
Speculative Data-Oblivious Execution:
Mobilizing Safe Prediction For Safe and Efficient

Speculative Execution
Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison†, Christopher W. Fletcher

University of Illinois at Urbana-Champaign, †Tel Aviv University
{jiyongy2, nmantri2, torrella, cwfletch}@illinois.edu, mad@cs.tau.ac.il

Abstract—Speculative execution attacks are an enormous se-
curity threat. In these attacks, malicious speculative execution
reads and exfiltrates potentially arbitrary program data through
microarchitectural covert channels. Correspondingly, prior work
has shown how to comprehensively block such attacks by delaying
the execution of covert channel-creating instructions until their
operands are a function of non-speculative data.

This paper’s premise is that it is safe to execute these
potentially dangerous instructions early, improving performance,
as long as their execution does not require operand-dependent
hardware resource usage, i.e., is data oblivious. While secure,
this idea can easily reduce, not improve, performance. Intuitively,
data obliviousness implies doing the worst case work all the time.
Our key idea to get net speedup is that it is safe to predict what
will be, and to subsequently perform, the work needed to satisfy
the common case, as long as the prediction itself does not leak
privacy.

We call the complete scheme—predicting the form of data-
oblivious execution—Speculative Data-Oblivious Execution (SDO).
We build SDO on top of a recent comprehensive and state-
of-the-art protection called STT. Extending security arguments
from STT, we show how the predictions do not reveal private
information, enabling safe and efficient speculative execution.
We evaluate the combined scheme, STT+SDO, on a set of
SPEC17 workloads and find that it improves the performance of
stand-alone STT by an average 36.3% to 55.1%, depending on
the microarchitecture and attack model—and without changing
STT’s security guarantees.

Index Terms—Security, Speculative execution attacks, Hard-
ware, Information flow

I. INTRODUCTION

Spectre [26] and follow-up attacks [10, 14, 22, 25, 27, 29,
39, 47] represent an enormous threat to processor security.
In these attacks, adversary-controlled transient instructions—
i.e., speculative instructions bound to squash—access and then
transmit sensitive program data over microarchitectural covert
channels (e.g., the cache [48], port contention [10]). For
example in Figure 1, speculative execution bypasses a bounds
check due to a branch misprediction and transmits secret data
behind that bounds check over a covert channel. Here, the
attacker controls the value of addr, thus val can be any
value in program memory and the covert channel can reveal
arbitrary program data.

Prior work has pointed out that speculative execution attacks
are broken into two components [24, 39]. First, a secret value
is speculatively accessed and read into architectural state (e.g.,

uint8 A[10];
void victim (size t addr) {

if (addr < 10) { / / mispredicted branch
uint8 val = A[addr]; / / secret is accessed
transmit (val) ; / / secret is transmitted

}
}

Fig. 1: Example speculative execution attack. transmit(arg),
called the transmitter, denotes any instruction which can create
a microarchitectural covert channel, leaking arg to the attacker.
Variables carrying potentially secret data are colored green. If the
if condition is predicted as true, then the transmitter reveals val
even though execution eventually squashes.

a register) due to adversary-controlled speculative execution.
For example, the load into array A in Figure 1 reads val
even if addr ≥ 10 due to a branch misprediction. Second,
that secret value is transmitted/leaked to the attacker through
a transmitter, denoted transmit(...) in the figure. In this
paper, we define a transmitter as any instruction whose exe-
cution creates operand-dependent hardware resource usage—
i.e., creates a covert channel as a function of the transmitter’s
operand [51]. For example, the transmitter in Spectre Variant
1 is a load instruction, leaking the secret (load address) over
a cache-based covert channel.

Using this distinction, prior work has endeavored to block
leakage through transmitters. On one hand, invisible specula-
tion [2, 23, 36, 37] attempts to execute transmitters “invisibly,”
e.g., by not modifying cache state for the load transmitter.
This is efficient, however has security holes, e.g., due to
data-dependent timing effects. On the other hand, delayed
execution [6, 46, 51] schemes endeavour to completely block
all covert channels by monitoring how secrets flow through
instructions and delaying the execution of transmitters until
their operands become a function of non-speculative data.
While this idea can enable strong security, it can incur high
overhead as delaying execution can stall the pipeline.

A. This Paper

The goal of this paper is to get the best of both of the above
worlds: high performance and high security. The key idea is
that it is safe to execute transmitters early, i.e., while their

operands are still a function of speculative (sensitive) data,
as long as their execution is made to not require operand-
dependent hardware resource usage. We call this speculative
data-oblivious execution (SDO).

We start with a state-of-the-art defense framework against
speculative execution attacks, called STT [51]. STT provides
comprehensive protection for speculatively accessed data, but
incurs overhead from delaying the execution of transmitters
until their operands are a function of non-speculative data
as discussed earlier. We will apply SDO to transmitters in
STT, retaining that work’s strong security properties while
dramatically improving its performance. (See Section III for
detailed background on STT.)

To illustrate SDO, consider a simple example where the
transmitter in Figure 1 is implemented as a floating point
instruction. Floating point instructions typically have operand-
dependent behavior: if the operand is subnormal, the instruc-
tion may execute on a slow path (e.g., in microcode); otherwise
it executes on a fast hardware floating point unit [5]. To
simplify the example, we assume this creates two execution
equivalence classes: slow and fast, respectively. This forms
a covert channel. An attacker can infer which equivalence
class a floating point operation belongs to by, e.g., monitoring
program runtime [5, 39] and hardware resource usage, and this
reveals information about the operand.

To be speculative data-oblivious, the starting point is to
execute multiple copies—one for each equivalence class—
of any transmitter that computes on speculative data. In our
example, we execute two copies of speculative floating point
instructions: one for the fast and one for the slow execution.
Once both complete, it is safe to forward the result of
whichever one was correct to younger, dependent instructions.

While the above idea is sufficient for security, it is low
performance. Not only must we execute two versions of the
floating point instruction, we must wait to forward the result
until the slowest (subnormal) mode completes, to hide which
version was actually needed.

The key idea to address this issue is to predict that one
equivalence class (or a subset of classes) will be correct, and
execute only those classes. An obvious pitfall with this idea is
security: can the prediction itself reveal private information?
Since we build on STT, however, the answer is no. STT
automatically ensures that predictors’ predictions, and when
those predictions are resolved, are completely independent of
speculative data.

With an “equivalence class predictor” in hand, we can safely
speedup our floating point example. Assuming subnormal
inputs are rare, we might statically predict the input will be
normal. If the prediction was correct, we execute the floating
point operation without delay and incur no overhead. If the
prediction was incorrect (hopefully rare), we squash when the
inputs become non-speculative and suffer a performance hit.

A remaining issue is: if we predict an equivalence class, as
opposed to execute all equivalence classes (the naı̈ve strategy),
we will have computed an incorrect result if the prediction is
incorrect. For security, we must ensure that any instructions

receiving the result do not reveal whether it is correct or not.
Fortunately, STT also addresses this issue through its tainting
mechanism: by marking the output as tainted, no attacker will
be able to learn any bit of the return value.

The above ideas are general, and apply to other types
of transmit instructions and more sophisticated predictors.
Beyond our simplified floating point example, the bulk of
this paper is to design a novel speculative data-oblivious load
operation. This is important for performance as prior work
shows the lion share of overhead in blocking speculative
execution attacks is due to loads [23, 37, 47, 51]. It is also
non-trivial, as there are many ways a load can execute that can
create covert channels. For example, a load may hit or miss at
any cache or TLB level, contend for different resources such
as uncore buses, cache banks, lookup DRAM, etc. To address
these challenges, we develop a new speculative data-oblivious
load operation (an “Obl-Ld” operation, for “oblivious load”), a
novel “location predictor” to improve performance for Obl-Ld
operations, and additional optimizations that allow us to safely
return and forward load data to the pipeline earlier.

To summarize, this paper makes the following contributions.
1) We propose a novel framework enabling Speculative

Data-Oblivious Execution (SDO), enabling safe execution
of unsafe transmitters.

2) We propose a novel implementation of an SDO operation
for speculative loads.

