WeeFence: Toward Making Fences Free in TSO *

Yuelu Duan, Abdullah Muzahid,T Josep Torrellas
University of lllinois at Urbana-Champaign

duani1@illinois.edu

muzahid@cs.utsa.edu

torrella@illinois.edu

http://iacoma.cs.uiuc.edu

ABSTRACT

Although fences are designed for low-overhead concurrency coor-
dination, they can be expensive in current machines. If fences were
largely free, faster fine-grained concurrent algorithms could be de-
vised, and compilers could guarantee Sequential Consistency (SC)
at little cost.

In this paper, we present WeeFence (or WFence for short), a
fence that is very cheap because it allows post-fence accesses to
skip it. Such accesses can typically complete and retire before the
pre-fence writes have drained from the write buffer. Only when an
incorrect reordering of accesses is about to happen, does the hard-
ware stall to prevent it. In the paper, we present the WFence design
for TSO, and compare it to a conventional fence with speculation
for 8-processor multicore simulations. We run parallel kernels that
contain explicit fences and parallel applications that do not. For
the kernels, WFence eliminates nearly all of the fence stall, reduc-
ing the kernels’ execution time by an average of 11%. For the ap-
plications, a conservative compiler algorithm places fences in the
code to guarantee SC. In this case, on average, WFences reduce the
resulting fence overhead from 38% of the applications’ execution
time to 2% (in a centralized WFence design), or from 36% to 5%
(in a distributed WFence design).

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors) - Parallel Processors.

Keywords

Fences, Synchronization, Memory Consistency, Sequential Consis-
tency, Parallel Programming, Shared-Memory Multiprocessors.

1. INTRODUCTION

Fences are instructions that programmers or compilers insert in
the code to prevent the compiler or the hardware from reordering
memory accesses [10, 25]. While there are different flavors of
fences, the basic idea is that all of the accesses before the fence
have to be finished (i.e., the loads have to be retired and the writes
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drained from the write buffer) before any access after the fence can
be observed by any other processor. The goal is to prevent a re-
ordering that could lead to an incorrect execution.

Fences are used for low-overhead concurrency coordination in
places where conventional synchronization primitives such as locks
would have too much overhead. In some cases, programmers insert
explicit fences in algorithms with fine-grain sharing. For instance,
this is the case in the Cilk THE [7] work-stealing algorithm. In the
fast path of the algorithm, there are fences between two consecutive
accesses to a queue (e.g., to queue->head and queue->tail, respec-
tively) that, if reordered by the compiler or hardware, could cause
incorrect execution.

In other cases, compilers insert fences. For example, in C++,
the programmer can employ intentional data races for performance,
and declare the relevant variables as atomic [2] (or volatile for
Java). Such declaration prompts the compiler to insert a fence after
the access and abstain from generating reordered code; the fence
then prevents the hardware from reordering accesses dynamically.

Fences can be expensive in current machines. A simple test on
a desktop with an 8-threaded Intel Xeon ES530 processor reveals
that a fence introduces a significant visible overhead. If the write
buffer is empty, the fence introduces about 20 cycles; if there are
many pre-fence write misses, then it may take an order of magni-
tude more cycles until all the writes drain from the write buffer.

If fences did not stall the pipeline and, instead, had a negligi-
ble performance cost, software could take advantage in two ways.
First, programmers could write faster fine-grained concurrent algo-
rithms. Second, it would be feasible for C++ (or Java) programs
to guarantee SC execution at little performance cost. To see why,
recall that a C++ compiler is required to generate SC code as long
as any data race accesses are on variables declared as atomic. If
fences could be skipped while retaining correctness, programmers
could declare all shared data as atomic, triggering the insertion of
a fence after every single shared data access. However, hardware
reordering would not be curtailed. Moreover, while there would
be a performance overhead due to limiting compiler optimizations,
recent work has indicated that such effect may be modest [15].

Current designs do not completely stall the pipeline on a fence
while the write buffer drains. Instead, post-fence reads can specu-
latively load data. As long as no other processor observes the spec-
ulative read, no problem can occur. If an external processor does
(i.e., it initiates a coherence transaction on the speculatively-read
data), the local processor squashes the read and retries it. Unfor-
tunately, even with speculation, not all the fence stall is removed:
speculative reads cannot retire until after the write buffer is drained.

In this paper, we propose to target the elimination of all the stall.
More aggressive reordering is acceptable as long as it does not re-
sult in an incorrect access order. Specifically, it is fine for a re-
mote processor to observe local post-fence accesses before the lo-
cal write buffer is drained, as long as no dependence cycle occurs
— that is, as long as no SC violation occurs [23].
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Figure 1: Pattern for SC violation.

In this paper, we present an aggressive fence design that we call
WeeFence, or WFence for short. It allows post-fence accesses to
skip the fence and proceed without stalling. Such accesses can typ-
ically complete and retire before the pre-fence writes drain from
the write buffer. This is beyond today’s most aggressive speculative
fence implementations, where speculative reads cannot retire until
after the write buffer is drained. Hence, WFence can save substan-
tial time when write misses pile up before the fence. Only when an
incorrect reordering of accesses is about to happen, does WFence
stall until such a event cannot occur; in the large majority of cases,
WFence induces zero visible stall. Finally, WFence is compatible
with the use of conventional fences in the same program.

While the WFence idea can be used for any memory consistency
model, we present the design for TSO [25]. This is because TSO is
very similar to the model used by x86 processors [22]. We evaluate
WFence using a simulated 8-processor multicore, and compare it
to a conventional fence with speculation. We run parallel kernels
that contain explicit fences and parallel applications that do not.
For the kernels, WFence eliminates nearly all of the fence stall,
reducing the kernels’ execution time by an average of 11%. For
the applications, a conservative compiler algorithm places fences
in the code to guarantee that SC is not violated. In this case, on
average, WFences reduce the resulting fence overhead from 38%
of the applications’ execution time to 2% (in a centralized WFence
design), or from 36% to 5% (in a distributed WFence design).

This paper is organized as follows. Section 2 gives a background;
Section 3 presents the WFence design; Sections 4 and 5 describe
WFence’s implementation; Sections 6 and 7 evaluate WFence; and
Section 8 discusses related work.

2. BACKGROUND

2.1 Terminology, Consistency & Fences

Given an out-of-order processor, we are interested in a memory
instruction’s completion and retirement times. Following common
terminology, we say that a read instruction completes (possibly
speculatively) when the data loaded returns from the memory sys-
tem and is deposited into a register. However, while the completed
read remains speculative, it can still be squashed. A read retires
when it is at the head of the Reorder Buffer (ROB) and has com-
pleted; after retirement, it cannot be squashed anymore. A write
instruction retires when it is at the head of the ROB and its address
and data are available. At this point, the write is effectively de-
posited (in order) into the write buffer to be merged with the mem-
ory system. The write completes (potentially out of order) when
any coherence transaction that it triggers completes — e.g., when
the local cache receives all the invalidation acknowledgements for
the write. At this point, the write is removed from the write buffer.

The memory consistency model determines what orders of mem-
ory accesses are allowed. SC is the model that programmers have
in mind when they program for shared memory. SC requires that
the memory accesses of a multi-threaded program appear to be or-

dered in some global sequence as if the threads were multiplexed
on a uniprocessor [11].

