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Abstract

Recently-proposed architectures that continuously operate on

atomic blocks of instructions (also called chunks) can boost the pro-

grammability and performance of shared-memory multiprocessing.

However, they must support chunk operations very efficiently. In

particular, in lazy conflict-detection environments, it is key that they

provide scalable chunk commits. Unfortunately, current propos-

als typically fail to enable maximum overlap of conflict-free chunk

commits.

This paper presents a novel directory-based protocol that en-

ables highly-overlapped, scalable chunk commits. The protocol,

called ScalableBulk, builds on the previously-proposed BulkSC

protocol. It introduces three general hardware primitives for scal-

able commit: preventing access to a set of directory entries, group-

ing directory modules, and initiating the commit optimistically. Our

results with SPLASH-2 and PARSEC codes with up to 64 pro-

cessors show that ScalableBulk enables highly-overlapped chunk

commits and delivers scalable performance. Unlike previously-

proposed schemes, it removes practically all commit stalls.

1. Introduction

There are several recent proposals for shared-memory archi-

tectures that efficiently support continuous atomic-block opera-

tion [2, 5, 6, 8, 9, 14, 18, 19]. In these architectures, a proces-

sor repeatedly executes blocks of consecutive instructions from a

thread (also called chunks) in an atomic manner. These systems

include TCC [6, 9], BulkSC [5], Implicit Transactions (IT) [18],

ASO [19], InvisiFence [2], DMP [8], and SRC [14] among oth-

ers. This mode of execution has performance and programmabil-

ity advantages. For example, it can support transactional mem-

ory [6, 9, 14]; high-performance execution, even for strict memory

consistency models [2, 5, 19]; a variety of techniques for parallel

program development and debugging such as determinism [8], pro-

gram replay [12], and atomicity violation debugging [10]; and even

provide a substrate for new high-performance compiler transforma-

tions [1, 13].

For these machines to deliver scalable high performance, the

cache coherence protocol must support chunk operations very effi-

ciently. It must understand and operate with chunk transactions like

conventional machines operate with individual memory accesses.

There are several ways to design a chunk cache coherence pro-

tocol. In particular, an important decision is whether to use lazy

or eager detection of chunk conflicts. In the former, chunks exe-

cute obliviously of each other and only check for conflicts at the
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time of chunk commit; in the latter, conflict checks are performed

as the chunk executes. There are well-known pros and cons of each

approach, which have been discussed in the related area of transac-

tional memory [3, 17] — although there is no consensus on which

approach is the most promising one. In this paper, we focus on an

environment with lazy conflict detection [5, 6, 8, 9, 14, 18].

In such an environment, a major bottleneck is the chunk commit

operation, where the system checks for collisions with all the other

executing chunks. Early proposals used non-scalable designs. For

example, TCC [9] relies on a bus, while BulkSC [5] uses a central-

ized arbiter. Later designs such as Scalable TCC [6] and SRC [14]

work with a directory protocol and, therefore, are more scalable.

However, Scalable TCC requires broadcasting and centralized oper-

ations, and SRC has message serialization. More importantly, these

schemes add unnecessary commit serialization by disallowing the

concurrent commit of chunks that, while collision-free, happen to

use the same directory module(s). This problem is worse for appli-

cations with lower locality and for higher processor counts.

To address this problem, this paper presents a novel directory-

based protocol that enables highly-overlapped, scalable commit op-

erations for chunks. In our design, the commit operation uses no

centralized structure and communicates only with the relevant di-

rectory modules. Importantly, it enables the concurrent commit of

any number of chunks that use the same directory module — as long

as their addresses do not overlap. Our goal is to emulate for chunks

what conventional directories do for individual write transactions.

The protocol, called ScalableBulk, builds on the previously-

proposed BulkSC protocol — effectively extending it to work with

directories. ScalableBulk introduces three new generic hardware

primitives for scalable chunk commit: (1) preventing access to a set

of directory entries, (2) grouping directory modules, and (3) initiat-

ing the commit optimistically.

We evaluate ScalableBulk with simulations running SPLASH-

2 and PARSEC codes with up to 64 processors. Our results show

that ScalableBulk enables highly-overlapped chunk commit oper-

ations and delivers scalable performance. For 64-processor exe-

cutions, ScalableBulk does not suffer from practically any commit

stall overhead. We show that this is unlike the previously-proposed

schemes.

This paper is organized as follows: Section 2 describes our goal

and related work; Section 3 presents the ScalableBulk protocol;

Section 4 describes implementation issues; and Sections 5 and 6

evaluate ScalableBulk.

2. Building a Lazy Scalable Chunk Protocol

In a chunk cache coherence protocol that performs lazy conflict

detection, the chunk commit operation is critical. Indeed, during

the execution of a chunk, cache misses bring individual lines into

the cache, but no write is made visible outside the cache. At com-

mit, the changes in coherence states induced by all the writes must



be made visible to the rest of coherent caches atomically — squash-

ing any other chunk that has a data collision. Note that a commit

does not involve writing data back to memory. However, it requires

updating the states of the distributed caches in a way that appears

that chunks executed in a total order.

Architectures that support continuous chunk operation in this

environment [5, 6, 8, 9, 14, 18] must critically provide efficient

chunk commit. In general, while they must commit dependent

chunks serially, they attempt to overlap the commit of independent

chunks. In the following, we describe the main existing proposals

for concurrent commits, reconsider whether commit is critical, and

describe our approach.

2.1. Main Proposals for Concurrent Commits

BulkSC [5] uses a centralized arbiter that receives every com-

mit request. The arbiter allows the concurrent commit of multiple

chunks, as long as the addresses that an individual chunk wrote do

not overlap with the addresses accessed by any other chunk. To

detect overlap at a fine grain, BulkSC uses hardware address signa-

tures [4].

