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ABSTRACT
Developing and testing parallel code is hard. Even for one given
input, a parallel program can have many possible different thread
interleavings, which are hard for the programmer to foresee and for
a testing tool to cover using stress or random testing. For this rea-
son, a recent trend is to use Systematic Testing, which methodically
explores different thread interleavings, while checking for various
bugs. Data races are common bugs but, unfortunately, checking for
races is often skipped in systematic testers because it introduces
substantial runtime overhead if done purely in software. Recently,
several techniques for race detection in hardware have been pro-
posed, but they still require significant hardware support.

This paper presents Light64, a novel technique for data race de-
tection during systematic testing that has both small runtime over-
head and very lightweight hardware requirements. Light64 is based
on the observation that two thread interleavings in which racing ac-
cesses are flipped will very likely exhibit some deviation in their
program execution history. Light64 computes a 64-bit hash of the
program execution history during systematic testing. If the hashes
of two interleavings with the same happens-before graph differ,
then a race has occurred. Light64 only needs a 64-bit register per
core, a drastic improvement over previous hardware schemes. In
addition, our experiments on SPLASH-2 applications show that
Light64 has no false positives, detects 96% of races, and induces
only a small slowdown for race-free executions — on average, 1%
and 37% in two different modes.

Categories and Subject Descriptors
B.3.4 [Hardware]: Reliability, Testing, and Fault-Tolerance—Error-
checking; D.1.3 [Concurrent Programming]: Parallel program-
ming.

General Terms
Reliability, Verification.
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Systematic Testing, Data Race, Execution History Hash.
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1. INTRODUCTION
Multicore hardware brings the challenge of parallel program-

ming to the large body of programmers. Even when parallel pro-
grams are written by expert programmers and acknowledged as
safety critical, concurrency bugs such as data races have been known
to cause serious accidents [5, 20]. Consequently, it is likely that, as
the number of parallel programmers increases, concurrency bugs
will become a source of great concern for the software industry.

A fundamental tool to combat bugs is software testing. Unfor-
tunately, testing parallel code is intrinsically hard because, often,
for the same input, there are many possible different thread inter-
leavings. These interleavings can be difficult for the programmer
to foresee and for a testing tool to cover using stress or random
testing [2, 26]. For this reason, Systematic Testing, where a tool
systematically explores the interleaving space of a parallel program
while checking for bugs, is emerging as an effective approach for
parallel and distributed program testing [3,4,14,15,23,29–34]. Sys-
tematic testing is based on ideas from state-space exploration and
model checking. It typically assumes that test inputs are provided,
and that the only source of non-determinism is due to thread in-
terleavings. For a given input, systematic testing executes the pro-
gram many times, each time forcing a different thread interleaving.
When compared to stress testing or heuristic approaches [2,19,26],
systematic testing can offer higher coverage guarantees on what
has been tested. A highly effective systematic tester used in indus-
try is CHESS from Microsoft Research [15]. In one comparison to
stress testing [15] on large code bases (e.g., operating system and
distributed execution engine), CHESS found and was able to repro-
duce 25 previously unknown bugs that stress testing did not find or
could not reproduce for many months.

Data races are a common type of concurrency bug, and thus sys-
tematic testers commonly include functionality for data race detec-
tion [3, 15, 29, 30]. They usually employ standard detection algo-
rithms, such as Eraser [25], which do not take advantage of the sys-
tematic testing environment and have a high runtime overhead. For
example, race detection in CHESS currently has about 30x over-
head [1]. For this reason, systematic testers do not always enable
race detection — e.g., CHESS turns it off by default [15] — which
may result in missing not only the data races themselves but also
the exploration of new states induced by the races. To reduce over-
heads to manageable levels, several recent projects have proposed
hardware support for race detection [13, 16, 21, 22, 35]. Unfortu-
nately, such schemes still require significant hardware extensions.

To address this problem, this paper presents Light64, a new tech-
nique for efficient detection of data races during systematic testing
that has both small runtime overhead and very lightweight hard-
ware requirements. Light64 is based on the following observa-
tion: two different thread interleavings that have the same happens-
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Figure 1: Parallel execution seen as a succession of segments (a), and some of the segment interleavings generated in
Depth First Search (DFS) order (b).

before graph [8, 12] but a flipped (i.e., reordered) data race, will
very likely have at least a small deviation in the execution history
of some thread. Consequently, Light64 collects the execution his-
tories of the two interleavings and, if they differ, it reckons that a
data race is present. Then, it saves an execution log, from which an
offline classical data race analysis [12] precisely detects the racing
data accesses.

This paper makes the following contributions:
Novel technique with low hardware requirements and low

execution overhead: Light64 is a novel technique for detecting
data races during systematic testing of multithreaded programs.
Light64 has a low execution overhead because it performs a very
fast online analysis to detect that a race did occur (which is in-
frequent) followed by a slower offline analysis to determine where
the race occurred. We also present an optimization that reduces
the number of logs for offline analysis by orders of magnitude by
detecting that some logs are due to the same race.

Light64’s online analysis compares execution histories, relying
on the re-execution of program sections and a highly deterministic
environment, which are typically provided by systematic testers.
For fast comparison, Light64 efficiently encodes execution histo-
ries. Specifically, Light64 hashes the values read by loads (rather
than addresses or any other part of the execution history), which is
enough to detect the changes due to data races. If this hashing were
done purely in software, the overhead could be high. Our hard-
ware scheme has the extremely lightweight hardware requirement
of only a 64-bit hash register per core — a drastic improvement
over all other hardware techniques for detecting data races [13, 16,
21,22,35]. In addition, Light64 trivially supports virtualization and
process migration, which is important for deployment in real-world
systems. Most other hardware techniques [13,21,22,35] do not al-
low for such operations, while the only technique that does [16]
adds hardware for this purpose.

Effective integration into systematic testing: The key insight
of Light64 is to detect differences in execution history for inter-
leavings that have the same happens-before graph. Light64 can rely
on systematic testers to produce executions with the same happens-
before and different thread interleavings. We call this Light64 mode
Passive. We also introduce a new mode, called Active, which in-
tentionally reshuffles interleavings during exploration to increase
the chance to flip data races at the cost of a slightly higher runtime
overhead. We describe several variations of this mode which trade
off capability of race detection for execution overhead.

Effective Data Race Detection: We evaluate Light64 on all the
programs from the SPLASH-2 benchmark suite. The results show
that Light64 has no false positives, detects 96% of races, and in-
duces a race-free runtime overhead of only 1% and 37% on aver-

age — for Passive and Active modes, respectively. This overhead
is much smaller than that of existing software schemes, and compa-
rable to existing hardware schemes that require significantly more
hardware extensions. Moreover, Light64 can detect races separated
by arbitrary distances in execution time, while all other hardware
techniques for race detection lose races between accesses that are
far apart in the execution due to limited hardware storage capabili-
ties [16, 21, 22, 35].

The outline of the paper is as follows. Section 2 gives a high-
level overview of systematic testing. Section 3 presents Light64.
Section 4 describes the hardware support and the software algo-
rithms. Section 5 gives the experimental results. Section 6 reviews
related work, and Section 7 concludes the paper.