Current processors try to deliver high performance by using hard-
ware mechanisms that reorder and overlap memory accesses. For
example, processors that use Total Store Ordering (TSO) [25] al-
low the visible reordering of reads following writes. Specifically,
while a write is waiting in the write buffer for completion (e.g.,
because of a cache miss), a subsequent read that reaches the ROB
head can retire. This order relaxation can improve performance
over a machine that enforces SC. TSO has been the choice in many
commercial processors — e.g., x86 implements a model similar to
TSO [22]. Consequently, this paper focuses on TSO.

In some cases, allowing such TSO reorderings results in a viola-
tion of SC. This is shown in Figure 1(a). Initially, variables 70, t1, x,
and y are zero. Processor P4 first writes 1 to x and then reads y into
10, whereas processor Pp first writes 1 to y and then reads x into 71.
Under SC, either A/ or Bl is the last access in the global order of
accesses. Hence, after the execution of the code, either #0 is 1, ¢/
is 1, or both are 1. However, under TSO, it may happen that, while
the A0 write is waiting in the write buffer, the A/ load reads the
initial value of y and retires. Then, BO and BI execute. Finally, A0
completes. We then have an effective order of A/, B0, B, and AO.
This causes both 70 and ¢/ to be zero, which is impossible under
SC. Itis an SC Violation (SCV).

Shasha and Snir [23] show what causes an SCV: overlapping
data races where the dependences end up ordered in a cycle. Recall
that a data race occurs when two threads access the same memory
location without an intervening synchronization and at least one is
writing. Figure 1(b) shows the order of the dependences at run-
time that causes the cycle and, therefore, the SCV. In the figure, the
source of the arrow is the access that occurs first. If at least one of
the dependences occurs in the opposite direction (e.g., Figure 1(c)),
no cycle (and therefore no SCV) occurs.

Given the pattern in Figure 1(a), Shasha and Snir [23] prevent
the SCV by placing one fence between references A0 and A/, and
another between B0 and BI. The result is Figure 1(d). Now, as
we run the program in a TSO machine, A/ waits for A0 to com-
plete, while BI waits for BO. As a result, either A7 or BI is the last
operation to complete, and there is no SCV.

2.2 Why Making Fences Very Cheap Matters?

Programmers and compilers insert fences in the code to prevent
the compiler or the hardware from reordering memory accesses.
The goal is to inexpensively manage the order in which the memory
accesses of a thread are observed by other threads.

Programmers typically include explicit fences in performance-
critical applications with fine-grained sharing. Examples include
run-time systems, schedulers, tasks managers, and soft real-time
systems. If fences were very cheap, programmers could improve
the performance and scalability of these codes.

Compilers insert fences in codes to prevent incorrect reorder-
ings. In particular, in high-level languages such as C++ or Java, the



programmer is allowed to employ intentional data races for perfor-
mance, as long as the relevant variables are declared as atomic or
volatile. Such declarations prompt the compiler to insert a fence
after the access, which prevents any reordering by the compiler or
hardware. Without the fences, some reorderings could be harmless,
while others — like the one in Figure 1(b) — could cause SCVs.
If fences could be skipped while retaining correctness, program-
mers would not have to identify which accesses can cause data
races. Instead, they could assume that all shared accesses can create
races. They would declare all shared data as atomic, and the com-
piler would insert fences. The compiler would then automatically
guarantee SC at little performance cost. The key is that hardware-
induced reordering would not be curtailed. Moreover, while there
would be a performance cost due to limiting compiler optimization,
recent work has indicated that such effect may be modest [15].

2.3 Current Techniques to Speed-up Fences

Processors speed-up fences with in-window load speculation [8].
With this technique, a post-fence read can speculatively get the
value from memory even while the fence is not completed — i.e.,
while pre-fence writes are not completed or pre-fence reads are not
retired. The post-fence read cannot retire, but the processor uses its
value while actively monitoring for any external coherence trans-
action on the cache line read. If such a transaction is received, the
processor squashes and re-executes (at least) the post-fence read
and its successors. The post-fence read can only retire after the
fence completes. While the extent of speculation in real processors
is unknown, our simulations use as baseline a processor with full
in-window load speculation and exclusive store prefetch [8].

Conditional Fences [13] is a proposal to eliminate fence stall
that, unlike our scheme, requires compiler support. The compiler
analyzes the code and statically groups the fences into classes (called
Associate fences) that prevent the same dependence cycle. At run-
time, before a fence executes, the hardware checks if any of its
associate fences is currently executing in another processor. Only
if it is, the current fence stalls. Section 8 compares WFence to
Conditional Fences and other proposals.

3. WFence DESIGN
3.1 Skipping Fences & Avoiding SC Violations

WeeFence, or WFence for short, is a new fence design that typ-
ically executes without inducing visible processor stall. It allows
the memory instructions that follow the fence to proceed without
stalling. While the WFence idea can be used for different mem-
ory consistency models, in this paper, we focus on a design for
TSO [25] because TSO is very similar to the model used by x86
processors [22]. In this case, post-WFence read instructions can
complete and retire before the WFence completes — i.e., before
the pre-WFence writes complete.

This is beyond today’s most aggressive speculative fence imple-
mentations, where post-fence read instructions can speculatively
load data, but cannot retire until all of the pre-fence writes com-
plete. As a result, a WFence can save substantial time when write
misses pile up before the fence. In the large majority of cases,
WFence induces no stall, as all of its actions are hidden by the
ROB, and the instruction retiring rate is unaffected by the presence
of a fence. Moreover, WFence is compatible with the use of con-
ventional fences in the same program.

Since WFence enables aggressive memory access reordering, it
needs to watch for incorrect reorders that lead to SC violations. For
example, if any of the two fences in Figure 1(d) allowed its post-
fence read to be ordered before its pre-fence write, an SC violation

could occur. Hence, when WFence is about to allow a reorder that
can lead to an SC violation, it stalls for a short period of time until
such a condition cannot occur. This case, however, is rare.

WFence uses some extensions in the processor and memory sys-
tem. They involve registering pending pre-fence accesses in a ta-
ble, which other processors can check against post-fence accesses
to see if there is a possibility for an SC violation. These actions
reuse existing cache coherence protocol transactions.

3.2 Initial Design

Consider the basic pattern shown in Figure 1(d), where two fences
are needed to avoid an SC violation. In Figure 2(a), we repeat the
example and use WFences, therefore enabling reordering. To pre-
vent an SC violation, WFence has to ensure that, if P4:rd y hap-
pened before Pr:wr y (arrow (1)), then Pp:rd x stalls until it is
ordered after P4:wr x — and hence, arrow (2) is forced to point
downward and no SC violation occurs.

A WFence involves two steps. First, the execution of a WFence
instruction consists of collecting the addresses to be written by the
pending pre-WFence writes, encoding them in a signature, and stor-
ing the signature in a table in the shared memory system called the
Global Reorder Table (GRT). We call such addresses the Pending
Set (PS) of the WFence. The return message of such a transaction
brings back from the GRT to the processor the combined addresses
in the PSs of all the currently-active WFences in other processors
— in a signature. The incoming signature is saved in a processor
register called the Remote Pending Set Register (RPSR).

In the second step, any post-WFence read compares its address
against those in the RPSR. If there is no match, the read executes
and may go on to eventually retire even before the WFence com-
pletes — a WFence completes when all pre-WFence accesses retire
and complete, which requires that all pre-WFence writes drain from
the write buffer. If, instead, there is a match, the read stalls. The
stall lasts until all the remote WFences whose PSs are in the lo-
cal RPSR complete. At that point, an arrow like (2) in Figure 2(a)
cannot occur. When a WFence completes, it clears its GRT en-
try. Moreover, it needs to remove its PS addresses from any other
processor’s RPSR. This last requirement makes this initial design
suboptimal; it is eliminated in Section 3.4.