Scalable TCC [6] supports chunk commits in a directory-based

coherence protocol. The protocol overlaps the commit of indepen-

dent chunks but has several scalability bottlenecks. First, the com-

mitting processor contacts a centralized agent to obtain a transac-

tion ID (TID), which will enforce the order of chunk commit. Sec-

ond, the processor contacts all the directory modules in the machine

— each one possibly multiple times. Specifically, it sends a probe

message to the directories in the chunk’s write- and read-set, and a

skip message to the rest. Third, for every cache line in the chunk’s

write-set, the processor sends a mark message to the corresponding

directory.

More importantly, however, is that this protocol limits the con-

current commit of independent chunks. Indeed, two chunks can

only overlap their commits if they use different directories. In other

words, if two chunks access different addresses but those addresses

are in the same directory module, their commit gets serialized.

SRC [14] focuses on removing the TID centralization and the

message multicasts from Scalable TCC. The idea is for each com-

mitting processor to send messages to the directories in the chunk’s

read- and write-sets to sequentially occupy them. For example, if

the chunk’s sets include directories 1, 4 and 6, the processor starts

by occupying 1, then 4, then 6. The transaction gets blocked if one

directory is taken. This protocol, called SEQ-PRO, reduces cen-

tralization. However, it introduces sequentiality. Importantly, it has

the same shortcoming as Scalable TCC: two chunks that accessed

different addresses from the same directory are serialized.

The authors present an optimization called SEQ-TS where the

committing processor sends a request in parallel to all the directo-

ries in its read- and write-sets, and can steal a directory from the

chunk that currently occupies it. However, this approach seems

prone to protocol races, and there are little details on how it works.

2.2. Is Commit Really Critical?

There are two papers that show experimental data on the scala-

bility of these protocols. One is the Scalable TCC paper [6], which

shows simulations of SPEC, SPLASH-2, and other codes for 64

processors. The other is the SRC paper [14], which shows simu-

lations of synthetic traces for 64-256 processors. The data in both

papers appears to suggest that chunk commit is overlapped with

computation and does not affect the execution time of applications.

However, the environments described in these papers are differ-

ent from the one we are interested in. There are two key differences:

the size of the chunks and the number of directories accessed per

chunk commit.

Consider the chunk sizes first. The chunks (i.e., transactions) in

Scalable TCC are large, often in the range of 10K-40K instructions.

Such large chunks are attained by manually (or automatically) in-

strumenting the application, positioning the transactions in the best

places in the code. In SRC, the authors consider synthetic models

with chunks larger than 4K instructions.

We are interested in an environment like BulkSC, where the

code is executed as is, without software instrumentation or anal-

ysis. Following BulkSC, we use chunk sizes of 2K instructions.

Additionally, cache overflows and system calls can further reduce

the average size. With chunk sizes that are one order of magnitude

smaller than Scalable TCC, chunk commit is more frequent, and its

overhead is harder to hide.

Consider now the number of directories accessed per chunk

commit operation. In Scalable TCC, for all but two codes, the 90th

percentile is 1–2 directories. This means that, in 90% of the com-

mits, only one (or at most two) directories are accessed. In SRC,

the synthetic model is based on the Scalable TCC data.

This is in contrast to the larger numbers that we observe in our

evaluation. In this paper, the average number of directories accessed

per chunk commit is typically 2–6. We believe the difference is

because, in our environment, we cannot tune what code goes into a

chunk. With these many directories, we often concurrently commit

chunks that accessed disjoint addresses but use the same directory.

Scalable TCC and SRC would serialize them.

Overall, from this discussion, we conclude that the commit op-

eration is indeed time-critical.

2.3. Our Approach

We devise a directory-based coherence protocol that works with

chunks efficiently. A truly scalable chunk commit operation should

(i) need no centralized structure, (ii) communicate only with the

relevant directories, and (iii) allow the concurrent commit of chunks

that use the same directory, as long as their addresses do not overlap.

Moreover, we believe that hardware address signatures [4, 11, 20]

provide a good means to implement a chunk protocol efficiently.

They perform operations on footprints inexpensively.

3. The ScalableBulk Protocol

We describe ScalableBulk by focusing on its three new generic

protocol primitives: (1) preventing access to a set of directory en-

tries, (2) grouping directory modules, and (3) initiating the commit

optimistically. In our discussion, we assume a multicore architec-

ture with distributed directory modules as in Figure 1.

3.1. Preventing Access to a Set of Directory Entries

In a chunk protocol like the one considered, there are no in-

dividual write transactions. Instead, all the writes in a chunk are

processed with a single commit transaction at the directory. To un-

derstand such a transaction, consider the operation of a write in a

conventional directory protocol. When a write arrives at a directory,

the controller starts a transaction that involves (in a four-hop proto-

col): setting the directory state for the line to transient, identifying

the sharers, sending invalidations to the sharers, receiving acknowl-

edgments (acks), updating the directory state for the line to dirty,
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Figure 1. Generic multicore architecture considered.

and notifying the writer. While the state is transient, the directory

controller blocks all requests to the same line — either by buffering

the requests or by bouncing them (i.e., nacking). However, at all

times, the controller can process transactions for other lines.

In a chunk protocol, there is a single transaction for each chunk

commit. Let us assume for now that the machine has a single di-

rectory module. When the directory receives the commit request,

the controller must identify the addresses of the lines written by the

chunk. In ScalableBulk, this is done by expanding the write (W)

signature [5] (while in other schemes, the controller may receive

the list of written addresses). Then, the controller compiles the list

of sharers of such lines, sends W to them for cached line invalida-

tion and chunk disambiguation, and finally collects all acks. In the

meantime, the directory controller updates the state of the directory

entries for these lines.

