Draco: Architectural and Operating System Support
for System Call Security

Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, Josep Torrellas

University of Illinois at Urbana-Champaign
{skarlat2, qc16, jianyan2, tyxu, torrella}@illinois.edu

Abstract—System call checking is extensively used to protect
the operating system kernel from user attacks. However, existing
solutions such as Seccomp execute lengthy rule-based checking
programs against system calls and their arguments, leading to
substantial execution overhead.

To minimize checking overhead, this paper proposes Draco, a
new architecture that caches system call IDs and argument values
after they have been checked and validated. System calls are first
looked-up in a special cache and, on a hit, skip all checks. We
present both a software and a hardware implementation of Draco.
The latter introduces a System Call Lookaside Buffer (SLB) to
keep recently-validated system calls, and a System Call Target
Buffer to preload the SLB in advance. In our evaluation, we find
that the average execution time of macro and micro benchmarks
with conventional Seccomp checking is 1.14× and 1.25× higher,
respectively, than on an insecure baseline that performs no
security checks. With our software Draco, the average execution
time reduces to 1.10× and 1.18× higher, respectively, than on
the insecure baseline. With our hardware Draco, the execution
time is within 1% of the insecure baseline.

Index Terms—System call checking, Security, Operating sys-
tem, Containers, Virtualization, Microarchitecture

I. INTRODUCTION

Protecting the Operating System (OS) kernel is a significant
concern, given its capabilities and shared nature. In recent
years, there have been reports of a number of security attacks
on the OS kernel through system call vectors [1]–[10].

A popular technique to protect OS kernels against untrusted
user processes is system call checking. The idea is to limit the
system calls that a given process can invoke at runtime, as
well as the actual set of argument values used by the system
calls. This technique is implemented by adding code at the OS
entry point of a system call. The code compares the incoming
system call against a list of allowed system calls and argument
set values, and either lets the system call continue or flags an
error. All modern OSes provide kernel support for system call
checking, such as Seccomp for Linux [11], Pledge [12] and
Tame [13] for OpenBSD, and System Call Disable Policy for
Windows [14].

Linux’s Seccomp (Secure Computing) module is the most
widely-used implementation of system call checking. It is
used in a wide variety of today’s systems, ranging from
mobile systems to web browsers, and to containers massively
deployed in cloud and data centers. Today, every Android app
is isolated using Seccomp-based system call checking [15].
Systemd, which is Linux’s init system, uses Seccomp to
support user process sandboxing [16]. Low-overhead virtu-
alization technologies such as Docker [17], LXC/LXD [18],

Google’s gVisor [19], Amazon’s Firecraker [20], [21], CoreOS
rkt [22], Singularity [23], Kubernetes [24], and Mesos Con-
tainerizer [25] all use Seccomp. Further, Google’s recent
Sandboxed API project [26] uses Seccomp to enforce sand-
boxing for C/C++ libraries. Overall, Seccomp provides “the
most important security isolation boundary” for containerized
environments [21].

Unfortunately, checking system calls incurs overhead. Or-
acle identified large Seccomp programs as a root cause that
slowed down their customers’ applications [27], [28]. Seccomp
programs can be application specific, and complex applications
tend to need large Seccomp programs. Recently, a number of
Seccomp overhead measurements have been reported [27]–
[29]. For example, a micro benchmark that repeatedly calls
getppid runs 25% slower when Seccomp is enabled [29].
Seccomp’s overhead on ARM processors is reported to be
around 20% for simple checks [30].

The overhead becomes higher if the checks include system
call argument values. Since each individual system call can
have multiple arguments, and each argument can take multiple
distinct values, comprehensively checking arguments is slow.
For example, Kim and Zeldovich [31] show that Seccomp
causes a 45% overhead in a sandboxed application. Our own
measurements on an Intel Xeon server show that the average
execution time of macro and micro benchmarks is 1.14× and
1.25× higher, respectively, than without any checks. For this
reason, current systems tend to perform only a small number of
argument checks, despite being well known that systematically
checking arguments is critical for security [32]–[34].

The overhead of system call and argument value checking is
especially concerning for applications with high-performance
requirements, such as containerized environments. The over-
head diminishes one of the key attractions of containerization,
namely lightweight virtualization.

To minimize this overhead, this paper proposes Draco, a
new architecture that caches system call IDs and argument set
values after they have been checked and validated. System
calls are first looked-up in a special cache and, on a hit,
skip the checks. The insight behind Draco is that the patterns
of system calls in real-world applications have locality—the
same system calls are issued repeatedly, with the same sets of
argument values.

In this paper, we present both a software and a hardware
implementation of Draco. We build the software one as a
component of the Linux kernel. While this implementation
is faster than Seccomp, it still incurs substantial overhead.

The hardware implementation of Draco introduces novel
microarchitecture to eliminate practically all of the checking
overhead. It introduces the System Call Lookaside Buffer
(SLB) to keep recently-validated system calls, and the System
Call Target Buffer (STB) to preload the SLB in advance.

In our evaluation, we execute representative workloads
in Docker containers. We run Seccomp on an Intel Xeon
server, checking both system call IDs and argument values.
We find that, with Seccomp, the average execution time of
macro and micro benchmarks is 1.14× and 1.25× higher,
respectively, than without performing any security checks.
With our software Draco, the average execution time of macro
and micro benchmarks reduces to 1.10× and 1.18× higher,
respectively, than without any security checks. Finally, we use
full-system simulation to evaluate our hardware Draco. The
average execution time of the macro and micro benchmarks
is within 1% of a system that performs no security checks.

With more complex checks, as expected in the future,
the overhead of conventional Seccomp checking increases
substantially, while the overhead of Draco’s software imple-
mentation goes up only modestly. Moreover, the overhead
of Draco’s hardware implementation remains within 1% of
a system without checks.

Overall, the contributions of this work are:
1) A characterization of the system call checking overhead

for various Seccomp configurations.
2) The new Draco architecture that caches validated system

call IDs and argument values for reuse. We introduce a
software and a hardware implementation.

3) An evaluation of the software and hardware implemen-
tations of Draco.

II. BACKGROUND

A. System Calls

System calls are the interface an OS kernel exposes to the
user space. In x86-64 [35], a user space process requests
a system call by issuing the syscall instruction, which
transfers control to the OS kernel. The instruction invokes a
system call handler at privilege level 0. In Linux, syscall
supports from zero to six distinct arguments that are passed
to the kernel through general-purpose registers. Specifically,
the x86-64 architecture stores the system call ID in the rax

register, and the arguments in registers rdi, rsi, rdx, r10,
r8, and r9. The return value of the system call is stored
in the rax register. The syscall instruction is a serializing
instruction [35], which means that it cannot execute until all
the older instructions are completed, and that it prevents the
execution of all the younger instructions until it completes.
Finally, note that the work in this paper is not tied to Linux,
but applies to different OS kernels.

B. System Call Checking

A core security technique to protect the OS kernel against
untrusted user processes is system call checking. The most
widely-used implementation of such a technique is the Secure
Computing (Seccomp) module [11], which is implemented in

Linux. Seccomp allows the software to specify which system
calls a given process can make, and which argument values
such system calls can use. This information is specified in a
profile for the process, which is expressed as a Berkeley Packet
Filter (BPF) program called a filter [36]. When the process
is loaded, a Just-In-Time compiler in the kernel converts the
BPF program into native code. The Seccomp filter executes
in the OS kernel every time the process performs a system
call. The filter may allow the system call to proceed or, if it
is illegal, capture it. In this case, the OS kernel may take one
of multiple actions: kill the process or thread, send a SIGSYS

signal to the thread, return an error, or log the system call [11].
System call checking is also used by other modern OSes, such
as OpenBSD with Pledge [12] and Tame [13], and Windows
with System Call Disable Policy [14]. The idea behind our
proposal, Draco, can be applied to all of them.

Figure 1 shows an example of a system call check. In user
space, the program loads the system call argument and ID in
registers rdi and rax, respectively, and performs the system
call. This ID corresponds to the personality system call.
As execution enters the OS kernel, Seccomp checks if this
combination of system call ID and argument value is allowed.
If it is allowed, it lets the system call execution to proceed
(Line 8); otherwise, it terminates the process (Line 11).

User space

Kernel space

Process

6. ...
7. if (syscallID == 135 &&

(arg0 == 0xffffffff ||
arg0 == 0x20008)) {

3. return SCMP_ACT_ALLOW
9. }
10. ...
. return SECCOMP_RET_KILL_PROCESS

Seccomp

Execute the system call

Terminate the
user process

1. ...
2. movl 0xffffffff,%rdi
3. movl $135,%rax
4. SYSCALL
5. ...

8. return SCMP_ACT_ALLOW

11. return SCMP_ACT_KILL_PROCESS

Fig. 1: Checking a system call with Seccomp.

Figure 1 shows that a Seccomp profile is a long list of if
statements that are executed in sequence. Finding the target
system call and the target combination of argument values in
the list can take a long time, which is the reason for the often
high overhead of Seccomp.

Seccomp does not check the values of arguments that are
pointers. This is because such a check does not provide any
protection: a malicious user could change the contents of the
location pointed to by the pointer after the check, creating a
Time-Of-Check-Time-Of-Use (TOCTOU) attack [37], [38].

Seccomp could potentially do advanced checks such as
checking the value range of an argument, or the result of an
operation on the arguments. However, our study of real-world
Seccomp profiles shows that most real-world profiles simply
check system call IDs and argument values based on a whitelist
of exact IDs and values [19], [39]–[43].

C. System Call Checking in Modern Systems
System call checking with Seccomp is performed in almost

all of the modern Linux-based system infrastructure. This in-
cludes modern container and lightweight VM runtimes such as
Docker [17], Google’s gVisor [19], Amazon’s Firecracker [20],
[21], and CoreOS rkt [22]. Other environments, such as
Android and Chrome OS also use Seccomp [15], [44]–[46].
The systemd Linux service manager [16] has adopted Seccomp
to further increase the isolation of user containers.