The procedure described allows high concurrency by using con-
ventional speculative execution. A post-WFence read instruction
can execute even before the WFence has executed (and filled the
local RPSR with the PS of all the other currently-active WFEences).
In this case, when the RPSR is finally filled, the read’s address is
compared to it, and the read is squashed if there is a match. The
squashed read immediately restarts and, if it still matches, stalls.
Moreover, when a post-WFence read stalls due to a match, subse-
quent local reads that do not match can still execute speculatively.
However, because of the TSO model, they can only retire after the
stalled read retires. Finally, a speculative read (stalled or otherwise)
is squashed and restarted if it receives an external coherence access
or if its line is evicted from the cache. Overall, the key insight is
that a post-WFence read instruction can stop being speculative and
retire before the earlier WFence completes; we will see when.

Figures 2(b) and (c) illustrate the algorithm. In Figure 2(b),
WFencel deposits its PS addresses in the GRT (1) and, since the
GRT is empty, returns no addresses. Pa:rd y skips WFencel (2)
and executes because P4’s RPSR is empty. Later, in Figure 2(c),
WFence2 deposits its PS addresses in the GRT (3) and returns the
PS addresses of the active fences (4). At this point, an arrow like (1)
in Figure 2(a) may have happened; hence WFence has to prevent
an arrow like (2) in Figure 2(a). Therefore, as shown in Figure 2(c),
as Pp:rd x tries to skip WFence2, it checks the local RPSR (5) and
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finds a match. It then stalls until WFencel completes, removing
the possibility of an arrow like (2) in Figure 2(a).

Stalling is rare, as it requires that two WFences dynamically
overlap in time, that both threads access the same addresses in op-
posite sides of the fences, and that both dependence arrows threaten
to go upward.

3.3 Complete Design

In the case discussed, both threads had fences to prevent the re-
ordering of their accesses. However, a dependence cycle can occur
even if only one of the threads reorders its accesses. Hence, in pat-
terns where only one thread has a WFence, SC violations can still
occur. In the case of TSO, the pattern is shown in Figure 3(a).

In Figure 3(a), assume that P4:rd y happened before Pgp:wr y
(arrow (1)). TSO ensures that Pg:wr x is ordered after Pg:wr y.
However, a reorder of the accesses in P4 (rd y ordered before wr
x) could cause a dependence cycle. Hence, WFence has to ensure
that, if P4:rd y happened before Pp:wr y (arrow (1)), then Pp:wr
x stalls until P4:wr x has finished — preventing arrow (2).

This cycle cannot be avoided with the support described in Sec-
tion 3.2. Since Pp has no fence, Pp:wr x does not know of (and
cannot wait on) any remote PS. Instead, we must stall the consumer
of the first arrow, namely Pp:wr y. For this, we will leverage the
coherence transaction triggered by Pp:wr y, and stall the transac-
tion until no cycle can occur.

To do so, we extend the WFence operation of Section 3.2 with
two additional steps. We call the addresses read by the post-WFence
read instructions executed before the WFence completes the Bypass
Set (BS). In the first step, as the post-WFence reads execute, they
accumulate the BS addresses in a table in the local cache controller.
Such table is called the Bypass Set List (BSL).

Second, as external coherence transactions from other proces-
sors are received, their addresses are checked against the BSL. If
there is a match and the local read is still speculative, conventional
speculation automatically squashes the read and, therefore, we re-
move the read address from the BSL. However, if there is a match
and the local read is already retired (although the WFence is not

complete), the incoming transaction is not satisfied — it is either
buffered or bounced. Later, when the local WFence completes, the
BSL is cleared, and any transaction waiting on a BSL entry is sat-
isfied. It is only at this point that the requesting access from the
remote processor can complete. Any subsequent access in that pro-
cessor can then proceed, but it is too late to create a cycle with the
local processor because all pre-WFence writes have completed.

Figures 3(b) and (c) illustrate the algorithm for our example. In
Figure 3(b), WFencel deposits its PS addresses in the GRT (1). As
Pa:rd y skips the fence and executes (2), it is part of the BS and
hence saves its address (3). Later, in Figure 3(c), as Pp:wr y exe-
cutes, it issues a coherence transaction to P4. Assume that Pa:rd
y has already retired and, hence, an arrow like (1) in Figure 3(a)
will be generated. As the request arrives, it checks the BSL and
matches. The request is either buffered or asked to retry. When
WFencel completes, the BS addresses are deallocated and the co-
herence request is satisfied. At this point, Pg:wry completes. After
this, as Pp:wr x completes, it cannot generate an arrow like (2) in
Figure 3(a) because P4:wr x has already completed.

3.4 Properties of the WFence Design

The WFence design resulting from the previous two sections has
two key features. The first one is that when a WFence completes,
it does not need to notify any other processor; the second is that
conventional fences are seamlessly supported. We consider each in
turn.

Recall from Section 3.2 that, when a WFence completed, in ad-
dition to clearing its GRT entry, it would have to clear its PS ad-
dresses in other processors’ RPSRs. Now, thanks to the BSL, this
is no longer required. Now, when a WFence completes, it only
needs to clear its GRT entry. The other processors that contain the
WFence’s PS addresses in their RPSR will continue to wait (on a
match) only until their own WFence completes. Once their own
WFence completes, it can be shown that no dependence cycle is
possible anymore and, therefore, they can clear their RPSR. This
has the major advantage that no remote messages need to be sent,
and the wait terminates on a local event.



Remote Pending
Set Register (RPSR)

Processor

‘ Bypass Set List (BSL) ‘

[

L1 cache

Network

PS signature

Signature of evicted BS addresses

RPSR: Signature with the union of all other processor’s PS addresses
BSL: Unordered list of this processor’s BS addresses
GRT: Shared table that has, for each processor that has an active WFence

— Signature of the PS addresses
— Signature of BS addresses whose dirty cache lines were evicted
from cache

Global Reorder Table (GRT)

Figure 4: Multicore augmented with WFence hardware.

To see why, consider Figure 2(c) again. WFence?2 is the sec-
ond WFence to reach the GRT and it brings address x to its RPSR.
Pp:rd x must wait on the RPSR, but only until WFence2 com-
pletes. At this time, Pp can safely clear its RPSR and let rd x com-
mit, since no arrow like (2) in Figure 2(a) is possible. The reason
is that: (i) if WFence?2 is complete, then Pr:wr y completed; (ii)
Pp:wry completion required that the BSL of P4 had been cleared
and, therefore, that WFencel in P4 had completed; (iii) finally, if
WFencel had completed, then P4:wr x must have completed and
an arrow like (2) is not possible. In all cases, post-WFence reads
waiting due to a match in the local RPSR to avoid a cycle can pro-
ceed as soon as their local WFence completes. A WFence never
clears RPSR entries in other processors.

The second feature is that conventional fences are seamlessly
compatible with the use of WFences in the same program. Indeed,
a conventional fence affects a WFence as in the case described in
Section 3.3: one of the interacting threads cannot reorder its ac-
cesses, either because the memory model prevents it (like in Sec-
tion 3.3) or because there is a conventional fence.

3.5 Larger Numbers of Processors

The WFence algorithm is applicable to cycles with larger num-
bers of processors, irrespective of whether all processors use fences.
In all cases, the cycle is averted. Figure 5 shows two examples
with three processors: one with three WFences and one with just
one. We now show that the cycles depicted cannot occur. This dis-
cussion requires that the WFences reach the GRT in a total global
order. We later show how this is supported in a distributed GRT.
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Figure 5: WFence use in patterns with several processors.