3) We evaluate SDO as an optimization to prior work STT,
treating both loads and loads plus floating point opera-
tions as transmitters. We find that STT+SDO improves
STT’s performance on SPEC17 workloads by an average
36.3% to 55.1%, depending on the microarchitecture
and attack model—and without changing STT’s security
guarantees.

We have open-sourced the simulation infrastructure used for
performance studies here: https://github.com/cwfletcher/sdo.

II. ATTACK/THREAT MODEL & SCOPE

We assume an adversary that can monitor any microar-
chitectural covert channel and induce arbitrarily specula-
tive execution from anywhere in the system. For instance,
the adversary may operate from within the victim program
(SameThread [39]), an SMT sibling (SMT), or another pro-
cessor core (CrossCore), and can monitor covert channels
through the cache/memory system [26], data-dependent arith-
metic [20], port contention [10], branch predictors [3], etc.

We adopt STT’s scope of protecting speculatively-accessed
data, i.e., blocking attacks involving doomed-to-squash access
instructions. (Explained in more detail in Section III.) These
are the most dangerous attacks, since such access instructions
can often be maneuvered to form universal read gadgets [30]
that read arbitrary memory locations (e.g., Figure 1). Pro-
tecting data produced by retired (or bound-to-retire) access
instructions is out of scope. This is data that is legitimately
accessed according to program semantics, and can therefore
be reasoned about by programmers or compilers and blocked
using complementary techniques (e.g., [50]).

2

https://github.com/cwfletcher/sdo

III. BACKGROUND: SPECULATIVE TAINT TRACKING

Speculative Taint Tracking (STT) [51] is a framework
that protects secrets—which are defined to be data read by
doomed-to-squash instructions (called access instructions)—
from being leaked over any possible microarchitectural covert
channel.

A. STT Details

STT monitors how secrets flow through the pipeline by
tracking explicit information flows (instruction data depen-
dencies) and applies a protection policy which is to delay an
instruction’s execution if that instruction can form a covert
channel and receives a secret as an operand. Instructions
whose execution creates operand-dependent hardware resource
usage are called transmit instructions. Transmit instructions
with secret operands are delayed until either the access in-
struction(s) that produced the secret becomes non-speculative
or the execution squashes due to mis-speculation. Finally, STT
applies a policy that eliminates implicit information flows
through a combination of mechanisms that ensure that the
program counter is never a function of a secret.

Covert Channels. STT classifies covert channels into two
classes: explicit and implicit channels.1 In an explicit channel,
the secret is directly passed to a transmitter, which is any
instruction whose execution can create operand-dependent
hardware resource usage that reveals the secret. For exam-
ple, loads are transmitters, as their execution makes address-
dependent changes to the cache state. In an implicit channel,
the secret indirectly influences how (or that) an instruction
or several instructions execute, and these changes in resource
usage reveal the data. For example, a branch instruction, whose
outcome determines subsequent instructions and thus whether
some functional unit is used. (Such branch-based implicit
channels are used by NetSpectre [39] and SmotherSpectre [10]
to trigger SIMD unit usage and port contention, respectively.)

STT further characterizes implicit channels by when they
leak secrets and what type of “branch” operation they feature.
An implicit channel can leak either when a prediction is made
(e.g., a branch prediction) or when a resolution occurs (e.g.,
when a branch resolves). An implicit channel can feature either
an explicit branch, which is a control-flow instruction, or an
implicit branch, which is a conceptual branch that occurs due
to hardware mechanisms that change how instructions execute.
For example, store-to-load forwarding can be viewed as an
implicit branch that checks for an address alias to determine
if a load will access the cache.

Taint/Untaint Tracking. At a high level, STT features a taint
propagation mechanism similar to prior work (e.g., [42]), and
proposes a novel “untaint” mechanism to disable protection as
soon as doing so is safe. Specifically: STT taints the output

1Fundamentally, a microarchitectural covert channel can communicate a
value when explicit information flow at the gate level changes as a function of
that value [43, 50]. The abstraction proposed by STT provides a way to reason
about when this will occur due to different instructions and microarchitectural
optimizations.

register of a speculative access instruction. The microarchitec-
ture defines when to untaint the output of a speculative access
instruction. This point depends on the attack model: In the
Spectre model (which covers control-flow speculation), it is
when all older control-flow instructions have resolved, and in
the Futuristic model (which covers all forms of speculation),
it is when the access instruction cannot be squashed. STT
propagates taint/untaint information: the output register of a
non-access instruction is tainted if and only if it has a tainted
input register. Taint propagation is piggybacked on the existing
register renaming logic in an out-of-order core, and is therefore
fast. Untainting all dependencies of an access instruction that
becomes non-speculative is more difficult, but STT has a
fast untaint mechanism that performs untainting in a single
cycle. STT does not maintain taint/untaint information in the
cache/memory system, only in the physical (non-architected)
register file.

Implications of Untainting. Untainting the output of an
access instruction (i.e., a load) occurs only if the execution
of that instruction corresponds to a correct speculation for
the given attack model. Consequently, once all inputs of a
transmitter are untainted, the transmitter becomes safe and its
inputs can be revealed, as they are guaranteed not to originate
from a mis-speculated execution.

Protection Policies. Based on taint information, STT blocks
all covert channels by applying a uniform rule across each
type, illustrated in the following table:

Explicit Channels are blocked by delaying the execution
of transmit instructions until their operands are untainted.
Prediction-based Implicit Channels are eliminated by
preventing tainted data from affecting the state of any
predictor structure.
Resolution-based Implicit Channels are eliminated by
delaying the effects of branch resolution until the (explicit
or implicit) branch’s predicate becomes untainted.

STT’s implicit channel rules eliminate all implicit channels
by making the program counter register (PC) independent
of tainted (speculatively accessed) data. STT enforces this
invariant efficiently, without needing to delay execution of
instructions following a tainted branch.

B. Major Takeaway: STT Makes Prediction Safe

An important corollary of the above is that predictor struc-
tures can remain enabled without leaking privacy. The reason
is two-fold. Consider branch prediction as an example (an
analogous argument follows for other predictors). First, STT
ensures that the branch predictor state is never a function of
secret data. Further, mis-predictions are squashed only when
the prediction’s outcome becomes safe to reveal. This policy
means the predicted branch directions do not leak privacy and
that “what instructions are fetched due to the predictions” is
public information. In other words, the only possible source of
privacy leakage is through transmitters. Second, STT ensures
that if any transmitter fetched on the predicted path can leak

3

privacy, then that transmitter is delayed until the threat passes.
Note, this argument does not depend on whether the predictor
mispredicts by mistake, is intentionally mistrained, etc.

C. SDO Motivation: Source of STT Overhead

The lion share of STT’s overhead is due to blocking explicit
channels, specifically, delaying execution of tainted loads. The
STT paper reports that ignoring implicit channels reduces
STT’s average overhead on SPEC [21] and PARSEC [11]
applications by just 1%–3% over the original 8.5%/14.5%
overhead (depending on the attack model). The effect on
outlier applications with higher than average overhead is sim-
ilar. This result shows that STT’s implicit channel protection
mechanism is cheap and that obtaining better performance
requires avoiding the delayed execution of tainted transmitters,
particularly loads.

The goal of this paper is therefore to enable transmitters to
safely execute early. That is, we will build on STT’s mech-
anisms to block implicit channels and propagate untaint, and
implement a new scheme for handling select high-overhead
tainted transmitters (loads and floating point operations).

IV. SPECULATIVE DATA-OBLIVIOUS (SDO) EXECUTION

We now present a general methodology for designing an
SDO operation, which is an SDO implementation for an
arbitrary transmit instruction (transmitter). At a high level,
an SDO operation is a new implementation of the transmitter
that can be executed safely, even if its operands are tainted
(Section III).

The microarchitect starts with a transmitter f which takes
operands args and returns result, denoted result← f(args). We
will construct an SDO operation for f, denoted Obl-f. This is a
two-step process (next two sub-sections). High-level intuition
is given in Section I-A.