Google’s Sandboxed API [26] is an initiative that aims to
isolate C/C++ libraries using Seccomp. This initiative, together
with others [47]–[50], significantly reduce the barrier to apply
Seccomp profiles customized for applications.

Seccomp profiles. In this paper, we focus on container tech-
nologies, which have both high performance and high security
requirements. The default Seccomp profiles provided by ex-
isting container runtimes typically contain hundreds of system
call IDs and fewer argument values. For example, Docker’s
default profile allows 358 system calls, and only checks 7
unique argument values (of the clone and personality

system calls). This profile is widely used by other container
technologies such as CoreOS Rtk and Singularity, and is
applied by container management systems such as Kubernetes,
Mesos, and RedHat’s RedShift. In this paper, we use Docker’s
default Seccomp profile as our baseline profile.

Other profiles include the default gVisor profile, which is a
whitelist of 74 system calls and 130 argument checks. Also,
the profile for the AWS Firecracker microVMs contains 37
system calls and 8 argument checks [20].

In this paper, we also explore more secure Seccomp profiles
tailored for some applications. Application-specific profiles are
supported by Docker and other projects [17], [24], [50]–[53].

III. THREAT MODEL

We adopt the same threat model as existing system call
checking systems such as Seccomp, where untrusted user
space processes can be adversarial and attack the OS kernel.
In the context of containers, the containerized applications are
deployed in the cloud, and an adversary tries to compromise
a container and exploit vulnerabilities in the host OS kernel
to achieve privilege escalation and arbitrary code execution.
The system call interface is the major attack vector for user
processes to attack the OS kernel.

Prior work [54]–[56] has shown that system call checking
is effective in defending against real-world attacks, because
most applications only use a small number of different system
calls and argument values [2]–[6]. For example, the mitigation
of CVE-2014-3153 [3] is to disallow FUTEX_REQUEUE as the
value of the futex_op argument of the futex system call.

Our focus is not to invent new security analyses or policies,
but to minimize the execution overhead that hinders the
deployment of comprehensive security checks. As will be
shown in this paper, existing software-based security checking
is often costly. This forces users to sacrifice either performance
or security. Draco provides both high performance and a high
level of security.

IV. MEASURING OVERHEAD & LOCALITY

To motivate our proposal, we benchmark the overhead of
state-of-the-art system call checking. We focus on understand-
ing the overhead of: 1) using generic system call profiles, 2)
using smaller, application-specific system call profiles, and 3)
using profiles that also check system call arguments.

A. Methodology

We run macro and micro benchmarks in Docker containers
with each of the following four Seccomp profiles:
insecure: Seccomp is disabled. It is an insecure baseline where
no checks are performed.
docker-default: Docker’s default Seccomp profile. It is auto-
matically used in all Docker containers and other container
technologies (e.g., CoreOS rkt and Singularity) as part of
the Moby project [57]. This profile is deployed by container
management systems like Kubernetes, RedHat RedShift, and
Mesos Containerizers.
syscall-noargs: Application-specific profiles without argument
checks, where the filter whitelists the exact system call IDs
used by the application.
syscall-complete: Application-specific profiles with argument
checks, where the filter whitelists the exact system call IDs
and the exact argument values used by the application. These
profiles are the most secure filters that include both system
call IDs and their arguments.
syscall-complete-2x: Application-specific profiles that consist
of running the above syscall-complete profile twice in a
row. Hence, these profiles perform twice the number of checks
as syscall-complete. The goal is to model a near-future
environment that performs more extensive security checks.

Section X-B describes our toolkits for automatically
generating the syscall-noargs, syscall-complete, and
syscall-complete-2x profiles for a given application. The
workloads are described in Section X-A, and are grouped
into macro benchmarks and micro benchmarks. All workloads
run on an Intel Xeon (E5-2660 v3) system at 2.60GHz with
64 GB of DRAM, using Ubuntu 18.04 with the Linux 5.3.0
kernel. We disable the spec_store_bypass, spectre_v2,
mds, pti, and l1tf vulnerability mitigations due to their
heavy performance impact—many of these kernel patches will
be removed in the future anyway.

We run the workloads with the Linux BPF JIT compiler
enabled. Enabling the JIT compiler can achieve 2–3× perfor-
mance increases [30]. Note that JIT compilers are disabled
by default in many Linux distributions to prevent kernel JIT
spraying attacks [58]–[60]. Hence, the Seccomp performance
that we report in this section represents the highest perfor-
mance for the baseline system.

B. Execution Overhead

Figure 2 shows the latency or execution time of the work-
loads using the five types of Seccomp profiles described in
Section IV-A. For each workload, the results are normalized
to insecure (i.e., Seccomp disabled).

httpd nginx elastic
search

mysql cassandra redis grep pwgen average
macro

sysbench
fio

hpcc unixbench
syscall

fifo
(ipc)

pipe
(ipc)

domain
(ipc)

mq
(ipc)

average
micro

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y/

Ex
ec

ut
io

n
Ti

m
e

 (N
or

m
al

ize
d

to
 In

se
cu

re
)

macro-benchmarks micro-benchmarks

insecure

docker-default

syscall-noargs

syscall-complete

syscall-complete-2x

Fig. 2: Latency or execution time of the workloads using different Seccomp profiles. For each workload, the results are
normalized to insecure (i.e., Seccomp disabled).

Overhead of checking system call IDs. To assess the over-
head of checking system call IDs, we compare insecure to
docker-default. As shown in Figure 2, enabling Seccomp
using the Docker default profile increases the execution time
of the macro and micro benchmarks by 1.05× and 1.12× on
average, respectively.

Comparing docker-default to syscall-noargs, we see
the impact of using application-specific profiles. Sometimes,
the overhead is visibly reduced. This is because the number of
instructions needed to execute the syscall-noargs profile is
smaller than that of docker-default. Overall, the average
performance overhead of using syscall-noargs profiles is
1.04× for macro benchmarks and 1.09× for micro bench-
marks, respectively.
Overhead of checking system call arguments. To assess
the overhead of checking system call arguments, we first
compare syscall-noargs with syscall-complete. The
number of system calls in these two profiles is the same, but
syscall-complete additionally checks argument values. We
can see that checking arguments brings significant overhead.
On average, compared to syscall-noargs, the macro and
micro benchmarks increase their execution time from 1.04×
to 1.14× and from 1.09× to 1.25×, respectively.

We now double the number of checks by going from
syscall-complete to syscall-complete-2x. We can see
that the benchmark overhead often nearly doubles. On aver-
age, compared to syscall-complete, the macro and micro
benchmarks increase their execution time from 1.14× to 1.21×
and from 1.25× to 1.42×, respectively.
Implications. Our results lead to the following conclusions.
First, checking system call IDs can introduce noticeable per-
formance overhead to applications running in Docker contain-
ers. This is the case even with Seccomp, which is the most
efficient implementation of the checks.

Second, checking system call arguments is significantly
more expensive than checking only system call IDs. This is
because the number of arguments per system call and the
number of distinct values per argument are often large.

Finally, doubling the security checks in the profiles almost
doubles the performance overhead.

C. System Call Locality

We measured all the system calls and arguments issued by
our macro benchmarks. Figure 3 shows the frequency of the
top calls which, together, account for 86% of all the calls. For

example, read accounts for about 18% of all system calls. We
further break down each bar into the different argument sets
used by the system call. Each color in a bar corresponds to
the frequency of a different argument set (or none).

readfutex
recvfromclose

epoll_wait
writevwrite

epoll_ctlfcntl
accept4

sendto poll
openatfstat

open
sendfile stat

mmap
munmap

times0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Fr
ac

tio
n

12

8

43

45 14
48 34 23

60 20 147 5 42 44 10 39 40 50 46 29

no_arg
arg_set_one
arg_set_two
arg_set_three
arg_set_four
arg_set_five
arg_set_other

Fig. 3: Frequency of the top system calls and average reuse
distance collected from the macro benchmarks.

We see that system calls have a high locality: 20 system
calls account for 86% of all the calls. Further, individual
system calls are often called with three or fewer different
argument sets. At the top of each bar, we show the average
reuse distance, defined as the number of other system calls
between two system calls with the same ID and argument set.
As shown in Figure 3, the average distance is often only a few
tens of system calls, indicating high locality in reusing system
call checking results.

V. DRACO SYSTEM CALL CHECKING

To minimize the overhead of system call checking, this
paper proposes a new architecture called Draco. Draco avoids
executing the many if statements of a Seccomp profile at
every system call (Figure 1). Draco caches system call IDs
and argument set values after they have been checked and
validated once. System calls are first looked-up in the cache
and, on a hit, the system call and its arguments are declared
validated, skipping the execution of the Seccomp filter.

Figure 4 shows the workflow. On reception of a system
call, a table of validated system call IDs and argument values
is checked. If the current system call and arguments match
an entry in the table, the system call is allowed to proceed.
Otherwise, the OS kernel executes the Seccomp filter and
decides if the system call is allowed. If so, the table is updated
with the new entry and the system call proceeds; otherwise the
program is killed or other actions are taken (Section II-B).

This approach is correct because Seccomp profiles are
stateless. This means that the output of the Seccomp filter

syscall(arg1 ... argN)

Execute the
Seccomp Profle

Update Table
Check Table Present?

Allowed?

Proceed with
the System Call

Terminate
User Program

No

Yes

Yes

No

Fig. 4: Workflow of Draco system call checking.

execution depends only on the input system call ID and
arguments—not on some other state. Hence, a validation that
succeeded in the past does not need to be repeated.

Draco can be implemented in software or in hardware. In
the following, we first describe the basic design, and then how
we implement it in software and in hardware. We start with a
design that checks system call IDs only, and then extend it to
check system call argument values as well.

A. Checking System Call IDs Only

If we only want to check system call IDs, the design is
simple. It uses a table called System Call Permissions Table
(SPT), with as many entries as different system calls. Each
entry stores a single Valid bit. If the Valid bit is set, the system
call is allowed. In Draco’s hardware implementation, each core
has a hardware SPT. In both hardware and software implemen-
tations, the SPT contains information for one process.