Figure 5(a) shows the case of three processors with three WFences.
In the figure, we pick the WFence that reaches the GRT last. Let us

assume that it is WFence3. There are two possible cases, depend-
ing on whether or not WFence3 returns address x from the GRT.
First, if it does not, it means WFencel has completed and, there-
fore, P4:wr x has completed. Hence, arrow (3) is impossible and
there is no cycle.

If, instead, the addresses returned by WFence3 include x, then
Pc:rd x will wait until WFence3 completes (and clears Pc’s RPSR).
The completion of WFence3 implies that Po:wr z completed which,
according to dependence arrow (2), implies that Pp:rd z has retired
and address z has been removed from Pg’s BSL. Moreover, Pp’s
BSL is only cleared after WFence2 has completed. Following the
same logic, WFence2’s completion implies, following arrow (1),
that WFencel has completed and, therefore, that P4:wr x has com-
pleted. Hence, arrow (3) is again impossible and there is no cycle.

Figure 5(b) has three processors with a single WFence. Con-
sider Pc:rd x. TSO requires that it use the x value that exists after
Pc:rd y retires — it can speculatively get an earlier value, but will
be squashed and restarted if a writer such as P4:wr x updates it
in the meantime. The retirement of Pc:rd y implies that Pg:wr y
completed (arrow (2)) which, in turn, implies that P4:rd y has re-
tired and address y has been removed from P4’s BSL (arrow (1)).
This in turn implies that WFencel has completed and, therefore,
that P4:wr x has completed. Hence, arrow (3) is impossible and
there is no cycle.

Other cycles are averted in a similar way, including those with
one or more conventional fences.

4. WFence IMPLEMENTATION

We now describe WFence’s implementation in detail.

4.1 Hardware Structures

Figure 4 shows the three hardware structures needed to support
WFences: RPSR, BSL, and GRT. The RPSR is a register in the
processor that contains a signature generated with a Bloom filter. It
is filled when the processor receives the response from the GRT to
a WFence executed by the processor. The RPSR contains the union
of the (line) addresses in the Pending Sets (PSs) of all the WFences
that were active (i.e., were in the GRT) at the time when the pro-
cessor executed the WFence (and visited the GRT). The RPSR is
automatically cleared when the local WFence completes. There
is also a functional unit that intersects the addresses of the post-
WFence reads issued by the processor against the RPSR, and stalls
the reads that match.

The BSL is a list of addresses in the cache controller. It stores
the (line) addresses in the Bypass Set (BS), namely the addresses
read by post-WFence read instructions that are executed by the pro-
cessor while the WFence is incomplete. One such read instruction
may be retired or still speculative. If the read is speculative, it will



be squashed (and removed from the BSL) in these four cases: (1)
the response to the WFence execution fills the RPSR with a signa-
ture that includes the read’s address, (2) the data loaded by the read
receives a coherence transaction or (3) is evicted from the cache, or
(4) the read is in a mis-speculated branch path. In all of these cases
but the last one, the read is retried. The addresses of incoming co-
herence transactions are checked against the BSL. If one matches
a BSL address for a retired read, then the coherence transaction is
not allowed to complete — it is either stalled or bounced.

A dirty cache line that was accessed by a retired read in the BSL
may be evicted from the cache. If we evicted it without taking any
special action, the processor would not observe future coherence
activity on the line. Consequently, when such a line is evicted, as
it is written back to memory, its address is saved in the GRT entry
of the processor. Since coherence transactions always check the
GRT, the GRT will be able to stall (or bounce) future conflicting
transactions on that address. To prevent overflow of these evicted
entries in the GRT, they are encoded in the GRT in a per-processor
signature. While these signatures may cause false-positive stalls,
it can be shown that, if they use the same encoding as the RPSR,
deadlocks are impossible.

Note that if the evicted cache line accessed by a retired read in
the BSL was clean, no action is needed. Since the directory is not
updated, the local processor will still observe future coherence ac-
tivity on the line. Overall, in all cases, the BSL (and the processor’s
GRT entry) is cleared when the local WFence completes.

The Global Reorder Table (GRT) is a table in the memory system
that is shared by all the processors. It is placed in a module that ob-
serves coherence transactions, such as the directory controllers in
a distributed-directory system, or the bus controller in a snoopy-
based system. It has at most one entry per processor. When a pro-
cessor sends a WFence-execution message with its PS addresses
to the GRT, the hardware creates an entry in the GRT. The entry
contains the PS (line) addresses encoded in a signature. The entry
is active until the WFence completes. The GRT entry for a pro-
cessor may also contain a signature with (line) addresses from the
WFence’s BS. It contains the addresses (also present in the BSL)
of dirty lines that were evicted from the cache due to a conflict.

Figure 6 shows how pre-WFence writes, WFence execution, post-
WFence reads, and WFence completion interact with the hardware
structures. For WFence execution and completion, we show the
general case where a GRT access is needed. The next section de-
scribes the WFence operation in detail.

—_

Pre—~WFence write:
Stall the request if it finds the matching address in a remote BSL

»

Local WFence execution (most general case):
Put signature of own PS addresses in GRT

Return from GRT a signature of the union of other processors’ PS
addresses and store it in the local RPSR

w

. Post—WFence read:

Stall the request if it finds a matching address in the local RPSR
Else put address in the local BSL (if BSL is full, stall the read)
. Local WFence completion (most general case):

&

Clear the processor’s entry in the GRT
Clear the local RPSR and release any local reads waiting on it

Clear the local BSL and release any external transactions waiting on it

Figure 6: Interaction with WFence hardware structures.

4.2 Timeline of a WFence Instruction

To clarify WFence operation, Figure 7(a) considers a code snip-
pet with a write (W), a fence, and a read (R). It then shows a time-
line of events using a conventional fence (b) or a WFence (c).

The three instructions enter the ROB in order. With a conven-
tional fence (Figure 7(b)), the fence retires from the ROB (and
completes) only when the write buffer is drained of W and of all
the previous writes. If W or any of the previous writes miss, they
directly add to the stall. After the fence retires, R retires.

With a WFence, there are three key times: WFence execution,
WFence retirement, and WFence completion. They are shown in
bold in Figure 7(c).

4.2.1 WFence Execution with/without GRT Access

As indicated in Figure 6, execution involves collecting the ad-
dresses to be written by the pending pre-WFence writes (the PS),
encoding them in a signature, and sending the latter to the GRT. We
can speed-up the code by executing the WFence as early as possi-
ble — i.e., as soon as all the PS addresses are known. However, in
doing so, we will induce a network access to the GRT. In reality, if
none of the pre-WFence writes ends up missing in the cache, there
will be no need to access the GRT.

Consequently, we do not immediately execute a ROB-resident
WFence. Instead, only when the write buffer flags a new cache
miss, does the hardware check for any subsequent WFence that has
not yet executed. It is only then that the WFence starts collecting
the PS addresses and will issue a network access. As we will see,
if an unexecuted WFence reaches the ROB head and finds that the
write buffer is empty, it does not need to access the GRT.

Figure 7(c) shows the case when the WFence executes early (due
to a write miss). In the meantime, R executes and, before the pro-
cessor receives the response from the GRT, R completes. In this
case, R remains speculative. As soon as the GRT response arrives
and updates the RPSR, R compares its address to it. Typically, the
RPSR is null or contains very few addresses.