2. BACKGROUND

2.1 Systematic Testing of Parallel Programs
Systematic testing of a parallel program [3, 4, 14, 15, 23, 29–34]

involves methodically exploring different thread interleavings of
the program (for a given input), executing each interleaving, and
checking for bugs during these executions. To test a given inter-
leaving, systematic testing multiplexes the threads of the program
on a single processor. However, different processors can be as-
signed to test different interleavings at the same time [6]. The bugs
being checked for can include data races, deadlocks, assertion vi-
olations, memory leaks, etc. The checks are usually independent
of the exploration and are implemented using standard algorithms
that run on top of the systematic tester.

To control the execution of the program being checked, a sys-
tematic tester implements its own thread scheduler, which replaces
the scheduler from the operating system in case of C/C++ pro-
grams [4, 14, 15, 31, 34] or from the virtual machine in case of
Java [3, 29, 30]. Systematic testers do not explore thread interleav-
ings at the instruction granularity but at the segment granularity. A
segment is a dynamic section of code that contains a single commu-
nication operation (e.g., a synchronization operation, an access to
a shared variable, or a message). During testing, systematic testers
run each segment atomically, and repeatedly try different legal seg-
ment orders to explore different interleavings (for a given input).
Exploring all communication interleavings covers the same pro-
gram behavior as exploring all instruction interleavings, but at a
much lower cost.

For example, Figure 1(a) shows a simplified program fragment
with two threads, A and B, that have three and two segments, re-
spectively. The only communication in this example is the Sig-
nal/Wait synchronization; besides it, the segments are independent,
i.e., they do not communicate. Figure 1(b) shows some of the



S6S4

B2

S5

A3

S7

S3 S8

A2

S9

A3 B2

S2

S1

B1

A2 B2

2

S11 S12

A1

S13

S10

S0

A1

B1

A1 B21

Already seen (S6)

prune search

Already seen (S2)

prune search

Already seen (S8)

prune search
2

3

4

5

(a)

Visited States 

(hash table)

S'

S1 S2

S4 S3

State Pool 

(stack, queue, etc)

Prune search

STEP 2

Restore program state:

      1) reset

      2) replay serial log

      3) produce happens-before

S
STEP 1

Pick state

S

STEP 3

Generate child state

(extends serial log)

STEP 4

Already processed ?

YES 

NO

STEP 5
S''

Save for later 

processing

Mark as 

processed

(b)

Figure 2: The State Tree with a DFS exploration (a), and the operation of a systematic tester (b).

thread interleavings (at segment granularity) that a systematic tester
explores using the Depth First Search (DFS) strategy. The white
segments in interleavings 3, 4, and 5 are not actually executed but
rather pruned away, as we will describe later in this section.

Figure 2(a) shows the same thread interleavings as a State Tree.
Each node represents the State of the parallel program between two
thread switches. Each edge represents the atomic execution of a
segment. For example, the edge between states S1 and S2 cor-
responds to the execution of segment B1 from Figure 1(a). Fig-
ure 2(a) is augmented with dotted lines showing each of the inter-
leavings of Figure 1(b).

The number of children of a state is equal to the number of
enabled threads that can be executed from that state. For exam-
ple, state S1 has only one child, corresponding to the execution of
thread B, since thread A is blocked at the Wait X operation. State
S4 has only one child because thread A has finished execution.

Two states are equivalent if exploring the subtree from one state
yields the same behavior information as exploring the subtree from
the other state. Systematic testers use this property to prune the ex-
ploration of the state tree. In Figure 1(b), the white segments corre-
spond to the execution that was pruned. For example, the state S9
in Figure 2(a) (which is reached after executing A2 in interleaving 3
of Figure 1(b)) has already been seen as S6 in Figure 2(a) (which is
reached after executing B2 in interleaving 2 of Figure 1(b)). Conse-
quently, the exploration beyond S9 is pruned. Overall, by traversing
this pruned state tree, the systematic tester explores all the different
program behavior from the interleaving point of view for a given
input. Note that systematic testers build the tree on the fly, while it
is being explored.

Figure 2(b) depicts the operation of a systematic tester. The sys-
tematic tester keeps in a State Pool the set of states that need to be
processed. Each state is represented with a Serial Log, which is
the ordered list of the segments that are executed to reach the state.
For example, state S3 is represented by the Serial Log (A1-B1-
A2). The State Pool is a stack for DFS or a queue for Breadth First
Search (BFS). Initially, it only has the starting state of the program.

The systematic tester also keeps a Visited States table, with the
set of states already processed during exploration. A state can
be represented with its happens-before graph, which is composed
of the unordered list of the segments that were executed to reach

the state, plus the set of inter-thread communications that took
place [15]. For example, the happens-before for states S6 and S9
is (A1, B1, A2, B2, B1->A2). The Visited States is usually imple-
mented as a hash table. Initially, it is empty.

The main loop of the systematic tester is as follows (Figure 2(b)).
In step 1, the tester picks a state S to process next — removing it or
not from the State Pool depending on the search strategy. The tester
then restores the program state to that state (step 2), for example by
resetting the program and re-executing it following S’s Serial Log.
At the same time, the tester obtains the happens-before graph of
the state, either by reading it from some location, or by computing
it on the fly. Then, for each of the enabled threads, the tester will
perform three more steps (only shown for one enabled thread in
Figure 2(b)). Specifically, in step 3 it executes the next segment
of the enabled thread, therefore generating a child state S’. In step
4, it checks in the Visited States if the tester has already processed
a state with the same happens-before as the child state. If so, the
child is discarded, effectively pruning the search; otherwise, the
child state is added to Visited States and State Pool (step 5).1

In Figure 2(a), the order in which states are visited in DFS is
obtained by first following the dotted line labeled 1. Then, the pro-
gram is returned to state S3 and proceeds to follow dotted line 2
to state S7; then, the program is returned to state S2 and proceeds
to follow dotted line 3 to state S9, before moving to dotted lines
4 and 5. As we return the program to a previous state, we end up
re-executing some sequences of program segments. For instance,
to return to state S3, the tester resets the program and re-executes
A1, B1, and A2 in step 2 of Figure 2(b).

The tester prunes the exploration at states S9, S11, and S13 be-
cause they are equivalent to states S6, S2, and S8, respectively. For
example, state S11 is equivalent to state S2 because both have the
same happens-before graph — both are reached by executing in-
dependent segments A1 and B1 in a different serial order. This
corresponds to a hit in Visited States in step 4 of Figure 2(b).

While we have explained step 2 of Figure 2(b) using a reset and
replay log approach, it can also be implemented using a checkpoint-
restore approach. Most C/C++ systematic testers [4, 15, 31, 34] use

1Some systematic testers do not maintain Visited States but rather
compute on the fly equivalent states, at the cost of failing to detect
some equivalent states.
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reset and replay. One exception is CMC [14], but it is specialized
for checking communication protocols and does not capture the en-
tire machine state, including the stack and the registers. Java sys-
tematic testers usually use the checkpoint-restore approach [3, 30],
although sometimes they use reset and replay [29]. Light64 works
with both approaches.

Finally, in a systematic testing environment, the tester restricts
all sources of non-determinism beyond thread execution interleav-
ing that can affect a program’s execution [4, 14, 15, 30] — such
as non-deterministic system calls like gettimeofday or calls to ran-
dom number generators. This is because the tester needs to be in
full control of the state exploration.