During this process, and until all acks are received and the di-

rectory state for all of these lines is updated, the directory controller

must disable access to these lines. It does so by nacking both (i)

reads to the lines and (2) commits of chunks that have read or writ-

ten these lines. However, commits (and reads) that do not have any

address overlap with these lines should proceed in parallel. More-

over, the decision of whether or not to nack should be quick.

Figure 2 shows how these operations are performed in Scalable-

Bulk. In the figure, two chunks given by W signatures W0 and W1

are committing concurrently. Signature expansion is performed in

a module like the DirBDM in BulkSC [5]. Any incoming load to

the directory module is checked for membership in W0 and W1. If

there is no match, the access is allowed to proceed. Any incom-

ing read/write signature pair (R2, W2) for a chunk is intersected

with W0 and W1. If all the intersections are null, W2 is allowed

to join W0 and W1 in committing. Note that all these operations

are fast. Moreover, false positives due to signature aliasing cannot

affect correctness. At worst, they nack an operation unnecessarily.

3.2. Grouping Directory Modules

In a conventional directory protocol, a write access engages a

single directory module; in a chunk protocol, a chunk commit can

require the participation of multiple directories — the home directo-

ries of the lines read or written in the chunk. Coordinating the mul-

tiple directories in a commit is the biggest challenge in any chunk

protocol.

For commit scalability, ScalableBulk only communicates with

the home directories of the lines read or written in the chunk —
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Figure 2. A ScalableBulk directory module allows the commit

of multiple, non-overlapping chunks, and nacks overlapping

accesses and overlapping chunk commits.

rather than with all the directories as in Scalable TCC. Coordinat-

ing multiple directories is done in two steps, namely identifying

the directories and then synchronizing their operation in what we

call Directory Grouping. To identify the relevant directories, the

hardware could encode the signatures in a way that made it easy to

extract the home directory numbers of the constituting addresses.

However, this approach is likely to require a non-optimal signa-

ture encoding. Consequently, ScalableBulk works differently: as

a chunk executes, the hardware automatically collects in a list the

home directory numbers of the reads and writes issued. At chunk

commit time, the compressed R and W signatures and this list are

sent to the directory modules in the list.

For any group of directories that receive a (R, W) signature pair,

ScalableBulk designates a Leader. The leader is set by a simple,

default hardware policy. The baseline policy is for the leader to be

the lowest-numbered module in the group. The leader initiates a

synchronization step using the Group Formation protocol (Group

for short). The protocol, which is described next, attempts to group

all participating directories. If it succeeds, the leader sends a com-

mit success message to the committing processor, which then clears

its signatures; if it fails, the leader sends a commit failure message

to the committing processor, which prompts it to wait for a while

and then retry the commit request (unless the committing processor

is asked to squash the chunk before).

As the leader sends the commit success message, it sends the W

signature to all the sharer processors, to trigger cached line invali-

dation and chunk disambiguation. Later, when the leader receives

all acks, it multicasts a commit done message to the directory group.

The directories in the group silently break down the group and dis-

card W.

From the time a directory receives the (R, W) signature pair and

tries to form a group until it receives the commit done message (or

the group formation fails), it nacks incoming overlapping requests

and overlapping commits.

3.2.1. Group Formation Protocol

At any time, there may be multiple sets of directory modules

trying to form groups. Some of these groups may be incompatible

with each other. Two groups that are trying to use a given directory

module are Incompatible if their W signatures overlap or if the R
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signature of one and the W signature of the other overlap. Other-

wise, they are compatible and can commit concurrently.

The Group protocol ensures that: (i) all the compatible groups

form successfully concurrently, and (ii) given a set of incompat-

ible groups, at least one of them forms. To guarantee deadlock-

and livelock-freedom, the Group protocol follows well-known

deadlock-free resource-allocation algorithms by requiring a fixed

directory-module traversal order. Specifically, the algorithm forms

a group by always starting from the leader and traversing directory

modules in hardware from lower to higher numbers.

The algorithm is shown in Figure 3, which depicts six directory

modules. All arrows are hardware messages. In Chart (a), a com-

mitting processor sends the (R, W) signature pair to participating

directories 1, 2, and 5. The message also contains the list of partic-

ipating directories. Each of these directory modules expands the W

signature and, after checking its local directory state, determines the

list of processors that need to be invalidated to commit the chunk

(namely, the sharer processors). In addition, the leader starts by

putting its list in a g (or grab) message and sending it to the next di-

rectory module in the sequence (Chart (b)). Each directory module,

when it receives g, if it has already received the signatures and ex-

panded W to find the sharer processors, augments the processor list

in g, and passes the updated g to the next directory in the sequence.

Note that computing the sharer processors is done by all directory

controllers in parallel, typically before they receive the g message.

Therefore, it is not in the critical path.

Eventually, the g message returns to the leader. The leader then

multicasts a short g success message to all participating directory

modules (Chart (c)). The group is now formed, and the directories

start updating their state based on the W signature. At the same

time, the leader sends a commit success message to the committing

processor and W to the sharer processors (Chart (d)). On reception

of all the acks from the sharers, the leader multicasts a commit done

message to the directory group (Chart (e)). All the directories in the

group then break down the group and deallocate the W signature.

It is possible that the g message does not return to the leader.