4.2.2 WFence Retirement

Eventually, W reaches the ROB head and retires into the write
buffer. After this, the WFence reaches the ROB head. If the WFence
has already executed, it also retires, as shown in Figure 7(c). Re-
tirement involves removing the WFence from the ROB and placing
it in the write buffer after W. Immediately after, R reaches the ROB
head and retires. Comparing R retirement points in Figures 7(b)
and (c), we see that WFence can save substantial time.

Two special cases can occur when the WFence reaches the ROB
head. One is that the response from the GRT has not yet been
received and the write buffer is not empty. In this case, WFence
stalls until it receives the response (if the write buffer is empty,
WFence retires immediately).

The second case is if the WFence is still unexecuted. If so,
WFence checks the write buffer. If the write buffer is empty or
contains a single cache hit, then WFence retires without needing a
GRT access. This is a common case. Otherwise, the WFence ex-
ecutes as usual: it collects all the addresses in the write buffer and
sends them as a signature to the GRT. This situation is the most
unfavorable one, since it delays the retirement for the latency of a
round trip to the GRT. Still, this latency is typically substantially
lower than the one added by the cache miss of W in conventional
fences: the write miss may involve a costly coherence transaction
and even a main memory access.

4.2.3 WFence Completion

After W completes, the WFence reaches the write buffer head
and completes (Figure 7(c)). WFence completion involves deleting
the WFence entry from the write buffer, clearing the local BSL and,
if a GRT entry had been allocated, clearing the entry and also the
RPSR.
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Figure 7: Timeline of a WFence instruction.

Overall, in the common case of early WFence execution or no
pre-WFence write miss, WFence does not stall the retirement rate
at all. The worst case occurs if the WFence remains unexecuted,
reaches the ROB head, and needs a round trip to the GRT. Still,
post-WFence reads can continue executing speculatively.

5. ADDITIONAL ISSUES

5.1 No Deadlock is Possible

With WFences, there is no possibility of deadlock. To see why,
consider first two processors. Based on WFence’s operation from
Section 3, one can think of the two cyclic stalls shown in Figure 8:
when the two reads wait on the two writes (a), or when the two
writes wait on the two reads (b).

Pa Pg Pa Py

WI X @ Wr'y W X Wr'y
WFencel WFence2 WFencel WFence2

wy /a0 x dy # (Wit x

(a) (b)

Figure 8: Potential cyclic stalls with two processors.

The case in Figure 8(a) can occur, but it does not deadlock. The
reason is that the writes eventually complete, then the WFences
complete, and then the RPSRs are cleared, releasing the reads.

The case in Figure 8(b) cannot occur. To see why, assume that
it occurs, and pick the last fence to reach the GRT (say WFence?2).
Address x from Pa:wr x was put by WFencel in the GRT, and
was fetched by WFence2. As a result, Pp:rd x sees a match with
its local RPSR and, rather than inserting its address in Pg’s BSL,
stalls until WFence2 completes — which requires that P4:wr X has

completed. Hence, P4:wr x will not be stalled by Pg:rd x because
Pp:rd x will not be in Pg’s BSL. Even if Pp:rd x managed to put
itself in the BSL speculatively, it would be squashed, either when
Pa:wr x executed or when WFence?2 filled the local RPSR with
address x. Hence, this case cannot occur.

Deadlocks with more than two processors can be shown to be
impossible in the same way.

5.2 Value Forwarding

Processors perform value forwarding, whereby a read obtains
data from an earlier write in the pipeline that has not yet completed.
In this case, the corresponding memory line may not be in the cache
yet. Recall from Figure 3(c) that WFence requires that a specula-
tive post-WFence read use its address to stall incoming coherence
transactions. This is the role of the BSL. However, if such a read
gets its data from an incomplete pre-WFence write, such a trans-
action may not occur. Consequently, we require that, before the
post-WFence read that wants the data forwarded can execute, the
pre-WPFence write bring the line into the cache.

5.3 Distributed Global Reorder Table (GRT)

For a small multicore, we use a centralized GRT associated with
the bus controller. For a larger machine, we propose a scalable de-
sign of a distributed GRT. The GRT is distributed like a directory,
broken down into modules in charge of address ranges. Each mod-
ule is associated with the corresponding directory module.

With such a design, as we follow the algorithms for WFence
execution and completion in Figure 6, we see that a WFence may
need to communicate with multiple GRT modules. Specifically,
it needs to deposit a signature in all of the modules that map any
address in its Pending Set (PS); it needs to read a signature from all
of the modules that map any address that may be in its Bypass Set
(BS). Unfortunately, such a distributed protocol is prone to races



when multiple processors concurrently communicate with sets of
GRT modules. Hence, we radically simplify the algorithm.

Our simplifications rely on several observations. First, data ac-
cesses tend to have spatial locality. In addition, we assign address
ranges to GRT modules at page-level granularity, and use a first-
touch page allocation policy. As a result, a WFence’s PS often
maps to a single GRT module. Similarly, the WFence’s BS will
often map to the same GRT module as its PS. Furthermore, if there
is no need for the WFence to perform a GRT access (a common
case), then it does not matter where the BS maps to. Finally, it is
always correct for a WFence to operate as a conventional fence.

With these insights, we design the WFence execution algorithm
for the distributed GRT as follows. As the WFence collects its PS
addresses, it determines whether they all map to a single GRT mod-
ule. If they do, then the WFence executes as usual, communicating
with the single GRT module. In this case, which is the common
one, there are no race concerns.

Otherwise, the WFence works as a conventional fence: the GRT
is unused and post-fence reads remain speculative until the fence

completes. This approach ensures that there are no multiple WFences

racing to create multiple GRT entries with inconsistent state.

In all cases, post-WFence reads execute speculatively as usual,
without any concern about the GRT distribution. However, when a
read is at the ROB head ready to retire after a fence that executed
as a WFence, it checks two conditions: (i) whether the WFence
communicated with any GRT module and, (ii) if so, whether the
read maps to the same GRT module. The very common case is
that either it did not communicate with any module or, if it did, the
module is the one where the read maps to, and the read address is
not in the RPSR. In this case, the read retires immediately as in
our centralized WFence. Otherwise, the read will not retire until
the WFence completes — preventing the retirement of subsequent
accesses.

5.4 Multiple WFences per Thread

When a processor is processing a WFence and allowing subse-
quent memory operations to execute, it may find a second WFence
in the instruction stream. A naive approach is to stall the pipeline
until the first WFence completes. However, this approach has over-
head. Consequently, we use a design that allows multiple active
WFences in a processor.

In this design, a processor dynamically assigns a tag to each
WFence it executes (e.g., two bits if we allow up to four active
WFences). As the hardware deposits a signature in the GRT and
brings back a signature for the RPSR, it tags the GRT entry and
the RPSR with the WFence tag. Each address in the BSL is also
tagged with the latest WFence tag in program order. When a sec-
ond WFence executes, the GRT entry and RPSR are overwritten,
in both data and tag, since they now encode more up-to-date state.
The BSL entries are retained, but when reads after the second fence
add addresses to the BSL, they use the new tag. Later, when a
WFence completes (recall that WFences complete in program or-
der), it clears the GRT entry and RPSR only if they have its own
tag. Moreover, it only clears the BSL entries that have its own tag.

Figure 9(a) shows an example with two WFences. Figure 9(b)
shows the state of the data structures after WFence2 has executed
but before WFencel has completed.

