
QuickRec: Prototyping an Intel Architecture Extension
for Record and Replay of Multithreaded Programs

∗

Gilles Pokam, Klaus Danne,
Cristiano Pereira, Rolf Kassa, Tim Kranich,

Shiliang Hu, Justin Gottschlich

Intel Corporation

{gilles.a.pokam, klaus.danne,
cristiano.l.pereira, rolf.kassa, tim.kranich,

shiliang.hu, justin.e.gottschlich}
@intel.com

Nima Honarmand, Nathan Dautenhahn,
Samuel T. King, Josep Torrellas

University of Illinois at Urbana-Champaign

{honarma1, dautenh1, kingst, torrella}
@illinois.edu

ABSTRACT

There has been significant interest in hardware-assisted determinis-
tic Record and Replay (RnR) systems for multithreaded programs
on multiprocessors. However, no proposal has implemented this
technique in a hardware prototype with full operating system sup-
port. Such an implementation is needed to assess RnR practicality.

This paper presents QuickRec, the first multicore Intel Architec-
ture (IA) prototype of RnR for multithreaded programs. QuickRec
is based on QuickIA, an Intel emulation platform for rapid proto-
typing of new IA extensions. QuickRec is composed of a Xeon
server platform with FPGA-emulated second-generation Pentium
cores, and Capo3, a full software stack for managing the recording
hardware from within a modified Linux kernel.

This paper’s focus is understanding and evaluating the imple-
mentation issues of RnR on a real platform. Our effort leads to
some lessons learned, as well as to some pointers for future re-
search. We demonstrate that RnR can be implemented efficiently
on a real multicore IA system. In particular, we show that the rate
of memory log generation is insignificant, and that the recording
hardware has negligible performance overhead. However, the soft-
ware stack incurs an average recording overhead of nearly 13%,
which must be reduced to enable always-on use of RnR.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors) - MIMD Processors; C.4 [Performance of

Systems]: Design Studies; C.0 [General]: Hardware/software in-
terfaces

Keywords

Deterministic Record and Replay, Shared Memory Multiproces-
sors, Hardware-Software Interface, FPGA Prototype.

∗This work is supported in part by the Illinois-Intel Parallelism
Center (I2PC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION
Deterministic Record and Replay (RnR) of multithreaded pro-

grams is an appealing mechanism for computer systems builders.
RnR can recreate past states and events, by recording key infor-
mation while a program runs, restoring to a previous checkpoint,
and replaying the recorded log to force the software down the same
execution path. With this mechanism, system designers can debug
applications [1, 4, 6, 17, 32, 34, 41], withstand machine failures [5],
and improve the security of their systems [15, 16].

To replay a program, an RnR system must capture all sources of
non-determinism. For multithreaded programs running on multi-
cores, there are two key sources of non-determinism. The first is
the inputs to the execution, such as effects and return values of sys-
tem calls or occurrence of signals. The second is the order of the
inter-thread communications, which manifests as the interleaving
of the inter-thread data dependences through the memory system.
While the first source of non-determinism can be captured in soft-
ware with relatively low overhead, doing the same to record the
second source typically imposes significant slowdowns.

To record memory access interleaving with low overhead, re-
searchers have proposed several hardware assisted RnR designs
(e.g., [3, 7, 12, 13, 23, 24, 25, 26, 30, 31, 36, 39, 40]). These
proposals have outlined RnR systems that have negligible over-
head during execution recording and can operate with very small
log sizes. To evaluate these systems, the authors typically imple-
ment their techniques in software-based simulators. In addition,
they typically run their simulations without an operating system
that manages and virtualizes their special hardware. The exceptions
are LReplay [7], which extends and simulates the RTL (Register
Transfer Level) model of a chip multiprocessor and does not dis-
cuss system software issues, and Capo [24] and Cyrus [12], which
use an RnR-aware operating system on top of simulated hardware.

Although this evaluation approach helps assess the efficacy of
the proposed algorithms, it ignores practical aspects of the design,
such as its integration with realistic cache coherence hardware, cop-
ing with relaxed memory models, and virtualizing the recording
hardware. In addition, promoting RnR solutions into mainstream
processors requires a co-design with the system software that con-
trols the hardware, and omitting software effects from the evalua-
tion presents only part of the overall performance picture.

To evaluate the practical implementability of hardware-assisted
RnR, we have built QuickRec, the first multicore IA-based proto-
type of RnR for multithreaded programs. QuickRec is based on
QuickIA [37], an Intel emulation platform for rapid prototyping of

(a)

Xeon Server

Socket 0

FPGA

L2$

Pentium

FPGA

L2$

Pentium

FPGA

Bridge

MCH

DDR2

Socket 1

FPGA

L2$

Pentium

FPGA

L2$

Pentium

FPGA

Bridge

(b)

Pentium

U-pipe V-pipe

MRR

R-set W-set

Counter CBUF

L1$

L2$

2 3

1

(c)

Figure 1: Photograph of the QuickRec prototype with FPGAs in CPU sockets (a); architecture of the QuickIA processor-emulation platform
(b); and architecture overview of the extended Pentium core in QuickRec, where circled numbers identify the main CPU touch points required
to enable recording (c).

new IA extensions. QuickRec is composed of a Xeon server plat-
form with FPGA-emulated second-generation Pentium cores, and
Capo3, a full software stack for managing the recording hardware
from within a modified Linux kernel.

This paper focuses on identifying and characterizing RnR-related
implementation issues. Specifically, we describe how QuickRec
records the memory access interleaving of threads, and how to in-
tegrate this support into a commodity IA multicore. We discuss
subtle issues related to capturing the ordering of instructions with
multiple memory accesses, and the interaction with the memory
consistency model. We also discuss how Capo3 records the inputs
to processes, manages the replay logs, and virtualizes the hardware
components. We provide data characterizing QuickRec’s recording
performance and log parameters. Overall, our evaluation demon-
strates that RnR can be practical for real IA multicore systems.

This effort has led to some lessons learned, as well as to some
pointers for future research directions. In particular, we find that the
main challenge of RnR systems is to take into account the idiosyn-
crasies of the specific architecture used, such as single instructions
producing multiple memory transactions. Further, we find that the
software stack has a dominant role in the overall system perfor-
mance, as it manages the logs. Based on these experiences, we sug-
gest focusing future research on recording input events efficiently,
and on replay techniques that are tolerant of the micro-architectural
details of the system.

The main contributions of this work are the following:

• The implementation of the first IA multicore prototype of RnR for
multithreaded programs. The prototype includes an FPGA design
of a Pentium multicore and a Linux-based full software stack.

• A description of several key implementation aspects. Specifically,
we show how to efficiently handle x86 instructions that produce
multiple memory transactions, and describe the elaborate hardware-
software interface required for a working system.

• An evaluation of the system. We show that the rate of mem-
ory log generation is insignificant, given today’s bus and memory
bandwidths. In addition, the recording hardware has negligible per-
formance overhead. However, the software stack incurs an average
recording overhead of nearly 13%, which must be reduced to en-
able always-on use of RnR.

This paper is organized as follows: Section 2 introduces the
QuickRec recording hardware; Section 3 describes the Capo3 sys-
tem software; Section 4 characterizes our prototype; Section 5 dis-
cusses using replay for validation; Section 6 outlines related work;
Section 7 describes lessons learned; and Section 8 concludes.

2. QuickRec RECORDING SYSTEM
The QuickRec recording system prototyped in this work is built

on a FPGA processor-emulation platform called QuickIA. This sec-
tion introduces QuickIA and then describes the changes we added
to support RnR. Figure 1a shows a picture of the QuickRec record-
ing system testbed.

2.1 QuickIA Processor Emulation Platform
The QuickIA processor emulation platform [37] is a dual-socket

Xeon server board in which Xeon CPUs are substituted with FPGA
modules from XtreamData [38]. Each such FPGA module is com-
posed of two Compute FPGAs and one Bridge FPGA, as shown in
Figure 1b. Each Compute FPGA implements a second-generation
Pentium core with private L1 and L2 caches. The Bridge FPGA
implements the interconnect between the two Compute FPGAs and
the Intel Front Side Bus (FSB), which connects the two CPU sock-
ets to the Memory Controller Hub (MCH) on the platform. This
allows both CPU sockets to be fully cache coherent, with full ac-
cess to memory and I/O. The QuickIA system implements a MESI
coherence protocol with L2 as the point of coherence.

The Pentium cores used in the QuickIA emulation platform are
fully synthesizable. Each core features a dual-pipeline in-order
CPU with floating-point support. In addition, each core is extended
with a set of additional features to reflect the state of the art of mod-
ern processors. These changes include L1 cache line size increase
to 64 bytes, Memory Type Range Registers, physical address ex-
tension, and FSB xAPICs.