2.2 Happens-Before and Data Races
The ordering between two accesses to the same memory location

introduces a happens-before edge [8]. In Figure 1(a), the happens-
before edge between synchronizations (i.e., synchronization happens-
before) is marked with an arrow. There can also be happens-before
edges between data accesses (i.e., data happens-before). All happens-
before edges in an execution form a happens-before graph, which
fully characterizes the ordering in a parallel execution [8].

Two data accesses to the same location are in a race if at least one
of them is a write and they are not ordered by synchronization [28].
In the absence of data races, the synchronization happens-before
implies the data happens-before — i.e., two data accesses to the
same location are ordered by synchronization happens-before. There-
fore, the latter fully characterizes the execution. In the rest of the
paper, we refer to the synchronization happens-before simply as the
happens-before.

Practical systematic testers [3,15] determine execution segments
only based on synchronization operations (and not accesses to shared
variables), which makes the segments longer, their number smaller,
and thus results in fewer interleavings. In effect, they assume that
there is no data race. If there is one, they not only miss the race but
also some possible interleavings/states resulting from the race.

3. LIGHT64

3.1 The Idea
Light64 is based on the observation that, if we flip the order of

two racing accesses, we are very likely to cause a deviation in the
program execution history. This can be seen in Figure 3(a), which
shows a program with Threads A and B racing to access variable
X. Initially, X had value 0. In the left part of Figure 3(a) (non-
flipped), Thread A writes value 3 to X, and then Thread B reads X.
In the right part of Figure 3(a) (flipped), Thread B reads X and then
Thread A writes 3. In the example, the flipping creates a change

in the execution history, namely that Thread B reads either 3 or 0.
Light64 focuses on detecting such small changes, irrespective of
whether or not, later in the program, this small change results in a
big deviation in the program execution.

Based on this discussion, Light64 searches for two different thread
execution interleavings that have (1) the same happens-before graph
and (2) a different memory access history for some thread. For
efficiency, Light64 tracks only a small part of the history — yet
enough to detect that a deviation in execution has occurred. Specif-
ically, Light64 computes a per-thread hash of the data values that
each thread reads with load instructions. If the per-thread hashes
of two different thread interleavings that have the same happens-
before graph differ, then these interleavings have flipped a data
race. Then, in an offline phase, Light64, localizes the racing in-
structions using a classical precise happens-before analysis [12].

Accumulating the hashes of the values read from memory col-
lects only a small subset of the entire execution history of the pro-
gram. However, it is a subset that is very useful to detect when a
race has been flipped. Indeed, we will see that Light64 has no false
positives. This means that the execution logs that Light64 saves
for offline analysis will always contain a data race. Moreover, if
two hashes are identical, we will see that it is very unlikely that the
execution includes a harmful race. Consequently, Light64 has very
few false negatives.

From this discussion, it is clear that Light64 needs two execu-
tions of the same happens-before graph to observe a data race. For-
tunately, for the most part, such two executions already take place
naturally in systematic testers during the process of exploration.
As a result, we will see that Light64 can be well positioned in two
different steps of the operation of the systematic tester shown in
Figure 2(b). The resulting two designs give rise to two Light64
modes of operation: Passive and Active.

3.2 Detecting Execution History Deviations
The goal of Light64 is to efficiently detect deviations in the ex-

ecution history of a program caused by the flipping of a race. To
capture the execution history, we use hardware that automatically
hashes and accumulates per-thread execution information.

A naive design would include in the hash every single instruction
executed by the thread. However, since the inputs to the program
are given by its load instructions, it is enough to hash only load
instructions. Moreover, of all the parts of a load instruction — e.g.,
instruction address, data address, or data value —- only the data
value needs to be accumulated in the hash. This is because the very
first deviation in the execution caused by a race will involve reading
a different data value from a correct address. Later, reads may use
this data as an address and read from different addresses than in the



original execution. However, since detecting even a single deviated
instruction is enough to expose the race, Light64 only hashes and
accumulates the values read by load instructions.

Figure 4 shows the operation. As shown in the example, each
thread uses CRC to hash and accumulate in hardware into a local
register all the values read. When we reach the destination state, the
hash registers of all the threads are combined in software — e.g.,
using another hashing function. We call the result the Execution
History Hash.

Using this approach, if the Execution History Hash of two execu-
tions that have the same happens-before graph differ, it is due to a
data race. This is because, in the highly deterministic environment
of a systematic tester (Section 2.1), the hashes cannot differ for any
other reason. Therefore, Light64 has no false positives. The execu-
tion logs that Light64 saves for offline analysis will always contain
a data race. Figure 3(a) shows an example where two executions
have different Execution History Hashes because of flipping a wr-
rd race.

It is very unlikely that two executions with the same happens-
before graph flip a harmful race and the Execution History Hash
remains the same. This occurs when the hashing is such that two
different streams of read values produce the same final hash value.
In this case, Light64 misses the race and, therefore, we have a false
negative. Since we use a 64-bit CRC, this case is extremely im-
probable.

Note that Light64 can miss a special case of benign race where
the racing write writes the value that already exists. For example,
in Figure 3(a), if Thread A writes 0 to X rather than 3, then Light64
misses the race. However, such race does not affect execution.

In the case of a wr-wr race (Figure 3(b)), the read that changes is
the first read that follows the race in any thread, although the read
itself may or may not be involved in a race (e.g., the dashed line in
the figure could indicate a synchronization operation such as a bar-
rier). Consequently, Light64 would miss the special case of a wr-wr
race where there is no future read in the entire program execution.
In our experiments (Section 5.3), Light64 never lost a race due to
this case, and we believe that implementing more complex tech-
niques to cover this corner case may not be justified. However, if
needed, a solution would be to add a read immediately before each
write — either in software by the compiler or in hardware by the
microarchitecture. Since, in our environment, a segment runs be-
tween two synchronization points, one thread would perform both
the read and the write before the other did. As a result, this solution
would ensure that we detect when the race is flipped.

Finally, there is a special case where Light64 misses a race by
construction. This case results from the fact that Light64 regards
the code between two synchronization points as a segment. Since
Light64 explores interleavings at the segment granularity, instruc-
tions from two different segments cannot be interleaved. As a re-
sult, if a segment operates on a variable and finally sets it to the
value it had before the segment started, and there is a race on that
variable, then the race is not detected. An example is shown in
Figure 5(a). In the figure, variable X is initially 0. A segment in
Thread A sets X to 3 and then to 0; a segment in Thread B not syn-
chronized with A’s segment reads X. Reordering the interleaving at
segment granularity as in Figure 5(b) would not cause a change in
the Execution History Hash. To detect this case, one would need
to reorder at the instruction granularity as in Figure 5(c). Overall,
while Light64 cannot detect this particular case, it is likely that, due
to the high coverage of the systematic tester, the static race that cre-
ated this dynamic race will be detected in other thread interleavings
— namely, those where the last write of the segment does not write
the same value as was at the start of it.
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3.3 Modes of Operation
Light64 needs two executions of the same happens-before graph

to flip a race and, therefore, detect its presence. In reality, for the
most part, such two executions already take place naturally in sys-
tematic testers during the process of exploring. Therefore, we place
Light64 in a systematic tester so that it can take advantage of such
re-executions mostly transparently.