When the System Call ID (SID) of the system call is known,
Draco finds the SPT entry for that SID, and checks if the Valid
bit is set. If it is, the system call proceeds. Otherwise, the
Seccomp filter is executed.

B. Checking System Call Arguments

To check system call arguments, we enhance the SPT and
couple it with a software structure called Validated Argument
Table (VAT). Both SPT and VAT are private to the process.
The VAT is the same for both software and hardware imple-
mentations of Draco.

Figure 5 shows the structures. The SPT is still indexed
with the SID. An entry now includes, in addition to the Valid
bit, a Base and an Argument Bitmask field. The Base field
stores the virtual address of the section of the VAT that holds
information about this system call. The Argument Bitmask
stores information to determine what arguments are used by
this system call. Recall that a system call can take up to
6 arguments, each 1 to 8 bytes long. Hence, the Argument
Bitmask has one bit per argument byte, for a total of 48
bits. A given bit is set if this system call uses this byte as
an argument—e.g., for a system call that uses two arguments
of one byte each, the Argument Bitmask has bits 0 and 8 set.

The VAT of a process has one structure for each system
call allowed for this process. Each structure is a hash table of
limited size, indexed with two hash functions. If an entry in
the hash table is filled, it holds the values of an argument set
that has been found to be safe for this particular system call.

Arg N

Valid Base Argument
Bitmask

SID

System Call Permissions Table (SPT)
[Hardware or Software]

Validated Argument
Table (VAT)

H1

H2

…

Selector

Arg 1

Safe Syscalls

Validated
Argument Sets

[Software]

Fig. 5: Checking a system call and its arguments.

When a system call is encountered, to find the correct entry
in the VAT, Draco hashes the argument values. Specifically,
when the system call’s SID and argument set are known,
the SPT is indexed with the SID. Draco uses the Arguments
Bitmask to select which parts of the arguments to pass to the
hash functions and generate hash table indices for the VAT.
For example, if a system call uses two arguments of one byte
each, only the eight bits of each argument are used to generate
the hash table indices.

The address in Base is added to the hash table indices to
access the VAT. Draco fetches the contents of the two entries,
and compares them to the values of the arguments of the
system call. If any of the two comparisons produces a match,
the system call is allowed.

Draco uses two hash functions (H1 and H2 in Figure 5)
for the following reason. To avoid having to deal with hash
table collisions in a VAT structure, which would result in
multiple VAT probes, each VAT structure uses 2-ary cuckoo
hashing [61], [62]. Such a design resolves collisions gracefully.
However, it needs to use two hash functions to perform two
accesses to the target VAT structure in parallel. On a read, the
resulting two entries are checked for a match. On an insertion,
the cuckoo hashing algorithm is used to find a spot.

C. A Software Implementation

Draco can be completely implemented in software. Both
the SPT and the VAT are software structures in memory. We
build Draco as a Linux kernel component. In the OS kernel,
at the entry point of system calls, we insert instructions to
read the SID and argument set values (if argument checking
is configured). Draco uses the SID to index into the SPT and
decides if the system call is allowed or not based on the Valid
bit. If argument checking is configured, Draco further takes the
correct bits from the arguments to perform the hashes, then
reads the VAT, compares the argument values, and decides
whether the system call passes or not.

D. An Initial Hardware Implementation

An initial hardware implementation of Draco makes the SPT
a hardware table in each core. The VAT remains a software
structure in memory. The checks can only be performed when
either the SID or both the SID and argument set values are
available. To simplify the hardware, Draco waits until the
system call instruction reaches the Reorder Buffer (ROB)

head. At that point, all the information about the arguments
is guaranteed to be available in specific registers. Hence, the
Draco hardware indexes the SPT and checks the Valid bit. If
argument checking is enabled, the hardware further takes the
correct bits from the arguments, performs the hashes, reads
the VAT, compares the argument values, and determines if
the system call passes. If the combination of system call and
argument set are found not to have been validated, the OS is
invoked to run the Seccomp filter.

VI. DRACO HARDWARE IMPLEMENTATION

The initial hardware implementation of Section V-D has
the shortcoming that it requires memory accesses to read
the VAT—in fact, two accesses, one for each of the hash
functions. While some of these accesses may hit in caches,
the performance is likely to suffer. For this reason, this section
extends the hardware implementation of Draco to perform the
system call checks in the pipeline with very low overhead.

A. Caching the Results of Successful Checks

To substantially reduce the overhead of system call check-
ing, Draco introduces a new hardware cache of recently-
encountered and validated system call argument sets. The
cache is called System Call Lookaside Buffer (SLB). It is
inspired by the TLB (Translation Lookaside Buffer).

Figure 6 shows the SLB. It is indexed with the system call’s
SID and number of arguments that it requires. Since different
system calls have different numbers of arguments, the SLB
has a set-associative sub-structure for each group of system
calls that take the same number of arguments. This design
minimizes the space needed to cache arguments—each sub-
structure can be sized individually. Each entry in the SLB has
an SID field, a Valid bit, a Hash field, and a validated argument
set denoted as <Arg1 ... ArgN>. The Hash field contains the
hash value generated using this argument set via either the H1

or H2 hash functions mentioned in Section V-B.

SID Valid Hash Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

SID Valid Hash Arg 1 Arg 2

SID Valid Hash Arg 1

Different Number
of Arguments. Each

subtable is set-associative

SID #Args

=

Arg 1

=

Hash

=

Fig. 6: System Call Lookaside Buffer (SLB) structure.

Figure 7 describes the SLB operations performed by Draco
alongside the SPT and VAT. When a system call is detected at
the head of the ROB, its SID is used to access the SPT (1).
The SPT uses the Argument Bitmask (Figure 5) to generate
the argument count used by the system call. This information,
together with the SID, is used to index the SLB (2).

Reorder Buffer (ROB) Syscall

SID Syscall Permissions Table (SPT)

Syscall Look-aside Buffer (SLB)SID

+
Validated Argument Table (VAT)

Base

Arg 1… Arg N

1

2

3

4

ROB Head

+

#Args

Arg N

Selector

Arg 1
Argument
Bitmask

H1

H2

…

Fig. 7: Flow of operations in an SLB access.

On an SLB miss, the corresponding VAT is accessed. Draco
takes the current system call argument set and the Argument
Bitmask from the SPT and, using hash functions H1 and
H2, generates two hash values (3). Such hash values are
combined with the Base address provided by the SPT to access
the VAT in memory. The resulting two VAT locations are
fetched in parallel, and their contents are compared to the
actual system call argument set. On a match, the SLB entry
is filled with the SID, the validated argument set, and the one
hash value that fetched the correct entry from the VAT (4).
The system call is then allowed to resume execution.

On subsequent accesses to the SLB with the same system
call’s SID and argument set, the SLB will hit. A hit occurs
when an entry is found in the SLB that has the same SID and
argument set values as the incoming system call. In this case,
the system call is allowed to proceed without requiring any
memory hierarchy access. In this case, which we assume is
the most frequent one, the checking of the system call and
arguments has negligible overhead.

B. Preloading Argument Sets

The SLB can significantly reduce the system call checking
time by caching recently validated arguments. However, on a
miss, the system call stalls at the ROB head until its arguments
are successfully checked against data coming from the VAT in
memory. To avoid this problem, we want to hide all the stall
time by preloading the SLB entry early.

This function is performed by the System Call Target Buffer
(STB). The STB is inspired by the Branch Target Buffer. Its
goal is to preload a potentially useful entry in the SLB as soon
as a system call is placed in the ROB. Specifically, it preloads
in the SLB an argument set that is in the VAT and, therefore,
has been validated in the past for the same system call. When
the system call reaches the head of the ROB and tries to
check its arguments, it is likely that the correct argument set
is already preloaded into the SLB.

Fundamentally, the STB operates like the BTB. While the
BTB predicts the target location that the upcoming branch will
jump to, the STB predicts the location in the VAT that stores
the validated argument set that the upcoming system call will
require. Knowing this location allows the hardware to preload
the information into the SLB in advance.

System Call Target Buffer and Operation. The STB is
shown in Figure 8. Each entry stores the program counter
(PC) of a system call, a Valid bit, the SID of the system call,
and a Hash field. The latter contains the one hash value (of
the two possible) that fetched this argument set from the VAT
when the entry was loaded into the STB.

PC Valid SID Hash

Reorder Buffer (ROB) Syscall …

ROB Head

PC

Fig. 8: System Call Target Buffer (STB) structure.

The preloading operation into the SLB is shown in Figure 9.
As soon as an instruction is inserted in the ROB, Draco uses its
PC to access the STB (1). A hit in the STB is declared when
the PC in the ROB matches one in the STB. This means that
the instruction is a system call. At that point, the STB returns
the SID and the predicted hash value. Note that the SID is the
correct one because there is only one single type of system call
in a given PC. At this point, the hardware knows the system
call. However, it does not know the actual argument values
because, unlike in Section VI-A, the system call is not at the
ROB head, and the actual arguments may not be ready yet.

Reorder Buffer (ROB) Syscall …

ROB Head

PC Syscall Target Buffer (STB)

Syscall Permissions Table (SPT)SID

Syscall Look-aside Buffer (SLB)SID

+

H1 or 2

Validated Argument Table (VAT)

Base

Arg 1… Arg N

1

2

3

4

5

#Args

Fig. 9: Flow of operations in an SLB preloading.

Next, Draco accesses the SPT using the SID (2), which
provides the Base address of the structure in the VAT, and the
number of arguments of the system call.

At this point, the hardware has to: (i) check if the SLB
already has an entry that will likely cause an SLB hit when
the system call reaches the ROB head and, (ii) if not, find such
an entry in the VAT and preload it in the SLB. To perform (i),
Draco uses the SID and the number of arguments to access the
set-associative subtable of the SLB (3) that has the correct
argument count (Figure 6). Since we do not yet know the
actual argument set, we consider a hit in the SLB when the

hash value provided by the STB matches the one stored in
the SLB entry. This is shown in Figure 6. We call this an SLB
Preload hit. No further action is needed because the SLB likely
has the correct entry. Later, when the system call reaches the
head of the ROB and the system call argument set is known,
the SLB is accessed again with the SID and the argument set.
If the argument set matches the one in the SLB entry, it is an
SLB Access hit; the system call has been checked without any
memory system access at all.