The four emulated Pentium cores run at 60MHz. While this
clock frequency is low, the memory bandwidth is also low (24MB/s),
which means that the ratio between CPU speed and memory band-
width is similar to that of today’s systems. The QuickIA system
includes 8GB of DDR2 memory and basic peripherals (network,
graphics card and HDD), and can boot a vanilla SUSE Linux dis-
tribution. The basic platform parameters are shown in Table 1.

2.2 Recording Interleaving Non-Determinism
To record the non-determinism of memory access interleaving,

the RTL of the synthesizable Pentium core is augmented to capture
the order of memory accesses. This support includes mechanisms
to break down a thread’s execution into chunks (i.e., groups of con-
secutive dynamic instructions), and then order the chunks across
cores. A significant effort was invested in integrating this sup-
port into the Pentium core without adding unnecessary complex-
ity. Some of the main challenges we faced include dealing with the
IA memory model, and coping with x86 instructions with multi-

Cores 4 Pentium cores

Clock 60MHz

L1 data 32KB, private, WB, 8-way assoc,

cache 64B line size, 1-cycle latency

L2 512KB, private, WB, 16-way assoc,

cache 64B line size, 4-cycle latency

Coherence MESI

Memory 8GB DDR2, 24MB/s bandwidth (measured by

STREAM [22]), 90-cycle round-trip latency

Table 1: QuickIA platform parameters.

ple memory accesses. The extended Pentium core is then synthe-
sized and downloaded into FPGAs to boot up the QuickRec emula-
tion platform. A high-level overview of the extended Pentium core
is shown in Figure 1c. In the figure, the Memory Race Recorder

(MRR) box implements the functionality for recording memory ac-
cess interleaving, while the circled numbers indicate the CPU touch

points required to enable it.

2.2.1 Capturing and Ordering Chunks

The QuickRec recording system implements a mechanism simi-
lar to the Intel MRR [30] to divide a thread’s execution into chunks.
It adds Bloom filters next to the L1 cache to capture the read and
write sets of the memory accesses in a chunk (R-set and W-set in
Figure 1c). The line addresses of the locations accessed by loads
and stores are inserted into their respective set at retirement and at
global observation time, respectively. A thread’s chunk is termi-
nated when the hardware observes a memory conflict (i.e., a data
dependence) with a remote thread. Conflicts are detected by check-
ing the addresses of incoming snoops against addresses in the read
and write sets. When a conflict is detected, a counter (Counter

in Figure 1c) with the current chunk size is logged into an internal
chunk buffer (CBUF in Figure 1c), along with a timestamp that pro-
vides a total order of chunks across cores. The chunk-size counter
counts the number of retired instructions in the chunk. After a
chunk is terminated, the read and write sets are cleared, and the
chunk-size counter is reset.

In addition to terminating a chunk on a memory conflict, Quick-
Rec can be configured to terminate a chunk when certain system
events occur as well, such as an exception or a TLB invalidation.
A chunk also terminates when the 20-bit chunk-size counter over-
flows. Additionally, the addresses of lines evicted from L2 are
looked up in the read and write sets and, in case of a hit, the chunk
also ends. This is done because the read and write sets would not
observe future coherence activity on these evicted lines. Further
information on chunk termination is provided in Section 2.3.

Figure 1c shows the main CPU touch points required to enable
the chunking mechanism described above. The first CPU touch
point is hooked-up to the external L1 snoop port to allow snoops
to be forwarded to the MRR for address lookups. The second and
third CPU touch points are hooked-up to the U and V integer ex-
ecution pipelines of the Pentium core. They provide diverse func-
tionalities, such as forwarding load and store line addresses to the
MRR for insertion into the read and write sets, and forwarding the
instruction retirement signal to the MRR to advance the chunk-size
counter.

One of the complexities we encountered when integrating the
chunking mechanism into the Pentium core was keeping updates to
the read and write sets within one cycle, so that they can be per-
formed in parallel with a cache access. The problem is that only
the lower bits of the addresses are available at the beginning of a

cache cycle, as the upper bits (tag bits) are provided usually late in
the cycle, after a DTLB access. To preserve a single cycle for the
read and write set update, addresses (tag plus set bits) are buffered
into a latch stage before they are fed to the Bloom filter logic. To
compensate for the delayed update of the read and write sets, these
buffers are also looked-up on external snoops, at the cost of addi-
tional comparators for each address buffer.

2.2.2 Integration into the IA Memory Model

The IA memory model allows a load to retire before a prior store
to a different address has committed, hence effectively ordering
the load before the prior store in memory. This memory model is
called Total Store Order (TSO). In this situation, using the retired
instruction count is not sufficient to guarantee that loads and stores
are ordered correctly during replay. This is because, during replay,
instructions are executed in program order. Hence, regardless of
when the store committed to memory during the recorded execu-
tion, the store is evaluated before the load during replay. To ad-
dress this problem, QuickRec implements a solution similar to the
one proposed in CoreRacer [31] to handle TSO. The idea is to track
the number of pending stores in the store buffer awaiting commit
and, at chunk termination, append the current number to the logged
entry. This number is called the Reordered Store Window (RSW)
count. The MRR is hooked-up to the memory execution unit to
enable this functionality.

2.2.3 Instruction Atomicity Violation

In the x86 ISA, an instruction may perform multiple memory
accesses before completing execution. For instance, a split cache
line access, which is an access that crosses a cache line bound-
ary, requires more than one load or store operation to complete. In
addition, some complex instructions require several memory op-
erations. For example, the increment instruction (INC) performs a
load and a store operation. At the micro-architecture level, these in-
structions are usually broken down into multiple micro-operations
or µops. An Instruction Atomicity Violation (IAV) occurs if an
event causes the QuickRec recording system to log a chunk in
CBUF in the middle of such an instruction execution. An exam-
ple of such an event is a memory conflict. Because software is
usually oblivious of split cache line accesses and µop execution,
IAVs make it difficult for software to deterministically reproduce a
program execution.

Figure 2 shows an example. Thread T0 executes instruction INC
A, which increments the value in memory location A. The instruc-
tion breaks down into the three µops shown in the figure: a read
from A into user-invisible register rtmp, the increment of rtmp, and
the store of rtmp into A. At the same time, thread T1 writes A.
Suppose that the operations interleave as shown in the time line.

INC A

µop01: rtmp← A

µop02: rtmp← rtmp + 1

µop03: A← rtmp

T0 T1

A ← r1

1

2

t0

t1

t2

t3

Global Time

Figure 2: Instruction atomicity violation (IAV) example.

When the store in T1 executes at time t2, a conflict with T0 is
detected, since µop01 has read from the same address at t0. There-
fore, QuickRec terminates the chunk in T0 and logs an entry in
T0’s CBUF. This chunk is ordered before the store in T1. However,
since the INC instruction has not yet retired, INC is not counted
as belonging to the logged chunk. Then, when the INC instruc-
tion executes µop03 and retires at t3, a conflict with T1 is detected.
This causes QuickRec to terminate the chunk in T1 and log an en-
try in T1’s CBUF that contains the store. The logged chunk is
ordered before the currently-executing chunk in T0, which is as-
sumed to include the INC instruction. Consequently, in this naive
design, the replay would be incorrect. Indeed, while during record-
ing, µop01 occurred before the store in T1, which in turn occurred
before µop03, during replay, the store in T1 will be executed before
the whole INC instruction.

This problem occurs because the INC instruction suffers an IAV.
Although the instruction has performed some memory transactions
during the earlier chunk in T0, since the instruction has not retired
when the chunk in T0 is logged, the instruction is counted as be-
longing to the later chunk in T0.

The QuickRec recording system solves this problem by moni-
toring the retirement of the multiple memory accesses during the
execution of the instruction. Specifically, it uses a dedicated IAV
counter to count the number of retired memory transactions for
a multi-line or multi-operation instruction (Figure 3). The IAV
counter is incremented at every retired memory transaction, and
is reset when the instruction retires. At chunk termination, if the
IAV counter is not zero, the current instruction has not retired, and
an IAV has been detected. In this case, QuickRec saves the value
of the IAV counter in the log entry of the terminated chunk. Since,
during replay, we know exactly the number (and sequence order) of
the memory transactions that need to occur in a given instruction,
by reading the IAV counter and examining the RSW count (Sec-
tion 2.2.2), we know how many memory operations of the subse-
quent instruction need to be performed before completing the cur-
rent chunk. In our actual implementation, the IAV counter is in-
cremented by 1 for each access in a split cache line reference, and
by 2 for any other access. With this design, an odd counter value
indicates that the chunk terminated between the accesses of a split
cache line reference.

Chunk entry

IAV

Counter

µop Ld/St retirement

µop Ld/St split

Instr. retirement

Event recording

signal

IAV

Figure 3: IAV counter mechanism.