This occurs when the group being formed collides with a second

group and the latter wins. The collision occurs in the lowest-

numbered directory module that is common to both groups. We

call it the Collision module. It declares, as the winner group, the

first group for which it sees both (i) the (R, W) signature pair com-

ing from the committing processor and (ii) the g message coming

from the previous directory module in the group.

As soon as the Collision node sees both messages from one

group, it pushes the g message to the next node in that group, ir-

revocably choosing that group as the winner. Later, when it re-

ceives both messages from the losing group, it simply multicasts

a g failure message to all the directories in the losing group. The

directories then deallocate the losing W signature and the leader of

the losing group sends a commit failure message to the commit-

ting processor. Chart (f) shows this case assuming that module 2

detected the collision.

3.2.2. Forward Progress, Starvation, and Fairness

The Group algorithm guarantees forward progress because,

when several groups collide, at least one is able to commit suc-

cessfully. This is guaranteed because g messages are strictly passed

from lower- to higher-numbered modules, and they are only sent

when the sender has received both (R, W) and g.

As an advanced example, Figure 3(g) shows a system with nine

directory modules and three colliding groups. The latter are G0

(which tries to combine directories 0, 2, 3, and 4), G1 (trying direc-

tories 1, 2, 3, 7, and 8), and G2 (trying directories 6 and 7). The

Collision module for Groups G0 and G1 is Module 2 — the lowest-

numbered, common module. Suppose that Module 2 receives the

combination of (R, W) and g for Group G1 first. At that point,

Module 2 passes g for G1 to Module 3, effectively choosing G1

over any future colliding group. Later, when Module 2 receives the

combination of (R, W) and g for G0, it multicasts g failure for G0

to Modules 0, 3, and 4. The next decision occurs in Module 7. The

module chooses between G1 and G2 based on which of the groups

first provides (R, W) and g. Overall, at least one group will form

successfully.

The algorithm described tends to favor small groups over large

ones. This is because large groups are likely to encounter more Col-

lision modules as they form and, therefore, have higher chances of

failing to form. To prevent the commit starvation of such chunks,

the Group algorithm works as follows. After a given directory mod-

ule has seen the squash of a given chunk commit for a total of MAX

times, then, it reserves itself for the commit of that chunk. It re-

sponds to all other requests for commit as if there was a collision

and the requester lost. It does this until it receives the request from

the starving chunk and commits it. Since all the directories in the

group see every single squash of the group, they all reserve them-

selves for the starving chunk at the same time.



The algorithm also tends to favor the commit of chunks from

processors close to low-numbered directories. This is because these

processors can push signatures to low-numbered directories faster,

hence pre-empting other processors. To solve this problem and en-

sure long-term fairness, the Group algorithm can change the relative

priority of the directory-module IDs at regular intervals. Specifi-

cally, it can use a modulo rotation scheme where, during one inter-

val, the highest-to-lowest priority is given by IDs 0, 1, ... n; during

the next interval, it is given by 1, 2, ... n, 0; and so on. At any

time, the Group algorithm chooses the leader of a group to be the

one with the highest-priority ID in the group, and the g messages

are sent from higher to lower priority modules.

3.3. Optimistic Commit Initiation

In existing chunk protocols such as BulkSC, the commit oper-

ation proceeds conservatively. Specifically, the processor sends a

permission to commit request to an arbiter and, while the processor

is waiting for an OK to commit or Not OK to commit message from

the arbiter, it nacks all incoming messages — such as signatures

for cache line invalidation and chunk disambiguation. This action

limits concurrent commit.

In a machine with many cores, communication latencies may

be high, and determining whether a chunk can commit takes some

time. In ScalableBulk, it takes the time to form (or fail to form) a

group.

To address this issue, ScalableBulk introduces Optimistic Com-

mit Initiation (OCI), where a committing processor assumes that

its commit transaction will succeed. After the processor sends its

commit request with signatures to the target directories, it contin-

ues to consume incoming messages — including signatures from

concurrently committing transactions that attempt to perform bulk

invalidation (i.e., invalidate cached lines and disambiguate against

the local chunk). Note that the local chunk’s R and W signature

registers are not deallocated until the processor receives a commit

success message and, therefore, are available for disambiguation.

OCI increases performance by increasing the overlap of multiple

commits. Moreover, by doing so, it also reduces the time that sig-

natures are buffered in directory modules (Section 3.1). This in turn

reduces the time during which requests and signatures are nacked

from directories, and decreases the possibility of collisions.

However, OCI complicates the protocol when the committing

processor consumes a bulk invalidation message and finds that it

needs to squash the chunk that it recently sent out for commit. In

this case, as the processor squashes and restarts the chunk, it sends

a Commit Recall message to ask for the cancellation of the commit.

This recall message is piggy-backed on the ack to the bulk invali-

dation message that caused the squash. As we show in Section 3.4,

ScalableBulk ensures that this message is propagated to the correct

directories. Later, when the processor receives a commit failure

message from the leader of its failed directory group, it discards it.

The OCI protocol is illustrated in Figure 4. Consider two proces-

sors that initiate commits with overlapping addresses. Processor P0

sends its signatures to directory modules 0, 2, and 3, while P1 sends

its own to modules 1, 2, and 3 (Chart (a)). The first set of directories

succeed in forming Group G0. Its leader (Module 0) sends commit

success to P0, and W0 for bulk invalidation to P1 (Chart (b)). At

this point, a conservative protocol proceeds as in Chart (c), while

one with OCI proceeds as in Chart (d).

Specifically, in Chart (c), P1 nacks the W0 message repeatedly

until it receives a commit failure message from the leader of the
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Figure 4. Operation of the Optimistic Commit Initiation (OCI).

group that failed (Group G1). At that point, it consumes the W0

message and squashes the local chunk — therefore enabling the

completion of the Group G0 chunk commit.