A. Design Data-Oblivious (DO) Variants

First, the microarchitect designs N data-oblivious variants
(called DO variants) of f, denoted Obl-f1, . . .Obl-fN. We
will see that how to choose N and how to design each
variant creates a new design space with performance/design
complexity trade-offs. Each variant i for 1 ≤ i ≤ N has the
following signature:

success?, presult← Obl-fi(args) (1)

where success? is a boolean and presult is whatever datatype
is returned by this instruction, i.e., the same return type as the
original f. We will abbreviate success? ≡ true as success and
success? ≡ false as “fail,” where ≡ denotes an equality check
that returns true/false.

Informally, each variant must be data oblivious, i.e., not
reveal its argument over microarchitectural side channels. A
given variant may not be able to return the correct result. For
example, if the floating point operand is subnormal the variant
for evaluating normal operands will return the wrong result
(Section I-A). Each variant indicates whether it has returned
the correct data with the success? flag.

We now formalize these requirements in two definitions:

Definition 1. (Functional correctness). Consider Equation 1
for 1 ≤ i ≤ N . For all possible args: If Obl-fi(args) returns
success, then presult ≡ f(args) must hold. If this function
returns fail, then presult is undefined (we assume presult is
set to ⊥).

Definition 2. (Security). Consider Equation 1 for 1 ≤ i ≤ N .
For any two operand assignments args and args′: the execu-
tion of Obl-fi(args) and Obl-fi(args′) must create the same
hardware resource interference (i.e., which is measurable as
a microarchitectural side channel).

Definition 1 is also important for security, as we will see in
Section VII.

Note, these definitions do not require that for some argument
args, there must exist an Obl-fi that will return success. For
example, in our floating point example we may have N = 1,
e.g., a DO variant for the fast mode and no DO variant for the
slow mode. This is allowed because our scope only considers
speculative execution attacks. Continuing the above example,
having a single DO variant for floating point operations means
we will necessarily see fail on a subnormal input. We will,
however, be able to correct that situation by squashing the
incorrect speculation when the input becomes non-speculative
(see Section IV-C for details).

B. Design Predictor To Select Which DO Variant

Second, the microarchitect designs a DO predictor, which
selects some DO variant Obl-fi (1 ≤ i ≤ N) to execute in place
of f. Executing the DO variant in place of f will ensure args
does not leak. That is, a DO predictor is a pair of functions:

i← predict(inp) (2)
update((inp, actual i)) (3)

where 1 ≤ i ≤ N . predict, given an input (e.g., the PC),
predicts which of the N DO variants is most likely and
update updates the predictor state (if any) to influence future
predictions. A prediction is considered correct iff Obl-fi returns
success.

Importantly, the predictions made by the predictor, and the
updates to the predictor must be a function of non-sensitive
information. We will see how this is achieved in the context
of malicious speculative execution next, in Section IV-C. The
predictor’s internal implementation can be arbitrarily simple or
complex, and is free to select a different i for each dynamic
instance of a given transmitter f.

C. Putting It All Together: Protecting Speculative Data

To protect speculative data, we combine DO variants and
the DO predictor with STT (Section III). Pseudo-code for the
complete construction, called an SDO operation, is given in
Figure 2.

First, instead of delaying execution of a transmitter with
tainted operands as in STT, the tainted transmitter f is uncon-
ditionally predicted on by the DO predictor and issued as a

4

DO variant (Lines 3-7). The case statement in the pseudo-code
therefore corresponds to an implicit branch (Section III) with
predicate success?. Likewise, each DO variant corresponds to
a non-transmitter by Definition 2. We follow STT’s principles
(Section III-B) to make the DO predictor/implicit branch not
leak privacy. That is, we require that predictor updates be a
function of untainted data, e.g., the program counter/PC, and
that predictor resolution/squashes be delayed until the implicit
branch predicate becomes untainted (Lines 11-16).

Second, results are unconditionally forwarded to dependent
instructions (regardless of success?) and tainted/protected by
STT (Line 8). Once args becomes untainted, it is safe to reveal
success? because it is a function of the prediction and args. By
extension, it is safe to update the predictor and/or squash/re-
issue the transmitter (since the implicit branch predicate is
now untainted).

1 / / Part 1: On issue of f with PC pc, with tainted operands args
2 Obl-f(args):
3 switch(predict(pc)):
4 case 1: success?, presult← Obl-f1(args) break;
5 case 2: success?, presult← Obl-f2(args) break;
6 ...
7 case N : success?, presult← Obl-fN(args) break;
8 return presult;
9

10 / / Part 2: When args becomes untainted
11 if (success?): // Note: success? no longer tainted
12 update((pc, prediction))
13 else
14 / / Required: squash instructions starting at pc
15 / / Optional : call update, if correct prediction is known
16 return f(args)

Fig. 2: Pseudo-code for translating a transmitter f(args) into an SDO
operation Obl-f(args). Sensitive/tainted values are colored green. The
predictor input is assumed to be the transmitter’s PC, since this is
what we evaluate in the paper. Part 1 occurs when the SDO operation
issues. Part 2 occurs when args becomes untainted.

At a high level, this construction combined with STT’s
mechanisms ensures that the predictor always makes predic-
tions based on public information and that args never leaks
before becoming untainted. Section VII formally argues how
this does not change STT’s security guarantee.

V. SPECULATIVE DATA-OBLIVIOUS LOADS

We now use the framework from Section IV to build a high-
performance SDO operation for loads. We call it an Obl-Ld
operation. Loads are notorious transmitters, leaking privacy
over the cache/memory side channel. They are also notoriously
high-overhead to protect [23, 37, 47, 51]. For example, STT
reports nearly all overhead comes from delaying the execution
of loads until their arguments are untainted [51].

While the focus of this section is on loads, the framework
in Section IV applies to any transmitter. Thus, to demonstrate
generality, the evaluation shows how SDO improves overhead
when the framework is applied to both loads and loads plus
floating point operations (Section I-A).

A. High-level Design Overview

To design the Obl-Ld, we must decide what DO variants to
design (Section IV-A). This is not trivial, as there are many
distinct ways a load can execute from a covert/side channel
perspective. For example, a load may hit or miss at any cache
or TLB level, contend for different resources such as uncore
buses, cache banks, lookup DRAM, etc.—and each of these
imply different hardware resource usages, timings, etc.

For this paper, we decided to design DO variants which
are capable of looking up specified level(s) of cache in an
address-independent fashion.

First, this leads to a relatively simple design. We need
to design one DO variant per cache level. Importantly, by
the SDO operation semantics in Section IV-C, which DO
variant we predict is public information. That is, it is public
knowledge which level cache tag/data arrays we are accessing
and we only need to hide the load address while looking up
that specific cache tag/data array. Thus, to implement the DO
variants for monolithic private caches (e.g., the L1 or L2), a
straightforward design might serialize access to the cache and
only check but not update state (to hide whether a hit/miss
occurred, and to eliminate timing variations from, e.g., cache
bank conflicts [49]). For shared caches (such as the sliced
L3) and DRAM, this is more challenging and discussed in
Section VI-B.

Second, this design allows us to potentially eliminate most
of the overhead from protecting loads. For example, if a given
load has data in the L2 and the DO predictor correctly predicts
“L2”, then the Obl-Ld latency will be comparable to that of an
insecure load. That is, a majority of the lookup time is simply
to send a request to the L2, not to hide minor timing behaviors
such as bank conflicts.

Note, our goal in designing Obl-Ld variants for every level
in the cache hierarchy plus the DRAM is to explore the design
space. Our evaluation (Section I-A) finds that, in terms of the
associated performance/complexity trade-offs, systems may be
best served by implementing only Obl-Ld variants for the
caches (not DRAM).

B. Basic Obl-Ld Design

To implement the Obl-Ld, we design a DO variant for each
cache level (i.e., Obl-Ld1 for predicting data is in the L1,
Obl-Ld2 for L2, etc.). When a load with a tainted address
issues, we lookup a DO predictor (called the location pre-
dictor, see Section V-D) to predict a level/variant. Predictions
are made based on the load’s PC. The chosen DO variant
proceeds to lookup all cache levels from the L1 to the level
predicted. For example, predicting data is in the L3 creates
lookups in the L1, L2 and L3. Each lookup only checks if
there is a tag match in that cache level and returns either
data/⊥ accordingly. Importantly, a lookup makes no address-
dependent state changes to the cache.