Consider again the example of Figure 2. When T1 executes the
store at time t2 and a conflict is detected in T0, the INC instruction
has not yet retired. The IAV counter in T0 is 2, since the only re-
tired access is that of µop01. Therefore, an IAV is detected. The
QuickRec recording system terminates the chunk in T0 and, as it
logs the chunk, appends to it the value of the IAV counter. This log
entry conveys to the replayer the information that an IAV has oc-

curred in the chunk and that only the first memory µop had retired
at the time of chunk termination.

Instruction atomicity violation was first introduced in [29] and
then described in [31]. The main difference with [31] is that we log
the number of retired memory transactions instead of the number of
transferred bytes. The advantage of logging memory transactions
over transferred bytes is the reduction in the log size.

2.2.4 Log Management

CBUF is organized into four entries, where each is as large as
a cache line. When a chunk terminates, a 128-bit chunk packet is
stored in CBUF. When a CBUF entry is full, it is flushed by hard-
ware to a dedicated memory region called CMEM. To minimize the
performance impact, this is done lazily, during idle cycles, by by-
passing the caches and writing directly to memory. Occasionally,
however, the chunking mechanism must stall the execution pipeline
to allow CBUF to drain to CMEM to avoid overflow.

There are two main packet types inserted into CBUF, namely
the timestamp packet (TSA) and the chunk packet. Both are very
conservatively sized as 128-bit long. Once a TSA is logged for a
thread, subsequent chunk packets for that thread only need to log
the timestamp difference (TSD) with respect to the last TSA. The
TSA is then logged again when the value in TSD overflows. Note
that this also causes a chunk termination. Figure 4 shows the format
of these two packets. The chunk packet contains the TSD, chunk
size (CS), and RSW and IAV counts. It also contains a Reason

field, which indicates why the chunk was terminated — e.g., due
to a RAW, WAR or WAW conflict, an exception, or a chunk-size
overflow. Table 2 lists the main reasons for terminating chunks.

Format Reason TSD CS RSW IAV Reserved

0 2 3 6 7 38 39 58 59 63 64 79 80 127

3 bits 4 bits 32 bits 20 bits 5 bits 16 bits 48 bits

Format Reserved TSA Reserved

0 2 3 6 7 70 71 127

3 bits 4 bits 64 bits 57 bits

Chunk Packet

Timestamp Packet

Figure 4: Packet formats in QuickRec.

Type Reason

RAW RAW conflict between chunks

WAR WAR conflict between chunks

WAW WAW conflict between chunks

WAB Both WAR and WAW conflicts between chunks

EXCEPT Exception, interrupt, far call, or far return

EVICT Line eviction from L2 that hits the R-set or W-set

CS_OVERFLOW Chunk size overflow

TLBINV TLB invalidation

XTC Explicit chunk termination instruction

Table 2: Main reasons for terminating chunks. WAB (Write-After-
Both) is when a write in one chunk hits in both the read and the
write set of another chunk.

2.3 Programming Interface
The QuickRec recording system contains a set of registers to

configure and program the hardware. For instance, using these reg-
isters, the hardware can be programmed to record memory non-
determinism for user-level code only, or for both user- and system-
level code. It can also be programmed to terminate a chunk under
certain conditions only, such as a specific type of conflict or ex-
ception. Privileged software can also specify where in memory the
logs are written for each recorded thread. The QuickRec recording
system also has a status register that is updated at chunk termination
time to capture the state of the machine at that point. Among other
information, it captures the reason for the chunk termination. Some
of its information is copied to the Reason field of the logged chunk
packet. A more detailed discussion of the programming interface,
and how the system software uses it to manage the QuickRec hard-
ware is provided in Section 3.3.

QuickRec extends the ISA with two new instructions: one that
terminates the current chunk (XTC), and one that terminates the
current chunk and flushes CBUF to memory (XFC). The use of
these two instructions is restricted to privileged software. Examples
of their use are discussed in Sections 3.4 and 3.6.

2.4 Other Issues
Because the main purpose of this work is to demonstrate the fea-

sibility of hardware-assisted RnR, this prototype only addresses the
issues that are critical to support RnR for the majority of programs.
For instance, the prototype only supports Write-Back (WB) mem-
ory [14], which constitutes the majority of memory accesses in cur-
rent programs. Memory accesses to Uncacheable (UC) or Write-
Combining (WC) memory are not tracked, and cause the system to
terminate a chunk. Chunking is resumed when the next access to
WB memory occurs.

In some cases, the IA memory model allows accesses to WB
memory to have different ordering semantics than TSO. For in-
stance, in fast string operations, a store to WB memory can be re-
ordered with respect to a prior store. To ensure that QuickRec’s
RSW and IAV support work properly, we disable this feature, so
that all loads and stores obey TSO semantics.

Although we do not discuss how to extend our mechanisms to
support Hyperthreading, the changes required to do so are minimal.
In modern IA cores, there already exist mechanisms for detecting
conflicts between the different hardware thread contexts sharing the
same cache. Therefore, in order to enable RnR on a Hyperthreaded
core, one would only need to replicate certain resources for each
hardware thread context (e.g., the read and write sets).

3. Capo3 SYSTEM SOFTWARE
To manage the QuickRec hardware, we built a software system

called Capo3. Capo3 draws inspiration and borrows many of the
concepts and principles from Capo [24], a system designed for
hardware-assisted RnR. However, Capo3 must run on real hard-
ware, and as such, we encounter several issues that were abstracted
away in Capo due to using simulated hardware. In this section, we
compare Capo3 with Capo, describe its architecture, and focus on
several of its key aspects.

3.1 Comparing Capo3 with Capo
Capo3 uses some of the basic ideas introduced by Capo, includ-

ing the Replay Sphere and the Replay Sphere Manager (RSM). The
Replay Sphere abstraction is the single application (or a group of
applications) that should be recorded/replayed in isolation from the
rest of the system. The Replay Sphere Manager is a software com-

ponent that is responsible for correctly capturing non-deterministic
input and memory access interleaving.

Capo3 also uses the same basic techniques as Capo to record pro-
gram inputs, including interactions between the operating system
and processes (e.g., system calls and signals), and non-deterministic
instructions (i.e., rdtsc and cpuid). Recording these input events
guarantees that, during replay, the same data can be injected into
the user-mode address space. However, some system calls also af-
fect the kernel-mode data structures of the program. Hence, to en-
sure that their effects are deterministically recreated during replay,
we re-execute these system calls during replay.

To correctly capture kernel state, like in Capo, the RSM enforces
a total order of input events during recording. The same total order
is enforced during replay. This total order has major performance
and correctness implications, as shown in Sections 3.6 and 4.

Capo3 uses a different software architecture than Capo. Specif-
ically, it places the bulk of the RnR logic in the kernel — whereas
Capo used ptrace to capture key events with user-mode logic. More-
over, since Capo3 must virtualize real hardware, its design must
support a hardware/software interface to enable context switches,
record memory access interleaving when the kernel is running with
interrupts enabled, and manage subtle interactions between Quick-
Rec hardware and Capo3 software.

3.2 Capo3 Architecture
Capo3 implements the RSM as an extension to the Linux ker-

nel. To record an execution, a driver program initializes a Replay
Sphere using the RSM-provided interface. The RSM then logs the
input events, sets-up the MRR hardware to log the memory access
interleaving, and makes all these logs available to the driver pro-
gram that is responsible for the persistent storage and management
of the logs. Figure 5 shows the high-level architecture of the Capo3
software stack.

D
 r

 i
 v

 e
 r

Replay Sphere

Manager

Processor

Core Cache MRR

Recorded

App

Original OS Kernel

input

log

chunk

log

1 4 5

3

2

1 Program inputs: syscalls, signals, etc.

2 Actual execution of syscalls, signals, etc.

3 Chunk data from processor

4 Serialized chunk log

5 Serialized input log

5

4

U
se

r
S

p
a

ce
K

er
n

el
H

a
rd

w
a

re

CMEM_PTR

CMEM_IDX

CMEM_SZ

MRR_CTL

MRR_STATUS

MRR_FLAGS

CMEM_TH

Figure 5: Overall architecture of Capo3. Dashed boxes indicate
QuickRec-specific components.

Our decision to use a kernel-based implementation was driven
by the observation that the Linux kernel has well-defined places to
enable the kernel to interpose on processes. As a result, Capo3 only
requires the kernel to be augmented in a few key places, so it can
interpose on all system calls, signals, and memory copies between
processes and the kernel. These changes also allow Capo3 to vir-
tualize the QuickRec hardware by saving/restoring QuickRec state
upon a context switch. Overall, our kernel-based implementation
consists of roughly 3.4K lines of code, where the bulk of the code
is dedicated to managing the logs, and is well isolated from the rest
of the kernel.