If, instead, no SLB Preload hit occurs, Draco performs the
action (ii) above. Specifically, Draco reads from the SPT the
Base address of the structure in the VAT, reads from the STB
the hash value, combines them, and indexes the VAT (4). If
a valid entry is found in the VAT, its argument set is preloaded
into the SLB (5). Again, when the system call reaches the
head of the ROB, this SLB entry will be checked for a match.

C. Putting it All Together

Figure 10 shows the Draco hardware implementation in a
multi-core chip. It has three per-core hardware tables: SLB,
STB, and SPT. In our conservatively-sized design, they use
8KB, 4KB, and 4KB, respectively. The SLB holds a process’
most popular checked system calls and their checked argument
sets. When a system call reaches the head of the ROB, the
SLB is queried. The SLB information is backed up in the per-
process software VAT in memory. VAT entries are loaded into
the SLB on demand by hardware.

L3

L1
L2

Main
Memory

VAT

Processor

STB
SPT

L1SLB

L2

R
O
B

VATVATVATs

TLB

Core

STB
SPT

SLB

R
O
B

Core

TLB

[Software]

Fig. 10: Multicore with Draco structures in a shaded pattern.

As indicated, Draco does not wait for the system call to
reach the ROB head before checking the SLB. Instead, as soon
as a system call enters the ROB, Draco checks the SLB to see
if it can possibly have the correct entry. If not, it accesses the
VAT and loads a good-guess entry into the SLB.

For a core to access its SLB, Draco includes two local
hardware structures: the STB—which takes an instruction PC
and provides an SID—and the SPT—which takes the SID and
provides its argument count and its VAT location.
Draco execution flows. Table I shows the possible Draco
execution flows. Flow 1 occurs when the STB access, SLB
preload, and SLB access all hit. It results in a fast execution.
Flow 2 occurs when the STB access and SLB preload hit, but
the actual SLB access does not find the correct argument set.
In this case, Draco fetches the argument set from the VAT,
and fills an entry in the STB with the correct hash, and in
the SLB with the correct hash and argument set. This flow is
marked as slow in Table I. Note however, that the argument

Execution STB SLB SLB Action SpeedFlow Access Preload Access

1 Hit Hit Hit None. Fast

2 Hit Hit Miss After the SLB access miss, fetch the argument set from the VAT, and fill an entry Slowin the STB with the correct hash, and in the SLB with the correct hash and arguments.

3 Hit Miss Hit After the SLB preload miss, fetch the argument set from the VAT, and fill an entry Fastin the SLB with the correct SID, hash and arguments.
4 Hit Miss Miss After the SLB preload miss, do as 3 . After the SLB access miss, do as 2 . Slow
5 Miss N/A Hit After the SLB access hit, fill an entry in the STB with the correct SID and hash. Fast

6 Miss N/A Miss After the SLB access miss, fetch the argument set from the VAT, and fill an entry in the SlowSTB with correct SID and hash, and in the SLB with correct SID, hash, and arguments.

TABLE I: Possible Draco execution flows. The Slow cases can have different latency, depending on whether the VAT accesses
hit or miss in the caches. If the VAT does not have the requested entry, the OS is invoked and executes the Seccomp filter.

set may be found in the caches, which saves accesses to main
memory. Finally, if the correct argument set is not found in
the VAT, the OS is invoked and executes the Seccomp filter. If
such execution validates the system call, the VAT is updated
as well with the validated SID and argument set.

Flow 3 occurs when the STB access hits, the SLB preload
misses, and Draco initiates an SLB preload that eventually
delivers an SLB access hit. As soon as the preload SLB miss
is declared, Draco fetches the argument set from the VAT,
and fills an entry in the SLB with the correct SID, hash, and
arguments. When the system call reaches the ROB head and
checks the SLB, it declares an SLB access hit. This is a fast
case.

Flow 4 occurs when the STB access hits, the SLB preload
misses, Draco’s SLB preload brings incorrect data, and the
actual SLB access misses. In this case, after the SLB preload
miss, Draco performs the actions in Flow 3 ; after the SLB
access miss, Draco performs the actions in Flow 2 .

Flows 5 and 6 start with an STB miss. Draco does not
preload the SLB because it does not know the SID. When the
system call reaches the head of the ROB, the SLB is accessed.
In Flow 5 , the access hits. In this case, after the SLB access
hit, Draco fills an entry in the STB with the correct SID and
hash. In Flow 6 , the SLB access misses, and Draco has to
fill an entry in both STB and SLB. 5 is fast and 6 is slow.

VII. SYSTEM SUPPORT

A. VAT Design and Implementation
The OS kernel is responsible for filling the VAT of each

process. The VAT of a process has a two-way cuckoo hash
table for each system call allowed to the process. The OS
sizes each table based on the number of argument sets used by
corresponding system call (e.g., based on the given Seccomp
profile). To minimize insertion failures in the hash tables, the
size of each table is over-provisioned two times the number
of estimated argument sets. On an insertion to a table, if the
cuckoo hashing fails after a threshold number of attempts, the
OS makes room by evicting one entry.

During a table lookup, either the OS or the hardware
(in the hardware implementation) accesses the two ways of
the cuckoo hash table. For the hash functions, we use the
ECMA [63] and the ¬ ECMA polynomials to compute
the Cyclic Redundancy Check (CRC) code of the system call
argument set (Figure 5).

The base addresses in the SPT are stored as virtual ad-
dresses. In the hardware implementation of Draco, the hard-
ware translates this base address before accessing a VAT
structure. Due to the small size of the VAT (several KBs for a
process), this design enjoys good TLB translation locality, as
well as natural caching of translations in the cache hierarchy.
If a page fault occurs on a VAT access, the OS handles it as
a regular page fault.

B. Implementation Aspects

Invocation of Software Checking. When the Draco hardware
does not find the correct SID or argument set in the VAT,
it sets a register called SWCheckNeeded. As the system call
instruction completes, the system call handler in the OS first
checks the SWCheckNeeded register. If it is set, the OS runs
system call checking (e.g., Seccomp). If the check succeeds,
the OS inserts the appropriate entry in the VAT and continues;
otherwise the OS does not allow the system call to execute.

Data Coherence. System call filters are not modified during
process runtime to limit attackers’ capabilities. Hence, there is
no need to add support to keep the three hardware structures
(SLB, STB, and SPT) coherent across cores. Draco only
provides a fast way to clear all these structures in one shot.

Context Switches. A simple design would simply invalidate
the three hardware structures on a context switch. To reduce
the start-up overhead after a context switch, Draco improves
on this design with two simple supports. First, on a context
switch, the OS saves to memory a few key SPT entries for the
process being preempted, and restores from memory the saved
SPT entries for the incoming process. To pick which SPT
entries to save, Draco enhances the SPT with an Accessed bit
per entry. When a system call hits on one of the SPT entries,
the entry’s Accessed bit is set. Periodically (e.g., every 500µs),
the hardware clears the Accessed bits. On a context switch,
only the SPT entries with the Accessed bit set are saved.

The second support is that, if the process that will be
scheduled after the context switch is the same as the one that
is being preempted, the structures are not invalidated. This is
safe with respect to side-channels. If a different process is to
be scheduled, the hardware structures are invalidated.

Simultaneous Multithreading (SMT) Support. Draco can
support SMT by partitioning the three hardware structures

and giving one partition to each SMT context. Each context
accesses its partition.

VIII. GENERALITY OF DRACO

The discussions so far presented a Draco design that is
broadly compatible with Linux’s Seccomp, so we could de-
scribe a whole-system solution. In practice, it is easy to apply
the Draco ideas to other system call checking mechanisms
such as OpenBSD’s Pledge and Tame [12], [13], and Window’s
System Call Disable Policy [64]. Draco is generic to modern
OS-level sandboxing and containerization technologies.

Specifically, recall that the OS populates the SPT with
system call information. Each SPT entry corresponds to a
system call ID and has argument information. Hence, different
OS kernels will have different SPT contents due to different
system calls and different arguments.

In our design, the Draco hardware knows which registers
contain which arguments of system calls. However, we can
make the design more general and usable by other OS kernels.
Specifically, we can add an OS-programmable table that
contains the mapping between system call argument number
and general-purpose register that holds it. This way, we can
use arbitrary registers.

The hardware structures proposed by Draco can further
support other security checks that relate to the security of
transitions between different privilege domains. For example
Draco can support security checks in virtualized environments,
such as when the guest OS invokes the hypervisor through
hypercalls. Similarly, Draco can be applied to user-level con-
tainer technologies such as Google’s gVisor [19], where a user-
level guardian process such as the Sentry or Gofer is invoked to
handle requests of less privileged application processes. Draco
can also augment the security of library calls, such as in the
recently-proposed Google Sandboxed API project [26].

In general, the Draco hardware structures are most attractive
in processors used in domains that require both high perfor-
mance and high security. A particularly relevant domain is
interactive web services, such as on-line retail. Studies by
Akamai, Google, and Amazon have shown that even short
delays can impact online revenue [65], [66]. Furthermore, in
this domain, security in paramount, and the expectation is that
security checks will become more extensive in the near future.

IX. SECURITY ISSUES

To understand the security issues in Draco, we consider two
types of side-channels: those in the Draco hardware structures
and those in the cache hierarchy.

Draco hardware structures could potentially provide side
channels due to two reasons: (i) Draco uses speculation as
it preloads the SLB before the system call instruction reaches
the head of the ROB, and (ii) the Draco hardware structures
are shared by multiple processes. Consider the first reason. An
adversary could trigger SLB preloading followed by a squash,
which could then speed-up a subsequent benign access that
uses the same SLB entry and reveal a secret. To shield Draco
from this speculation-based attack, we design the preloading

mechanism carefully. The idea is to ensure that preloading
leaves no side effect in the Draco hardware structures until
the system call instruction reaches the ROB head.