On the other hand, in Chart (d), P1 immediately consumes the

W0 message, piggy-backs a commit recall on the ack to the W0

(bulk invalidation) message, and squashes and restarts its chunk.

We show in Section 3.4 that this recall message is routed to the

directories of Group G1, to tell them that the committing processor

has squashed its chunk. Later, when P1 receives the commit failure

message for the chunk from Module 1, it discards it.

Overall, OCI reduces the critical path to complete the successful

commit of the chunk in Group G0. Specifically, it removes from

the critical path the following potential latencies of failed Group

G1 operation: the initial request from P1 to the directory modules

participating in Group G1, the (failed) formation of Group G1, and

the transfer of the commit failure message to P1.

3.4. Putting it All Together: Scalable Commit

The ScalableBulk features described fulfill the requirements for

a truly scalable commit operation listed in Section 2.3. First, there

is no centralization point. Second, a committing processor com-

municates only with the directory modules in its signatures, with

point-to-point messages; there is no message broadcasting. Third,

any number of chunks that share directory modules but have non-

overlapping updated addresses (Ri∩Wj∨Wi∩Wj is null for every

i, j pair) can commit concurrently — just as conventional protocols

support any number of concurrent write transactions to different

addresses. Finally, OCI maximizes the overlap of commits by re-

moving operations from the critical path of commits.

To show how the complete chunk commit operation works, we

revisit Figure 4(a), where two chunks that have accessed data from

common directory modules (Modules 2 and 3) try to commit. Let us

consider two cases: in one, they do not have overlapping updated

addresses; in the other, they do. When they do not, they commit

concurrently (Figure 5(a)). Each processor sends the signatures to

the relevant directory modules. The leader module in each group

forms the group. Then, each leader sends a commit success to its

own originating processor, and bulk invalidations to all sharer pro-

cessors. When the sharer processors ack, the leader multicasts a
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Message Type Description Format Direction

commit request
Processor requests to commit a chunk. Message is sent to all the directory

modules in the read- and write-sets of the chunk
C Tag, W Sig, R Sig, g vec Proc → Dir(s)

g (or grab)
Source directory module is part of a group, and tries to grab the destination

module to put it into the same group
C Tag, inval vec Dir → Dir

g failure
A module detects that group formation has failed and notifies of the failure

to all the modules in the group
C Tag Dir → Dir(s)

g success
The leader informs all the modules in the group that the group has been

successfully formed
C Tag Dir → Dir(s)

commit failure The leader notifies the commit-requesting processor that the commit failed C Tag Dir → Proc

commit success
The leader notifies the commit-requesting processor that the commit is

successful
C Tag Dir → Proc

bulk inv The leader sends out a bulk invalidation to all the sharer processors C Tag, W Sig Dir → Proc(s)

bulk inv ack
The leader receives a bulk invalidation acknowledgment from a sharer

processor
C Tag Proc → Dir

commit done
The leader releases all the modules in the group and requests the

deallocation of the signatures
C Tag Dir → Dir(s)

commit recall
A processor with a squashed chunk notifies the leader module of the squash.

The message is piggy-backed on bulk inv ack and commit done messages
C Tag, Dir ID

Proc → Dir,

Dir → Dir

Table 1. Message types in ScalableBulk.

commit done to all directory modules in the group, which deallo-

cate the signature. These operations proceed in parallel for the two

groups.

Consider now that the two chunks have overlapping updated ad-

dresses. Each processor sends the signatures to the relevant direc-

tory modules. Assume that, as shown in Figure 4(b), Group G0

succeeds and G1 fails. P1 receives the W0 signature (i.e., the bulk

invalidation message), squashes the chunk it is committing (Fig-

ure 4(d)), and piggy-backs a commit recall in the ack to G0’s leader

(Module 0).

Figure 5(b) shows the state after Figure 4(d). As Module 0 mul-

ticasts the commit done to the G0 members, it includes the commit

recall from P1 in the message. All modules deallocate signature W0

and consider the commit complete. The commit recall triggers no

action in any module except in the lowest-numbered one of the set

of modules common to both G0 and G1 (the Collision one). In our

example, this is Module 2. The recall tells Module 2 that P1 started

a commit and its chunk has already been squashed. If Module 2 has

already seen both (R1, W1) and g for G1, then it has already sent

g failure to all the members of Group G1. Consequently, it simply

discards the commit recall. Otherwise, the commit recall tells Mod-

ule 2 to be on the lookout for the reception of (R1, W1) and g for

G1; when it receives them both, it sends the g failure message to all

the G1 group members. This is why the commit recall is needed:

Module 2 deallocates signature W0 and, therefore, would not be

able to detect the collision if it has not yet observed (R1, W1).

4. Implementation Issues

To get a flavor of ScalableBulk’s implementation, this section

describes the message types and the design of a directory module.

Appendix A describes the ordering of messages in a directory mod-

ule.

4.1. Message Types

Table 1 shows all of the message types needed in ScalableBulk.

There are ten types. In the table, C Tag is the unique tag assigned

to a chunk. It is formed by concatenating the originating processor

ID and a processor-local sequence number. W Sig and R Sig are

the write and read signatures of a chunk. g vec is the set of direc-

tory modules in a chunk’s read- and write-sets. It is formed by the

processor as it executes a chunk. inval vec is a bit vector with the

set of sharer processors that need to be invalidated once a group has

been formed. It is built incrementally at each participating mod-

ule, and passed with the g message. The commit recall message

is piggy-backed on the bulk inv ack message and then on the com-

mit done message, so that it reaches the Collision directory module

(indicated by Dir ID). Finally, Proc and Dir mean processor and

directory module, respectively.