There are four different sources of input non-determinism that
the RSM captures: system calls, data copied to user-mode address

spaces, signals, and non-deterministic processor instructions. To
bind these recorded events to their corresponding threads, the RSM
assigns a unique R-Thread ID to each recorded thread. During re-
play, each thread is guaranteed to get the same R-Thread ID. These
R-Thread IDs are also used to associate chunks recorded by the
QuickRec hardware with their corresponding threads.

3.3 Virtualizing the QuickRec Hardware
To virtualize the QuickRec hardware, the RSM uses the pro-

gramming interface outlined in Section 2.3. The main components
of this interface are the seven registers shown in the lower level of
Figure 5. Specifically, the Chunk Memory Pointer (CMEM_PTR)
points to CMEM, which is the in-memory buffer that contains the
logged chunk data. Each thread gets its own CMEM. The Chunk
Memory Index (CMEM_IDX) indicates the location in CMEM where
the next CBUF entry is to be written. This register is updated by
hardware as CBUF entries are written to memory. The Size Regis-
ter (CMEM_SZ) indicates the size of CMEM. The Threshold Reg-
ister (CMEM_TH) indicates the threshold at which a CMEM over-
flow interrupt is generated. The Control Register (MRR_CTL) en-
ables and disables chunking under certain conditions, while the Sta-
tus Register (MRR_STATUS) provides the status of the hardware.
These last two registers were described in Section 2.3. Finally, the
Flags Register (MRR_FLAGS) controls kernel-mode recording and
is discussed later.

It is the RSM’s responsibility to manage the CMEM buffers and
virtualize these hardware registers so that different threads can use
the hardware without having their chunk data mixed-up. In par-
ticular, this involves: (i) ensuring that a valid CMEM pointer is
configured before recording begins, (ii) allocating a new CMEM
buffer when the previous one fills-up, and (iii) writing to CMEM
any contents remaining in the CBUF before a thread is pre-empted.

When a CMEM buffer reaches its capacity, Capo3 writes it to a
file. Because there may be multiple full CMEM buffers in the sys-
tem waiting to be written to the file, the RSM serializes this write
operation using a work queue handled by a dedicated thread. This
work queue provides an effective back-pressure mechanism when
the buffer completion rate of the recorded threads exceeds the speed
of the thread that empties the queue. Specifically, when the work
queue becomes full, the RSM puts the recorded threads to sleep
until the work queue can catch up. This mechanism preserves cor-
rectness, although it may negatively impact recording performance.

3.4 Handling Context Switches
On a context switch, the RSM first executes an XFC instruction

to ensure that the current chunk terminates, and that all the residual
data in the processor’s CBUF are flushed to CMEM. This is needed
to avoid mixing the log of the current thread with the next thread.

Once this has been performed, the RSM saves and restores the
values of the registers in the MRR. Specifically, for the current
thread, it saves the registers that the hardware may have modified
during execution. They are the CMEM_IDX and MRR_FLAGS
registers. Then, before the next thread can execute, the RSM re-
stores the thread’s prior CMEM_PTR, CMEM_IDX, CMEM_SZ,
CMEM_TH, MRR_CTL, and MRR_FLAGS values, enabling it to
correctly resume execution.

3.5 Recording in Kernel Mode
Certain parts of the kernel can interact with a process’ address

space, creating the potential for the kernel to have races with user-
level instructions. The copy_to_user family of functions in the
Linux kernel is an example of such code. Hence, in order to record
all the memory access orderings that can affect the execution of an

application during replay, the QuickRec hardware must also cap-
ture the execution of these kernel-level memory accesses.

QuickRec provides a flag that, if set, allows the MRR to record
kernel instructions as well as user-mode instructions. Hence, to
record sections of the kernel such as copy_to_user(), our initial ap-
proach was to set that flag prior to entering copy_to_user() and
reset it after returning from copy_to_user(). The problem with
this approach is that an asynchronous interrupt (e.g., from a hard-
ware device) or a page fault can occur during the execution of
copy_to_user(). In this case, since the flag is still set, QuickRec
would incorrectly record the interrupt or page fault handler code.

Our solution to this problem is to have an MRR_FLAGS reg-
ister, where the least significant bit (LSB) acts as the previously-
mentioned flag. On entry to copy_to_user(), we set the LSB, while
on returning from it, we reset it. Moreover, the register operates as
a shift register. When an exception is taken, the register automati-
cally shifts left with a 0 being inserted into the LSB, which disables
recording. Upon returning from the exception handler (as indicated
by the iret instruction of x86), the register shifts right, restoring the
previous value of the LSB. If the exception has happened in the
middle of a copy_to_user(), this design disables recording as soon
as the exception is taken, and resumes it as soon as the execution
returns to copy_to_user().

3.6 Handling Input/Chunking Interactions
The RSM component that records the input log and the one that

manages the chunking log proceed almost independently from each
other, each creating a total order of their events. However, in our
initial implementation, we observed a subtle interaction between
the two components that resulted in occasional deadlocks.

The problem occurs if a chunk includes instructions from both
before and after and input event. In this case, the dependences
between chunks and between inputs may intertwine in a way that
causes deadlock.

As an example, consider Figure 6a, where chunks C1 and C2
execute on processors P1 and P2. Suppose that C2 first executes
an input event that gets ordered in the input log before an input
event in C1. Then, due to a data dependence from P1 to P2, C1 is
ordered in the chunking log before C2. We have recorded a cyclic
dependence, which makes the resulting logs impossible to replay
and, therefore, causes deadlock.

C1

C2

P1 P2

input 2

input 1

ti
m

e

(a) Deadlock in replay

C11

C22

P1 P2

input 2

input 1

C12

C21

(b) Deadlock avoided

Figure 6: Examples of dependences between input events (solid
lines) and between chunks (dashed lines).

To avoid this problem, Capo3 does not let a chunk include in-
structions from both before and after an input event. Instead, before
an input event is recorded, the RSM executes the XTC instruction
— therefore terminating the current chunk. With this approach,
the situation in Figure 6a transforms into the one in Figure 6b. In
this case, there are four chunks and the cyclic dependence has been
eliminated. Both input and chunk dependences are satisfied if we
replay the chunks in the C11, C21, C12 and C22 order.

Another issue related to the interaction between the two logs is
how the replayer can match the input log entries and the chunk log
entries generated by the same thread. Fortunately, this is easy, since
the RSM assigns a unique R-Thread ID to each thread (Section 3.2).
As the logs are generated, they are augmented with the R-Thread
ID of the currently-running thread. In particular, as the RSM writes
the CMEM buffers to the log, it attaches the current R-Thread ID
to the buffer’s data.

4. PROTOTYPE CHARACTERIZATION

4.1 Experimental Setup
We evaluate the QuickRec system by collecting and analyzing

both log data and performance measurements for a set of SPLASH-
2 benchmarks (Table 3). We execute each benchmark to comple-
tion, and show results for a default configuration of 4 threads run-
ning on 4 cores. In addition, we also assess the scalability of Quick-
Rec by analyzing runs with 1, 2, 4, and 8 threads. For our experi-
ments, we pin each application thread to a particular core. Thus, in
the default case, we assign each thread to its own core and, in the
8-threaded case, we assign two threads to each core. We implement
Capo3 as a kernel module in Linux 3.0.8.

Benchmark Input Size # of Instruc. (B)

Barnes nbody 8000 3.4

FFT -m 22 3.7

FMM -m 30000 5.3

LU -n 1024 3.0

LU-NC -n 1200 4.7

Ocean -n 1026 7.5

Ocean-NC -e1e-16 2.2

Radix -n 10000000 2.3

Raytrace teapot.env 0.3

Water 1000 molecules 5.4

Table 3: Characteristics of the benchmarks. The last column shows
the total number of instructions executed in the 4-threaded run in
billions. Water refers to Water-nsquare.

4.2 Log Analysis
In this section, we analyze the size and bandwidth requirements

of the logs generated during the recorded execution. In addition,
for the chunk log, we perform a detailed characterization. In all
cases, we consider logs without data compression.

4.2.1 Log Sizes and Bandwidth

Figure 7a shows the uncompressed size of the input and chunk
logs for each of the benchmarks and for the average case (AVG).
For each benchmark, we show data for 1-, 2-, 4-, and 8-threaded
runs. The size is given in bytes per million instructions. From
the bars, we see that the average log size produced by QuickRec
for 4 threads is 1,224 and 1,235 bytes per million instructions for
input logs and for chunk logs, respectively. These are small num-
bers. However, the Ocean-NC and Raytrace benchmarks generate
notably larger logs for 4-8 threads. This effect is mainly due to
the increased use of synchronization in the benchmarks, which in-
volves frequent calls to the futex() system call. As a result, the input
log size increases substantially. Also, since Capo3 terminates the
running chunk before recording an input event (Section 3.6), the
chunk log also grows substantially.