Light64 can be positioned in two different steps of the operation
of the systematic tester shown in Figure 2(b). One option is to place
it in step 4. Step 4 checks the Visited States to see whether a state
with the same happens-before graph as the current child state has
already been processed during exploration. In this option, Light64
augments each entry in the Visited States with the Execution His-
tory Hash of the state. Then, without perturbing the exploration in
any way, every time that the Visited States is accessed in step 4,
Light64 simply checks both the happens-before graph and the Ex-
ecution History Hash. If it finds an entry for which the former is
the same and the latter differs, we have detected a data race. We
call this option the Light64 Passive mode. In our experiments, this
mode leads to an average runtime overhead of only 1% over plain
systematic testing.

A second option is to place Light64 in step 2 of Figure 2(b).
Step 2 restores a program state by using the Serial Log to replay
the execution of the program up to that state. At the same time,
it produces the happens-before graph of the state. In this option,
Light 64 forces the re-execution to follow a different thread inter-
leaving from the one it originally followed, so that it flips the races
— while still obeying the same happens before graph. When the
state is reached, the Execution History Hashes attained in the first
execution and in this re-execution are compared. If they differ, we
have detected a data race. In this option, each state in the State Pool
of Figure 2(b) keeps both its happens-before graph and its Execu-
tion History Hash. The former is used to guide the re-execution
in lieu of the Serial Log; the latter is used to compare against the
Execution History Hash of the re-execution. We call this option
the Light64 Active mode. This mode has more runtime overhead,
in part because we use the happens-before graph to guide the re-
execution rather than the Serial Log. In our experiments, this mode
leads to an average runtime overhead of 37% over plain system-
atic testing. Note that this mode works only for systematic testers
based on reset and replay, which is the typical choice for C/C++
systematic testers.

The Light64 Active mode keeps the overhead low by reusing the
normal re-executions needed to restore states in systematic testing.
It uses these re-executions to reorder segment execution and, there-
fore, to flip races. Thanks to a heuristic that we will present in
the next section, one single re-execution is enough to flip typically
all the races that exist in the execution path to a state. We will



present several versions of Light64 Active, which differ in whether
or not additional re-executions are needed and, if so, in which spe-
cial cases.

Overall, the trade-off between Active and Passive modes is that
of detection capability versus overhead. Active detects races with a
higher probability because it fully controls segment reordering for
each happens-before graph during the exploration. Passive does
not explicitly control the reordering or the re-execution of the same
happens-before graph. Consequently, it may miss some races when
the systematic tester does not re-execute (or re-executes but does
not reorder) some thread interleaving that has a race.

4. SYSTEM DESIGN
This section describes two aspects of Light64’s design, namely

the hardware support and the detailed operation of the Passive and
Active modes.

4.1 Hardware Support
Light64 relies on minimal hardware to generate the hash of the

read history described in Section 3.2. Specifically, we place a hard-
ware module for hash and accumulate at the head of the processor’s
reorder buffer (Figure 6(a)). As a load commits, the data read is au-
tomatically hashed using CRC hash logic and accumulated into the
64-bit History register. By hashing at instruction-commit time, we
ensure a repeatable order of accesses, eliminate any perturbation
from speculative accesses, and operate off the processor critical
paths.
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Instruction Description
start__hashing Start hashing the values of the memory reads
stop__hashing Stop hashing the values of the memory reads

save__hash addr Save the History register to memory location
addr

restore__hash addr Restore the History register from memory lo-
cation addr

(b)

Figure 6: Hardware system and its interface to software.

This hardware interfaces to the software through the four assem-
bly instructions of Figure 6(b), namely start__hashing, stop__hashing,
save__hash, and restore__hash. The first two enable and disable
the hashing. They allow for the analysis of only the checked pro-
gram, and not also of the systematic tester’s code that runs together
with the checked program. The last two instructions save and re-
store the History register to and from memory. Recall that the
hashes are computed on a per-thread basis. Therefore, Light64 uses
save__hash and restore__hash to save and recover the hash at thread
context switches.

With this support, we see that the Light64 hardware trivially sup-
ports virtualization and process migration. There may be multiple
systematic tester programs running on the same processor, and a

systematic tester program may migrate between processors if it is
running on multiprocessor hardware. Light64 works seamlessly
because the OS or VM monitor saves and restores a thread’s 64-bit
History register at thread switching points. There is no additional
overhead for virtualization and migration.

4.2 Light64 Passive Mode
This mode makes use of the fact that, during a systematic tester’s

normal exploration process, the tester typically encounters multiple
execution paths with the same happens-before graph and different
segment execution orders. As an example, consider Figure 2(a).
The tester reaches state S6 through the execution of A1, B1, A2
and B2. At that point, the state’s happens-before graph and Ex-
ecution History Hash are saved in the Visited States. Later, the
tester reaches state S9, which has the same happens-before graph as
S6 but was reached by executing the segments in a different order,
namely A1, B1, B2, A2. In this case, A2 has been reordered rela-
tive to B2. Other paths may reorder A1 relative to B1 and B2 (note
that the executions leading to S6 and S9 do not reorder A1 and B1).
Specifically, the paths to S8 and S13 have the same happens-before
graph and reorder A1 relative to B1 and B2. Note, however, that
Light64 Passive cannot make guarantees of coverage. Due to the
systematic tester’s exploration strategy or pruning heuristics, two
particular segments may never be reordered or may be reordered as
part of thread interleavings with different happens-before graphs.

There are two infrequent corner cases in Light64 Passive. The
first one is when, due to hash-induced aliasing, two different happens-
before graphs are mapped to the same location of Visited States. In
this case, Light64 will find different Execution History Hashes and
assume that there is a race. However, the user will not receive false
warnings because the offline analysis uses a precise happens-before
analysis.

The second case is if a race flip affects the control flow and
changes the happens-before graph. In this case, Light64 will be
searching the wrong entry in Visited States and, therefore, may be
unable to flag the presence of a data race. In this case, we would
miss the race.

4.3 Light64 Active Mode
This mode reuses the normal re-executions needed to restore

states in reset-and-replay systematic testers. Recall that these are
the testers typically used for C/C++ [4, 15, 31, 34]. Light64 Ac-
tive uses these re-executions to explicitly reorder segment execu-
tion and, therefore, flip races. This section describes the operation
of Light64 Active, a heuristic for efficient segment reordering, sev-
eral Light64 Active versions that trade-off accuracy and overhead,
and an optimization to reduce the number of offline analysis.

4.3.1 General Operation
To illustrate the operation of the Light64 Active mode, consider

Figure 2(a) at the point when S5 has been processed. Execution
now needs to return to state S3 and proceed to explore S3’s sec-
ond child S6. In step 2 of Figure 2(b), we need to restore the pro-
gram state by re-executing the path to state S3. In this re-execution,
a conventional systematic tester would typically execute the seg-
ments in the same order as in the first execution, namely the order
given by the Serial Log (A1-B1-A2). Light64 Active, instead, re-
executes the path to state S3 re-ordering the execution of segments
relative to the first execution as much as possible, while obeying the
happens-before graph of S3. Specifically, it executes the segments
(B1-A1-A2) — therefore flipping all the races between A1 and B1.
It does not reorder B1 and A2 because they have a happens-before
dependence (Figure 1(a)).