As an example, the first row describes the request-to-commit

message (commit request), sent by a committing processor to all the

directories in the read- and write-sets of the chunk. The message

includes the chunk tag, the signatures, and the set of directories

in the chunk’s read- and write-sets. The other rows can be easily

followed.



4.2. Directory Module Design

Figure 6 shows the design of a ScalableBulk directory module.

It has three components, namely buffers for the incoming and out-

going messages, the Chunk State Table (CST) that contains one en-

try per committing or pending chunk, and the ScalableBulk protocol

engine. The protocol engine implements the protocol state machine.

It accepts incoming messages, triggers the state transitions for the

corresponding chunks in the CST, and potentially generates new

outgoing messages based on the state of the chunks. To design the

state machine, we follow the methodology summarized in [16], and

derive the set of states, events, messages, transitions, and actions

with each transition.

....

ScalableBulk

Protocol

Engine

C_Tag

leader?

.... Sigs inval_vec l h c

hold?
confirmed?input 

buffer

Chunk State

output 

buffer

g_vec

CST

Figure 6. Directory module in ScalableBulk.

Each CST entry corresponds to a chunk being processed by this

directory module. There is an analogy between a CST entry in a

ScalableBulk directory and a regular entry in a conventional direc-

tory. A CST entry is allocated when the directory module receives

either a signature pair (R Sig, W Sig) or a g message for a chunk.

It is deallocated at one of two points: (1) the chunk commits suc-

cessfully and the directory has received all bulk inv ack messages

(if it is the leader) or a commit done message (if it is not), or (2)

the chunk commit fails and the directory receives a commit recall

message (if it is the Collision module) or a g failure message.

A CST entry contains several fields. C Tag is the chunk’s

unique tag. Sigs is the R and W signatures. Chunk State is the state

of the chunk. As indicated before, g vec is a bit vector with the

set of directory modules in the chunk’s read- and write-sets, while

inval vec is a bit vector with the set of sharer processors that need

to be invalidated (based on the state in this directory). The final

inval vec is built by accumulating the inval vec fields of all par-

ticipating directories through the g message. Finally, there are three

status bits for the chunk. l (leader) indicates whether this directory

is the leader of the group. h (hold) indicates that no conflicts were

found in this directory and that this directory was admitted into the

group. It is set right before sending a g message. Finally, c (con-

firmed) indicates that the group has been successfully formed. For

the leader, it is set after a g message is received from the last mod-

ule in the group; for a non-leader, it is set after a g success message

is received from the leader.

Overall, the system operates similarly to a conventional

directory-based protocol, but maintains “coherence” at the granu-

larity of chunks.

5. Evaluation Setup

We evaluate ScalableBulk using a cycle-accurate execution-

driven simulator based on SESC [15]. We model a multicore system

like the one in Figure 1, in which we can configure the number of

cores to be 32 or 64. The cores issue and commit one instruction

per cycle. Memory accesses can be overlapped with instruction ex-

ecution through the use of a reorder buffer. Each core has private

L1 and L2 caches that are kept coherent using a directory-based

scheme that implements the ScalableBulk protocol. The cores are

connected using an on-chip 2D torus modeled with the simulator

of Das et al [7]. A simple first-touch policy is used to map virtual

pages to physical pages in the directory modules. Table 2 shows

more details.

Processor & Interconnect Memory Subsystem

Cores: 32 or 64 in a multicore Private write-through D-L1:

Signature: size/assoc/line:

Size: 2 Kbits 32KB/4-way/32B

Organization: Like in [5] Round trip: 2 cycles

Max active chunks per core: 2 MSHRs: 8 entries

Chunk size: 2000 instructions Private write-back L2:

Interconnect: 2D torus size/assoc/line:

Interconnect link latency: 7 cycles 512KB/8-way/32B

Coherence protocol: ScalableBulk Round trip: 8 cycles

MSHRs: 64 entries

Memory roundtrip: 300 cycles

Table 2. Simulated system configurations.

For the evaluation, we run 11 SPLASH-2 applications and 7

PARSEC applications. The applications run with 32 and 64 threads.

We run the applications with reference data sets for all runs. For LU

and Ocean from SPLASH-2, we use the more locality-optimized

contiguous versions. For the PARSEC applications, we use the

small input sets, except for Dedup and Swaptions, which run with

the medium and large input sets, respectively, due to scalability rea-

sons.

We also implement and evaluate several protocols proposed in

previous work. They are shown in Table 3.

Name Protocol

ScalableBulk Protocol proposed

TCC Scalable TCC [6]

SEQ SEQ-PRO from [14]

BulkSC Protocol from [5] with arbiter in the center

Table 3. Simulated cache coherence protocols.

6. Evaluation

In our evaluation, we examine the performance and scalability,

the number of directory modules accessed per chunk commit, the

chunk commit latency, and the chunk commit serialization. We fi-

nally characterize the traffic.

6.1. Performance and Scalability

Figures 7 and 8 show the execution time of the applications on

ScalableBulk, TCC, SEQ, and BulkSC for 32 and 64 processors

— normalized to the execution time of single-processor runs on

the same architecture with ScalableBulk. Each bar is labeled with

the name of the application and the number of processors. The

last two bars show the average. The bars are broken down into

the following categories, from bottom to top: cycles executing one

instruction (Useful), cycles stalling for cache misses (Cache Miss),

cycles stalling waiting for a chunk to commit (Commit) and cycles

wasted due to chunk squashes (Squash). The number on top of each

bar is the speedup.