The average log sizes that we measure are in line with sizes re-
ported in previous work. For example, the log sizes reported for

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
].P

1
 [A

V
G

].P
2

 [A
V

G
].P

4
 [A

V
G

].P
8

 [R
E

D
U

C
E

D
-A

V
G

].P
1

 [R
E

D
U

C
E

D
-A

V
G

].P
2

 [R
E

D
U

C
E

D
-A

V
G

].P
4

 [R
E

D
U

C
E

D
-A

V
G

].P
8

0

1000

2000

3000

4000

5000

6000

B
y
te

s
 p

e
r

M
ill

io
n
-I

n
s
tr

u
c
ti
o
n

Chunk Log Input Log

8
8
3
2

1
7
4
9
0

9
9
1
0

1
0
7
2
0

(a) Uncompressed log sizes

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
].P

1
 [A

V
G

].P
2

 [A
V

G
].P

4
 [A

V
G

].P
8

 [R
E

D
U

C
E

D
-A

V
G

].P
1

 [R
E

D
U

C
E

D
-A

V
G

].P
2

 [R
E

D
U

C
E

D
-A

V
G

].P
4

 [R
E

D
U

C
E

D
-A

V
G

].P
8

0

40

80

120

160

K
B

 p
e

r
s
e

c
o

n
d

Chunk Log Input Log

2
2

7
.4

3
5

4
.5

3
3

7
.1

3
5

1
.2

(b) Memory bandwidth requirements

Figure 7: Analyzing the log sizes without data compression and the
resulting memory bandwidth requirements.

Cyrus [12], DeLorean [23], Rerun [13], and LReplay [7] are all
within approximately 0.5x–2x of ours. We also note that our num-
bers correspond to a simple, unoptimized RnR implementation,
and can easily be improved. As a simple example, consider the
log entry for a chunk in QuickRec (Figure 4). Of the 128 bits, in
most cases, only 80 bits are used for RnR. The remaining bits are
mostly used for debugging and characterization of the hardware.
If we eliminated them, we would get the average log sizes labeled
REDUCED-AVG in Figure 7a. Further log size reductions can be
attained with improved bit encoding.

Figure 7b shows the memory bandwidth requirements of log-
ging. The figure is organized as the previous one and shows band-
width in KB per second. From the average bars, we see that the
bandwidth for 4 threads is 40 KB/s and 43 KB/s for input and chunk
logs, respectively. These numbers, when combined, represent only
0.3% of the 24 MB/s bandwidth available in our prototype (Ta-
ble 1). Hence, the effect of logging on bus and memory contention
is very small. If we use the 80-bit chunk entries for the log (bars la-
beled REDUCED-AVG in Figure 7b), the bandwidth requirements
are slightly lower.

To reason about the bandwidth requirements of QuickRec’s log-
ging on modern computers, consider the following. A modern
multicore computer cycles at a higher frequency than our proto-
type, but it also has higher memory bandwidth. To understand the
impact of these changes, we recompiled and ran our benchmarks
on a dual socket Xeon server with 2.6 GHz E5-2670 processors.
We measured the elapsed time (and speedup over our prototype)
of the 4-threaded applications and scale the bandwidth numbers
accordingly. Assuming the 80-bit log entry per chunk, we ob-
tained an average bandwidth consumption across the benchmarks
of 17.9 MB/s (and 61.1 MB/s for Ocean-NC, which is bandwidth-
intensive). Given that the E5-2670 processor provides a memory

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
].P

1
 [A

V
G

].P
2

 [A
V

G
].P

4
 [A

V
G

].P
8

0

20000

40000

60000

80000

100000

120000

140000
In

s
tr

u
c
ti
o

n
s
 p

e
r

C
h

u
n

k
Chunk Size

(a) Average chunk size

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

chunk size in x86 instructions

C
D

F

BARNES.P4

FFT.P4

FMM.P4

LU.P4

LU−NC.P4

OCEAN.P4

OCEAN−NC.P4

RADIX.P4

RAYTRACE.P4

WATER.P4

(b) Cumulative distribution of chunk size

Figure 8: Chunk size characterization.

bandwidth of up to 6.4 GB/s per core, the logging accounts for only
0.07% on average (and 0.23% in Ocean-NC) of the available band-
width of 4 cores. Based on these estimates, we conclude that the
bandwidth usage is negligible and will not have a negative impact
on the performance of real systems.

If we compress the logs using gzip’s default DEFLATE algo-
rithm, we attain an average compression ratio of 55% for chunk
logs and 88% for input logs. Hence, the average 4-threaded bench-
mark can be recorded for almost three days before filling up a ter-
abyte disk.

Finally, Figure 7a and Figure 7b also suggest that both the log
sizes and the bandwidth requirements scale reasonably as the num-
ber of threads increases from 1 to 8.

4.2.2 Chunk Characterization

Figure 8a shows the average size of the chunks in terms of retired
x86 instructions. Figure 8b shows the distribution of chunk sizes
for 4-threaded runs. On average, the size of a chunk for 4-threaded
runs is 39K. However, Figure 8b shows that, while many chunks
are large (e.g., more than 80% of the chunks in Barnes, LU, and
LU-NC are larger than 10,000), there are many chunks with fewer
than 1,000 instructions. For three benchmarks, there is a significant
fraction of zero-sized chunks, which mostly result from explicitly
terminating a chunk unconditionally at input events. This effect can
be avoided by changing Capo3 or the hardware.

Figure 9 details the chunk termination reasons, using the cate-
gories shown in Table 2, except that exceptions, chunk-size over-
flows, and TLB invalidations are grouped together in Other. From

the figure, we see that the largest contributor to chunk termination
is cache line evictions. In the QuickRec hardware, a chunk must
be terminated if a line that is evicted from the L2 hits the read set
or the write set in the same core. This is because subsequent snoop
requests to that line are not delivered to the MRR; they are filtered
out by the L2. Techniques to mitigate this behavior will contribute
to reducing the number of chunks.

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
.P

1
]

 [A
V

G
.P

2
]

 [A
V

G
.P

4
]

 [A
V

G
.P

8
]

0.0

0.25

0.5

0.75

1.0

F
ra

c
ti
o

n
 o

f
A

ll
C

h
u

n
k
s

RAW
WAR

WAW
WAB

XTC (Explicit Termination)
Cache Eviction

Other

Figure 9: Chunk termination reasons.

Conflicts due to WAR, RAW, WAW and WAB are the second
most prevalent reason of chunk terminations. Another frequent rea-
son is explicit chunk termination with XTC. This termination rea-
son is common when we have more threads than processors (i.e., in
the 8-threaded runs). In this case, there are many context switches
which use XTC. This reason is also common if the benchmark has
numerous input events, such as signals or system calls, which re-
quire explicit use of XTC to obtain a total order of events. For
example, this is the case for Raytrace and Ocean-NC, which, as
shown in Figure 8b, have a large number of zero-sized chunks.

To deal with instruction reordering and instruction atomicity vi-
olations, QuickRec appends RSW and IAV information to chunk
entries. Figure 10 displays the fraction of chunks that are associ-
ated to non-zero RSW and/or IAV values. The figure reveals that
such chunks are common. For 4-threaded runs, an average of 16%
of the chunks are RSW or IAV chunks. In fact, both RSW-only and
IAV-only chunks are common. One interesting case is that of Radix,
where the fraction of IAV chunks is over 40%. The reason is that
Radix has a long-running tight loop with several multi-memory-
operation instructions. FFT has many RSW-only chunks, which re-
sult from executions where loads and stores are interleaved. Over-
all, RnR systems must be designed to handle these cases.

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
].P

1
 [A

V
G

].P
2

 [A
V

G
].P

4
 [A

V
G

].P
8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

c
ti
o

n
 o

f
C

h
u

n
k
s

IAV-Only Chunks IAV+RSW Chunks RSW-Only Chunks

Figure 10: RSW and IAV characterization.

4.3 Performance Measurements
To measure the overhead of QuickRec’s different components,

we ran each benchmark in five different configurations. First, na-

tive is the normal execution with no recording. Second, in hw-only,
the MRR hardware is enabled and writes chunk data to main mem-
ory, but otherwise no other component of the system is enabled.
This configuration measures the overhead of the extra memory traf-
fic generated by the MRR. Third, in input, the RSM only logs the
sources of input non-determinism described in Section 3.2 and the
MRR is disabled. Fourth, chunk augments the hw-only configura-
tion by having the RSM dump the CMEM buffers to a file; no input
is recorded. Finally, combined is a full recording run where both
input and chunk data are processed by the RSM. To reduce the OS-
induced noise, each configuration is run five times and the results
are averaged. Each run executes with four threads.

Figure 11 shows the execution time of each configuration nor-
malized to the execution time of native. The figure shows that,
in most benchmarks, recording both input and chunk logs only in-
curs a 2–4% overhead. The main exceptions are Ocean-NC and
Raytrace, which suffer an overhead close to 50%. As indicated in
Figure 7a, these two benchmarks perform substantial synchroniza-
tion, which involves frequent calls to the futex() system call and,
often, results in putting threads to sleep. On average across all of
the benchmarks, the recording overhead is 13%.