We will assume each DO variant is securely implemented
(i.e., satisfies Definition 2) for now. In other words, when
accessing a specific cache level, Obl-Ld does not create

5

observable address-dependent hardware resource interference.
We will describe how this is implemented in Section VI-B.

Designing the Obl-Ld to lookup all levels from the L1 to
the predicted level is important for functional correctness and
security. Consider an alternate design that only looks up the
predicted level (e.g., looks up only the L2 if we predict L2).
Such a design violates Definition 1: if there is dirty data
in the L1, such a design will return stale data. As we will
see in Section VII, this violates STT’s semantics for access
instructions and creates a security problem.

(a)

L2:

L3:

addr1: data

Location
predictor

Obl-Ld2 (addr1)

Level = 2 (true1, data1)

(false2, ⊥2)

PC

PC: load [addr1]

Wait buffer

L1:

(b)

L2:

L3: addr2: data

(false1, ⊥1)

(false2, ⊥2)

Wait buffer

L1:

Location
predictor

Obl-Ld2 (addr2)

Level = 2

PC

PC: load [addr2]

Fig. 3: Example Obl-Ld operation given two different addresses
addr1 (present in L1) and addr2 (present in L3). In both cases, re-
source contention and operation timing is a function of the prediction,
not the address.

A structure at the core called the wait buffer receives
responses from each cache level. Each cache that is looked
up returns either (success, presult) if data was present in that
level, akin to a cache hit, or (fail, ⊥) otherwise. In our current
design, each DO lookup returns a word, not the whole cache
line. We denote a response from cache level i with subscripts,
e.g., (success2, presult2) for a response from the L2. Once all
responses are received, the wait buffer forwards to the pipeline:
• presulti: for the smallest i such that we have successi
• ⊥: if we have faili for all i

That is, we forward the correct data from the cache level
closest to the core, as in a regular cache.

Putting it all together, an example Obl-Ld is shown in
Figure 3. In (a) and (b), we have a load with different addresses
but the same location prediction. The takeaway is that the
resource usage (cache lookups, timing, etc.) is a function of
the prediction, not the address.

When the load address becomes untainted, we follow the
framework described in Section IV-C. If the prediction was
correct, we proceed with execution and update the DO pre-
dictor (if applicable). Else, we squash execution starting at the
load and re-issue as a regular load.

Virtual memory. Every load first needs to consult the TL-
B/page tables for address translation, and hits/misses in the
TLB can also leak privacy [19]. As observed by prior work,
L1 TLB miss rates are low [37]. Thus, we adopt a simplified

strategy based on the same ideas as the main load operation.
Conceptually, we design a single DO variant that looks up
the L1 TLB. On an L1 TLB hit (success), the rest of the
access proceeds as discussed above. On an L1 TLB miss (fail),
we likewise continue with the prediction and Obl-Ld access,
but with ⊥ as the translation. That is, we do not consult the
L2 TLB until the address becomes untainted and execution
squashes.

C. Advanced Obl-Ld Design

1) Memory Consistency Issues: In a standard multiproces-
sor system, memory consistency is maintained using spec-
ulation [18]. Loads execute out of order—speculating that
their output satisfies the memory consistency model rules—
and bring the accessed cache lines into the core’s L1. Memory
consistency violations are detected based on invalidations of
these cache lines from the L1. Under consistency model-
specific conditions, a load is squashed and re-issued if the
cache line it read gets invalidated from the core’s L1. This
mechanism has correctness and security implications for the
Obl-Ld implementation.

Correctness: Handling Missed Invalidations. Unlike a stan-
dard load, an Obl-Ld may read from a cache line that is not in
the core’s private L1. In this case, the core will not get notified
if the line is later invalidated (due to a coherence transaction or
cache eviction), which can lead to an undetected consistency
violation. To address this problem, we adopt InvisiSpec’s
validation/exposure mechanism [13, 47]. Specifically, when
an Obl-Ld that did not obtain its value from the L1 becomes
safe (i.e., its address is untainted), its output is validated. A
validation performs a standard cache access, bringing the line
read by the Obl-Ld into the L1, and compares the word read by
the Obl-Ld to its up-to-date value. If they match, the Obl-Ld’s
output is valid; otherwise, the Obl-Ld is squashed and re-
issued (this time as a standard load, since it is safe). Following
an Obl-Ld validation, the core receives future invalidations
of the line and is able to maintain memory consistency as
usual. Because validation delays a load’s retirement, we adopt
InvisiSpec’s exposure optimization, which avoids validating
loads that the memory consistency model would not have
required squashing had an invalidation been received. For such
loads, validation is replaced by an expose operation that brings
the accessed line to the L1 asynchronously, without delaying
the load’s retirement. (InvisiSpec [47] details the conditions
under which validation can be replaced by exposure.)

Security: Handling Consistency Squashes. Our attacker
model assumes that squashes are observed by the adversary,
e.g., through the re-execution of the load. Squashing a load
due to an invalidation could therefore leak the load’s address.
To prevent such a leak, we delay consistency squashes until
the affected load’s address becomes untainted. This delay is
simply an application of STT’s implicit channel protection
rule to the implicit branch created by the memory consistency
check, whose predicate compares the addresses of the load
being squashed and of the memory access that triggers the

6

invalidation [51]. The fact that an invalidation occurs implies
that the access triggering it has an untainted address [51], so
we only need to wait for the Obl-Ld to become untainted.

2) Event Interleavings: Modern out-of-order processors
maintain multiple in-flight operations concurrently, meaning
that the different steps in an Obl-Ld can occur in a variety of
orders and interleavings. We now discuss the different possible
cases.

Starting when the Obl-Ld executes, there are four events
which control the behavior of the load:

A: The load is ready to issue but is unsafe/tainted, hence
issues as an Obl-Ld.
B: The Obl-Ld operation completes when the responses
from all predicted cache levels reach the wait buffer.
At this point, data is safe to forward to dependent
instructions.
C: The Obl-Ld becomes safe, i.e., its address is untainted.
D: The validation for the load completes.

As discussed in Section V-C1, validations are needed to
enforce memory consistency if the Obl-Ld returns success
from a lower-level cache, and the load must be re-issued if
the Obl-Ld returns fail. We will refer to both of these loads as
validations (event D) for simplicity.

The above events are partially ordered. In the following,
we say X ≺ Y if event X happens before Y in time. For
example, we must have A ≺ B because an Obl-Ld must issue
before it completes. C ≺ D also holds since the validation is
sent after the Obl-Ld becomes safe. On the other hand, B ≺ C
may not hold, because the load may become safe before its
Obl-Ld completes.

In this way, there are only three possible event orderings
that can occur: A ≺ B ≺ C ≺ D, A ≺ C ≺ B ≺ D and
A ≺ C ≺ D ≺ B, discussed in detail below and shown in
Figure 4.

1) Event ordering is A ≺ B ≺ C ≺ D:
[A] When an unsafe load issues an Obl-Ld request, it
allocates a wait buffer entry. [B] When the wait buffer
entry receives all responses from the accessed cache
levels, the Obl-Ld request completes and the result is
written to the register file/forwarded to dependent in-
structions. [C] Later, when the load eventually becomes
safe, we issue a validation. If the Obl-Ld returned fail,
we also immediately (i.e., before untainting) squash all
subsequent instructions since their execution is based on
an incorrect value. [D] When the validation completes:
If the Obl-Ld returns success: SDO compares the result
from the corresponding Obl-Ld and the current validation.
If the values differ, a consistency violation might occur,
therefore all subsequent instructions are squashed and
the result of the validation is forwarded to re-issued
dependent instructions. If the Obl-Ld returned fail (and we
squashed): the validation result is forwarded to dependent
instructions.

2) Event ordering is A ≺ C ≺ B ≺ D:
[A] Same as Case 1. [C] Before the wait buffer receives

all Obl-Ld responses, the load becomes safe. Instead of
waiting for Obl-Ld completion, SDO issues a validation
at this moment. [B] When the Obl-Ld completes: If the
Obl-Ld returns success, SDO writes back the Obl-Ld
result, and wakes up dependent instructions. If the Obl-Ld
returned fail, forwarding incorrect data is unnecessary
since it is now safe to reveal that the fail occurred. Thus,
SDO drops the Obl-Ld result and waits for the result from
the validation. [D] Same as Case 1.