Specifically, if an SLB preload request hits in the SLB, the
LRU state of the SLB is not updated until the corresponding
non-speculative SLB access. Moreover, if an SLB preload
request misses, the requested VAT entry is not immediately
loaded into the SLB; instead, it is stored in a Temporary
Buffer. When the non-speculative SLB access is performed,
the entry is moved into the SLB. If, instead, the system
call instruction is squashed, the temporary buffer is cleared.
Fortunately, this temporary buffer only needs to store a few
entries (i.e., 8 in our design), since the number of system call
instructions in the ROB at a time is small.

The second potential reason for side channels is the sharing
of the Draco hardware structures by multiple processes. This
case is eliminated as follows. First, in the presence of SMT,
the SLB, STB, and SPT structures are partitioned on a per-
context basis. Second, in all cases, when a core (or hardware
context) performs a context switch to a different process, the
SLB, STB, and SPT are invalidated.

Regarding side channels in the cache hierarchy, they can be
eliminated using existing proposals against them. Specifically,
for cache accesses due to speculative SLB preload, we can use
any of the recent proposals that protect the cache hierarchy
against speculation attacks (e.g., [67]–[72]). Further, for state
left in the cache hierarchy as Draco hardware structures are
used, we can use existing proposals like cache partition-
ing [73], [74]. Note that this type of potential side channel
also occurs in Seccomp. Indeed, on a context switch, Draco
may leave VAT state in the caches, but Seccomp may also
leave state in the caches that reveals what system calls where
checked. For these reasons, we consider side channels in the
cache hierarchy beyond the scope of this paper.

X. EVALUATION METHODOLOGY

We evaluate both the software and the hardware implemen-
tations of Draco. We evaluate the software implementation on
the Intel Xeon E5-2660 v3 multiprocessor system described
in Section IV-A; we evaluate the hardware implementation of
Draco with cycle-level simulations.

A. Workloads and Metrics

We use fifteen workloads split into macro and micro bench-
marks. The macro benchmarks are long-running applications,
including the Elasticsearch [75], HTTPD, and NGINX web
servers, Redis (an in-memory cache), Cassandra (a NoSQL
database), and MySQL. We use the Yahoo! Cloud Serving
Benchmark (YCSB) [76] using workloada and workloadc

with 10 and 30 clients to drive Elasticsearch and Cassandra,
respectively. For HTTPD and NGINX, we use ab, the Apache
HTTP server benchmarking tool [77] with 30 concurrent
requests. We drive MySQL with the OLTP workload of
SysBench [78] with 10 clients. For Redis, we use the redis-
benchmark [79] with 30 concurrent requests. We also evaluate
Function-as-as-Service scenarios, using functions similar to

the sample functions of OpenFaaS [80]. Specifically, we use
a pwgen function that generates 10K secure passwords and a
grep function that searches patterns in the Linux source tree.

For micro benchmarks, we use FIO from SysBench [78]
with 128 files of a total size of 512MB, GUPS from
the HPC Challenge Benchmark (HPCC) [81], Syscall from
UnixBench [82] in mix mode, and fifo, pipe, domain, and
message queue from IPC Bench [83] with 1000B packets.

For macro benchmarks, we measure the mean request
latency in HTTPD, NGINX, Elasticsearch, Redis, Cassandra,
and MySQL, and the total execution time in the functions.
For micro benchmarks, we measure the message latency in
the benchmarks from IPC Bench, and the execution time in
the remaining benchmarks.

B. System Call Profile Generation

There are a number of ways to create application-specific
system call profiles using both dynamic and static analysis.
They include system call profiling (where system calls not
observed during profiling are not allowed in production) [49],
[56], [84]–[86] and binary analysis [47], [48], [54].

We build our own software toolkit for automatically
generating the syscall-noargs, syscall-complete, and
syscall-complete-2x profiles described in Section IV-A
for target applications. The toolkit has components for (1)
attaching strace onto a running application to collect the
system call traces, and (2) generating the Seccomp profiles
that only allow the system call IDs and argument sets that
appeared in the recorded traces. We choose to build our own
toolkit because we find that no existing system call profiling
tool includes arguments in the profiles.

For syscall-complete-2x, we run the syscall-

complete profile twice in a row. Hence, the resulting profile
performs twice the number of checks as syscall-complete.
The goal of syscall-complete-2x is to model a near-future
environment where we need more extensive security checks.

C. Modeling the Hardware Implementation of Draco

We use cycle-level full-system simulations to model a server
architecture with 10 cores and 32 GB of main memory. The
configuration is shown in Table II. Each core is out-of-order
(OOO) and has private L1 instruction and data caches, and a
private unified L2 cache. The banked L3 cache is shared.

We integrate the Simics [87] full-system simulator with
the SST framework [88], together with the DRAMSim2 [89]
memory simulator. Moreover, we utilize Intel SAE [90] on
Simics for OS instrumentation. We use CACTI [91] for energy
and access time evaluation of memory structures and the
Synopsys Design Compiler [92] for evaluating the RTL im-
plementation of the hash functions. The system call interface
follows the semantics of x86 [35]. The Simics infrastructure
provides the actual memory and control register contents for
each system call. To evaluate the hardware components of
Draco, we model them in detail in SST. For the software
components, we modify the Linux kernel and instrument the
system call handler and Seccomp.

Processor Parameters
Multicore chip 10 OOO cores, 128-entry Reorder Buffer, 2GHz
L1 (D, I) cache 32KB, 8 way, write back, 2 cyc. access time (AT)
L2 cache 256KB, 8 way, write back, 8 cycle AT
L3 cache 8MB, 16 way, write back, shared, 32 cycle AT

Per-Core Draco Parameters
STB 256 entries, 2 way, 2 cycle AT
SLB (1 arg) 32 entries, 4 way, 2 cycle AT
SLB (2 arg) 64 entries, 4 way, 2 cycle AT
SLB (3 arg) 64 entries, 4 way, 2 cycle AT
SLB (4 arg) 32 entries, 4 way, 2 cycle AT
SLB (5 arg) 32 entries, 4 way, 2 cycle AT
SLB (6 arg) 16 entries, 4 way, 2 cycle AT
Temporary Buffer 8 entries, 4 way, 2 cycle AT
SPT 384 entries, 1 way, 2 cycle AT

Main-Memory Parameters
Capacity; Channels 32GB; 2
Ranks/Channel 8
Banks/Rank 8
Freq; Data rate 1GHz; DDR

Host and Docker Parameters
Host OS CentOS 7.6.1810 with Linux 3.10
Docker Engine 18.09.3

TABLE II: Architectural configuration used for evaluation.

For HTTPD, NGINX, Elasticsearch, Redis, Cassandra, and
MySQL, we instrument the applications to track the beginning
of the steady state. We then warm-up the architectural state
by running 250 million instructions, and finally measure for
two billion instructions. For functions and micro benchmarks,
we warm-up the architectural state for 250 million instructions
and measure for two billion instructions.

The software stack for the hardware simulations uses Cen-
tOS 7.6.1810 with Linux 3.10 and Docker Engine 18.09.03.
This Linux version is older than the one used for the real-
system measurements of Section IV and the evaluation of
the software implementation of Draco in Section XI-A, which
uses Ubuntu 18.04 with Linux 5.3.0. Our hardware simulation
infrastructure could not boot the newer Linux kernel. However,
note that the Draco hardware evaluation is mostly independent
of the kernel version. The only exception is during the cold-
start phase of the application, when the VAT structures are
populated. However, our hardware simulations mostly model
steady state and, therefore, the actual kernel version has
negligible impact.

Appendix A repeats the real-system measurements of Sec-
tion IV and the evaluation of the software implementation of
Draco for CentOS 7.6.1810 with Linux 3.10.

XI. EVALUATION

A. Performance of Draco

Draco Software Implementation. Figure 11 shows the per-
formance of the workloads using the software implementation
of Draco. The figure takes three Seccomp profiles from
Section IV-A (syscall-noargs, syscall-complete, and
syscall-complete-2x) and compares the performance of
the workloads on a conventional system (labeled Seccomp
in the figure) to a system augmented with software Draco
(labeled DracoSW in the figure). The figure is organized as

httpd nginx elastic
search

mysql cassandra redis grep pwgen average
macro

sysbench
fio

hpcc unixbench
syscall

fifo
(ipc)

pipe
(ipc)

domain
(ipc)

mq
(ipc)

average
micro

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y/

Ex
ec

ut
io

n
Ti

m
e

 (N
or

m
al

ize
d

to
 In

se
cu

re
)

macro-benchmarks micro-benchmarks
syscall-noargs
(Seccomp)
syscall-noargs
(DracoSW)
syscall-complete
(Seccomp)
syscall-complete
(DracoSW)
syscall-complete-2x
(Seccomp)
syscall-complete-2x
(DracoSW)

Fig. 11: Latency or execution time of the workloads using the software implementation of Draco and other environments. For
each workload, the results are normalized to insecure.

httpd nginx elastic
search

mysql cassandra redis grep pwgen average
macro

sysbench
fio

hpcc unixbench
syscall

fifo
(ipc)

pipe
(ipc)

domain
(ipc)

mq
(ipc)

average
micro

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y/

Ex
ec

ut
io

n
Ti

m
e

 (N
or

m
al

ize
d

to
 In

se
cu

re
)

macro-benchmarks micro-benchmarks

insecure

syscall-noargs
(DracoHW)

syscall-complete
(DracoHW)

syscall-complete-2x
(DracoHW)

Fig. 12: Latency or execution time of the workloads using the hardware implementation of Draco. For each workload, the
results are normalized to insecure.