 B
A

R
N

E
S

.h
w

_
o

n
ly

 B
A

R
N

E
S

.in
p

u
t

 B
A

R
N

E
S

.c
h

u
n

k
 B

A
R

N
E

S
.c

o
m

b
in

e
d

 F
F

T
.h

w
_

o
n

ly
 F

F
T

.in
p

u
t

 F
F

T
.c

h
u

n
k

 F
F

T
.c

o
m

b
in

e
d

 F
M

M
.h

w
_

o
n

ly
 F

M
M

.in
p

u
t

 F
M

M
.c

h
u

n
k

 F
M

M
.c

o
m

b
in

e
d

 L
U

.h
w

_
o

n
ly

 L
U

.in
p

u
t

 L
U

.c
h

u
n

k
 L

U
.c

o
m

b
in

e
d

 L
U

-N
C

.h
w

_
o

n
ly

 L
U

-N
C

.in
p

u
t

 L
U

-N
C

.c
h

u
n

k
 L

U
-N

C
.c

o
m

b
in

e
d

 O
C

E
A

N
.h

w
_

o
n

ly
 O

C
E

A
N

.in
p

u
t

 O
C

E
A

N
.c

h
u

n
k

 O
C

E
A

N
.c

o
m

b
in

e
d

 O
C

E
A

N
-N

C
.h

w
_

o
n

ly
 O

C
E

A
N

-N
C

.in
p

u
t

 O
C

E
A

N
-N

C
.c

h
u

n
k

 O
C

E
A

N
-N

C
.c

o
m

b
in

e
d

 R
A

D
IX

.h
w

_
o

n
ly

 R
A

D
IX

.in
p

u
t

 R
A

D
IX

.c
h

u
n

k
 R

A
D

IX
.c

o
m

b
in

e
d

 R
A

Y
T

R
A

C
E

.h
w

_
o

n
ly

 R
A

Y
T

R
A

C
E

.in
p

u
t

 R
A

Y
T

R
A

C
E

.c
h

u
n

k
 R

A
Y

T
R

A
C

E
.c

o
m

b
in

e
d

 W
A

T
E

R
.h

w
_

o
n

ly
 W

A
T

E
R

.in
p

u
t

 W
A

T
E

R
.c

h
u

n
k

 W
A

T
E

R
.c

o
m

b
in

e
d

 [A
V

G
.h

w
_

o
n

ly
]

 [A
V

G
.in

p
u

t]
 [A

V
G

.c
h

u
n

k
]

 [A
V

G
.c

o
m

b
in

e
d

]

0.0

0.25

0.5

0.75

1.0

1.25

1.5

Normalized Execution Time

Figure 11: Execution time with each recording configuration for
four-threaded executions. The bars are normalized to the execution
time of native.

Interestingly, the recording overhead is entirely due to the soft-
ware stack. Indeed, the hardware overhead, as shown in hw-only,
is negligible. We also see that the software overhead is primarily
due to input logging, rather than chunk logging. Overall, future
work should focus on optimizing the software stack and, in partic-
ular, input logging — specifically, removing the serialization in the
recording of input events.

Figure 12 shows the processor time (the time processors spend
doing useful work for the applications) separated into user and sys-
tem time. For each benchmark, we show three bars: one for the
recorded application itself (App), one for the driver that reads the
input log from memory and writes it to disk (Input), and one for the
driver that reads the chunking log from the memory and writes it to
disk (Chunking). For each benchmark, the bars are normalized to
the processor time of the application.

The figure shows that most of the processor time is spent run-
ning the application. On average, the drivers add little overhead.
Only the two benchmarks with large logs in Figure 7a spend no-
ticeable time in the drivers. Finally, most of processor time in these
applications is user time.

To understand the sources of overhead in QuickRec, Figure 13
breaks down the total processor cycles into four categories. First,
App time are the cycles spent executing instructions not resulting
from Capo3 overhead. Second, Input overhead (working) are the

 B
A

R
N

E
S

.A
p
p

 B
A

R
N

E
S

.In
p
u
t

 B
A

R
N

E
S

.C
h
u
n
k
in

g

 F
F

T
.A

p
p

 F
F

T
.In

p
u
t

 F
F

T
.C

h
u
n
k
in

g

 F
M

M
.A

p
p

 F
M

M
.In

p
u
t

 F
M

M
.C

h
u
n
k
in

g

 L
U

.A
p
p

 L
U

.In
p
u
t

 L
U

.C
h
u
n
k
in

g

 L
U

-N
C

.A
p
p

 L
U

-N
C

.In
p
u
t

 L
U

-N
C

.C
h
u
n
k
in

g

 O
C

E
A

N
.A

p
p

 O
C

E
A

N
.In

p
u
t

 O
C

E
A

N
.C

h
u
n
k
in

g

 O
C

E
A

N
-N

C
.A

p
p

 O
C

E
A

N
-N

C
.In

p
u
t

 O
C

E
A

N
-N

C
.C

h
u
n
k
in

g

 R
A

D
IX

.A
p
p

 R
A

D
IX

.In
p
u
t

 R
A

D
IX

.C
h
u
n
k
in

g

 R
A

Y
T

R
A

C
E

.A
p
p

 R
A

Y
T

R
A

C
E

.In
p
u
t

 R
A

Y
T

R
A

C
E

.C
h
u
n
k
in

g

 W
A

T
E

R
.A

p
p

 W
A

T
E

R
.In

p
u
t

 W
A

T
E

R
.C

h
u
n
k
in

g

 [A
V

G
.A

p
p
]

 [A
V

G
.In

p
u
t]

 [A
V

G
.C

h
u
n
k
in

g
]

0.0

0.1

0.9

1.0

N
o

rm
a

liz
e

d
 T

im
e

User Time System Time

Figure 12: Total time that the processors spend working on the
applications divided into user and system time.

cycles spent in Capo3 code managing the input events. Third, In-

put overhead (sleeping) are the cycles spent in Capo3 waiting on
synchronization in order to enforce a total order of input events. Fi-
nally, Chunking overhead are the cycles spent in Capo3 code man-
aging the chunking log. The figure shows the breakdown for dif-
ferent thread counts. As the figure indicates, for 4- and 8-threaded
runs, the main overhead of Capo3 is due to enforcing a total order
of input events. We are looking into optimizations and/or alterna-
tive designs for this component.

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

 [A
V

G
].P

1
 [A

V
G

].P
2

 [A
V

G
].P

4
 [A

V
G

].P
8

0.0

0.25

0.5

0.75

1.0

F
ra

c
ti
o

n
 o

f
T

o
ta

l
C

y
c
le

s

App time
Input overhead (working)

Input overhead (sleeping)
Chunking overhead

Figure 13: Breakdown of the total processor cycles for different
thread counts.

Figures 14 and 15 present detailed breakdowns of the input and
chunking overheads, respectively, for different thread counts. In
each figure, the overheads are normalized to the overhead of the
1-threaded execution for the given benchmark.

Figure 14 divides the overhead of input recording and manage-
ment into the contributions of system calls, copy to user (CTU),
and other events. In each case, the figure separates working and
sleeping overheads. The figure shows that the sleeping overhead
resulting from serializing the system calls is by far the largest com-
ponent for 4- and 8-threaded runs. In particular, FFT’s normalized
overhead for 4- and 8-threaded runs is high. The reason is that FFT

has minimal overhead with 1 thread and has many synchronization-
induced futex() calls with 4 or more threads.

Figure 15 depicts a similar breakdown for the chunk-management
overhead. The overhead is divided into execution of XTC instruc-
tions (Chunk term), execution of XFC instructions (CBUF flush),
allocation of a new CMEM buffer (Buffer allocation), putting a
CMEM buffer in the work queue (To workqueue) and Other. The
latter is dominated by the overhead of saving and restoring MRR
registers in a context switch. We see that Buffer allocation and
Other dominate.

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

0

50

100

150

6100

6150

6200

N
o
rm

a
liz

e
d
 I

n
p
u
t

T
im

e
System calls (working)
System calls (sleeping)

CTU (working)
CTU (sleeping)

Other (working)
Other (sleeping)

Figure 14: Breakdown of the normalized overhead of input record-
ing and management. CTU stands for Copy To User.