3) Event ordering is A ≺ C ≺ D ≺ B:
[A] and [C]: Same as Case 2. [D] Since the validation
completes earlier than the Obl-Ld, and the validation
result is always correct (i.e., a ‘guaranteed success’), SDO
writes back the validation result directly to complete the
execution of the load. [B] Since the load was completed
by its validation, the Obl-Ld result is ignored.

Importantly, an Obl-Ld returning fail will only result in a
squash (which hurts performance) in Case 1: when the Obl-Ld
completes before the load becomes safe.

Additional performance optimization: Early forwarding
from wait buffer In the scheme described so far, an Obl-Ld
operation is considered to have completed when all expected
responses have reached the wait buffer. Only then can the wait
buffer forward its result to dependent instructions.

We can improve this scheme’s performance by leveraging
the observation from before: when a load becomes safe, its
address and success/fail status is safe to reveal to the attacker.
Thus, if a load becomes safe, it is safe to forward data from
the wait buffer early, i.e., as soon as the wait buffer detects
there has been a success.2

3) Other Considerations:
Store-to-Load Forwarding. An Obl-Ld may get its data from
the store queue due to store-to-load forwarding. Here, we
adopt STT’s policy: the Obl-Ld issues unconditionally, but the
correct data is forwarded from the store queue instead of from
the wait buffer once all Obl-Ld responses have returned.

Updating the location predictor. We update the location
predictor when the load becomes safe, if its Obl-Ld returned
success (per Section IV). If the Obl-Ld returns fail, we cannot
perform the location predictor update as the actual location
of the load data is still unknown. In this case, we wait for
the validation and update the predictor with the level that the
validation finds data in.

D. Predictor Design

We now describe a design for several location predictors.
Suppose a load required data from cache level i and the
predictor predicts j. We say the predictor is accurate and
precise if i == j, accurate but imprecise if i < j and not
accurate if i > j. The goal is to be accurate and precise.
When accurate but imprecise, the load incurs a larger delay
because we must wait for the level j request to return. When

2Here, we assume levels of the cache respond in order, i.e., L1 first, L2
second, etc. If responses can arrive out of order, successi cannot be forwarded
to the pipeline until all responses j for 1 ≤ j < i arrive at the wait buffer.

7

Issue an Obl-Ld
Allocate Waitbuffer

Writeback Obl-Ld data
Obl-Ld hit: send validation
Obl-Ld miss: squash

A: A unsafe load is ready to issue
B: Waitbuffer receives
all Obl-Ld responses C: Load becomes safe D: Load finishes validation

Issue an Obl-Ld
Allocate Waitbuffer

Send validation Obl-Ld hit: writeback Obl-Ld data
Obl-Ld miss: wait for validation

Obl-Ld hit: validate results
Obl-Ld miss: writeback validation result

A: A unsafe load is ready to issue

B: Waitbuffer receives
all Obl-Ld responsesC: Load becomes safe D: Load finishes validation

Issue an Obl-Ld
Allocate Waitbuffer

Send validation
Writeback validation result Ignore Obl-Ld result

A: A unsafe load is ready to issue
B: Waitbuffer receives
all Obl-Ld responsesC: Load becomes safe D: Load finishes validation

Obl-Ld hit: validate results
Obl-Ld miss: writeback validation result

Fig. 4: Obl-Ld operation flow with the three possible event sequences (top: A ≺ B ≺ C ≺ D; middle: A ≺ C ≺ B ≺ D; bottom:
A ≺ C ≺ D ≺ B) and corresponding actions.

not accurate, we may incur a squash, depending on when the
load becomes safe (Section V-C2).

The goal of this paper is to show the SDO framework is
viable, not to invent a state-of-the-art predictor. We therefore
first evaluate several simple static predictors that always pre-
dict to a specific cache level. Intuitively, static predictors to
larger j (lower cache levels) will become more accurate but
less precise. We also designed a simple dynamic predictor
based on analyzing benchmark traces of high-overhead loads
in vanilla STT, in particular to what levels loads hit and in
what order. We observed that a given static load’s cache level
access pattern falls into one of two categories:

1) The cache level access pattern changes at a coarse gran-
ularity. That is, there are regions of continuous hits to a
single cache level, i.e., low spatial locality.

2) The cache level access pattern consists of mostly L1 hits
with predictable, singular lower level hits in between, i.e.,
high spatial locality. One common pattern in this category
is accessing memory sequentially with a constant stride,
i.e., one L1 miss per N memory accesses.

To capture both patterns, we design a hybrid location predictor
which internally chooses between 2 predictors—a greedy
predictor (greedy) and loop predictor (loop)—on each lookup,
based on a per-load saturating confidence counter. Our predic-
tor follows the template in Equation 2. The load’s static PC
(which is public in STT; Section III) is used as the predictor’s
input. greedy and loop are designed to capture access pattern
1 and 2, respectively. greedy predicts the lowest cache level
(highest j) that has been seen in the last m dynamic instances
of a given load. That is, it favors imprecision over inaccuracy
to avoid potential mis-predictions. loop’s behavior resembles a
loop branch predictor: it predicts the frequency of lower-level
accesses and tries to predict whether the next access will be
an L1 hit or a hit in that lower level.

VI. MICROARCHITECTURE

Here, we describe microarchitecture changes to support
SDO. We assume a baseline STT microarchitecture. We make

modest changes to the processor pipeline to support Obl-Ld
operations and enforce their consistency (Section VI-A). We
then propose implementations for data-oblivious accesses
to the various levels of the cache/memory hierarchy (Sec-
tion VI-B). Figure 5 illustrates the baseline architecture and
the modifications made for SDO.

A. Changes to Processor Pipeline

Our starting point is the STT microarchitecture, which ex-
tends a modern speculative out-of-order pipeline with (1) taint
propagation, which is piggybacked on the existing register
renaming logic; (2) a fast (single cycle) untaint mechanism;
and (3) STT’s protection rules for blocking implicit and
explicit channels (Section III).

On top of STT, we add the location predictor (Section V-D)
as well as control logic to perform the Obl-Ld execution
events (Section V-C). To implement Obl-Ld execution logic,
we extend each load queue entry with the following fields.

1) Obl-Ld State (4 bits): Stores whether the load is an
Obl-Ld and if so, the current state of the Obl-Ld execution
state machine described in Section V-C.

2) Actual Level (2 bits): The highest cache level for which a
DO variant succeeded. This is used to update the location
predictor once the load becomes safe.

3) Validation/Exposure (1 bit): Indicates if, when the Obl-Ld
becomes safe, an expose should be performed instead of
a validation. This field indicates Exposure in one of two
cases: if the Exposure condition defined in InvisiSpec [47]
is satisfied when the Obl-Ld is issued,3 or if the Obl-Ld’s
lookup in the L1 succeeds.

4) Pending Squash (1 bit): Indicates if this load should be
squashed once it becomes safe. (Also needed by STT, but
written here because SDO adds a new case where it is
required.)

3This is a condition over the state of the load queue that identifies when the
load cannot possibly be reordered with older memory operations. (Importantly,
we do not require InvisiSpec hardware to detect when the condition is
satisfied.) Refer to [47, Appendix A] for details.

8

The wait buffer (which stores data returned by DO variants)
is implemented using the output register of the Obl-Ld. That
is, the output register is repeatedly overwritten (with the ready
bit not yet set) when each cache level access returns.

B. Changes to Memory Subsystem

The crux of the Obl-Ld implementation are the DO load
variants, which perform a data-oblivious lookup of some level
of the cache/memory hierarchy. To satisfy SDO’s security
definition (Definition 2), an Obl-Ld must not have any address-
dependent hardware resource usage; its resource usage can
only be a function of untainted (public) state. This means
that an Obl-Ld cannot make any address-dependent change
to cache state, but also requires avoiding every other type of
address-dependent resource contention. We generally achieve
this property by partitioning an Obl-Ld from other loads
(standard or DO), either spatially or temporally (by serializing
resource access). As we shall see, while an Obl-Ld may
contend for resources with other loads, the contention results
only from the fact that the Obl-Ld is executing—which is
public, due to STT’s implicit channel protections—and not
from the Obl-Ld’s address.