A flipped race may alter the control flow, which in turn may alter
the happens-before graph. This may cause the replay to block, if a
thread is waiting for a condition that never becomes true. Light64
detects this problem by keeping track of threads ready to run. If
there are none and the re-execution is not yet finished, Light64
signals a race, without needing to compare the hashes; it is obvi-
ous that there was a deviation in the execution history. Systematic
testers like CHESS [15] use the same approach to detect that a re-
play is not following the initial execution.

4.3.2 Heuristic for Efficient Segment Reordering
When replaying an execution path in Light64 Active, we want

to minimize the overhead of computing and enforcing segment ex-
ecution orders that flip as many segments in the path as possible.
Consequently, we propose a heuristic algorithm that reorders the
execution of many segments while incurring minor overhead. With
two executions, this algorithm is able to flip typically all of the
races in the path.

The idea is to perform one execution of the path selecting the
segments to execute using the Smallest-ID Thread First (SID) al-
gorithm. Then, the second execution of the path is performed while
selecting the segments to execute using the Biggest-ID Thread First
(BID) algorithm. The SID and BID algorithms order the segments
of all the threads in a parallel program in a total order. At any
point in the ordering, if there is more than one thread that is ready
to execute a segment, the SID algorithm picks the thread with the
smallest ID that is ready, while the BID algorithm picks the one
with the biggest ID that is ready. Depending on the type of state
exploration performed by the systematic tester (e.g., depth-first or
breadth-first), this heuristic may influence the number of path re-
executions. This is discussed in Section 4.3.3.

Figure 7 illustrates the SID and BID algorithms. Assume that we
have two threads with IDs 1 and 2 that execute the program with
the happens-before graph shown in Figure 7(a). Figures 7(b) and
7(c) show the segment execution orders when following the SID
and BID algorithms, respectively.
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Figure 7: Heuristic to reorder segment execution. The
segments of a happens-before graph (a) are executed us-
ing the SID algorithm (b) or the BID algorithm (c).

When comparing the two executions, we see that, in this exam-
ple, all the segments that are not ordered by happens-before depen-
dences get reordered. For example, in Figure 7(b), segment 1a ex-
ecutes before 2a and 2b, while in Figure 7(c), it executes after both
of them. Consequently, any race in these segments gets flipped. On
the other hand, 1a is always executed before 2c because there is a
happens-before dependence between them.

When dealing with more than two threads, this heuristic may
miss some legal segment reorderings. This is due to the well-known
priority inversion problem [9], which arises when a high-priority
task is blocked waiting for a resource held by a low-priority task;
in the meantime, a medium-priority task is scheduled, thus pre-

venting the low-priority one from executing and releasing the high-
priority one. This is shown in Figure 8. The happens-before graph
of Figure 8(a) is executed with the SID (Figure 8(b)) and BID (Fig-
ure 8(c)) algorithms. Segments 2a and 3b do not get reordered
because, in Figure 8(c), while 3b is waiting for 1a to execute, 2a
gets executed before 1a. To solve this problem, we can use existing
partial solutions for priority inversion [27] or other heuristics.

TID: 1 TID: 2 TID: 3

1a

1b

 2a

 3a

 3b

(a)

TID: 1 TID: 2 TID: 3

1a

1b

 2a

 3a

 3b

(b)

TID: 1 TID: 2 TID: 3

1a

1b

 2a

 3a

 3b

(c)

Figure 8: Missing a legal segment reordering. The seg-
ments of a happens-before graph (a) are executed using
the SID (b) and BID (c) algorithms.

4.3.3 Light64 Active Versions
There are some states in the State Tree that the operation of a

conventional systematic tester does not re-execute. Specifically, if
it uses DFS exploration, such states are those with zero or one child;
if it uses BFS, it can be shown that they are those with no children.
Unfortunately, some of the segments in the program may only be
executed when such states are reached. If Light64 Active simply
reuses the re-executions of a conventional systematic tester, it will
not re-execute some of the segments and, therefore, miss any races
in such segments.

As an example, consider Figure 2(a), which uses DFS. A con-
ventional systematic tester only re-executes states S2, S3, and S10.
Then, Light64 Active would not be able to flip the races in the seg-
ments beyond such states, namely B2 and A3.

To detect races in these segments, we can increase the number
of re-executions at the cost of a higher overhead. Consequently,
we propose three versions of Light64 Active, each with a different
tradeoff between probability of race detection and execution over-
head. We describe them in the order of increasing race detection
probability and execution overhead.

ActiveNO never forces any additional re-execution. This is the
version that we have implicitly described so far.

ActiveFIN forces the re-execution of only the final states, namely
those corresponding to the termination of the program execution.
They are states S5 and S7 in Figure 2(a). Since they have no chil-
dren, they would never be re-executed otherwise. Re-executing
them provides the opportunity to reorder many segments.

ActiveFULL forces the re-execution of every explored state that
will not be automatically re-executed by the conventional system-
atic tester. This scheme maximizes the race detection probability
but also has the highest overhead.

Note that the number of additional re-executions needed may
also be influenced by the number of threads in the program or the
exploration strategy. Specifically, executions with more threads im-
ply more children per node and, therefore, fewer needed additional
re-executions under DFS. Moreover, if the exploration strategy fol-
lows random exploration rather than the SID algorithm, Light64
Active may choose to perform two re-executions for each state:
one following the SID algorithm and one the BID algorithm.



Configuration Description
Plain Conventional systematic tester following the design principles of CHESS [15]. Has no race detection capability
Plain+RD Conventional systematic tester following the design principles of CHESS [15]. Runs a classical precise happens-

before race detector
ActiveNO Plain plus Light64 Active with no forcing of re-executions (Section 4.3.3)
ActiveFIN Plain plus Light64 Active with forcing re-executions of the final states (Section 4.3.3)

ActiveFULL
Plain plus Light64 Active with forcing re-executions of all the states that are not already re-executed by the
systematic tester (Section 4.3.3)

Passive Plain plus Light64 Passive (Section 4.2)

Table 1: Evaluated configurations.

Finally, there may be some merit in a hybrid solution with mostly
Light64 Passive operation and selective application of Active in
some key paths.

4.3.4 Reducing the Number of Off-Line Analysis
When the path to a state is found to be racy, Light64 stores away

the log of the path to be analyzed offline. For example, assume
that Light64 is re-executing state S2 in Figure 2(a) and finds a race
between segments A1 and B1. Then, Light64 saves the log for S2
for off-line analysis.

Unfortunately, due to the exploration process, it is likely that
Light64 will save many logs with the same dynamic race. For ex-
ample, assume that we use Light64 ActiveFULL in BFS and that
there is no other race in the program. When Light64 re-executes
each of states in the S2 subtree, it will detect a race in each and
every case and, not knowing that it is the same dynamic race ev-
ery time, it will save the log for each of these states for off-line
analysis. This is wasteful.

Note that this problem also occurs in DFS explorations. Specifi-
cally, for the same example, Light64 ActiveFULL detects a race in
the path to S5 and saves a log. As Light64 proceeds to explore S4
next, it will not save a log for S4 to minimize redundant analysis,
but it will save the log for S7 with the same race.