Figure 2, and all the bars are normalized to the insecure

baseline that performs no security checking.
We can see that software Draco reduces the overhead of

security checking relative to Seccomp, especially for complex
argument checking. Specifically, when checking both system
call IDs and argument sets with syscall-complete, the
average execution times of the macro and micro bench-
marks with Seccomp are 1.14× and 1.25× higher, respec-
tively, than insecure. With software Draco, these execution
times are only 1.10× and 1.18× higher, respectively, than
insecure. When checking more complex security profiles
with syscall-complete-2x, the reductions are higher. The
corresponding numbers with Seccomp are 1.21× and 1.42×;
with software Draco, these numbers are 1.10× and 1.23× only.

However, we also see that the checking overhead of software
Draco is still substantial, especially for some workloads. This
is because the software implementation of argument checking
requires expensive operations, such as hashing, VAT access,
and argument comparisons. Note that our software implemen-
tation is extensively optimized. In particular, we experimented
with highly-optimized hash functions used by the kernel
(which use the x86 hashing instructions) and selected the most
effective one.

Draco Hardware Implementation. Figure 12 shows the
workload performance using the hardware implementa-
tion of Draco. The figure shows insecure and hard-
ware Draco running three Seccomp profiles from Sec-
tion IV-A, namely syscall-noargs, syscall-complete,
and syscall-complete-2x. The figure is organized as Fig-
ure 2, and all the bars are normalized to insecure.

Figure 12 shows that hardware Draco eliminates practically
all of the checking overhead under all the profiles, both when
only checking system call IDs and when checking system

call IDs and argument set values (including the double-size
checks). In all cases, the average overhead of hardware Draco
over insecure is 1%. Hence, hardware Draco is a secure,
overhead-free design.

B. Hardware Structure Hit Ratios

To understand hardware Draco’s performance, Figure 13
shows the hit rates of the STB and SLB structures. For the
SLB, we show two bars: Access and Preload. SLB Access
occurs when the system call is at the head of the ROB. SLB
Preload occurs when the system call is inserted in the ROB
and the STB is looked-up. An SLB Preload hit means only
that the SLB likely contains the desired entry. An SLB Preload
miss triggers a memory request to preload the entry.

httpd
nginx

elastic search
mysql
cassandraredisgrep

pwgen

average macro

sysbench fiohpcc

unixbench syscall
fifo (ipc)

pipe (ipc)

domain (ipc)
mq (ipc)

average micro0
25
50
75

100

Hi
t R

at
e

(%
) macro-benchmarks micro-benchmarks

STB SLB Access SLB Preload

Fig. 13: Hit rates of STB and SLB (access and preload).

The figure shows that the STB hit rate is very high. It is
over 93% for all the applications except for Elasticsearch and
Redis. The STB captures the working set of the system calls
being used. This is good news, as an STB hit is a requirement
for an SLB preload.

Consider the SLB Preload bars. For all applications except
HTTPD, Elasticsearch, MySQL, and Redis, the hit rates are

close to 99%. This means that, in most cases, the working set
of the system call IDs and argument set values being used fits
in the SLB.

However, even for these four applications, the SLB Access
hit rates are 75–93%. This means that SLB preloading is
successful in bringing most of the needed entries into the SLB
on time, to deliver a hit when the entries are needed. Hence,
we recommend the use of SLB preloding.

C. Draco Resource Overhead

Hardware Components. Hardware Draco introduces three
hardware structures (SPT, STB, and SLB), and requires a CRC
hash generator. In Table III, we present the CACTI analysis
for the three hardware structures, and the Synopsys Design
Compiler results for the hash generator implemented in VHDL
using a linear-feedback shift register (LFSR) design. For each
unit, the table shows the area, access time, dynamic energy of
a read access, and leakage power. In the SLB, the area and
leakage analysis includes all the subtables for the different
argument counts and the temporary buffer. For the access time
and dynamic energy, we show the numbers for the largest
structure, namely, the three-argument subtable.

Parameter SPT STB SLB CRC Hash
Area (mm2) 0.0036 0.0063 0.01549 0.0019
Access time (ps) 105.41 131.61 112.75 964
Dyn. rd energy (pJ) 1.32 1.78 2.69 0.98
Leak. power (mW) 1.39 2.63 3.96 0.106

TABLE III: Draco hardware analysis at 22 nm.

Since all the structures are accessed in less that 150 ps, we
conservatively use a 2-cycle access time for these structures.
Further, since 964 ps are required to compute the CRC hash
function, we account for 3 cycles in our evaluation.

SLB Sizing. Figure 14 uses a violin plot to illustrate the
probability density of the number of arguments of system
calls. The first entry (linux) corresponds to the complete
Linux kernel system call interface, while the remaining entries
correspond to the different applications. Taking HTTPD as an
example, we see that, of all the system calls that were checked
by Draco, most have three arguments, some have two and only
a few have one or zero. Recall that, like Seccomp, Draco does
not check pointers. For generality, we size the SLB structures
based on the Linux distribution of arguments per system call.

linux
httpd

nginx

elastic search
mysql
cassandraredisgrep

pwgen

sysbench fiohpcc

unixbench syscall
fifo (ipc)

pipe (ipc)

domain (ipc)
mq (ipc)0

2

4

6

Ar

gu
m

en
ts

Fig. 14: Number of arguments of system calls.

VAT Memory Consumption. In a VAT, each system call has
a hash table that is sized based on the number of argument

sets used by that system call (e.g., based on the given Seccomp
profile). Since the number of system calls is bounded, the total
size of the VAT is bounded. In our evaluation, we find that
the geometric mean of the VAT size for a process is 6.98KB
across all evaluated applications.

D. Assessing the Security of Application-Specific Profiles

We compare the security benefits of an application-specific
profile (syscall-complete from Section IV-A) to the
generic, commonly deployed docker-default profile. Recall
that syscall-complete checks both syscall IDs and argu-
ments, while docker-default only checks syscall IDs.

Figure 15(a) shows the number of different system calls
allowed by the different profiles. First, linux shows the total
number of system calls in Linux, which is 403. The next
bar is docker-default, which allows 358 system calls. For
the remaining bars, the total height is the number allowed
by syscall-complete for each application. We can see that
syscall-complete only allows 50–100 system calls, which
increases security substantially. Moreover, the figure shows
that not all of these system calls are application-specific. There
is a fraction of about 20% (remaining in dark color) that
are required by the container runtime. Note that, as shown
in Section IV, while application-specific profiles are smaller,
their checking overhead is still substantial.

linux

docker default
httpd

nginx

elastic search
mysql
cassandraredisgrep

pwgen

sysbench fiohpcc

unixbench syscall
fifo (ipc)

pipe (ipc)

domain (ipc)
mq (ipc)0

100

200

300

400

Sy

sc
al

ls

Total Allowed Syscalls
Application-Specific Syscalls

(a) Number of system calls allowed.

linux

docker default
httpd

nginx

elastic search
mysql
cassandraredisgrep

pwgen

sysbench fiohpcc

unixbench syscall
fifo (ipc)

pipe (ipc)

domain (ipc)
mq (ipc)0

200

400

600

Ar

gu
m

en
ts

 a
nd

 V
al

ue
s 1.3K1.6K2.4K # Arguments Checked

Argument Values Allowed

(b) Number of system call arguments checked & values allowed.

Fig. 15: Security benefits of an application-specific profile over
the default Docker profile.

Figure 15(b) shows the total number of system call ar-
guments checked, and the number of unique argument val-
ues allowed. Linux does not check any arguments, while
docker-default checks a total of three arguments and allows
seven unique values (Section II-C). The syscall-complete

profile checks 23–142 arguments per application, and allows
127–2458 distinct argument values per application. All these
checks substantially reduce the attack surface.

httpd nginx elastic
search

mysql cassandra redis grep pwgen average
macro

sysbench
fio

hpcc unixbench
syscall

fifo
(ipc)

pipe
(ipc)

domain
(ipc)

mq
(ipc)

average
micro

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y/

Ex
ec

ut
io

n
Ti

m
e

 (N
or

m
al

ize
d

to
 In

se
cu

re
) macro-benchmarks micro-benchmarks2.2 2.6 2.7 4.3 4.1, 2.7, 3.7 2.4

insecure

docker-default

syscall-noargs

syscall-complete

Fig. 16: Latency or execution time of the workloads using different Seccomp profiles. For each workload, the results are
normalized to insecure (i.e., Seccomp disabled). This expertiment uses the older CentOS 7.6.1810 with Linux 3.10.

httpd nginx elastic
search

mysql cassandra redis grep pwgen average
macro

sysbench
fio

hpcc unixbench
syscall

fifo
(ipc)

pipe
(ipc)

domain
(ipc)

mq
(ipc)

average
micro

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y/

Ex
ec

ut
io

n
Ti

m
e

 (N
or

m
al

ize
d

to
 In

se
cu

re
) macro-benchmarks micro-benchmarks2.2 2.7 4.3 2.7, 3.7 2.4

insecure

syscall-noargs
(Seccomp)

syscall-noargs
(DracoSW)

syscall-complete
(Seccomp)

syscall-complete
(DracoSW)

Fig. 17: Latency or execution time of the workloads using the software implementation of Draco and other environments. For
each workload, the results are normalized to insecure. This expertiment uses the older CentOS 7.6.1810 with Linux 3.10.

XII. OTHER RELATED WORK

There is a rich literature on system call checking [93]–
[104]. Early implementations based on kernel tracing [93]–
[99] incur excessive performance penalty, as every system call
is penalized by at least two additional context switches.

A current proposal to reduce the overhead of Seccomp is
to use a binary tree in libseccomp, to replace the branch
instructions of current system call filters [27]. However, this
does not fundamentally address the overhead. In Hromatka’s
own measurement, the binary tree-based optimization still
leads to 2.4× longer system call execution time compared
to Seccomp disabled [27]. Note that this result is without
any argument checking. As shown in Section IV, argument
checking brings further overhead, as it leads to more complex
filter programs. Speculative methods [105]–[107] may not
help reduce the overhead either, as their own overhead may
surpass that of the checking code—they are designed for heavy
security analysis such as virus scanning and taint analysis.

A few architectural security extensions have been proposed
for memory-based protection, such as CHERI [108]–[110],
CODOMs [111], [112], PUMP [113], REST [114], and Cal-
iforms [115]. While related, Draco has different goals and
resulting design—it checks system calls rather than load/store
instructions, and its goal is to protect the OS.