Below, we discuss what a DO lookup entails for each level
in the memory hierarchy, for completeness. We find, however,
that limiting Obl-Lds to the on-chip caches suffices to reap
most of SDO’s performance gains (Section VIII). We thus
posit that a microarchitecture which implements only on-chip
cache DO variants is a sweet spot from a complexity/perfor-
mance trade-off standpoint.

1) Baseline Memory Subsystem Model: We assume the
following baseline, which is based on commercial processors.
Each core has private L1 instruction and data caches and a
private L2 data cache. The L3 cache is shared. The caches
are all physically tagged set-associative caches and are write-
back, write-allocate. All caches are banked, i.e., the data array
is arranged in several banks. Concurrent accesses to different
cache lines that target the same bank are serialized; otherwise,
they are served in parallel. The shared L3 cache is distributed:
it is organized in multiple set-associative slices (one slice per
core). A hash function (set at design time) determines the slice
associated with a cache line. Caches are kept coherent with a
MESI-style [41] coherence protocol.

The caches can sustain multiple concurrent misses. Each
cache maintains an array of miss status holding registers
(MSHRs), each of which stores all information related to an
outstanding miss. A cache miss on a line allocates an MSHR
if there is no outstanding miss on that line; otherwise, the
information in the MSHR is augmented with the new miss
and no new request is issued to the next cache level.

A single, shared memory controller (MC) connects the
system to DRAM. The MC schedules memory accesses (by
L3 misses) to maximize DRAM row buffer hits and bank/rank
parallelism. Therefore, DRAM access latency is a function
of recent and outstanding requests. The caches and memory
controller communicate over a ring interconnect.

core
MSHR

L1

L2

L3 slice

core

L1

L2

L3 slice MC

DRAM...

Li dataLi tags

load queue

ctrl

send to all slices

Fig. 5: Microarchitecture with SDO support. Shaded blocks represent
modified hardware.

2) Modifications for Obl-Ld: We describe how to avoid
address-dependent resource contention throughout the path of
a cache/memory access.

Issuing Obl-Ld requests to the cache controller. In a baseline
microarchitecture, address-dependent scheduling can affect
when a load gets issued to the cache hierarchy, e.g., as a result
of scheduling loads to minimize bank or port contention. To
address this, the Obl-Ld scheduling logic must be address-
independent, e.g., an Obl-Ld should be issued as soon as it
is ready. Similarly, the choice of which cache port to access
should also be address-independent. Note that an Obl-Ld
request might not successfully issue immediately when ready
due to other regular or Obl-Ld loads that are also pending to
access the same cache. Importantly, such contention doesn’t
reveal any information about the Obl-Ld’s address, because
our design maintains the invariant that resource contention is
a function of public (untainted) state.

Cache bank access. Accessing only the bank(s) dictated by a
load’s address constitutes address-dependent resource usage.
Specifically, it risks creating a bank conflict with another
request, with the resulting contention leaking the address. Our
solution is therefore for an Obl-Ld to access all cache banks.
Namely, after the Obl-Ld enters the cache, all succeeding
requests are blocked until the Obl-Ld request completes its
lookup. This approach guarantees that the resource use—and
hence, effect on other requests—is independent of the Obl-Ld’s
address.

Storage of outstanding Obl-Ld miss state. We require the
following to avoid address-dependent MSHR usage. First,
every Obl-Ld must allocate an MSHR; it cannot share an
MSHR with any other request. Second, the MSHR choice
must be address-independent (e.g., first available MSHR). In
this way, any MSHR contention created by an Obl-Ld follows
only from the fact that the Obl-Ld is executing and accessing
a specific cache level, both of which are public (untainted)
information.

LLC slice access. Similarly to bank access, an Obl-Ld cannot
access only the LLC slice dictated by its address. Conse-
quently, the Obl-Ld variant accessing the L3 must send a
request to all LLC slices. The correct slice returns success
or fail, depending on whether the request hits or misses; all
other slices necessarily return fail. The MSHR between the

9

L2 and L3 is de-allocated when all responses arrive, at which
point it forwards a single response back to the core.

DRAM modules access. Implementing data-oblivious DRAM
accesses not only requires changes to the on-chip memory
controller (similar to [45]), but also to the DRAM modules
themselves. For example, an Obl-Ld cannot directly fetch
data from the row buffer, which has shorter access latency
compared to accessing un-buffered rows [34].

As mentioned above, we find that designing a DO variant
for DRAM is unnecessary, because data usually resides in the
cache (Section VIII). However, simply limiting predictions to
the L3 would result in a failed Obl-Ld (and subsequent squash)
for data that does reside only in DRAM. We avoid this problem
by allowing the DO predictor to predict that data is in DRAM,
and delaying the issue of that load, until it is safe, in that case
(i.e., reverting to STT’s default protection). In this way, we do
not squash unnecessarily.

VII. SECURITY

We build SDO on top of STT, and denote our combined
scheme STT+SDO. Our security goal is to preserve STT’s
security guarantee. Cited from the STT [51] paper: “at each
step of its execution, the value of a doomed (transient) register,
that is, a register written to by a speculative access instruction
that is bound to squash, does not influence future visible events
in the execution.” This implies blocking leakage through all
microarchitectural covert channels including pressure in the
cache, arithmetic unit ports, total program execution time, etc
(Section II).

To prove security, we argue that STT+SDO does not change
STT’s security semantics for transmitters and access instruc-
tions, Claims 1 and 2 below, respectively.

A. Security for Transmit Instructions

We first analyze SDO operations in general, and then
analyze our Obl-Ld operation.

Claim 1. Implementing transmitter f(args) as SDO operation
Obl-f(args) (Figure 2) leaks equivalent privacy as delay-
executing f(args) until args are untainted.

Proof. In STT’s terminology: Obl-f(args) is equivalent to ex-
ecuting a non-transmitter in the shadow of an implicit branch,
which STT guarantees cannot violate security. From Figure 2,
the case statement on Line 3 is by definition an implicit
branch whose (i) predictions and (ii) updates/resolutions are
a function of non-speculative data. (i) holds by Equation 2.
(ii) holds by Figure 2, Lines 11-16, i.e., namely we adopt
STT’s policy for delayed predictor update/resolution until args
is untainted. Finally, by Definition 2 the DO variant executed
in the shadow of the branch—Obl-fi(args) for some i—is a
non-transmitter.

The Obl-Ld operation (Section V) is a valid SDO operation
from Claim 1. First, the location predictor (Section V-D)
takes the load PC as input, which is a function of non-
speculative data due to STT [51, 52]. The predictor’s delayed

resolution/updates follow the same argument as above. Second,
the design for each Obl-Ld variant–for each memory level
(Section VI-B)–satisfies Definition 2.

B. Security for Access Instructions

STT untaints the output of an access instruction when the in-
struction reaches its visibility point, which is the point at which
the instruction is considered non-speculative with respect to
the threat model (Section III). Younger transmitters may reach
their visibility point at the same time as their producer access
instruction(s). For example, in the Spectre model, if there
are no unresolved branches between access and dependent
transmit instructions. STT’s protection no longer applies to
such transmitters. It is therefore important to establish that
the output of the access instruction—which may be forwarded
to these transmitters—is the result of a correctly-speculated
execution and hence not a secret. This property holds for STT,
because STT only delays execution of instructions, without
changing how they execute. Without careful attention, one
might conclude that the property does not hold for STT+SDO,
because a DO variant might return fail. Here, we prove this
property does in fact hold for STT+SDO.

Claim 2. In STT+SDO, data returned by an access instruction
is untainted only if that data corresponds to correct specula-
tion, for the given attack model.

Proof. We consider Obl-Ld operations, since these are the only
access instruction changed in this paper. Suppose an Obl-Ld
access instruction, denoted ainstr, reaches its visibility point.
Let X be ainstr’s output. We now proceed in cases.