5.5 Filtering Private Accesses

Recently, to reduce the cost of enforcing SC, researchers have
proposed constraining memory reordering only for shared data [24].
We use this approach for WFence. Specifically, if a reference ac-
cesses an address that is clearly private to the thread, then the ref-
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Figure 9: Example of two active WFences in a processor.

erence is not included in the Pending or Bypass Sets of a WFence;
such an address cannot be involved in any inter-thread conflict and,
therefore, in any SC violation. Hence, we do not store such an ad-
dress in the GRT, RPSR, or BSL. As a result, these structures are
more precise and less information is transferred.

We conservatively infer the private properties of a variable only
statically. A more aggressive approach is used in [24], where the
properties of a variable are dynamically tracked at page level with
hardware extensions in the TLB and OS support.

5.6 Application to Release Consistency

The WFence idea can also be applied to systems that support
other memory consistency models, although it may need some mod-
ifications. As an example, in this section, we outline at a high level
the design for a system supporting release consistency (RC).

Under RC, the hardware can reorder rd-rd and wr-wr accesses, in
addition to wr-rd as in TSO. Hence, the program may have WFences
between such pairs of accesses. While, in theory, RC also al-
lows rd-wr reorder, current processor hardware does not deposit
the write into the write buffer until the prior read has retired. As a
result, programs will not have an explicit fence between a read and
a subsequent write even if the rd-wr order is required for correct op-
eration. This means that, like under TSO, WFence under RC also
has to be designed to avert SC violations in code patterns where
only one thread has a WFence. This means that the BSL concept is
also needed under RC.

The Pending Set of a WFence is the addresses of both the non-
completed writes and the non-retired reads preceding the WFence
when the WFence executes. The Bypass Set is the addresses of the
following post-WFence accesses: the reads executed and the writes
deposited in the write buffer before the WFence completes.

6. EVALUATION SETUP

For our evaluation, we perform detailed cycle-level execution-
driven simulations using SESC [21]. We model a multicore with
8 processors connected in a mesh network with a directory-based
MESI coherence protocol under TSO. Each core has a private L1
cache, a bank of a shared L2 cache, a portion of the directory and
the corresponding module of the distributed GRT. For a few ex-
periments, we connect the 8 processors in a bus and use a MESI
coherence protocol with a centralized GRT. In all cases, we use
private data access filtering for the WFences. For the addresses in
the GRT, RPSR, and BSL, we use cache line addresses. Table 1
shows the architecture parameters. Based on these parameters, the
storage overhead added by WFence is 64B for each core’s RPSR,
128B for each L1 controller’s BSL, and 1KB for the GRT.

We compare two multicore architectures: one with WFences
(WFence) and one with conventional fences that support in-window
load speculation and exclusive store prefetching [8] (Baseline). We
use a distributed GRT as the default, and run a few experiments
with a centralized GRT. We model traffic and resource contention
in the system. We run two sets of programs. The first one is 6



Architecture 8-core multicore

Core Out of order, 3-issue wide, 2.0 GHz

ROB & wr-buffer 104-entry ROB & 64-entry FIFO write-buffer

L1 cache Private 32KB WB, 4-way, 2-cycle RT, 32B lines

L2 cache Shared IMB WB with eight 128KB banks
A bank: 8-way, 11-cycle RT (local), 32B lines

Cache coherence MESI under TSO (if directory: full mapped)

On-chip network 3x3 2D-mesh: 5 cycles/hop, 256bit links

or bus: 25 cycles/transaction (avg), 256bit bus

Off-chip memory Connected to one network port, 200-cycle RT
Address mapping Page-level granularity, first-touch policy
WFence 1 cycle to encode an address into signature,
4 active WFences per processor
GRT module Together with the L2 tags (if distributed) or
with bus controller (if centralized)
GRT/RPSR signat. | 512 bits, in 4 128-bit Bloom filters with H3
BSL Up to 32 entries per processor, 4B per entry

Table 1: Multicore architecture modeled. RT stands for round trip
from processor.

programs that we obtain from [3, 4, 7] and use explicit fences for
correctness (Table 2). We call these programs kernels. We study
the performance that WFence attains over Baseline.

bakery Mutual exclusion algorithm for arbitrary # of threads
dekker Mutual exclusion algorithm for two threads

lazylist Concurrency list algorithm using bakery lock

ms2 Concurrent queue algorithm using bakery lock
peterson Mutual exclusion algorithm for arbitrary # of threads
worksteal | Cilk THE work stealing algorithm

Table 2: Kernels evaluated that use explicit fences.

The second setis 17 C/C++ programs from SPLASH-2 and PAR-
SEC, and pbzip2 (parallel bzip2). While these applications run
correctly under TSO, we use them to emulate (very conservatively)
what would be done to guarantee SC in arbitrary programs if fences
were very cheap. Specifically, we use LLVM to simply turn every
access to potentially shared data into an atomic access. This pre-
vents the compiler from reordering across these accesses, inducing
a measured execution overhead of about 4% on average (which is
consistent with [15]). In addition, as the compiler generates the
binary code, it inserts a fence after each atomic write, to prevent
the hardware from reordering it with any subsequent read. The
compiler uses a simple algorithm to remove fences between two
consecutive writes — they are unnecessary, since TSO would not
reorder across them. Overall, these transformations guarantee SC
for the programs. We call the transformed code SC-apps. In our
evaluation, we study the performance overhead of these fences us-
ing either WFence or Baseline.

It is interesting to compare our simulated Baseline fence to the
actual fence in an Intel machine. For this, we write small programs
using the mfence instruction [10] (which we find has a cost sim-
ilar to xchg). We run tests on a desktop with an 8-threaded Intel
Xeon E5530 processor. Figure 10 shows the visible stall latencies
induced by the native Intel fence and the simulated fence in Base-
line.

[ Intel Fence
[l Baseline Fence (simulator)

Cycles

0 I_\

Empty wr-buffer

Non-empty wr-buffer

Figure 10: Comparing a native Intel fence to a simulated one.

With an empty write buffer, the Intel fence costs 20 cycles, while
our fence in Baseline costs 8. With a write buffer filled with many
entries, the Intel fence costs 199 cycles, while our fence in Base-
line costs 42. Since there are many factors that affect a fence’s
overhead, and the microarchitecture of the Intel fence is unknown,
we do not seek to tune our simulator to model the Intel fence.

7. EVALUATION
7.1 Performance with Centralized GRT

Figure 11 compares the execution time of the kernels on the
Baseline and WFence multicores with the centralized GRT. Kernel
execution times are normalized to those in Baseline, and broken
down into time stalled in fences (Fence) and the rest (Useful). The
figure shows that, in Baseline, these kernels spend an average of
12% of their time stalled in fences. WFence eliminates most of
such stall, reducing the execution time of the kernels by an average
of 11%. This shows the effectiveness of our new fence.

O Useful @ Fence

Normalized Execution Time

bakery  dekker lazylist ms2

peterson worksteal  avg

Figure 11: Performance impact on kernels for centralized GRT. In
the figure, B and W refer to the Baseline and WFence multicores.

Figure 12 shows the execution time overhead induced in the ap-
plications by transforming them into SC-apps, conservatively guar-
anteeing SC. The overheads come from limiting compiler-induced
optimization (Compiler) and reducing hardware-induced reorder-
ing (Fence). Compiler is largely the same in both Baseline and
WFence multicores, and adds, on average, 4% overhead. For some
codes, limiting compiler optimization slightly improves the speed
(Compiler is negative), causing the bar to start lower than zero.
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Figure 12: Execution overhead of conservatively guaranteeing SC
for centralized GRT. B and W mean Baseline and WFence chips.