To avoid this problem and reduce the number of racy logs ana-
lyzed offline by orders of magnitude, we propose the optimization
that we call Serial. Specifically, when a path with a racy segment
interleaving is found, after saving the log, Light64 marks the in-
terleaving as serial. This means that all the paths being explored
in the future that have the first path as a subpath, will not reorder
the segments in the subpath. This prevents these future paths from
detecting the same race again. To see why, consider the first ex-
ample given. After re-executing S2, Light64 marks A1–B1 as se-
rial. When Light64 later executes, say, the path to S7, Light64 will
keep the order A1–B1 in both the initial and replayed executions,
and only re-order segments A2, B2, and A3. Therefore, the re-
execution of S7 will not find again the same race and will not save
another log for offline analysis.

Note that this optimization will miss the race instances that have
one of the racing accesses inside the serial subpath and the other
access outside of that subpath. For instance, in the example given,
the re-execution of S7 will miss any race between A1 and B2.

5. EVALUATION

5.1 Experimental Setup
We model our lightweight hardware system using PIN [10] and

implement a systematic tester following the design principles of
CHESS, a state-of-the-art tool used in industry [15]. The segments
are the dynamic code sections between synchronization operations
or volatile flag access. The exploration follows classical DFS as in
other studies [3, 4, 30, 34].

We evaluate the performance and race detection capabilities of
the six configurations shown in Table 1: a conventional systematic
tester with no race detection capability (Plain), Plain with a classi-
cal precise happens-before race detector that can find all races but
with an extremely-high runtime overhead (Plain+RD), Plain aug-
mented with one of the three Light64 Active versions (ActiveNO,
ActiveFIN, or ActiveFULL), and Plain augmented with Light64 Pas-
sive (Passive). We evaluate the performance overhead of Light64
by comparing with Plain and evaluate the detection capability by
comparing with Plain+RD. We use instruction count as performance
metric and consider that our minor hardware addition has no sig-
nificant impact on hardware performance. In addition, we estimate
the overhead of a software-only implementation of Light64, which
would be used in the absence of hardware support.

Our evaluation uses all the applications in SPLASH-2. As cus-
tomary in systematic testing [14,15,23,29,34], the experiments use
small inputs and a small number of threads, which is a pragmatic
way to combat state space explosion. For each application, we test
four code versions. One is the original SPLASH-2 code. Each
of the other three is modified by randomly removing one or more
static synchronization operations from the original code, similarly
as in other studies on hardware-based race detection [16,21,22,35].
We run each of the four versions with two and four threads, for a
total of 576 experiments. To cover the case of bounded search [4,
14, 15], we limit each exploration to a total of up to 50,000 states.

5.2 State Space Characterization
Table 2 gives the characteristics of the explorations. Columns 2-

7 correspond to the original SPLASH-2 code, while columns 8-13
show the mean of the three versions modified by inserting races.
For each application, the Distinct states column gives the num-
ber of different states explored during systematic testing and is a
measure of testing coverage. We see that our experiments cover a
substantial number of states and a wide range of state spaces, rang-
ing from small (FFT, LU) to large (Water-NS, Volrend, Raytrace).
Small state spaces are due to extensive use of barriers, which facili-
tate the pruning of the search, while locks usually lead to large state
spaces. The state spaces for the original codes are typically larger
than those for the modified versions, since removing synchroniza-
tion operations decreases the number of possible interleavings.

The Already seen states column shows the number of times the
exploration encountered an already seen state and thus pruned the
search (Section 2.1). This is a measure of how effective the pruning
technique is, which is a key factor in performing efficient system-
atic testing. DFS stack depth is the longest path in the State Tree,
namely the maximum number of synchronization operations per-
formed during an execution path. The depths of the DFS stacks
are large and could lead to huge state spaces (e.g., 2 threads with
a stack of 27 as FFT could have 227 different interleavings). How-
ever, not all interleavings are possible due to synchronizations (e.g.,
barriers for FFT, or when a thread is blocked on a lock).



Original application Mean of 3 versions with inserted races
Appl. 2-thread runs 4-thread runs 2-thread runs 4-thread runs

Distinct Already DFS Distinct Already DFS Distinct Already DFS Distinct Already DFS
states seen stack states seen stack states seen stack states seen stack

states depth states depth states depth states depth
Barnes 6141 2684 44 20907 29094 62 3854 2080 39 21709 28292 54
Cholesky 4047 3615 113 18201 31800 179 1849 1593 78 18008 31993 144
FFT 39 13 27 195 221 53 21 7 15 105 119 29
FMM 1809 1429 68 18193 31808 108 1153 947 55 18076 31925 87
LU 54 18 37 270 306 73 12 4 9 60 68 17
Ocean 1369 539 77 22161 27840 153 910 363 67 21983 28018 135
Radiosity 26643 23358 1927 22649 27352 2069 26635 23366 1777 22542 27459 1898
Radix 6047 1704 77 22559 27442 172 4797 1618 51 22746 27255 134
Raytrace 29612 20389 1387 18765 31236 1399 28672 21329 679 22069 27932 710
Volrend 30732 19269 69 18286 31715 161 30835 19166 64 19384 30617 116
Water-NS 34644 15357 83 21473 28528 149 29911 16019 72 22453 27548 134
Water-SP 15589 6815 55 21447 28554 109 1711 863 41 22202 27799 90
MEAN 13061 7933 330 17092 24658 391 10863 7279 246 17612 24085 296

Table 2: Characteristics of the state space exploration. For each application, columns 2-7 correspond to the original
SPLASH-2 code, while columns 8-13 show the mean of the three versions modified by inserting races.

5.3 Race Detection Capability
Table 3 shows the race detection capability of various configura-

tions. The Races columns show the number of static races found,
where each race is a triple of an address being accessed and two
instruction pointers of the instructions issuing the accesses. Note
that the same instructions can access a large number of different
addresses, e.g., for array accesses, and thus some applications such
as FFT and LU have a large number of inserted races. Because
our systematic tester switches at volatile flags, like in CHESS [15],
accesses to volatile variables do not count as races.

The Plain+RD rows show the total number of races in our ex-
periments. Plain+RD is a precise happens-before race detector that
finds all races for the explored executions. In practice, software
schemes such as Plain+RD can have up to one or even two orders
of magnitude overhead in execution time. This makes them im-
practical to always run in systematic testers (Section 2.1).

Comparing the Races entries of the three versions of Active to
Plain+RD, we can see that Active is highly accurate. It misses
races in only a few cases (which are marked with ? in the Races
columns). It can be shown that, on average, ActiveNO, ActiveFIN
and ActiveFULL detect 93%, 96% and 97% of the races respec-
tively. Passive is less accurate than Active, detecting on average
89% of the races. Even so, the number of missed races is very
small and can be acceptable (especially when taking into consider-
ation the extremely low overhead of Passive). We compute these
numbers by first computing the percentage of detected races per
application and then computing their mean.