From the average values, we see that the BulkSC protocol does

not scale well going from 32 to 64 processors due to its centralized

nature. Distributed protocols such as ScalableBulk, TCC, and SEQ
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Figure 7. Execution times of the SPLASH-2 programs normalized to single-processor runs with ScalableBulk.
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Figure 8. Execution times of the PARSEC programs normalized to single-processor runs with ScalableBulk.



scale better going from 32 to 64 processors, but TCC and SEQ show

significant commit overhead for applications such as Radix, Barnes,

Canneal, and Blackscholes. ScalableBulk suffers almost no commit

overhead even for these applications due to its overlapped nature.

Squash overhead is generally minimal, since data conflicts between

two chunks are relatively rare and not very costly even when they

happen — given the small chunk size (2000 instructions). In Scal-

ableBulk for 64 processors, only 1.5% of all chunks were squashed

due to data conflicts and 2.3% were squashed due to address alias-

ing in the signatures.

Radix shows a large commit overhead for TCC and SEQ. This

is because, as we will see in Section 6.2, chunks in Radix use a

large number of directory modules compared to other applications.

Moreover, most of these modules record writes. Radix implements

a parallel radix sort algorithm that ranks integers and writes them

into separate buckets for each digit. The writes to these buckets are

random depending on the integer, and have no spatial locality. This

results in a large number of directory modules that record writes per

chunk, and in serialization for non-overlapped protocols.

Previous work on Scalable TCC [6] shows smaller overheads

for Radix and Barnes, but this was in the context of software-

defined transactions. Such transactions are much larger than the

automatically-generated chunks of this work. As a result, the trans-

actions do not commit as frequently, leading to better scalability.

However, they need software to define them.

Ocean, Cholesky, and Raytrace attain superlinear speedups. The

reason is that the single-processor runs can only use a single L2

cache, while the parallel runs use 32 or 64 L2 caches.

6.2. Directories Accessed per Chunk Commit

Figures 9 and 10 show the average number of directory modules

accessed per chunk commit in the ScalableBulk protocol. The data

is shown for the SPLASH-2 and PARSEC applications. The figures

show data for each application for 32 and 64 processors, and the

average across applications. Each bar shows the number of direc-

tories that record at least one write (Write Group) and of those that

record only reads (Read Group).
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Figure 9. Number of directories accessed per chunk commit in

SPLASH-2.

The scalability of distributed commit protocols such as Scalable-

Bulk, TCC, and SEQ depends on chunks accessing a small number

of directory modules. We see from the figures that most applica-

tions access an average of 2–6 directories per chunk commit. These

numbers are significantly larger than the ones reported in the Scal-

able TCC paper [6]. Moreover, in some applications such as Barnes,

Canneal, and Blackscholes, chunks access a much larger set of di-

rectories. Radix is especially challenging in that practically all of

the directories in the group record writes.
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Figure 10. Number of directories accessed per chunk commit

in PARSEC.

Large groups are especially harmful for TCC and SEQ, due

to their inability to concurrently commit two overlapping chunks.

However, ScalableBulk suffers no noticeable commit overhead

thanks to its ability to overlap groups through the use of signatures.

Figures 11 and 12 show the distribution of the number of di-

rectory modules accessed per chunk commit in the ScalableBulk

protocol for the SPLASH-2 and PARSEC applications. We can see

that, in some applications, there is a significant tail of chunks with

high numbers of directories accessed.
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Figure 11. Distribution of number of directories accessed per

chunk commit in SPLASH-2 for 64 processors.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 more
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e

Vips
Swaptions
Blackscholes
Fluidanimate
Canneal
Dedup
Facesim

Figure 12. Distribution of number of directories accessed per

chunk commit in PARSEC for 64 processors.

6.3. Chunk Commit Latency

Figure 13 shows the distribution of the latency of a chunk com-

mit operation. The data corresponds to the average of all the appli-

cations running on 64 processors. The mean latencies for Scalable-

Bulk, TCC, SEQ, and BulkSC are 91, 411, 153, and 2954 cycles re-

spectively. For 32 processors, the mean latencies are 74, 402, 107,

and 98 cycles, respectively. ScalableBulk not only has lower laten-

cies than all of the existing protocols, but also scales well. BulkSC

has the worst scaling behavior.
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Figure 13. Distribution of the latency of a chunk commit oper-

ation.

6.4. Chunk Commit Serialization

In order to analyze the divergent commit latencies shown in Sec-

tion 6.3, we measure two additional metrics: the bottleneck ratio

and the chunk queue length.

6.4.1. Bottleneck Ratio

We define the Bottleneck Ratio as “the number of chunks in the

process of forming groups” over “the number of chunks that have

successfully formed groups and are in the process of completing

the commit”. We exclude from the numerator those chunks that are

forming groups that will later be squashed. This ratio is sampled

every time that a new group is formed. A high ratio signifies that

groups are taking a long time to form, most likely due to a bot-

tleneck — e.g., in the case of the less-overlapped protocols, group

formation is stalled waiting for another group to commit. A low

ratio signifies that groups are getting formed and processed quickly

through the system.

A high bottleneck ratio does not necessarily imply a high com-

mit overhead because the commit latency can be hidden by the ex-

ecution of the next chunk in the processor. However, given an ap-

plication, a high bottleneck ratio in a protocol compared to another

protocol is a good indicator that group formation is taking a longer

amount of time.

Figures 14 and 15 show the bottleneck ratios in SPLASH-2 and

PARSEC for ScalableBulk, TCC and SEQ. We do not show data for

BulkSC because it does not form groups.