XIII. CONCLUSION

To minimize system call checking overhead, we proposed
Draco, a new architecture that caches validated system call
IDs and argument values. System calls first check a special
cache and, on a hit, are declared validated. We presented
both a software and a hardware implementation of Draco.
Our evaluation showed that the average execution time of
macro and micro benchmarks with conventional Seccomp
checking was 1.14× and 1.25× higher, respectively, than on
an insecure baseline that performs no security checks. With
software Draco, the average execution time was reduced to

1.10× and 1.18× higher, respectively, than on the insecure
baseline. Finally, with hardware Draco, the execution time was
within 1% of the insecure baseline.

We expect more complex security profiles in the near future.
In this case, we found that the overhead of conventional
Seccomp checking increases substantially, while the overhead
of software Draco goes up only modestly. The overhead of
hardware Draco remains within 1% of the insecure baseline.

ACKNOWLEDGMENTS

This work was funded in part by NSF under grants CNS-
1956007, CNS-1763658, CCF-1725734, CCF-1816615, CCF-
2029049, and a gift from Facebook. The authors thank Andrea
Arcangeli from RedHat, Hubertus Franke and Tobin Feldman-
Fitzthum from IBM for discussions on Seccomp performance,
and Seung Won Min from UIUC for assisting with the
Synopsys toolchain.

APPENDIX

This appendix repeats the real-system measurements of Sec-
tion IV and the evaluation of software Draco of Section XI-A
for the older CentOS 7.6.1810 with Linux 3.10 (except for
the syscall-complete-2x profiles). The KPTI and Spectre
patches are enabled. The BPF JIT is enabled but Seccomp
does not make use of its functionality. These experiments were
performed for the initial submission of this paper.

If we compare Figure 16 to Figure 2, we see that the newer
kernel significantly improves the performance of Seccomp.
Several pathological cases were eliminated and the overhead
of docker-default is reduced. Despite these improvements,
the overhead of syscall-complete remains significant.

If we compare Figure 17 to Figure 11, we see that
the improvement attained by software Draco over Seccomp
with syscall-complete has decreased. However, software
Draco still significantly reduces overhead, especially for
syscall-complete-2x.

REFERENCES

[1] “CVE-2017-5123,” https://nvd.nist.gov/vuln/detail/CVE-2017-5123.
[2] “CVE-2016-0728,” https://nvd.nist.gov/vuln/detail/CVE-2016-0728.
[3] “CVE-2014-3153,” https://nvd.nist.gov/vuln/detail/CVE-2014-3153.
[4] “CVE-2017-18344,” https://nvd.nist.gov/vuln/detail/CVE-2017-18344.
[5] “CVE-2018-18281,” https://nvd.nist.gov/vuln/detail/CVE-2018-18281.
[6] “CVE-2015-3290,” https://nvd.nist.gov/vuln/detail/CVE-2015-3290.
[7] “CVE-2016-5195,” https://nvd.nist.gov/vuln/detail/CVE-2016-5195.
[8] “CVE-2014-9529,” https://nvd.nist.gov/vuln/detail/CVE-2014-9529.
[9] “CVE-2014-4699,” https://nvd.nist.gov/vuln/detail/CVE-2014-4699.

[10] “CVE-2016-2383,” https://nvd.nist.gov/vuln/detail/CVE-2016-2383.
[11] J. Edge, “A seccomp overview,” https://lwn.net/Articles/656307/, Sep.

2015.
[12] “OpenBSD Pledge,” https://man.openbsd.org/pledge.
[13] “OpenBSD Tame,” https://man.openbsd.org/OpenBSD-5.8/tame.2.
[14] “PROCESS MITIGATION SYSTEM CALL DISABLE POLICY struc-

ture,” https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-
winnt-process mitigation system call disable policy.

[15] P. Lawrence, “Seccomp filter in Android O,” https://android-
developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html,
Jul. 2017.

[16] J. Corbet, “Systemd Gets Seccomp Filter Support,”
https://lwn.net/Articles/507067/.

[17] Docker, “Seccomp security profiles for Docker,”
https://docs.docker.com/engine/security/seccomp/.

[18] Ubuntu, “LXD,” https://help.ubuntu.com/lts/serverguide/lxd.htmllxd-
seccomp.

[19] Google, “gVisor: Container Runtime Sandbox,”
https://github.com/google/gvisor/blob/master/runsc/boot/filter/config.go.

[20] AWS, “Firecracker Design,” https://github.com/firecracker-
microvm/firecracker/blob/master/docs/design.md.

[21] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, 2020, pp. 419–434.

[22] Rtk Documentation, “Seccomp Isolators Guide,”
https://coreos.com/rkt/docs/latest/seccomp-guide.html.

[23] Singularity, “Security Options in Singularity,”
https://sylabs.io/guides/3.0/user-guide/security options.html.

[24] Kubernetes Documentation, “Configure a Security Context for
a Pod or Container,” https://kubernetes.io/docs/tasks/configure-pod-
container/security-context/, Jul. 2019.

[25] Mesos, “Linux Seccomp Support in Mesos Containerizer,”
http://mesos.apache.org/documentation/latest/isolators/linux-seccomp/.

[26] “Sandboxed API,” https://github.com/google/sandboxed-api, 2018.
[27] T. Hromatka, “Seccomp and Libseccomp performance improvements,”

in Linux Plumbers Conference 2018, Vancouver, BC, Canada, Nov.
2018.

[28] ——, “Using a cBPF Binary Tree in Libseccomp to Improve Perfor-
mance,” in Linux Plumbers Conference 2018, Vancouver, BC, Canada,
Nov. 2018.

[29] M. Kerrisk, “Using seccomp to Limit the Kernel Attack Surface,” in
Linux Plumbers Conference 2015, Seattle, WA, USA, Aug. 2015.

[30] A. Grattafiori, “Understanding and Hardening Linux Containers,” NCC
Group, Tech. Rep., Jun. 2016.

[31] T. Kim and N. Zeldovich, “Practical and Effective Sandboxing for Non-
root Users,” in Proceedings of the 2013 USENIX Conference on Annual
Technical Conference (USENIX ATC’13), San Jose, CA, Jun. 2013.

[32] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection
of Anomalous System Call Arguments,” in Proceedings of the 8th
European Symposium on Research in Computer Security, Gjøvik,
Norway, Oct. 2003.

[33] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous System
Call Detection,” ACM Transactions on Information and System Security
(TISSEC), vol. 9, no. 1, pp. 61–93, Feb. 2006.

[34] F. Maggi, M. Matteucci, and S. Zanero, “Detecting Intrusions through
System Call Sequence and Argument Analysis,” IEEE Transactions on
Dependable and Secure Computing (TDSC), vol. 7, no. 4, pp. 381–395,
Oct. 2010.

[35] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
2019.

[36] Linux, “Secure Computing with filters,”
https://www.kernel.org/doc/Documentation/prctl/seccomp filter.txt.

[37] T. Garfinkel, “Traps and Pitfalls: Practical Problems in System Call In-
terposition Based Security Tools,” in Proceedings of the 2004 Network
and Distributed System Security Symposium (NDSS’04), San Diego,
California, Feb. 2003.

[38] R. N. M. Watson, “Exploiting Concurrency Vulnerabilities in System
Call Wrappers,” in Proceedings of the 1st USENIX Workshop on
Offensive Technologies (WOOT’07), Boston, MA, USA, Aug. 2007.

[39] AWS, “Firecracker microVMs,” https://github.com/firecracker-
microvm/firecracker/blob/master/vmm/src/default syscalls/filters.rs.

[40] Moby Project, “A collaborative project for the con-
tainer ecosystem to assemble container-based systems,”
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json.

[41] Singularity, “Singularity: Application Containers for Linux,”
https://github.com/sylabs/singularity/blob/master/etc/seccomp-
profiles/default.json.

[42] Subgraph, “Repository of maintained OZ profiles and seccomp filters,”
https://github.com/subgraph/subgraph-oz-profiles.

[43] “QEMU,” https://github.com/qemu/qemu/blob/master/qemu-
seccomp.c.

[44] Julien Tinnes, “A safer playground for your Linux and Chrome
OS renderers,” https://blog.cr0.org/2012/09/introducing-chromes-next-
generation.html, Nov. 2012.

[45] ——, “Introducing Chrome’s next-generation Linux sand-
box,” https://blog.cr0.org/2012/09/introducing-chromes-next-
generation.html, Sep. 2012.

[46] “OZ: a sandboxing system targeting everyday workstation
applications,” https://github.com/subgraph/oz/blob/master/oz-
seccomp/tracer.go, 2018.

[47] “binctr: Fully static, unprivileged, self-contained, containers as exe-
cutable binaries,” https://github.com/genuinetools/binctr.

[48] “go2seccomp: Generate seccomp profiles from go binaries,”
https://github.com/xfernando/go2seccomp.

[49] oci-seccomp-bpf-hook, “OCI hook to trace syscalls and generate a
seccomp profile,” https://github.com/containers/oci-seccomp-bpf-hook.

[50] “Kubernetes Seccomp Operator,” https://github.com/kubernetes-
sigs/seccomp-operator.

[51] S. Kerner, “The future of Docker containers,”
https://lwn.net/Articles/788282/.

[52] Red Hat, “Configuring OpenShift Container Platform for a
Custom Seccomp Profile,” https://docs.openshift.com/container-
platform/3.5/admin guide/seccomp.htmlseccomp-configuring-
openshift-with-custom-seccomp.

[53] Rtk Documentation, “Overriding Seccomp Filters,”
https://coreos.com/rkt/docs/latest/seccomp-guide.htmloverriding-
seccomp-filters.

[54] Q. Zeng, Z. Xin, D. Wu, P. Liu, and B. Mao, “Tailored Application-
specific System Call Tables,” The Pennsylvania State University, Tech.
Rep., 2014.