 B
A

R
N

E
S

.P
1

 B
A

R
N

E
S

.P
2

 B
A

R
N

E
S

.P
4

 B
A

R
N

E
S

.P
8

 F
F

T
.P

1
 F

F
T

.P
2

 F
F

T
.P

4
 F

F
T

.P
8

 F
M

M
.P

1
 F

M
M

.P
2

 F
M

M
.P

4
 F

M
M

.P
8

 L
U

.P
1

 L
U

.P
2

 L
U

.P
4

 L
U

.P
8

 L
U

-N
C

.P
1

 L
U

-N
C

.P
2

 L
U

-N
C

.P
4

 L
U

-N
C

.P
8

 O
C

E
A

N
.P

1
 O

C
E

A
N

.P
2

 O
C

E
A

N
.P

4
 O

C
E

A
N

.P
8

 O
C

E
A

N
-N

C
.P

1
 O

C
E

A
N

-N
C

.P
2

 O
C

E
A

N
-N

C
.P

4
 O

C
E

A
N

-N
C

.P
8

 R
A

D
IX

.P
1

 R
A

D
IX

.P
2

 R
A

D
IX

.P
4

 R
A

D
IX

.P
8

 R
A

Y
T

R
A

C
E

.P
1

 R
A

Y
T

R
A

C
E

.P
2

 R
A

Y
T

R
A

C
E

.P
4

 R
A

Y
T

R
A

C
E

.P
8

 W
A

T
E

R
.P

1
 W

A
T

E
R

.P
2

 W
A

T
E

R
.P

4
 W

A
T

E
R

.P
8

0

2

4

6

8

10

12

14

16

N
o

rm
a

liz
e

d
 C

h
u

n
k
in

g
 T

im
e

Chunk term
CBUF flush

Buffer allocation
To workqueue

Other

Figure 15: Breakdown of the normalized chunk-management over-
head.

5. VALIDATION USING REPLAY
A critical aspect of the design and implementation of a recording

system is to validate it with replay. Replaying recorded logs enables
full assurance that the recording system captures the correct and
complete information. Therefore, in this section we discuss the
replayer from the perspective of its validation of QuickRec.

We implemented the replayer using the Pin [20] binary instru-
mentation framework. We chose this approach for three reasons.
First, user-level binary instrumentation is operating-system inde-
pendent (similar to PinPlay [28]), which enables replay to occur on
a machine that is independent from the QuickRec system. Second,
Pin operates at speeds faster than existing instruction-set simula-
tors, while maintaining an acceptable level of observability. Third,
using Pin, we can extend the replayer by integrating other analysis
tools, such as race detectors [2, 33] and debuggers [19].

5.1 High-Level Implementation Description
To correctly replay a recorded execution, the replayer requires

the executed code (binary and libraries, including self-modified
code), and the program inputs and shared-memory access inter-
leaving experienced during the recorded execution. Prior to replay,
the static code is extracted from the log files. Self-modified code,
which is not present in the log files, is re-generated by the replayed
execution. Non-deterministic inputs are made deterministic by in-
jecting the appropriate recorded data into the replayed execution at
appropriate execution points. For most system calls (e.g., read()),
this operation involves emulating the system call, by: (i) injecting
the logged data into the program if there is a logged copy_to_user()

entry, and (ii) setting the return values as defined in the input log.

However, there are a few system calls, such as thread creation and
termination, that are re-executed to recreate the proper kernel state.

Chunk ordering is accomplished by counting instructions as they
are replayed, and stopping when the counter reaches the logged
chunk size. In addition, the replayer enforces the logged chunk
order, based on the recorded timestamps.

5.1.1 Chunks with Non-Zero RSW or IAV Counts

To handle the IA memory model correctly, the replayer needs to
take into account the values of the RSW and IAV counts. Specif-
ically, to support TSO, the replayer simulates a thread-local store
buffer. On a store operation, the replayer writes the address and
value of the store to the local store buffer — instead of committing
the store to the global memory. On a load operation, the replayer
first checks the local store buffer. If the address is not found, it loads
the value from the global memory. Then, at the end of the chunk,
the replayer drains the stores from the local store buffer, except for
a number equal to the RSW count of the chunk, and commits their
values to the global memory. The stores remaining in the local store
buffer are committed as part of the next chunk.

To handle non-zero IAV counts, the replayer needs to know the
number of memory transactions involved in the execution of each
instruction. When the replayer finds a chunk whose IAV is non-
zero, after executing the chunk, it emulates the execution of the
memory transactions of the first instruction after the chunk, one at a
time. The replayer stops when the number of memory transactions
is equal to the IAV count. The remaining memory transactions of
the instruction are emulated at the beginning of the next chunk.

5.2 Validating the Complete System
Prior to full-system tests, we developed multiple levels of system

validation. We began with RTL simulations to validate the MRR
hardware without software, while we used Simics [21] simulations
to validate Capo3. Next, we integrated Capo3 with QuickRec and
developed tests to independently exercise the recording function-
alities of input non-determinism and shared-memory interleaving.
Last, we tested the complete system with our benchmarks.

When bugs were found during full-system tests, the major chal-
lenge was pinpointing their origin. In QuickRec, bugs can originate
from either the replayer, the recording hardware, or the recording
software; distinguishing between the three is usually non-trivial. In
our experiments, the most common type of bug manifestation was
a divergence between the memory state or the control flow of the
recorded and replayed executions. There are many reasons why a
divergence can occur, and being able to pinpoint the root cause of
such a divergence is critical.

The most obvious location to check for divergent executions is
where non-deterministic input events are logged. This is because,
during recording, Capo3 saves the contents of the processor reg-
isters at the entry of system calls. Hence, the replayer can com-
pare the state of the processor registers before a system call to the
recorded state. This provides a clear detection point of divergence.
Moreover, a system call should result in a chunk termination and,
therefore, should be the last instruction of the chunk it belongs to.
This provides another divergence check.

Unfortunately, non-deterministic input events are infrequent and,
therefore, insufficient to detect the root cause of most divergences
— the source of divergence can be thousands of instructions be-
fore the system call. Therefore, a more fine-grained mechanism to
detect divergences was needed.

For this purpose, we added a branch-tracing module in the FPGA
hardware. It collects the history of branches executed — like the
Branch Trace Store of today’s IA processors. With this informa-

tion, the replayer can compare the control flow of the recorded
execution with that of the replayed execution. This is a powerful
method to detect divergences, since if either the record or replay
system has a bug, then the replayed execution typically leads to a
different control flow. Also, with branch traces, the detection point
of a divergence tends to be close to its source.

5.2.1 Hardware Instruction Counting Bug

With branch tracing, we found one particularly noteworthy hard-
ware bug. In the water benchmark, we found that a system call
was not aligned with the end of the chunk during replay, indicating
a bug in the system. The replayer was encountering a system call
two instructions prior to the expected end of the chunk. At first, the
problem appeared to be a control-flow divergence manifesting as
different instruction counts between the log and replayed execution.
However, the branch traces revealed no control-flow divergence.
Further investigation showed that the hardware was miscounting
instructions when handling floating-point exceptions. Without a
confirmation from the branch traces regarding no control-flow di-
vergence, it would have been very difficult to pinpoint this bug.

6. RELATED WORK
RnR systems can be classified into software-only and hardware-

assisted. Software-only RnR systems (e.g., [5, 8, 9, 10, 11, 18,
27, 28, 32, 34]) run on commodity hardware and use modified
runtime libraries, compilers, operating systems or virtual-machine
monitors to capture sources of non-determinism. These software-
based approaches are either inherently designed for uniprocessor
executions or suffer significant slowdown when applied to multi-
processor executions. DoublePlay [35] attempts to make replay
on commodity multiprocessors more efficient. To capture memory
non-determinism, it timeslices a multithreaded execution into sep-
arate epochs and re-executes each epoch sequentially on a single
processor. Hence, for each epoch, it only needs to record the order
in which threads are scheduled in the second execution. However,
DoublePlay cannot capture all data races and, therefore, cannot be
used as a general solution for concurrency debugging. In addition,
it requires an extra execution to record thread ordering. Finally, it
needs to use modified binaries (in particular, a modified libc).

Hardware-assisted solutions use hardware to record memory ac-
cess order. Some approaches modify coherence transactions in con-
ventional directory-based protocols (e.g., [3, 13, 23, 24, 26, 39, 40])
and some are based on snoopy protocols (e.g., [12, 25, 30, 31]).
Some approaches (e.g., [39, 40]) record dependences between pairs
of instructions. This strategy can produce large logs and increase
associated overhead. To reduce this overhead, chunk-based tech-
niques have been proposed (e.g., [7, 12, 13, 23, 24, 30, 31, 36]).
DeLorean [23] and Capo [24] are chunk-based schemes that use
speculative multithreading hardware to achieve replay parallelism.

In terms of the hardware, QuickRec resembles CoreRacer [31]
the most. While the chunking and the instruction reordering are
handled similarly, the main differences are on the implementation
of instruction atomicity violation, and on the integration of input
recording and chunking. LReplay [7] extends a multiprocessor sys-
tem with a pending period-based mechanism for recording thread
interleaving, and uses large CAM structures to deal with instruc-
tion reordering. LReplay is evaluated using RTL simulation and
does not discuss issues related to system software.