From the figures, we see that the bottleneck ratio in Scalable-

Bulk is uniformly low and is about 1 on average. This roughly

means that chunks spend about the same amount of time forming

a group as committing the group. In contrast, SEQ and especially

TCC, have higher bottleneck ratios. Some of the applications that

have a high bottleneck ratio are those with the most commit over-
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Figure 14. Bottleneck ratio for SPLASH-2 codes.

head in Figures 7 and 8, such as Radix, Barnes, FMM, Blacksc-

holes, and Canneal.
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Figure 15. Bottleneck ratio for PARSEC codes.

6.4.2. Chunk Queue Length

The Chunk Queue Length is the number of chunks in the whole

machine that are queued waiting to commit. A completed chunk

gets queued in the TCC and SEQ protocols when the directory mod-

ules that it accessed overlap with those accessed by earlier, yet-

uncommitted chunks. Chunks do not get queued in ScalableBulk

because ScalableBulk enables full overlap of chunk commits using

signatures. We sample the chunk queue length every time that a

new group is formed. A long chunk queue means that a completed

chunk has to wait for a long time to commit. Therefore, it signifies

commit serialization.

Figures 16 and 17 show the average chunk queue lengths in TCC

and SEQ for all the applications with 64 processors. Long chunk

queues do not necessarily imply high commit overhead because the

commit latency can be hidden by the execution of other chunks.

However, we can see that applications such as Radix, Blackscholes,

and Canneal, which have high commit overheads in Figures 7 and 8,

do in fact have long chunk queues.
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Figure 16. Chunk queue lengths in SPLASH-2 codes.

6.5. Traffic Characterization

Figures 18 and 19 show the number and distribution of the mes-

sages in the network for the different coherence protocols. The

data is shown for each application running on 64 processors. For

a given application, the bars are labeled as S (for ScalableBulk),
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Figure 17. Chunk queue lengths in PARSEC codes.

T (for TCC), Q (for SEQ), and B (for BulkSC), and are normal-

ized to the number of messages in TCC. The messages are classi-

fied into five classes: reads of a cache line from memory (MemRd),

reads of a cache line from another cache, either in state shared (Re-

moteShRd) or in state dirty (RemoteDirtyRd), and two classes of

commit-related messages (LargeCMessage and SmallCMessage).
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Figure 18. Message characterization in SPLASH-2. S, T, Q,

and B stand for ScalableBulk, TCC, SEQ, and BulkSC, respec-

tively.

LargeCMessage and SmallCMessage are large and small mes-

sages, respectively, in the commit protocol. For example, in

ScalableBulk, the LargeCMessage are those that carry signatures,

namely commit request and bulk inv in Table 1, while SmallCMes-

sage are the rest of the messages in Table 1.

From the figures, we see that TCC generates significantly more

messages than the other protocols, and that these messages are

mostly commit-related small messages. These messages are mostly

the skip and probe messages. This results in a more congested net-

work, potentially increasing the commit overhead and delaying the

read messages.

7. Conclusions

To boost programmability and performance, researchers have

proposed architectures that continuously operate on chunks of in-

structions. These systems must support chunk operations effi-

ciently. In particular, in lazy conflict-detection environments, they

must provide scalable chunk commits. Unfortunately, current pro-

posals very often limit the overlap of conflict-free chunk commits.

This paper presented ScalableBulk, a novel directory-based

protocol that enables highly-overlapped, scalable chunk commits.

ScalableBulk uses hardware address signatures to optimize chunk
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Figure 19. Message characterization in PARSEC. S, T, Q, and

B stand for ScalableBulk, TCC, SEQ, and BulkSC, respec-

tively.

operations. It introduces three general hardware primitives for scal-

able commit: preventing access to a set of directory entries, group-

ing directory modules, and initiating commit optimistically. Our re-

sults with SPLASH-2 and PARSEC codes with up to 64 processors

show that ScalableBulk enables highly-overlapped chunk commits

and scalable performance. Unlike previously-proposed schemes, it

removes practically all commit stalls.
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Appendix A: Ordering of Messages in a Direc
tory

In this appendix, we describe the ordering of the messages sent

and received by a directory module, both in a successful commit

and in a failed one. There are two subcases in a failed commit,

namely that the Collision module is the leader of the failed group

or that it is not. If it is not, then we need to consider the three types

of modules in the failed group, as shown in Figure 20. The types

of modules are: those before the Collision module, the Collision

module, and those after the Collision module.

Collision moduleLeader

Before Collision 
module

After Collision 
module

Failed group

Successful group

Figure 20. Types of directory modules in a failed group where

the Collision module is not the leader.

Table 4 shows the succession of messages sent and received by

a directory module in the case of (1) a successful commit and (2)

a failed commit where the Collision module is the leader of the

failed group. Table 5 shows the case of a failed commit where the

Collision module is not the leader of the failed group. In the tables,

S:msg means that a message msg is sent by the directory, while

R:msg means that msg is received by the directory. Moreover, ev1

→ ev2 indicates that event ev1 precedes event ev2, while ev1 & ev2

means that ev1 and ev2 can happen in any order (but both of them

should happen). The message types are those presented in Table 1.

As an example, consider Table 5 for the Collision module. There

are three possible message orderings. In one of them, the mod-

ule receives a commit request and a g (grab) message in any order.

Then, since the module finds out that this group fails, it multicasts

a g failure message to all of the other group members. Later, if

and when it receives a commit recall message, it discards it. In

the second case, the module receives a commit request and a com-

mit recall message. At that point, it waits for the reception of a g

message. After that, it multicasts a g failure message. Finally, in

the third case, the module receives a g and a commit recall mes-

sage. At that point, it waits for the reception of a commit request

message. After that, it multicasts a g failure message. The other

table entries can be described similarly.