The few races missed in Table 3 are due to some of the reasons
we outlined earlier in the paper. For example, the Serial optimiza-
tion of Section 4.3.4 causes each Active version to miss four races
in two Radix experiments. The races missed by both the Active
versions and Passive in Volrend are the special case of benign races
that we described in Section 3.2. Specifically, in an initialization
function, all threads write the same value to a location, instead of
just one thread doing the initialization. This is benign since the re-
sults are the same, and Light64 does not detect the races because the
program execution history is unaffected. ActiveNO misses races in
one run of modified LU because these races are between segments
leading to final states, which are not re-executed for ActiveNO.
Finally, as expected, Passive misses races in several applications
because some happens-before graphs are not encountered twice by
the systematic tester’s explorations.

By checking that all races reported by Light64 are also reported
by Plain+RD, we confirm that Light64 reports no false positives.
As expected, all logs saved offline by Light64 contain races, and
all the races in these logs are also detected by Plain+RD.

We also check (not shown in Table 3) whether inserting reads be-
fore writes to cover the corner case discussed in Section 3.2 would
discover more races. For each Light64 variant, we try an additional
set of experiments, which never detect any new races. Therefore
we believe that the additional complexity of inserting reads before
writes is not justified.

The Logs analyzed columns show the number of logs for which
a precise data race detection is run. The numbers for Light64 are
much smaller than the numbers for Plain+RD. In the cases of orig-
inal codes with no races, the numbers for Light64 are 0, since it
quickly detects that there is no need to run the precise analysis,
while Plain+RD always has to run the precise analysis. For runs
with races, the ratio of analyzed logs for Plain+RD over Light64
ranges from around 1.5X (for LU and Passive with four threads) up
to 9,526X (for original Ocean with four threads).

The Logs no opt. columns show the number of logs that would
be analyzed by the Active versions without the optimization of Sec-
tion 4.3.4. The ratio of logs analyzed without and with the op-
timization is typically very high, reaching nearly 10,000 for the
original Ocean code. This shows that the optimization is highly
effective.

5.4 Runtime Overhead
Light64 incurs only a small runtime overhead. Figure 9 shows

the number of instructions executed by each of the Light64 configu-
rations normalized to the instructions executed by the conventional
systematic tester with no race detection (just Plain, not Plain+RD).
For each application, the bars are the average of the four code ver-
sions, namely the original SPLASH-2 one plus the three modified
with races. The offline analysis of the racy logs with a conven-
tional, precise happens-before race detector is characterized by the
Logs analyzed columns in Table 3 as described in the previous sec-
tion and is not included in Figure 9.

From the figures, we see that Passive executes only 1% more in-
structions. For two-thread runs, ActiveNO and ActiveFIN execute,
on average, 28% and 37% more instructions, respectively; for four-
thread runs, they execute less than 20% more. Passive has a lower
overhead than ActiveNO or ActiveFIN because it only observes the
executions and compares the history hashes. In contrast, ActiveNO



Original application Mean of 3 versions with inserted races
Appl. Configu- 2-thread runs 4-thread runs 2-thread runs 4-thread runs

ration Logs Logs Logs Logs Logs Logs Logs Logs
Races ana- no Races ana- no Races ana- no Races ana- no

lyzed opt. lyzed opt. lyzed opt. lyzed opt.

Barnes

Plain+RD 131 1590 n/a 311 8269 n/a 140 927 n/a 192 7865 n/a
ActiveNO 131 420 420 311 1254 7471 140 202 318 192 1105 7001
ActiveFIN 131 420 420 311 1254 7471 140 202 318 192 1105 7001
ActiveFULL 131 420 980 311 1254 8269 140 202 517 192 1105 7865
Passive 131 420 n/a 311 3251 n/a 140 315 n/a 192 5051 n/a

Cholesky

Plain+RD 4 215 n/a 4 1105 n/a 16 128 n/a 14 1044 n/a
ActiveNO 4 72 90 4 59 1097 ? 5 42 59 14 51 1028
ActiveFIN 4 72 90 4 59 1097 ? 5 42 59 14 51 1028
ActiveFULL 4 76 98 4 59 1105 ? 11 45 65 14 51 1036
Passive 4 76 n/a 4 2069 n/a ? 12 55 n/a 14 2099 n/a

FFT

Plain+RD 0 14 n/a 0 92 n/a 28459 8 n/a 42688 50 n/a
ActiveNO 0 0 0 0 0 0 28459 1 1 42688 10 28
ActiveFIN 0 0 0 0 0 0 28459 1 1 42688 10 28
ActiveFULL 0 0 0 0 0 0 28459 1 5 42688 11 33
Passive 0 0 n/a 0 0 n/a 28459 2 n/a 42688 26 n/a

FMM

Plain+RD 0 164 n/a 0 1690 n/a 16 82 n/a 40 1468 n/a
ActiveNO 0 0 0 0 0 0 16 4 4 40 72 320
ActiveFIN 0 0 0 0 0 0 16 4 4 40 72 320
ActiveFULL 0 0 0 0 0 0 16 11 43 40 72 348
Passive 0 0 n/a 0 0 n/a 16 4 n/a 40 114 n/a

LU

Plain+RD 0 19 n/a 0 127 n/a 15286 5 n/a 15286 29 n/a
ActiveNO 0 0 0 0 0 0 ? 8201 1 1 15286 7 21
ActiveFIN 0 0 0 0 0 0 15286 1 1 15286 7 21
ActiveFULL 0 0 0 0 0 0 15286 1 4 15286 8 25
Passive 0 0 n/a 0 0 n/a 15286 3 n/a 15286 20 n/a

Ocean

Plain+RD 2 416 n/a 2 9526 n/a 24 277 n/a 45 9254 n/a
ActiveNO 2 4 88 2 1 8369 24 4 62 45 83 8155
ActiveFIN 2 4 88 2 1 8369 24 4 62 45 83 8155
ActiveFULL 2 4 396 2 1 9526 24 5 264 45 83 9254
Passive 2 4 n/a ? 0 0 n/a 24 6 n/a ? 1 868 n/a

Radiosity

Plain+RD 7 860 n/a 12 7779 n/a 12 901 n/a 16 8114 n/a
ActiveNO 7 487 770 12 1 7167 ? 11 510 749 16 38 7447
ActiveFIN 7 487 770 12 1 7167 ? 11 510 763 16 38 7465
ActiveFULL 7 494 860 12 1 7779 ? 11 514 901 16 38 8114
Passive 7 292 n/a 0 0 n/a 12 425 n/a ? 11 135 n/a

Radix

Plain+RD 0 1450 n/a 0 7039 n/a 7 1166 n/a 16 7491 n/a
ActiveNO 0 0 0 0 0 0 7 77 427 ? 15 171 5700
ActiveFIN 0 0 0 0 0 0 7 77 427 ? 15 171 5700
ActiveFULL 0 0 0 0 0 0 7 77 1108 ? 15 171 6492
Passive 0 0 n/a 0 0 n/a 7 283 n/a 16 844 n/a

Raytrace

Plain+RD 3 1051 n/a 7 7319 n/a 152 766 n/a 88 3973 n/a
ActiveNO ? 1 160 160 7 2664 7034 ? 149 246 393 ? 87 1363 3675
ActiveFIN 3 321 321 7 2674 7036 ? 151 361 512 ? 87 1422 3730
ActiveFULL 3 481 801 7 3032 7236 ? 151 369 758 ? 87 1663 3972
Passive 3 480 n/a 7 3047 n/a 152 6962 n/a 88 1792 n/a