All of these hardware-assisted approaches have only been mod-
eled using simulation, and often without considering the necessary
software support. As such, they have generally ignored practical
aspects of RnR systems. The QuickRec system is the first work to
evaluate RnR across the entire stack using real hardware.

7. LESSONS LEARNED
The main lessons we learned from this effort are:

• Clearly, to maximize the chance that RnR is considered for adop-
tion, it is critical to minimize the number of touch points that it
requires on current processor hardware. QuickRec demonstrates
that chunk-based recording can be implemented with low-enough
implementation complexity and few-enough touch points to make
it attractive to processor vendors.
• By far the biggest challenge of implementing RnR is dealing with
the idiosyncrasies of the specific architecture used, as they funda-
mentally permeate many aspects of the hardware and software. Ex-
amples of idiosyncrasies are the memory consistency model and
the CISC nature of the architecture.
• The design of the deterministic replayer must account for the
micro-architectural details of the system, if it is to reproduce the
execution exactly. This was altogether neglected by prior replay
work. In fact, such micro-architectural details substantially in-
crease the replayer’s complexity, in turn impacting the usage mod-
els and potentially the ability to create non-proprietary replay tools.
• A new research direction is to investigate replay techniques that
reduce or abstract away the complexity mentioned. Such tech-
niques may hinge on commodity hardware, or may require hard-
ware extensions to enable replay software.
• The design of the recording software stack can considerably im-
pact the hardware design, as well as the overall performance. For
instance, to properly record kernel-mode instructions
(e.g., copy_to_user() calls), we had to make non-trivial changes to
the hardware-software interface (Section 3.5). Also, the software
stack is responsible for practically all of the QuickRec recording
overhead.
• The main performance overhead in QuickRec is in the software
layer collecting and managing the input logs. A seemingly unim-
portant issue such as the serialization of input-event processing has
become our most obvious bottleneck. Recording input events very
efficiently is an area were further work is needed.
• The performance analysis clearly suggests that, with a slightly-
improved software stack, RnR can be used in always-on manner,
enabling a potentially-large number of new RnR uses. Additional
features may need to be added, such as checkpointing and log com-
pression to reduce log file sizes in long-running programs.
• Finally, full-system prototyping is required to understand RnR
issues related to architecture idiosyncrasies, hardware-software in-
teraction, and true performance bottlenecks.

8. CONCLUSIONS AND FUTURE WORK
RnR of multithreaded programs on multicores has high potential

for several important uses: debugging applications, withstanding
machine failures, and improving system security. To make RnR
systems practical, this paper has contributed in three ways.

First, we presented the implementation of QuickRec, the first
multicore IA-based prototype for RnR of multithreaded programs.
The prototype includes an FPGA instantiation of a Pentium multi-
core and a Linux-based full software stack.

Second, we described several key implementation aspects in Quick-
Rec. We showed how to efficiently handle x86 instructions that
produce multiple memory transactions, and detailed the elaborate
hardware-software interface required for a working system.

Third, we evaluated QuickRec and demonstrated that RnR can be
provided efficiently in real IA multicore machines. We showed that
the rate of memory log generation is insignificant, given today’s
bus and memory bandwidths. Furthermore, the recording hardware
had negligible performance overhead. However, the software stack

induced an average recording overhead of nearly 13%. Such over-
head must come down to ensure always-on use of QuickRec.

Based on this work, we suggest focusing future research on sev-
eral directions. First, to reduce the software stack overhead, it is
important to record input events very efficiently — specifically, in
a partially-ordered manner. This will reduce recording overhead,
and truly enable always-on RnR.

Second, much emphasis should be placed on the replay aspect of
RnR. We need approaches that are tolerant of, and abstract away,
the micro-architectural details of the recording platform. Other-
wise, proprietary details will stifle the development of replay sup-
port. We need creative ways of combining hardware and software
support for replay.

Finally, we need to develop and demonstrate many uses of the
RnR technology that solve real problems of multicore users. The
areas of parallel program development tools and security-checking
aids seem particularly ripe for development.

9. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An Execution-

Backtracking Approach to Debugging. IEEE Software, May 1991.

[2] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. Unraveling Data Race
Detection in the Intel Thread Checker. In STMCS, March 2006.

[3] A. Basu, J. Bobba, and M. D. Hill. Karma: Scalable Deterministic
Record-Replay. In ICS, June 2011.

[4] B. Boothe. Efficient Algorithms for Bidirectional Debugging. In
PLDI, June 2000.

[5] T. Bressoud and F. Schneider. Hypervisor-Based Fault-Tolerance.
ACM Transactions on Computer Systems, 14(1), February 1996.

[6] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Reversible Debugging Us-
ing Program Instrumentation. IEEE Transactions on Software Engi-

neering, 27(8):715–727, August 2001.

[7] Y. Chen, W. Hu, T. Chen, and R. Wu. LReplay: A Pending Period
Based Deterministic Replay Scheme. In ISCA, June 2010.

[8] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Multi-
threaded Applications. In SPDT, August 1998.

[9] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: En-
abling Intrusion Analysis through Virtual-Machine Logging and Re-
play. In OSDI, December 2002.

[10] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution Re-
play of Multiprocessor Virtual Machines. In VEE, March 2008.

[11] A. Forin. Debugging of Heterogeneous Parallel Systems. In PDD,
May 1988.

[12] N. Honarmand, N. Dautenhahn, J. Torrellas, S. T. King, G. Pokam,
and C. Pereira. Cyrus: Unintrusive Application-Level Record-Replay
for Replay Parallelism. In ASPLOS, March 2013.

[13] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for
Lightweight Memory Race Recording. In ISCA, June 2008.

[14] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s

Manual. 2002. http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[15] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past
and Present Intrusions Through Vulnerability-Specific Predicates. In
SOSP, October 2005.

[16] S. T. King and P. M. Chen. Backtracking Intrusions. In SOSP, October
2003.

[17] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Operating Sys-
tems with Time-Traveling Virtual Machines. In USENIX Annual Tech-

nical Conference, April 2005.

[18] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE Trans. Comp., April 1987.

[19] G. Lueck, H. Patil, and C. Pereira. PinADX: An Interface for Cus-
tomizable Debugging with Dynamic Instrumentation. In CGO, 2012.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In PLDI, 2005.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Håll-
berg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A

Full System Simulation Platform. IEEE Computer, February 2002.

[22] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE TCCA Newsletter, pages 19–25,
December 1995.

[23] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execu-
tion Efficiently. In ISCA, June 2008.

[24] P. Montesinos, M. Hicks, S. King, and J. Torrellas. Capo: A Software-
Hardware Interface for Practical Deterministic Multiprocessor Re-
play. In ASPLOS, March 2009.

[25] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared Mem-
ory Dependencies Using Strata. In ASPLOS, October 2006.

[26] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging.
In ISCA, June 2005.

[27] D. Z. Pan and M. A. Linton. Supporting Reverse Execution for Parallel
Programs. In PDD, May 1988.

[28] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay:
A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs. In CGO, April 2010.

[29] C. Pereira, G. Pokam, K. Danne, R. Devarajan, and A.-R.
Adl-Tabatabai. Virtues and Obstacles of Hardware-Assisted Multi-
Processor Execution Replay. In HotPAR, June 2010.

[30] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R. Adl-Tabatabai.
Architecting a Chunk-Based Memory Race Recorder in Modern
CMPs. In MICRO, December 2009.

[31] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai, J. Gottschlich,
H. Jungwoo, and Y. Wu. CoreRacer: A Practical Memory Race
Recorder for Multicore x86 TSO Processors. In MICRO, 2011.

[32] M. Russinovich and B. Cogswell. Replay for Concurrent Non-
Deterministic Shared-Memory Applications. In PLDI, May 1996.

[33] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data Race De-
tection in Practice. In WBIA, December 2009.

[34] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flashback: A
Lightweight Extension for Rollback and Deterministic Replay for
Software Debugging. In USENIX Ann. Tech. Conf., June 2004.

[35] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging
and Replay. In ASPLOS, March 2011.

[36] G. Voskuilen, F. Ahmad, and T. N. Vijaykumar. Timetraveler: Exploit-
ing Acyclic Races for Optimizing Memory Race Recording. In ISCA,
June 2010.

[37] Q. Wang, R. Kassa, W. Shen, N. Ijih, B. Chitlur, M. Konow, D. Liu,
A. Sheiman, and P. Gupta. An FPGA Based Hybrid Processor Emula-
tion Platform. In FPL, August 2010.

[38] XtreamData. http://www.xtreamdata.com.

[39] M. Xu, R. Bodik, and M. Hill. A "Flight Data Recorder" for En-
abling Full-System Multiprocessor Deterministic Replay. In ISCA,
June 2003.

[40] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In ASPLOS, 2006.

[41] M. V. Zelkowitz. Reversible Execution. Communications of the ACM,
16(9):566, September 1973.