The Fence overhead is much larger in Baseline than in WFence.
On average, limiting hardware reordering for guaranteed SC adds
a fence overhead of 38% in Baseline and of only 2% in WFence.
Overall, we estimate that, with WFences, the cost of conservatively
guaranteeing SC in programs on TSO hardware is very small.

7.2 Performance with Distributed GRT

Figures 13 and 14 repeat Figures 11 and 12 for multicores with
the distributed GRT. We see that the trends are the same and the
values are very close. In Figure 13, the kernels spend an average
of 11% of their time in fences, and WFence reduces the execution
time by an average of 9%.



#Fences/1K inst | Addrin RPSR | Addrin BSL | #wr stalled #rd stalled #BSL Number of GRT Modules Traffic
Codes Stat. Dyn. Avg Max Avg | Max by BSL by RPSR disp. per PS Add’l BS inc.
Avg | Max | Avg [ Max fence Avg [ Max | Avg | Max (%)
barnes 78 46 1.1 17 2.0 8 0.0 2 0.0 3 0.0 1.04 6 0.0 2 11
fmm 51 54 1.6 23 1.2 27 0.0 3 0.0 2 0.0 1.07 4 0.3 3 14
ocean 46 8 53 58 1.4 32 0.0 1 0.0 4 0.0 1.31 4 0.0 1 9
radiosity 34 16 2.3 22 14 32 0.0 5 0.1 2 0.0 1.02 6 0.1 1 13
raytrace 75 42 1.4 14 2.0 9 0.0 1 0.0 2 0.0 1.03 5 0.0 2 11
water-ns 55 7 2.0 10 1.0 18 0.0 5 0.1 1 0.0 1.00 3 0.0 2 5
water-sp 48 39 3.1 17 2.1 24 0.0 4 0.0 1 0.0 1.01 4 0.0 2 1
cholesky 37 33 1.2 18 1.1 14 0.0 4 0.1 2 0.0 1.03 4 0.0 5 9
fft 25 51 3.6 23 2.1 12 0.0 1 0.0 2 0.0 1.17 3 0.0 1 7
radix 26 11 6.5 36 0.4 12 0.0 2 0.0 1 0.0 242 6 0.0 4 19
black 24 2 0.3 2 0.4 1 0.0 0 0.0 1 0.0 1.00 2 0.4 2 10
fluid 28 18 1.7 9 1.0 3 0.0 1 0.0 2 0.0 1.12 5 0.2 4 11
swaptions 35 26 3.5 14 0.1 26 0.0 3 0.0 4 0.0 1.86 6 0.0 6 22
canneal 24 12 1.4 6 1.4 16 0.0 1 0.1 2 0.0 1.08 5 0.1 2 0
dedup 42 13 1.2 8 0.2 13 0.0 0 0.0 1 0.0 1.01 3 0.0 2 9
stream 29 2 0.8 5 3.0 24 0.0 4 0.1 2 0.0 1.00 3 1.5 3 15
pbzip2 30 27 0.1 3 0.7 7 0.0 2 0.0 3 0.0 1.00 3 0.0 2 5
[Average | 404 | 239 [ 22 | 168 | 13 | 164 | 00 | 23 [ 00 | 21 | 00 [118] 42 [ 0.1 | 26 | 97 |
bakery 3 2 1.0 3 0.9 2 0.0 2 0.1 2 0.0 1.00 2 0.0 3 4
dekker 23 3 0.1 2 1.0 4 0.0 1 0.0 1 0.0 1.01 1 0.0 2 8
lazylist 1 4 0.8 4 0.8 3 0.0 2 0.0 1 0.0 1.00 3 0.1 2 6
ms2 3 6 0.2 2 0.7 2 0.0 2 0.1 2 0.0 1.00 2 0.0 1 5
peterson 3 3 0.4 2 1.1 5 0.0 1 0.0 2 0.0 1.00 2 0.0 1 5
worksteal 8 7 1.1 3 1.0 9 0.0 3 0.0 4 0.0 1.08 4 0.1 4 9
[Average || 68 | 42 [ 06 | 27 [ 09 42 [ 00 | 18 [ 00 | 20 | 00 [102] 23 [ 00 | 22 | 62 |
Table 3: Characterization of WFence. The addresses used are (32-byte) line addresses.
0 |:| Usefu| . Fence Figure 15 shows the execution overhead of running SC-apps na-
= B B tively on the 8-threaded Intel-based desktop. Conservatively guar-
£ 100 w anteeing SC adds, on average, 4% overhead due to compiler restric-
g 9 - tions and 58% due to hardware restrictions.
g
zB 70 1 1 140

bakery  dekker Iazyllst m52 peterson worksteal avg

Figure 13: Performance impact on kernels for distributed GRT. In
the figure, B and W refer to the Baseline and WFence multicores.

In Figure 14, the Compiler overhead is largely the same as for the
centralized GRT. Its average value is 4%. The Fence overhead also
follows the same trend. On average, WFence reduces Fence from
36% in Baseline to only 4% in WFence. The overhead in WFence
largely comes from three codes: radix, swaptions, and ocean. For
these codes, the Pending Set of WFences sometimes maps to multi-
ple GRT modules, thus transforming a WFence into a conventional
fence.
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Figure 14: Execution overhead of conservatively guaranteeing SC
for distributed GRT. B and W mean Baseline and WFence chips.
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Figure 15: Execution overhead of conservatively guaranteeing SC
in an Intel-based desktop.

7.3 Characterizing WFences

In the rest of the paper, we focus on the multicore with dis-
tributed GRT. Table 3 characterizes our proposed fence in the WFence
multicore with 8 processors. We proceed from left to right columns.

Columns 2-3 show the number of fences inserted or present per
1K instructions, statically and dynamically. For SC-apps, the num-
bers are very high (average 24 dynamically). The reason is that our
compiler pass is very naive. A more precise analysis can reduce the
number of fences and further decrease the cost of guaranteeing SC
in Figure 14. In kernels, fences are few and well tuned (average 4
dynamically).

Columns 4-5 show the number of line addresses that are encoded
in the 512-bit signature brought-in from the GRT by a WFence and
stored in the local RPSR. We show average and maximum values.
On average, few addresses are encoded (2.2 in SC-apps and 0.6
in kernels). The maximum value can be a few tens. As a result,



very few reads stall due to false-positive collisions with the RPSR.
Specifically, it can be shown that, on average, only 4.2% of the
stalled reads in SC-apps and 2.5% in kernels are stalled due to false
positives. As a related fact, when a WFence in SC-apps sends its
Pending Set to the GRT, the average number of line addresses that
it includes is only about 1. The reason is because of data locality
and the fact that we use line addresses.

Columns 6-7 show the average and maximum number of line
addresses in the BSL list of a WFence. On average, the number is
small (1.3 for SC-apps and 0.9 for kernels). The reason is again
because of data locality and the use of line addresses. Increasing
the ROB depth and issue width can directly increase these numbers.
The maximum number is 32 because this is the size of our BSL.

Columns 8-9 show the average and maximum number of remote
writes stalled by the local BSL for each WFence. The average num-
ber is 0.0. Since very few write stalls are observed, they do not
introduce any visible performance overhead.

Columns 10-11 show the average and maximum number of lo-
cal post-WFence reads that are stalled or squashed by the RPSR
fetched by a WFence. The average number is 0.0. This confirms
our hypothesis that conflicts across concurrent fences are rare.