Case 1 (ainstr has forwarded X to younger instructions).
We have two sub-cases:

i ainstr has returned in success: By Definition 1, success
implies X is correct with respect to the current specula-
tive path. For a given attack model, having reached the
visibility point implies that the current speculative path is
correct speculation, thus the claim holds.4

ii ainstr has returned in fail: X may or may not correspond
to correct speculation. As described in Sections IV-C and
V-B, ainstr (and younger instructions) are squashed at the
same moment that the data is untainted. Thus, the claim
holds.

Case 2 (ainstr has not yet returned X / has returned
but not yet forwarded): X may or may not correspond to
correct speculation. As described in Section V-C2, we will (a)
forward X on success or (b) drop/re-issue ainstr as a normal
load on fail. (a) becomes Case 1-i above. In (b), the result
will be produced by a normal load, so the claim follows from
STT’s properties.

4Note, in the case of loads X may eventually cause a consistency violation.
Depending on the attack model (e.g., Spectre, Futuristic; Section II), a
consistency violation may or may not constitute incorrect speculation. In the
Spectre model, there is no issue (consistency violations are out-of-scope).
In the Futuristic model, having reached the visibility point implies that
a consistency violation can no longer occur (i.e., an access instruction is
unsquashable after reaching the visibility point in the Futuristic model).

10

VIII. EVALUATION

We now evaluate the performance of STT+SDO, for a
variety of attack models and SDO design variants, relative
to vanilla STT and an insecure baseline.

A. Experimental Setup

Simulation setup. We evaluate the performance of SDO
using the Gem5 [12] simulator, which models cache port,
bank and MSHR contention. We change the simulator to
model the additional contention-related overheads caused by
SDO. For example, by granting Obl-Ld operations exclusive
access to all banks once they access one cache level. Table I
details the simulated architecture. We use the x86-like Total
Store Ordering (TSO) memory consistency model. We run
SPEC CPU2017 [1] benchmarks with the reference input size.
To obtain representative results for SPEC benchmark perfor-
mance, we use SimPoint analysis [40] to identify execution
fragments representing program phases. For each benchmark,
we simulate 10 million instructions of each such fragment, and
sum each reported metric (e.g., cycles) over all simulations,
weighting each fragment according to its execution phase.

TABLE I: Simulated architecture parameters.

HW Components Parameters
Pipeline 8 fetch/decode/issue/commit, 32/32 SQ/LQ entries,

192 ROB, 16 MSHRs, Tournament branch predictor
L1 I-Cache 32KB, 64B line, 4-way, 2-cycle latency
L1 D-Cache 32KB, 64B line, 8-way, 2-cycle latency
L2 Cache 256KB, 64B line, 8-way, 12-cycle latency
L3 Cache 2MB, 64B line, 8-way, 40-cycle latency
Network 4×2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol Directory-based MESI protocol
DRAM 50ns latency after L2

Configurations. We evaluate the following design variants,
listed in Table II. We compare STT+SDO (with different
predictors, treating both loads and floating point (FP) oper-
ations as transmitters with architected DO operations) to STT.
Two STT configurations are evaluated: STT{ld} considers
only loads to be transmitters; STT{ld+fp} also considers FP
operations to be transmitters (Section I-A). For STT+SDO, as
discussed in Section V-D, we evaluate both static predictors
(always predicting a specific cache level) and the hybrid
location predictor (Hybrid, which predicts L1, L2 or L3). The
size of the Hybrid predictor’s internal state is 4 KB. Finally,
we evaluate a Perfect predictor which always predicts the
correct cache level. All SDO configurations protect subnormal
FP inputs by statically predicting FP inputs to be normal
(as described in Section I-A). All SDO configurations also
mitigate leakage through virtual memory translation in the
fashion described in Section V-B. For each configuration,
we evaluate both the Spectre and Futuristic attack models
(Section III).

Penetration testing. Prior to performance modeling, we con-
firmed that all SDO design variants block the Spectre V1
attack, to which the Unsafe baseline is vulnerable.

TABLE II: Evaluated design variants.

Configuration Description
Unsafe An unmodified insecure processor
STT{ld} STT, delaying the execution of unsafe loads only
STT{ld+fp} STT, delaying the execution of unsafe loads and

fmult/fdiv/fsqrt micro-ops
Static L1 SDO with predictor always predicting L1 D-Cache
Static L2 SDO with predictor always predicting L2
Static L3 SDO with predictor always predicting L3
Hybrid SDO with proposed hybrid location predictor (Section V-D)
Perfect SDO with oracle predictor always predicting the correct level

B. Main Result: Performance of STT+SDO vs. STT

Figure 6 compares the execution time, normalized to Un-
safe, of STT and the SDO variants on the evaluated SPEC2017
benchmarks. STT+SDO outperforms STT with both Static
and Hybrid predictors in all cases. The summary is that
(1) our Hybrid predictor outperforms Static predictors in
the Spectre model, obtaining an average overhead of 4.19%,
which translates to a 44.4%/50.1% improvement relative to
STT{ld}/STT{ld+fp}, respectively; and (2) Static L2 is the
lowest overhead predictor in the Futuristic model, obtaining
an overhead of 10.05%, which is a 36.3%/55.1% improvement
relative to STT{ld}/STT{ld+fp}. We now discuss these results
in more detail.

Static Predictors. In both the Spectre and Futuristic models,
Static L1 has the highest overhead of any SDO variant. The
reason is that while predicting higher cache levels (e.g., L1)
yields faster Obl-Ld operations, it also incurs more frequent
squashes (due to Obl-Ld operations returning fail). As shown
in Section VIII-E, performance overhead is strongly correlated
to the number of squashes. Relative to Static L1, Static L2 and
Static L3 have similar overheads on average, indicating that
their relative differences in accuracy (which impacts squash
rate) and precision (which impacts memory latency) balance
each other out. (See Section V-D for definition of accuracy
and precision.)

Hybrid Predictor. While the Hybrid predictor can achieve
high accuracy and precision when access patterns fall into the
categories discussed in Section V-D, we have found that it
causes extra squashes (due to Obl-Ld failures) when accesses
unpredictably miss in the L1. In the Spectre model, the
overhead of these squashes can be hidden by overlapping
computation, which allows the Hybrid predictor to achieve
speedup over the Static predictors through its increased pre-
cision. See Figure 8 (left): the number of squashes for the
Hybrid and Static L2 predictors are similar, but the Hybrid
predictor achieves significantly lower overhead. Table III fur-
ther confirms that the Hybrid predictor has significantly greater
precision than the Static L2 predictor. In the Futuristic model,
however, performance is more tightly correlated to the number
of squashes. Indeed, Figure 8 (right) shows once again that the
Hybrid and Static L2 predictors have a similar squash rate, but
now with similar overheads.

Perfect Predictor. We show a perfect accuracy location pre-
dictor to show what performance potential is possible with
SDO, beyond that achievable by our imperfect predictors.

11

Fig. 6: Execution time (normalized to UNSAFE) of SPEC2017 benchmarks with STT and the proposed SDO design variants (STT+SDO)
in Table II. Averages are given on the right. (Upper half: Spectre model; lower half: Futuristic model.)

Fig. 7: Performance overhead breakdown (vs. Unsafe) for evaluated
SDO variants, averaged over SPEC17 workloads.

Perfect prediction improves performance by 59.5%/63.7%
relative to STT{ld}/STT{ld+fp} in the Spectre model, and
51.3%/65.6% relative to STT{ld}/STT{ld+fp} in the Futuristic
model. Interestingly, there is still performance overhead, even
if the location predictor is perfect. We perform a more detailed
breakdown of the sources of remaining overhead in the next
sub-section.

C. Sources of Slowdown

To provide more insight, Figure 7 shows a breakdown
of what design components contribute what % of the total
slowdown. Inaccurate and imprecise cache level prediction
is a major source of overhead. Sections VIII-D and VIII-E
below perform a deeper analysis of how prediction impacts
performance. Validation stall and TLB/virtual memory pro-
tection constitute a small portion of the overhead. Remaining
slowdown is due to (1) Obl-Ld operations not changing cache
state, which leads to more cache misses; (2) implicit channel
handling; and (3) the additional memory system contention
caused by SDO requests.

D. Predictor Accuracy and Precision

We now measure the accuracy and precision for each SDO
predictor. Table III shows that our Hybrid predictor has the
highest precision, followed by Static L1, since Static L1
can usually satisfy most memory accesses. Static L2 and L3

TABLE III: Precision and Accuracy of evaluated SDO predictors in
the Spectre/Futuristic models, averaged over SPEC17 workloads.