[55] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter, “A Study of
Modern Linux API Usage and Compatibility: What to Support When
You’re Supporting,” in Proceedings of the 11th European Conference
on Computer Systems (EuroSys’16), London, United Kingdom, Apr.
2016.

[56] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li, “Mining Sandboxes for Linux
Containers,” in Proceedings of 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST’17), Tokyo, Japan,
Mar. 2017.

[57] Moby Project, “An open framework to assemble specialized container
systems without reinventing the wheel,” https://mobyproject.org/, 2019.

[58] K. McAllister, “Attacking hardened Linux
systems with kernel JIT spraying,”
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-
hardened-linux-systems-with.html, Nov. 2012.

[59] E. Reshetova, F. Bonazzi, and N. Asokan, “Randomization can’t stop
BPF JIT spray,” https://www.blackhat.com/docs/eu-16/materials/eu-
16-Reshetova-Randomization-Can’t-Stop-BPF-JIT-Spray-wp.pdf, Nov.
2016.

[60] R. Gawlik and T. Holz, “SoK: Make JIT-Spray Great Again,” in
Proceedings of the 12th USENIX Workshop on Offensive Technologies
(WOOT’18), 2018.

[61] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, May 2004.

[62] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space Efficient Hash
Tables with Worst Case Constant Access Time,” Theory of Computing
Systems, vol. 38, no. 2, pp. 229–248, Feb 2005.

[63] ECMA International, “Standard ECMA-182,” https://www.ecma-
international.org/publications/standards/Ecma-182.htm.

[64] Microsoft, “Windows System Call Disable Policy,”
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-
process mitigation system call disable policy.

[65] Akamai, “Akamai Online Retail Performance Report: Milliseconds
Are Critical,” https://www.akamai.com/uk/en/about/news/press/2017-
press/akamai-releases-spring-2017-state-of-online-retail-performance-
report.jsp.

[66] Google, “Find out how you stack up to new industry benchmarks for
mobile page speed,” https://www.thinkwithgoogle.com/marketing-
resources/data-measurement/mobile-page-speed-new-industry-
benchmarks/.

[67] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible in
the Cache Hierarchy,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-51), 2018.

[68] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in Pro-
ceedings of the 24th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’19),
2019.

[69] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient Invisible Speculative Execution Through Selective Delay and
Value Prediction,” in Proceedings of the 46th International Symposium
on Computer Architecture (ISCA’19), 2019.

[70] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation,” in Proceedings of the 56th
ACM/IEEE Design Automation Conference (DAC’19), 2019.

[71] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An “Undo” Approach
to Safe Speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), 2019.

[72] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Ex-
ecution Against Spectre Attacks,” in International Symposium on High
Performance Computer Architecture, 2019.

[73] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel attacks
in cloud computing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016, pp. 406–418.

[74] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: Secure Dynamic Cache Partitioning for Efficient Timing
Channel Protection,” in 2016 53nd ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), 2016.

[75] Elastic, “Elasticsearch: A Distributed RESTful Search Engine,”
https://github.com/elastic/elasticsearch, 2019.

[76] Yahoo!, “Yahoo! Cloud Serving Benchmark,”
https://github.com/brianfrankcooper/YCSB, 2019.

[77] Apache, “ab - Apache HTTP server benchmarking tool,”
https://httpd.apache.org/docs/2.4/programs/ab.html, 2019.

[78] SysBench, “Scriptable database and system performance benchmark,”
https://github.com/akopytov/sysbench.

[79] Redis, “How fast is Redis?” https://redis.io/topics/benchmarks, 2019.
[80] OpenFaaS, “OpenFaaS Sample Functions,”

https://github.com/openfaas/faas/tree/master/sample-functions.
[81] HPCC, “HPC Challenge Benchmark,” https://icl.utk.edu/hpcc/.
[82] UnixBench, “BYTE UNIX benchmark suite,”

https://github.com/kdlucas/byte-unixbench.
[83] IPCBench, “Benchmarks for Inter-Process-Communication Tech-

niques,” https://github.com/goldsborough/ipc-bench.
[84] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li,

“SPEAKER: Split-Phase Execution of Application Containers,” in
Proceedings of the 14th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA’17), Bonn, Germany,
2017.

[85] Heroku Engineering Blog, “Applying Seccomp Filters at Runtime for
Go Binaries,” https://blog.heroku.com/applying-seccomp-filters-on-go-
binaries, Aug. 2018.

[86] Adobe Security, “Better Security Hygiene for Containers,”
https://blogs.adobe.com/security/2018/08/better-security-hygiene-
for-containers.html, 2018.

[87] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” IEEE Computer, vol. 35,
no. 2, pp. 50–58, Feb. 2002.

[88] A. F. Rodrigues, J. Cook, E. Cooper-Balis, K. S. Hemmert, C. Kersey,
R. Riesen, P. Rosenfeld, R. Oldfield, and M. Weston, “The Structural
Simulation Toolkit,” in Proceedings of the 2006 ACM/IEEE conference
on Supercomputing (SC’10), Tampa, Florida, Nov. 2006.

[89] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters, vol. 10, no. 1, pp. 16–19, Jan 2011.

[90] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui, and V. J.
Reddi, “Simulation and Analysis Engine for Scale-Out Workloads,” in
Proceedings of the 2016 International Conference on Supercomputing
(ICS’16), 2016.

[91] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture
and Code Optimization, vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.

[92] Synopsys, “Synopsys Design Compiler,” https://www.synopsys.com/.
[93] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A Secure

Environment for Untrusted Helper Applications Confining the Wily
Hacker,” in Proceedings of the 6th USENIX Security Symposium, San
Jose, California, Jul. 1996.

[94] D. A. Wagner, “Janus: an Approach for Confinement of Untrusted
Applications,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/CSD-99-1056, 2016.

[95] N. Provos, “Improving Host Security with System Call Policies,” in
Proceedings of the 12th USENIX Security Symposium, Washington,
DC, USA, Aug. 2003.

[96] K. Jain and R. Sekar, “User-Level Infrastructure for System Call
Interposition: A Platform for Intrusion Detection and Confinement,”
in Proceedings of the 2000 Network and Distributed System Security
Symposium (NDSS’00), San Diego, California, USA, Feb. 2000.

[97] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A Delegating
Architecture for Secure System Call Interposition,” in Proceedings
of the 2004 Network and Distributed System Security Symposium
(NDSS’04), San Diego, California, Feb. 2004.

[98] A. Acharya and M. Raje, “MAPbox: Using Parameterized Behavior
Classes to Confine Untrusted Applications,” in Proceedings of the 9th
USENIX Security Symposium, Denver, Colorado, USA, Aug. 2000.

[99] A. Alexandrov, P. Kmiec, and K. Schauser, “Consh: Confined Ex-
ecution Environment for Internet Computations,” The University of
California, Santa Barbara, Tech. Rep., 1999.

[100] D. S. Peterson, M. Bishop, and R. Pandey, “A Flexible Containment
Mechanism for Executing Untrusted Code,” in Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, USA, Aug. 2002.

[101] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software
with Generic Software Wrappers,” in Proceedings of the 1999 IEEE
Symposium on Security and Privacy, 1999.

[102] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray,
and J. H. Hartman, “Protecting Against Unexpected System Calls,” in
Proceedings of the 14th USENIX Security Symposium, Baltimore, MD,
USA, Jul. 2005.

[103] A. Dan, A. Mohindra, R. Ramaswami, and D. Sitara, “ChakraVyuha
(CV): A Sandbox Operating System Environment for Controlled Exe-
cution of Alien Code,” IBM Research Division, T.J. Watson Research
Center, Tech. Rep. RC 20742 (2/20/97), Feb. 1997.

[104] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson,
“SLIC: An Extensibility System for Commodity Operating Systems,”
in Proceedings of the Annual Conference on USENIX Annual Technical
Conference (USENIX ATC’98), New Orleans, Louisiana, Jun. 1998.

[105] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn, “Parallelizing
Security Checks on Commodity Hardware,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII), Seattle, WA, USA,
Mar. 2008.

[106] Y. Oyama, K. Onoue, and A. Yonezawa, “Speculative Security Checks
in Sandboxing Systems,” in Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05), Denver,
CO, USA, Apr. 2005.

[107] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T. Chong, “From
Speculation to Security: Practical and Efficient Information Flow
Tracking Using Speculative Hardware,” in Proceedings of the 35th
Annual International Symposium on Computer Architecture (ISCA’08),
Beijing, China, Jun. 2008.

[108] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI Capability Model: Revisiting RISC in an Age of Risk,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecture (ISCA’14), 2014.

[109] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richard-
son, P. Rugg, P. G. Neumann, S. W. Moore, R. N. M. Watson, and
T. M. Jones, “CHERIvoke: Characterising Pointer Revocation Using
CHERI Capabilities for Temporal Memory Safety,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-52), 2019.

[110] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G.
Neumann, J. Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe,
N. H. Dave, K. Gudka, A. Joannou, A. T. Markettos, E. Maste, S. J.
Murdoch, C. Rothwell, S. D. Son, and M. Vadera, “Fast Protection-
Domain Crossing in the CHERI Capability-System Architecture,” IEEE

Micro, vol. 36, no. 5, pp. 38–49, Jan. 2016.
[111] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,

“CODOMs: Protecting Software with Code-Centric Memory Do-
mains,” in Proceeding of the 41st Annual International Symposium on
Computer Architecture (ISCA’14), 2014.

[112] L. Vilanova, M. Jordà, N. Navarro, Y. Etsion, and M. Valero, “Direct
Inter-Process Communication (DIPC): Repurposing the CODOMs Ar-
chitecture to Accelerate IPC,” in Proceedings of the 12th European
Conference on Computer Systems (EuroSys’17), 2017.

[113] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural Support
for Software-Defined Metadata Processing,” in Proceedings of the 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’15), 2015.

[114] K. Sinha and S. Sethumadhavan, “Practical Memory Safety with
REST,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture (ISCA’18), 2018.

[115] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical Byte-Granular Memory Blacklisting
Using Califorms,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), 2019.