Volrend

Plain+RD 45 5576 n/a 44 3911 n/a 46 5786 n/a 43 4821 n/a
ActiveNO 45 267 1644 44 121 3182 46 312 1872 ? 30 81 2123
ActiveFIN 45 267 1644 44 121 3182 46 312 1872 ? 30 81 2123
ActiveFULL 45 281 2461 44 121 3318 46 328 2728 ? 30 81 2213
Passive 45 364 n/a 44 1211 n/a 46 320 n/a ? 30 807 n/a

Water-NS

Plain+RD 0 9611 n/a 0 8803 n/a 53 6207 n/a 69 8193 n/a
ActiveNO 0 0 0 0 0 0 53 508 1783 69 886 7173
ActiveFIN 0 0 0 0 0 0 53 508 1783 69 886 7173
ActiveFULL 0 0 0 0 0 0 53 632 4688 69 1144 8193
Passive 0 0 n/a 0 0 n/a 41 2424 n/a ? 52 3815 n/a

Water-SP

Plain+RD 0 4388 n/a 0 8806 n/a 184 422 n/a 162 8507 n/a
ActiveNO 0 0 0 0 0 0 184 79 190 162 416 7473
ActiveFIN 0 0 0 0 0 0 184 79 190 162 416 7473
ActiveFULL 0 0 0 0 0 0 184 82 418 162 416 8507
Passive 0 0 n/a 0 0 n/a 184 125 n/a ? 116 2765 n/a

Table 3: Characterization of race detection. For each configuration, columns 3-8 correspond to the original SPLASH-2
code, while columns 9-14 show the mean of the three versions modified by inserting races.

and ActiveFIN have to manage the segment execution ordering in
the path re-executions. Moreover, ActiveFIN forces additional re-

executions. ActiveFULL has the highest overhead because it forces
the re-execution of all the states with less than two children.
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(b) 4-thread runs

Figure 9: Number of instructions executed by each of the Light64 configurations normalized to the instructions executed
by the conventional systematic tester with no race detection.

Comparing the overhead results from Figure 9 with the accuracy
results from Table 3, we consider ActiveFIN to offer the best trade-
off: it is faster than ActiveFULL (but finds just 1% fewer races),
and it finds more races than ActiveNO (but is just slightly slower).
ActiveFIN detects 96% of races and it incurs only 20%-40% over-
head. On the other hand, Passive is the best design point for tasks
that require extremely low overhead race detection but allow some
missed races.

To roughly estimate the overhead of a software-only implemen-
tation of Light64, we compare the total running times that our sys-
tematic tester implementation takes for various configurations. The
base configuration is the regular systematic tester with no race de-
tection and no PIN instrumentation. The other configurations use
PIN to dynamically add instructions that compute hashes, mimick-
ing the behavior of the Light64 History register. Note that these
configurations include all the fixed overheads of PIN as well.

Table 4 shows the overheads over the base configuration. Note
that the data does not include the 2-thread experiments or any of the
experiments with FFT and LU, which have small state spaces. The
reason is that the data is dominated by the PIN overheads. We see
that the mean overhead ranges from 7x to 9x, which is acceptable
for a software race detector with high detection capability and no
false positives. Like in the hardware evaluation of Figure 9(b), the
overhead increases from Passive to ActiveNO to ActiveFIN and to
ActiveFULL.

6. RELATED WORK
There is a growing body of research on systematic testing of par-

allel (and distributed) code [3, 4, 6, 7, 14, 15, 23, 29–34]. System-
atic testing can offer high coverage guarantees and holds promise
to detect many types of bugs, as shown for several complex (and
safety critical) code bases such as operating systems [15, 30], ac-
cess servers [7], and distributed execution engines [15]. Light64
contributes by enabling systematic testers to run low overhead data
race detection.

Several race detection approaches have been proposed, either
in software (e.g., [17, 18, 24–26]) or in hardware [13, 16, 21, 22,
35]. The hardware approaches provide small runtime overhead,
which makes them suitable for production runs. However, they
can require significant hardware. For example, CORD [21] and

Application Passive Active Active Active
NO FIN FULL

Barnes 6.7x 7.5x 7.7x 8.4x
Cholesky 8.1x 8.3x 8.5x 8.7x
FMM 6.1x 6.9x 7.1x 7.0x
Ocean 4.7x 5.2x 5.2x 5.8x
Radiosity 7.2x 7.1x 7.3x 7.9x
Radix 5.1x 6.0x 6.2x 6.8x
Raytrace 3.0x 3.5x 3.6x 3.5x
Volrend 8.5x 9.5x 9.6x 11.2x
Water-NS 8.6x 10.1x 10.6x 11.6x
Water-SP 13.7x 15.1x 14.3x 16.1x
MEAN 7.2x 7.9x 8.0x 8.7x

Table 4: Estimated overheads of the software-only ver-
sion of Light64 for runs with four threads.

HARD [35] increase the cache size, while SigRace [16] adds a race
detection module, and ReEnact [22] uses TLS support. In contrast,
Light64 requires only a 64-bit History register per core.

Light64 also differs from the other hardware schemes in terms of
false negatives and positives. The other schemes have limited stor-
age capabilities in the cache, tags, or race detection module, which
limits their ability to detect races in long execution windows. Addi-
tionally, HARD has false positives since it uses lockset-based race
detection [35]. On the other hand, Light64 is not limited to a certain
window because its hashing can track arbitrarily long executions.

Several recent software techniques [2, 11, 19, 26] propose faster
detection of concurrency bugs at the cost of missing some bugs.
Some techniques [2,19,26] use random delays to perturb interleav-
ings and do not offer testing coverage guarantees. RaceFuzzer [26]
focuses on one potential data race at a time, confirming whether it is
indeed a real race. Unlike Light64, it does not monitor all accesses
for races or attempt to find new races. LiteRace [11] uses sampling
to monitor only some memory accesses; it reduces the overhead of
software-only race detection but may miss many races.

7. CONCLUSIONS
This paper has presented Light64, a novel technique to detect

data races during systematic testing that has both small runtime
overhead and very lightweight hardware requirements. The key



observation is that, under systematic testing, two different thread
interleavings that have the same happens-before graph but a small
deviation in the execution history of some thread very likely have
a flipped data race. Light64 collects the hashed execution histories
and, if they differ, saves an execution log which is later used to
precisely detect where the data race is. To efficiently summarize
histories, Light64 requires only a 64-bit register per core. Such a
design trivially supports virtualization and process migration.

We have evaluated several Light64 configurations using system-
atic testing experiments on the SPLASH-2 applications with and
without inserted races. On average, the recommended Light64 Ac-
tiveFIN mode detected 96% of the data races with an increase in in-
struction execution of only 20%-40%. The low-overhead Light64
Passive mode incurs only a 1% slowdown while detecting on aver-
age 89% of the data races. Overall, Light64 keeps the instruction
execution overhead much lower than existing software-only tech-
niques, and requires significantly less hardware extensions than ex-
isting hardware techniques. These positive results show that Light64
effectively enables systematic testers to run data race detection at
all times.
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