Column 12 shows the number of displaced dirty cache lines whose
address is in the BSL. This is a very rare event. Hence, very few
BSL entries are moved to the GRT.

Columns 13-16 examine the locality of accesses to the mod-
ules of the distributed GRT. First, we consider the addresses in a
WFence’s Pending Set (PS). For these addresses, Columns 13-14
show the average and maximum number of GRT modules where
they map. On average, PSs in the kernels map to 1.02 modules; in
the SC-apps, they map to 1.18 modules. The highest numbers are
in radix, swaptions, and ocean, where the average is 2.42, 1.86, and
1.31, respectively. Because of this relatively bad spatial locality,
WFence works less well in these applications. This is confirmed
by the higher Fence overhead in Figure 14.

Second, we consider a WFence’s Bypass Set (BS). For these
reads, Columns 15-16 show the average and maximum number of
additional GRT modules where they map. These are the modules
beyond the one(s) where the PS maps. On average, these modules
are few: 0.0 in the kernels and 0.1 in the SC-apps. The one excep-
tion is streamcluster, where the average is 1.5.

The last column is the increase in bytes transferred in the net-
work due to WFences— mostly due to communication with the
GRT on WFence execution and completion. The average increase
is 10% for SC-apps and 6% for kernels. This traffic volume is mod-
est and causes no significant congestion. Moreover, it is distributed
toward different GRT modules.

7.4 Scalability with the Number of Processors

Figure 16 shows the execution time overhead induced in the ap-
plications by transforming them into SC-apps for different proces-
sor counts. The figure shows runs for 2, 4, 8, and 16 processors.
As in Figure 14, the overhead includes compiler- and hardware-
induced effects. Charts (a) and (b) correspond to the Baseline and
WFence multicores. Due to lack of space, the charts show bars for
only some codes, but the averages are for all 17 SC-apps.

The data shows that, as the processor count increases, the av-
erage overhead tends to increase only very slowly. This applies
to both the Baseline and WFence multicores. Overall, we see that
WFence is scalable.

8. RELATED WORK

As described in Section 2.3, Conditional Fences (C-Fence) [13]
is a scheme to reduce fence overhead dynamically. It has four major
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Figure 16: Scalability of conservatively guaranteeing SC.

differences with WFence. First, C-Fence requires a compiler pass
to determine Associate fences, whereas WFence does not use any
compiler. Second, Associate fences are grouped conservatively:
even if two fences do not separate the same set of addresses, they
may be put in the same group (e.g., when they were placed in
the code to break a more-than-2-variable dependence cycle). As
a result, a fence may stall for an Associate fence even if there is
no potential SC Violation (SCV). WFence overcomes this limita-
tion by dynamically checking for address conflicts. Third, WFence
works seamlessly with conventional fences, while C-Fence does
not. This is because C-Fence needs the information about fence
association. Finally, the C-Fence compiler pass sometimes needs
to insert fences where none was needed (e.g., in Figure 3(a)), to be
able to create Associates, while WFence never adds new fences.

Another approach to reduce stalls due to the memory consistency
constraints is post-retirement speculation (e.g., [1, 5, 9, 20, 27]).
This technique retires accesses speculatively, buffering their state.
Often, the speculative accesses are committed as a group or rolled
back together. This approach requires a larger storage for specu-
lative state, often using the L1 for it. It needs checkpointing and
rollback of large state. Moreover, it often needs modifications to
the coherence protocol and cache structures. Finally, it keeps post-
fence reads speculative for a longer period, risking more squashes
due to external coherence requests or local cache displacements.
WFence shortens the speculative window, reducing squashes.

Four recent related works with different goals are Conflict Or-
dering (CO) [14], End-to-End SC [15, 24], Vulcan [17], and Vo-
lition [18]. CO’s goal is to ensure SC execution on a relaxed-
consistency platform. It allows accesses to bypass prior pending ac-
cesses if there is no potential for SCV; otherwise, it stalls them. CO
has three main differences with our work. First, CO assumes that
the program may have SCVs and tries to ensure SC while achiev-
ing high performance; we assume that the program has the neces-
sary fences for SC and try to reduce the overhead of these fences.
Second, CO requires every cache miss to bring pending write in-
formation from the directory, whereas we only bring the PSs when
a WFence executes. Third, while CO works well for RC, it is likely
suboptimal for TSO: to retire a read, CO needs to know whether
any of its preceding writes missed and, if it did, it needs its pending
write information. However, in TSO, writes are serialized, which
serializes this information. WFence has no such requirement.

End-to-End SC’s goal is to ensure SC from the source level. Its
SC-preserving compiler [15] and its SC hardware [24] prohibit any



reordering of shared accesses, but allow private accesses to be re-
ordered. WFence is different in that: (i) it focuses on pre/post-
fence accesses only, and (ii) for these accesses, it is more aggressive
than End-to-End SC, since it allows shared accesses to be reordered
without causing SCVs.

The goal of Vulcan [17] and Volition [18] is to detect SCVs in
executions on relaxed consistency platforms. They try to find a
dependence cycle in hardware and trigger an exception when the
cycle is found. They use a different approach than WFence. They
create graphs of dependences to find cycles between processors.
Vulcan is designed for centralized systems and Volition for scalable
systems and cycles with any number of processors.

WFence is also related to proposals to eliminate or reduce the
cost of synchronization operations, such as Speculative Lock Eli-
sion [19] or Speculative Synchronization [16]. These proposals dif-
fer from WFence in that they do not focus on optimizing an indi-
vidual fence, but a whole critical section or barrier operation.

Software researchers have built on the cycle-detection algorithm
of Shasha and Snir [23] to insert fences in codes running on relaxed
consistency platforms and guarantee SC. Their goal is to minimize
the number of fences introduced to guarantee SC. They rely on ex-
tensive compiler analysis (e.g., [12, 26]) or on off-line runs of data-
race detectors [6]. While the slowdowns resulting from guarantee-
ing SC are sometimes significant (e.g., Baseline in our Figure 14),
researchers have been able to progressively reduce them. WFence
is a complementary approach to help them minimize the overhead
of SC guarantees.

9. CONCLUSIONS

Today’s fences can be quite expensive. If, instead, they were
largely free, software could benefit substantially: programmers could
write faster fine-grained concurrent algorithms, and C++ and Java
compilers could guarantee SC at little cost.

In this paper, we have presented WFence, a fence that is very
cheap because it allows post-fence accesses to skip it. Such ac-
cesses can typically complete and retire before the pre-fence writes
have drained from the write buffer. If an incorrect access reordering
is about to happen, the hardware stalls for a short period to avoid
it. In addition, WFence is compatible with the use of conventional
fences in the same program.

We presented the WFence design for TSO, and compared it to
a conventional fence with speculation for 8-processor simulations.
We ran parallel kernels that contain explicit fences and parallel ap-
plications that do not. For the kernels, WFence eliminated nearly
all of the fence stall, reducing the kernels’ execution time by an av-
erage of 11%. For the applications, a conservative compiler algo-
rithm placed fences in the code to guarantee SC. Then, on average,
WeFences reduced the resulting fence overhead from 38% of the ap-
plications’ execution time to 2% (in a centralized WFence design),
or from 36% to 5% (in a distributed WFence design).

Overall, the resulting cheap fence can be a good help for parallel
programming. In our future work, we plan to optimize the dis-
tributed GRT design for the case where a WFence maps to multiple
GRT modules.
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