Spectre Futuristic
Configuration Precision Accuracy Precision Accuracy
Static L1 71.87% 71.87% 75.48% 75.48%
Static L2 7.01% 78.74% 6.58% 83.39%
Static L3 4.60% 85.04% 3.71% 89.25%
Hybrid 84.30% 86.49% 84.34% 87.18%

Fig. 8: Relationship between the number of squashes and execution
time (normalized to UNSAFE) of all evaluated SDO variants, averaged
over SPEC17 workloads.

have low precision (< 8%), although their prediction tends
to be more accurate (leading to fewer squashes) than Static
L1/Hybrid.

E. Relationship between Performance and Squashes

We now quantify the performance loss due to inaccurate
location prediction, i.e., the pipeline squashes that occur when
an Obl-Ld returns fail. Figure 8 shows the correlation between
the number of squashes and the performance overhead. The
takeaway is that performance overhead is roughly proportional
to the number of squashes. An exception to this trend is Static
L3, which has the fewest squashes because its predictions are
relatively accurate. In this case, fewer squashes are offset by
imprecision (longer latency loads).

12

IX. RELATED WORK

Hardware defenses for speculative execution attacks. In-
visiSpec [47], SafeSpec [23], and DAWG [24] only block
covert channels through the cache hierarchy. Conditional
Speculation [28] and Selective Delay [37] additionally block
covert channels through the memory system (e.g., DRAM
contention). GLIFT [43] and OISA [50] can block all tran-
sient and non-transient covert channels, but impose restric-
tive, potentially low-performance programming models such
as data-oblivious programming. STT [51], NDA [46] and
SpecShield [6] strike a balance by blocking only transient
covert channels.

We differentiate from these works as follows. Using STT’s
terminology, speculative data-oblivious execution is a tool
to execute transmit instructions early, without leaking any
additional information except for the fact that the transmit-
ter executed. This is a stronger security property than that
provided by works like InvisiSpec [47] and SafeSpec [23], as
those proposals allow data to be forwarded at different times
depending on when/where the access hits in memory (e.g.,
for the load instruction transmitter). Speculative data-oblivious
execution is also more general. For example, it applies to any
transmit instruction whereas, e.g., InvisiSpec only applies to
loads.

At the same time, we view our work as complementary
to more comprehensive proposals (such as STT, NDA and
SpecShield). As discussed, these works adopt a high-overhead
mechanism to block leakage through transmitters (delayed
execution) whereas we study how to safely execute transmit-
ters early. We chose to extend STT because it simultaneously
achieves high performance and high security, but could have
extended NDA or SpecShield as well.

Data-oblivious execution. There is a rich literature which
focuses on how to write data-oblivious code on today’s pro-
cessors [4, 5, 7]–[9, 15]–[17, 31]–[33, 35, 38, 44, 53]—a
practice also known as “constant-time” programming. These
works focus on how to improve security on existing hardware.
As a result, they cannot implement high-performance data-
oblivious execution as described in this paper (e.g., using the
floating point example from Section I, they must wait for the
slowest mode to complete).

X. CONCLUSION

This paper proposes speculative data-oblivious execution
(SDO), a new primitive which can be used to mitigate spec-
ulative execution attacks in a high-performance and high-
security fashion. The key idea is that it is safe to execute an
instruction which can form a covert channel, as long as that
instruction’s execution is independent of sensitive data, i.e.,
is data oblivious. To reduce the performance overhead of this
idea, we extend prior work on STT to design safe predictors
that specify what data-oblivious behavior is needed to satisfy
common case program behavior. Putting it all together, we
show that augmenting STT with SDO significantly speeds up
vanilla STT without altering security.

ACKNOWLEDGMENT

This work was funded in part by NSF under grant CNS-
1816226, Blavatnik ICRC at TAU, ISF under grant 2005/17,
and by an Intel Strategic Research Alliance (ISRA) grant.
We would like to thank the anonymous reviewers for their
insightful comments during the review process, which helped
to significantly strengthen the paper.

REFERENCES

[1] “SPEC CPU2017,” https://www.spec.org/cpu2017.
[2] “Invisispec-1.0 simulator bug fix,” https://github.com/mjyan0720/

InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c,
Aug. 2019.

[3] O. Aciicmez, J.-P. Seifert, and C. K. Koc, “Predicting secret keys via
branch prediction,” IACR’06.

[4] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx,” in NDSS’18.

[5] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
S&P’15.

[6] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding Speculative Data from Microarchitectural Covert
Channels,” in PACT’19.

[7] D. B. S. G. Ben A. Fisch, Dhinakaran Vinayagamurthy, “Iron: Functional
encryption using intel sgx,” in CCS’17.

[8] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
PKC’06.

[9] D. J. Bernstein, “The poly1305-aes message-authentication code,” in
FSE’05.

[10] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in CCS’19.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in PACT’08.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, no. 2, pp.
1–7, 2011.

[13] H. W. Cain and M. H. Lipasti, “Memory ordering: A value-based
approach,” in ISCA’04.

[14] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre
attacks: Leaking enclave secrets via speculative execution,” CoRR’18.

[15] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in S&P’09.

[16] S. Eskandarian and M. Zaharia, “An oblivious general-purpose SQL
database for the cloud,” CoRR’17.

[17] Z. L. L. K. Fahad Shaon, Murat Kantarcioglu, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,”
in CCS’17.

[18] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two Techniques to
Enhance the Performance of Memory Consistency Models,” in ICPP’91.

[19] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks,” in
USENIEX Security’18.

[20] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-channel anal-
ysis of cryptographic software via early-terminating multiplications,” in
ICISC’09.

[21] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, no. 4, pp. 1–17, 2006.

[22] J. Horn, “Speculative execution, variant 4: speculative store bypass,”
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[23] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. B. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in DAC’19.

[24] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in MICRO’18.

[25] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv’18.

13

https://www.spec.org/cpu2017
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528

[26] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in S&P’19.

[27] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
WOOT’18.

[28] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional specula-
tion: An effective approach to safeguard out-of-order execution against
spectre attacks,” in HPCA’19.

[29] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in CCS’18.

[30] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
arXiv’19.

[31] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in S&P’18.

[32] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-flow
side channel attacks,” IACR’05.

[33] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in USENIX Security’16.

[34] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-cpu attacks,” in USENIX Secu-
rity’16.

[35] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in USENIX Security’15.

[36] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An undo approach to
safe speculation,” in MICRO’19.

[37] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient Invisible Speculative Execution Through Selective Delay and
Value Prediction,” in ISCA’19.

[38] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory
primitives from intel sgx,” in NDSS’18.

[39] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” in ESORICS’19.

[40] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS ’02.

[41] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Pub., 2011.

[42] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure Program
Execution via Dynamic Information Flow Tracking,” in ASPLOS’04.

[43] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ASPLOS’09.

[44] S. Tople and P. Saxena, “On the trade-offs in oblivious execution
techniques,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, M. Polychronakis and M. Meier, Eds. Springer’17.

[45] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for
a shared memory controller,” in HPCA’14.

[46] O. Weisse, I. Neal, K. Loughlin, T. Wenisch, and B. Kasikci, “NDA: Pre-
venting Speculative Execution Attacks at Their Source,” in MICRO’19.

[47] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible in the
Cache Hierarchy,” in MICRO’18.

[48] Y. Yarom and K. Falkner, “Flush+reload: a high resolution, low noise,
l3 cache side-channel attack,” in USENIX Security’14.

[49] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack
on openssl constant time rsa,” IACR’16.

[50] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data oblivious isa
extensions for side channel-resistant and high performance computing,”
in NDSS’19.

[51] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in MICRO’19.

[52] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. Fletcher,
“Speculative Taint Tracking (STT): A Formal Analysis,” University
of Illinois at Urbana-Champaign and Tel Aviv University, Tech. Rep.,
2019, http://cwfletcher.net/Content/Publications/Academics/TechReport/
stt-formal-tr micro19.pdf.

[53] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI’17.

14

http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf
http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf

