FlexBulk: Intelligently Forming Atomic Blocks in
Blocked-Execution Multiprocessors to Minimize Squashes

Rishi Agarwal and Josep Torrellas
University of lllinois at Urbana-Champaign, USA
{agarwa29,torrella}@illinois.edu
http://iacoma.cs.uiuc.edu

ABSTRACT

Blocked-execution multiprocessor architectures continuously run
atomic blocks of instructions — also called Chunks. Such archi-
tectures can boost both performance and software productivity, and
enable unique compiler optimization opportunities. Unfortunately,
they are handicapped in that, if they use large chunks to minimize
chunk-commit overhead and to enable more compiler optimization,
inter-thread data conflicts may lead to frequent chunk squashes.

In this paper, we present automatic techniques to form chunks in
these architectures to minimize the cycles lost to squashes. We start
by characterizing the operations that frequently cause squashes. We
call them Squash Hazards. We then propose squash-removing al-
gorithms tailored to these Squash Hazards. We also describe a soft-
ware framework called FlexBulk that profiles the code and trans-
forms it following these algorithms. We evaluate FlexBulk on 16-
threaded PARSEC and SPLASH-2 codes running on a simulated
machine. The results show that, with 17,000-instruction chunks,
FlexBulk eliminates, on average, over 90% of the squash cycles in
the applications. As a result, compared to a baseline execution with
2,000-instruction chunks as in previous work, the applications run
on average 1.43x faster.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Archi-
tectures - MIMD Processors; D.1.3 [Programming Techniques]:
Concurrent Programming - Parallel Programming.

General Terms
Design, Performance.
Keywords

Atomic Block Execution, Thread Squash, Speculation.

1. INTRODUCTION

Recent research has outlined a class of shared-memory architec-
tures where processors continuously execute blocks of consecutive
instructions from the program (also called Chunks) in an atomic
manner [2, 6, 7, 9, 11, 18, 21, 22, 23]. These Blocked-Execution
architectures broadly include TCC [7, 11], Bulk [6, 21], Implicit
Transactions [22], ASO [23], InvisiFence [2], DMP [9], and SRC
[18]. This execution mode has performance and programmability
advantages. For example, it supports transactional memory [7, 11,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’11, June 4-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

18], high performance under strict memory consistency models [2,
6, 21, 23], and several techniques for parallel program develop-
ment and debugging such as deterministic execution [9], parallel
program replay [15], and atomicity violation debugging [12].

Another appealing aspect of these architectures is the perfor-
mance potential of a compiler that drives the chunk formation. Such
a compiler can perform aggressive code transformations inside a
chunk that can be unsafe under certain conditions — since we know
that the hardware guarantees atomic execution or will squash the
whole chunk. For example, the compiler can create chunks where
code is generated assuming a certain control path is taken [17].
As another example, it can create chunks where code is re-ordered
across synchronization operations [1].

A shortcoming of executing in chunks is that chunks might get
squashed. Chunks are squashed when they cannot execute atomi-
cally. This typically occurs when two concurrently-executing chunks
suffer a data conflict — i.e., both chunks access the same memory
address and at least one writes. Squashes harm both performance
and energy efficiency.

Some previous work indicates that chunk squashes are uncom-
mon in popular applications (e.g., [6]). However, such work uses
small chunk sizes of 2,000 dynamic instructions or fewer. In prac-
tice, there are two reasons why we want chunks that are several
times larger. The first one is to give more room for the compiler
to optimize the code within chunks, as suggested above. The sec-
ond one is to keep overall chunk-commit overhead modest, even in
machines with many processors. Unfortunately, large chunks have
a higher chance of suffering conflicts (and buffer overflows) that
result in squashes.

Given a blocked-execution architecture with large chunks — so
that overall chunk-commit overhead is low and future compiler
work can perform aggressive optimization — the goal of this pa-
per is to propose automatic techniques to form chunks to minimize
the cycles lost to squashes. As most squashes are the result of com-
munication between threads, we must: (i) characterize the com-
munication operations, and (ii) tailor the chunks so that concurrent
chunks do not communicate.

Previous work by Ahn et al [1] proposed to reduce squashes
by tight-fitting chunk boundaries around high-contention critical
sections. Unfortunately, our experience shows that most squashes
are not induced by a handful of high-contention critical sections.
Rather, they are caused by many operations that are spread across
the program. We call these operations Squash Hazards.

Based on this discussion, this paper makes three contributions.
First, we characterize the common types of Squash Hazards in pop-
ular applications, and then propose squash-removing algorithms
tailored to them. These algorithms consist of simple code transfor-
mations, typically embedded inside synchronization macros, that
create chunk boundaries for minimal squashes.

Second, we describe a software framework called FlexBulk that
profiles off-the-shelf multithreaded code for Squash Hazards, and
transforms it with the squash-removing algorithms.

loadtree from Barnes:
while(flag){

if(..) {
Lock(&CellLock—>CL[((cellptr)mynode)—->segnum%MaxLock]);
UhIock(&CeIILock—>cL[((ceIIptr)mynode)—>seqnum%MaxLock]);

if(..) {
Lock(&CellLock—>CL][((cellptr)mynode)—>segnum%MaxLock]);
UﬁIock(&CeIILock—>CL[((cellptr)mynode)—>seqnum%MaxLock]);

if(..) {
mynode = *qptr;
) :
}

Transformations: 1) remove Unlock(expression)
2) replace Lock(expression) by while(expression==taken){ }

@)

Aoplicati Barnes from | Database fron
pplication SPLASH-2 | SpecJVM98
Function loadtree shell_sort
Num Loop lter 18 Blocked to 50
Loop Static 879 1,023
Instructions ;
BefoLrje ! Dyn per iter 517 353
Optimization | Dyn per loop 9,306 17,650
Loop Static 861 606
rf?érructlons Dyn per iter 432 247
Optimization | Dyn per loop 7,776 12,350
Difference in | Memory 8 59
Iteration Atomics 4 2
Instructl_ons Other 73 15
(Dynamic)
Total 85 106
(b)

Figure 1: Examples of compiler optimizations for large chunks. Instruction counts refer to x86 assembly.

Finally, we evaluate FlexBulk on PARSEC and SPLASH-2 codes
running on a 16-core simulated blocked-execution architecture. The
results show that the techniques are very effective. With 17,000-
instruction chunks, FlexBulk eliminates, on average, over 90% of
the squash cycles in the applications. As a result, compared to
a baseline execution with 2,000-instruction chunks as in previous
work, the applications run on average 1.43x faster.

This paper is organized as follows: Sections 2 and 3 give a back-
ground and motivation; Section 4 describes the Squash Hazards
and squash-removing algorithms; Section 5 describes the FlexBulk
framework; Sections 6 and 7 evaluate FlexBulk; and Section 8 dis-
cusses related work.

2. BLOCKED EXECUTION

Blocked execution is a mode of execution where a processor con-
tinuously executes blocks (or chunks) of consecutive instructions in
the program atomically. Several shared-memory architectures that
operate or can operate in this mode have been recently proposed [2,
6,7,9, 11, 18, 21, 22, 23]. In these architectures, before a chunk
starts, the processor hardware takes a register checkpoint. Then,
the chunk executes speculatively. The architecture keeps a record
of the addresses read and written by the chunk, and prevents the
written data from being permanently merged with the memory sys-
tem before the chunk is proven to be safe and commits. At the same
time, the architecture watches for data conflicts between the chunk
and other concurrently-executing chunks. If a conflict is detected,
one of the chunks is squashed and restarted. Squashing involves
discarding the data updated by the chunk and restoring the register
checkpoint.

This paper uses the Bulk Multicore [6, 21] as an example of
blocked-execution architecture. In this architecture, the state gen-
erated by a chunk is stored in the cache. The memory addresses
read and written by the chunk are hash-encoded in a Read (R) and
Write (W) signature register using Bloom filters. Detection of data
conflicts between chunks is performed lazily at commit. Specifi-
cally, when a chunk ends and wants to commit, the hardware sends
the W signature to other, relevant processors. In these processors,
the incoming signature is intersected with the local ones to detect
conflicts. If a conflict is found, the local chunk is squashed. With
this approach, the chunks from all processors appear to execute in
a total order.

While a processor is executing a chunk, no other processor can
observe the intermediate state of the chunk. Blocked-execution

architectures leverage this fact in two ways. First, the hardware
can reorder and overlap memory accesses inside chunks, nullifying
memory fences [2, 6, 23]. Second, the compiler can perform opti-
mizations inside a chunk that may be unsafe [1, 17]. For example,
Neelakantam et al [17] generate chunks where code is generated
assuming that a certain control path is followed. If another path is
taken, the chunk is squashed. Ahn ef al [1] generate chunks where
the code is optimized across synchronization operations, perform-
ing register allocation, common subexpression elimination, and other
optimizations. If a data collision is detected, the chunk is squashed.
If the chunk is squashed by an event that re-appears on re-execution
(e.g., cache overflow), execution transfers to a Safe Version of the
chunk that is not unsafely optimized.

3. WHY WE NEED LARGE CHUNKS

Some past proposals for blocked-execution multiprocessor ar-
chitectures have used small chunk sizes of 2,000 instructions or
less [6]. However, there are two performance reasons why we need
chunks that are several times bigger: to minimize overall chunk-
commit overhead and to enable more compiler optimization.

In lazy conflict-detection architectures (the focus of our work),
chunk commit is costly. It involves informing other processors of
the set of addresses updated by the chunk. Sending out the list of
such addresses is expensive. Even if the addresses are encoded in a
signature, a machine with large numbers of processors attempting
to commit small chunks will surely experience long commit laten-
cies. Past work hid this latency with multiple, pipelined chunks
per processor. However, such scheme doubles or quadruples the
hardware needed in the processor. Overall, with large chunks, the
commit overhead is much less of a worry.

Large chunks also give more flexibility to the compiler to apply
new optimizations. While compiler optimization is outside this pa-
per’s scope, as a motivation, we consider two code examples with
already existing optimizations. The first one is the loadtree func-
tion in Barnes from SPLASH-2 (Figure 1(a)). The function has a
while loop that traverses a tree. Each iteration has two critical sec-
tions with the same lock, but the lock changes across iterations. As
conflicts are rare, we perform lock elision [19]. It involves (i) re-
moving the Unlock calls and (ii) replacing the Lock calls by while
loops that read the lock variable using plain loads until the variable
is free [1]. We place the resulting whole loop in a chunk.

Without the atomics, our GCC compiler attempts to perform loop
invariant code motion of the lock address. However, since each iter-

ation accesses a different lock, the compiler only moves outside of
the loop the generation of the base address of the lock (& CellLock-
>CL), which was computed four times. This saves instructions,
including memory accesses. We also observe other improvements
from better code and register allocation.

Column 2 of Figure 1(b) shows the impact of the optimization.
The loop has 18 iterations. Before the optimization, the code exe-
cuted 517 instructions per iteration (9,306 per loop); after the op-
timization, it executes 432 per iteration (7,776 per loop). Each
iteration executes 85 fewer instructions, of which 8 are memory
accesses and 4 are atomics. Most of these 85 instructions appear
outside of the loop and execute only once. These are significant
savings. Note that a large chunk that includes all 18 iterations per-
forms the best: if we tile the loop to fit into a smaller chunk, we
have to execute the 85-instruction loop startup in every tile.

Column 3 of Figure 1(b) shows a similar optimization in the
Database code of SpecJVM9S8. The loop runs for 50 iterations.
Before the optimization, the code executed 353 instructions per it-
eration (17,650 per loop); after the optimization, it executes 247
per iteration (12,350 per loop). Each iteration executes 106 fewer
instructions, of which 59 are memory accesses and 2 are atom-
ics. These savings come from optimizing lock address generation,
removing synchronization, optimizing null and range checks, and
generally optimizing the code and register allocation. Again, a
large chunk that includes the whole loop has the least startup cost.

Unfortunately, large chunks have a higher chance of suffering
conflicts that produce squashes. To address this problem, this paper
proposes user-transparent techniques to intelligently break off-the-
shelf multithreaded code into chunks that minimize squashes.

4. ELIMINATING SQUASHES
4.1 Main Idea

Squashes due to data conflicts occur primarily because threads
communicate with each other. Consequently, to eliminate squashes,
we should first identify the code locations where threads communi-
cate. Then, we should tailor the chunk boundaries to minimize the
chance that two concurrently-executing chunks attempt to commu-
nicate. Note that, at a hardware level, communication also includes
name dependences (WAR and WAW) and false sharing. We neglect
false sharing for now.

We propose to focus on the first communication operation in a
code region where a thread may perform multiple communications
with a second thread. We call such operation Squash Hazard. Typ-
ical Squash Hazards are synchronization operations and data races.
Synchronizations involve passing information; data races may do
so or may induce WAWs/WARs. Accesses to shared data protected
by synchronization are typically not Squash Hazards. They are less
likely to cause squashes because, by focusing on avoiding squashes
on the synchronization, we mostly ensure that the data accesses do
not conflict.

We propose ISA extensions that can be used to tailor the chunks
around Squash Hazards (Table 1). First, the Commit operation fin-
ishes and commits the current chunk, and starts a new one. It gets
translated into an instruction like beginAtomic PC from [1], which
takes as argument the program counter (PC) of the safe version
of the next chunk — to be used if the next chunk is repeatedly
squashed. In this paper, we assume that, if no Commit operation
is found after a certain, very large number of cycles, the hardware
automatically commits the chunk and starts a new one.

The Stall operation stalls the processor for a period. In the Check
& Commit and Check&Stall operations, the processor checks a cer-
tain condition and, based on the outcome, decides whether to com-

Operation [

Functionality I

Finishes and commits the current chunk,
Commit triggers a register checkpoint in
hardware, and starts a new chunk.

The processor stalls for a Duration num-
ber of cycles.

The processor checks Condition and, if it
is true, it Commits the current chunk.
Check&Stall(Condition,Duration) || The processor checks Condition and, if it
is true, it Stalls for Duration cycles.

Stall(Duration)

Check& Commit(Condition)

Table 1: Operations to tailor chunks around Squash Hazards.

mit the current chunk, or whether to stall, respectively. These two
operations are likely implemented with a non-atomic combination
of multiple instructions.

We consider five types of Squash Hazards, namely barriers, high-
contention critical sections, middle-contention critical sections, flag
set-wait, and data races. Next, we use the operations in Table 1 to
tailor squash-elimination algorithms to these hazards.

4.2 Barriers

Figure 2(a) shows the code of a barrier, which we divide into
an Update and a Hold section. Every thread arriving at the barrier
updates lock and count. For the barrier to complete, each thread
must observe the updates of the earlier threads. This requires that
each thread necessarily commit its chunk sometime after its Update
section. This can be attained by relying on the hardware to auto-
matically commit a chunk after the thread has been spinning in the
Hold section for a long time, as discussed in Section 4.1. However,
our goal is to reduce the execution time and number of squashes
by inserting instructions to tailor the chunks. In the following dis-
cussion, the ideas apply equally to lazy and eager conflict-detection
architectures.

Acquire (lock) Update Commit
count+-+ Commit Update
Uod if (count > (?umProc) Hold Commit
pdate| count «
flag < true (b) Hold
end if . .
Release (lock) Tail Commit
while(!flag) do (c)
Hold| Wwait Head& Tail
end while Commit

(a)
Original Barrier
Figure 2: Squash-elimination algorithms for barriers.

Depending on whether the threads reaching the barrier are load-
balanced or not, we propose two algorithms. If the threads are not
load-balanced, they do not execute their Update sections concur-
rently. Consequently, we simply insert a Commit after the Update
(Figure 2(b)). This reduces the chance of losing to squashes the
work done by the thread before reaching the barrier and during the
Update section. We call this algorithm Tail Commit.

If the threads are load-balanced, they bunch-up during the ex-
ecution of the Update section and, therefore, can conflict there.
Consequently, we insert Commits before and after the Update (Fig-
ure 2(c)). The first Commit reduces the chance of losing the work
performed before the barrier. The second Commit reduces the time
that a thread is vulnerable to conflicts, therefore minimizing the
chance of losing the work in the Update section. We call this al-
gorithm Head&Tail Commit. 1t is less efficient than Tail Commit
because it has two Commits.

In all cases, each thread spinning on flag gets squashed when
the last thread reaches the barrier and updates flag. Fortunately, no
useful work is wasted as the threads were simply spinning.

PreAllocateFO PreAllocateFO { MyMalloc {
BNumericSolveFO : :

. CommitFlag =true if(CommitFlag)
FactorLL Domain—= MyMalloc() Commit
/ CommitFlag = fase Acquire
Send : :
} Release
if(CommitFlag)
Commit
}
@ (b) (©

dequeue_task { decqueue__ttask {
for(num of task queues) { ommi
if(taskqueue has tasks) { for(fll rst half of task queues) {
Acquire(taskoueue)
Try Get Task oo
Rel ease(taskqueue) Commit
for(second half of task queues) {
} :
} oo
Commit
}
(d) e

Figure 3: Squash-elimination algorithms for medium-contention critical sections.

4.3 High-Contention Critical Sections

In a high-contention critical section, multiple threads often at-
tempt to acquire the lock concurrently. In a blocked-execution ar-
chitecture with lazy conflict detection, multiple threads may pro-
ceed as if they all had acquired the lock. Eventually, all but one
will be squashed. In an architecture with eager conflict detection,
all threads may repeatedly be squashed.

We handle these Hazards with one of several algorithms. One
involves inserting a Commit after the release (Figure 4(a)). This
Tail Commit algorithm ensures that the release is immediately made
visible to other threads. It also tries to prevent the squash of the
work done by the thread before or during the critical section.

Commit Commit
) Commit if (Squashed) While(L==taken
Acquire(l) A uire(l) enc?ti?ll (Variable) E(){}
: * Acquire(L) .
e :
Comit Commit Release(L) Commit
Commit
@ (b) (©)
Tail Head& Tail Head& Tail Lock
Commit Commit Commit & Stall Elision

Figure 4: Algorithms for high-contention critical sections.

A second algorithm inserts a Commit immediately before the ac-
quire and after the release (Figure 4(b)). This Head & Tail Commit
algorithm further minimizes the chances of squashing the work per-
formed before the critical section. However, it adds the overhead
of an additional commit.

Another algorithm augments Head&Tail Commit with a stall for
a certain number of cycles, if and when the chunk is squashed dur-
ing critical section execution. This stall is performed before retry-
ing the acquire (Figure 4(c)). We call this algorithm Head&Tail
Commit & Stall. In a lazy architecture, when many threads execute
the critical section concurrently, as soon as one thread commits, all
the other threads get squashed. By stalling a variable number of
cycles before restarting, we prevent lock-step squashes.

Finally, we can augment any of these algorithms with lock eli-
sion [19], where the acquire is replaced by a while loop with a
plain load, and the release is removed. For example, Figure 4(d)
shows the augmented Head&Tail Commit algorithm. Lock elision
is used when the non-synchronization variables in the critical sec-
tion are likely to be conflict-free. This algorithm can also be used
in medium-contention critical sections.

4.4 Medium-Contention Critical Sections

In these critical sections, multiple threads occasionally try to en-
ter concurrently. Most codes contain these critical sections, and

they often cause the majority of the squashes. The algorithms for
high-contention critical sections are suboptimal here because they
lead to many nonessential commits and small chunks. Instead, we
propose four different squash-removing algorithms.

4.4.1 Call-Path Commit

Often, we can accurately predict whether an instance of a medium-
contention critical section will be squashed by examining the dy-
namic call path that lead to it. This is common in wrapper functions
that have a critical section inside them. These functions are called
from several different call sites but only a few of them consistently
lead to squashes. Hence, we propose the Call-Path Commit algo-
rithm, where the compiler forces chunk commits only if the critical
section was invoked from a certain path.

An example is the malloc wrapper MyMalloc in Cholesky, which
is called from multiple functions (Figure 3(a)). Its critical section
is only squashed when called from PreAllocateFO. The compiler
can place code in MyMalloc to commit only if it is called from
PreAllocateFO (Figures 3(b)-(c)). Another implementation of this
algorithm uses functional specialization for different call sites.

4.4.2 Loop Commit

Often, a loop accesses a critical section protected by a different
lock in each iteration. While each individual lock has a low prob-
ability of contention, all the locks together have a high probability
of inducing a conflict and a squash. Unfortunately, if the compiler
places a commit after every single critical section, the result is very
small chunks. Consequently, we propose the Loop Commit algo-
rithm, where the compiler distributes the loop — i.e., it creates N
loops, where each one iterates over 1/Nth of the original iterations
— and introduces a commit after each loop. It also inserts a commit
before the first loop starts.

This pattern occurs in helper functions that traverse data struc-
tures. Figure 3(d) shows dequeue_task from Radiosity, which tra-
verses all the task queues, executing a critical section in each of
them. Concurrently, another thread may operate on a queue and
cause a squash. Figure 3(e) shows the code resulting from our al-
gorithm, assuming that we distribute the loop into two.

4.4.3 Check&Stall Algorithm

A common sharing pattern involves two critical sections pro-
tected by the same lock variable that repeatedly communicate (e.g.,
in a producer-consumer manner). This is shown in Figure 5(a).
During execution, one thread (j) has typically finished its critical
section by the time the second one (i) attempts to start its own.
However, sometimes, the second thread (i) arrives early, and tries
to enter its critical section before thread j has exited its own (Fig-
ure 5(b)). The result is a conflict on at least the synchronization
variable, and the eventual squash of one of the chunks.

To handle this pattern, we propose the Check&Stall algorithm.

i] [] []

+
B T T Uncached wr - = -
g %:—_AOQ Té:“—Aoq ! x|—FAcq ‘ T 2 .
= >
= S| w Acg—-1_O! TO 5, 1 Acq 1 || E Acqg 115 E!
x |] 2 5
T Rl 5 1T Re : O Ordinary | | : 0§,
iR £ — 4 i |
O Check 11 R Iy X |
! ! - c | 1
Acq ——| R~ &sal Commit Rel % 2 Rel %_L Uncached
I AcgT 1 | 'L Acq i wr
dal 'S | | I Check & < ot
0 : ! I | Colliding Commit \Ne ! 3 »1—1
Re -1 © 1 ‘ 2 by
i E 1 R -
= L7 14 Re
Commit

@ (b) ©

(d) G

Figure 5: The Check&Stall and Check& Commit algorithms.

The idea is to precede thread j’s lock acquire by a compiler-inserted
message to thread i. The message is used as a hint that i needs to
wait before attempting an acquire, to allow thread j to complete its
critical section and commit. A possible implementation of such a
message and wait is an uncached write to memory by the processor
running thread j and an uncached Check&Stall operation (Table 1)
to the same location by the processor running thread i.

Figure 5(c) shows the operation of the Check&Stall algorithm.
In the early thread (j), the compiler inserts an uncached write be-
fore the lock acquire and a commit after the release. The write
stores the current time (7 in the figure). In the other thread (i), the
compiler inserts an uncached Check&Stall immediately before the
lock acquire. With this primitive, thread i can stall for a time that
is larger than the expected duration of the critical section in thread
J (T in the figure) minus the time elapsed since the uncached write
(70 in the figure). By the time this stall is over, thread j will have
committed its critical section accesses, and thread i will be capable
to acquire the lock without conflicts.

This algorithm applies beyond a pair of repeatedly-communicating
processors. It can support migratory sharing, where the pairs of
communicating processors continuously change. It can also sup-
port the presence of multiple, changing consumer processors.

4.4.4 Check&Commit Algorithm

Another common pattern also involves two critical sections in
different threads protected by the same lock. The first critical sec-
tion (Ordinary), is executed relatively frequently by different pro-
cessors and is not frequently squashed. The second one (Colliding),
is executed less frequently but, when it is, it typically collides with
an Ordinary section and induces a squash. Figure 5(d) shows an
example where thread i executes the Ordinary section and, before
i commits the chunk, thread j executes the Colliding section and
induces a squash.

To handle this pattern, we propose the Check&Commit algo-
rithm. The idea is for a thread (j in the example) to issue a hint
when it is at a certain distance of starting to execute the Colliding
section. This hint indicates that any thread that has executed an Or-
dinary section (i in the example) should commit its chunk immedi-
ately, to avoid a squash. This hint and commit can be implemented
with an uncached write to memory by the processor running thread
J and an uncached Check&Commit operation (Table 1) to the same
location by the processor running thread i.

Figure 5(e) shows the Check&Commit algorithm. As the Col-
liding section in thread j is highly contended, it is surrounded by
Commits. Moreover, the compiler inserts an uncached write in j
much before j reaches the Colliding acquire. In thread i, the com-
piler inserts an uncached Check&Commit at periodic intervals after
the Ordinary section. This operation checks whether the uncached
write has been performed and, if so, commits the current chunk.

Once the commit is performed, the remaining Check&Commits
have no effect (Section 5.3).

The compiler has to carefully select where the Check&Commit
operations are placed. Since each of them may mark the boundary
of two atomic chunks, the compiler may be unable to optimize code
across Check&Commit operations.

4.5 Flag Set-Wait

A flag Set and its corresponding Wait form a common Squash
Hazard. In general, a squash occurs if the Wait executes before the
chunk with the Set commits. In our algorithms, if a Set-Wait causes
a high squash rate, we insert a commit after the Set. This ensures
that the Set is observed as soon as possible. In addition, depending
on the type of Wait present, we apply one of the following three
algorithms.

If the Wait involves no work beyond checking the flag, we pro-
pose the Head Commit algorithm of Figure 6(a). The algorithm first
checks the flag and, if it is not set, commits the chunk and spins on
the flag until set. By checking the flag before committing, we avoid
the overhead of a commit if the flag is already set. However, if the
flag is not yet set, we commit to protect the work before the Wait.

if(tflag){

Commit
While(!flag) { }
if(!flag){
@ Commit
iter=0
While(!flag) {
iter++
Work
if(tflag){ if(iter MOD Num == 0)
Commit Commit
While(!flag) {) }
Work
Commit ©

(b)
Figure 6: Squash-elimination algorithms for Wait.

If the Wait is in a loop that performs a large amount of work
between consecutive checks of the flag, we use the Head&lIteration
Commit algorithm of Figure 6(b). The algorithm first checks the
flag. If it is not set, it commits the chunk and then spins on the flag
until it is set. Each iteration of the spinloop performs the original
per-iteration work followed by a commit. If there is an exit from the
loop body (e.g., due to a goto or a break statement), then a commit
should be placed at that exit as well to save the work done.

If the Wait is in a loop that performs a small amount of work
between consecutive checks of the flag, we use the Head&Loop
Commit algorithm of Figure 6(c). The algorithm is the same as the
Head<eration Commit except for the following. To reduce the

overall commit overhead, we do not commit at every iteration of
the loop. Instead, we commit only once every few iterations (Num).
This pattern is found in some fuzzy-barrier implementations.

4.6 Data Races and Library Functions

Typically, a data race is a Squash Hazard. A data race between
two concurrently executing chunks causes a squash. Unless a race-
detection tool is available, it is hard to pinpoint the racing ref-
erences. Consequently, if synchronization is not the reason why
chunks are getting squashed, the compiler decreases the size of the
conflicting chunks by placing one or more commits inside them.
The result may be that the squash disappears because the racing
chunks do not overlap, or that less work is squashed.

Library functions are handled like the rest of the code by our
algorithms. Some frequently-used ones like malloc, free, setlocal,
or signal, use locks and/or other global shared state and, therefore,
cause squashes. These library functions should be modified to work
on thread-private data as much as possible. For example, malloc
should work first on a private pool of memory before accessing a
global pool, as in TCmalloc [10].

4.7 Summary

Table 2 summarizes the squash-elimination algorithms proposed
for each type of Squash Hazard.

Squash- Squash Hazards
Elimination
Algorithms Barrier High- Med- Flag Data
Cont Cont Set- Race
Critical Critical Wait
Section Section
Tail Commit X X
Head&Tail X X
Commit
Head&Tail X
Commit&Stall
Lock Elision X X
Call-Path X
Commit

Loop Commit
Check&Stall
Check&Commit
Head Commit X
Head<eration X
Commit
Head&Loop X
Commit
Decrease X
Chunk Size

| <[<

Table 2: Squash-elimination algorithms for Squash Hazards.

5. IMPLEMENTATION

While a static compiler can identify the synchronization points
in a program, it can hardly assess their level of contention. Con-
sequently, we envision our algorithms to form a framework inside
a dynamic compiler. We call the framework FlexBulk. It is com-
posed of three parts: Profiler, Analyzer, and Optimizer. The pro-
filer is a pass that annotates the code to record dynamic information
related to squashes and commits. The analyzer uses the generated
statistics to characterize the Squash Hazards and deduce the best set
of squash-elimination algorithms for them. Finally, the optimizer
transforms the code accordingly.

5.1 Profile Module

The profiler is a compiler pass that identifies Squash Hazards in
the code and inserts instrumentation around them. As we execute

the application, the instrumentation dumps relevant statistics. The
profiler gives one ID to each Squash Hazard, irrespective of the ad-
dresses it accesses. For example, an acquire at a given PC gets one
ID, although it may access different variables in different invoca-
tions. The profiler also keeps the recent procedure call history so
that, when it reaches a Squash Hazard, it knows the context.

As the program executes, the instrumentation generates a soft-
ware table where each row corresponds to one Squash Hazard,
given by an ID and a call history context. A row keeps the type
of Hazard (e.g., barrier) and counts of how many times it executed
and was then squashed (NumSquash), or executed and then com-
mitted (NumCommit). The profiler also generates other informa-
tion that enables the analyzer to characterize the Squash Hazards.
For example, it generates the number of instructions executed be-
tween successive accesses to the same Hazard (Instruction Gap).
To detect candidates for the Check&Stall and Check& Commit al-
gorithms, the profiler causes the program to issue uncached writes
as per Section 4.4.

5.2 Analysis Module

The analyzer uses the statistics generated by the profiler to choose
the best squash-elimination algorithm for each Squash Hazard. For
this, it combines the per-thread statistics into application-wide, and
then uses the thresholds of Table 3 to decide what algorithm to use.

Threshold Meaning
Thsq Minimum fraction of execution time wasted by a
Squash Hazard to squashes to make it interesting
Thyar Minimum squash rate in the Update section

of a barrier to qualify as load-balanced

ThP9h Thr™ed [Minimum squash rate in a critical section to

qualify as high or medium-contention, respectively
Thsw Minimum squash rate in a flag set-wait to

qualify as interesting

Maximum Instruction Gap between successive
accesses to the same Squash Hazard to qualify for the
Loop Commit or Head&Loop Commit algorithms

Table 3: Thesholds used by the analyzer.

Thigap

As shown in Table 3, if a Squash Hazard causes less than T'hq
squash cycles (as a fraction of the total application execution time),
it is not considered. Otherwise, the analyzer computes the Squash
Rate of the Hazard as — 57 12]1 Z;’Leiilﬁz}::éomm +» where Num-
Squashes and NumCommits are the number of times the chunk
with the Hazard is squashed and committed, respectively. For barri-
ers, the squash rate is compared to T'hsq, to determine if the barrier
is load-balanced. Depending on the outcome, the analyzer chooses
the algorithms of Figures 2(b) or (c).

For critical sections, the squash rate is compared to Th?29" and
The? to see if the critical section is high-contention, medium-
contention, or otherwise. If it is high- or medium-contention, and
the non-synchronization variables are likely to be conflict-free, the
analyzer chooses the lock elision algorithm of Figure 4(d).

Otherwise, the analyzer proceeds as follows. For high-contention
critical sections, it chooses the Head&Tail Commit & Stall algo-
rithm of Figure 4(c). The stall is set as follows. We assume that
half of the processors (P/2) contend in the acquire. Therefore, each
processor gets a random number from 0 to P/2-]/ and multiplies it
by L, where L is the expected duration of the critical section. This
is the stall time of the processor.

For medium-contention critical sections, the analyzer considers
the four algorithms of Section 4.4 in the following priority order:
Loop, Call-Path, Check&Commit and Check&Stall. As soon as one
is applicable, it is chosen, and further examination is terminated.
The Loop Commit algorithm is applicable if the Instruction Gap

BARRIER: BARRIER: ACQUIRE: ACQUIRE:

Earlier: UncachedWrite(addr,set)

ACQUIRE: : y
Commit Update Commit Commit if(Commitflag) ACQUIRE: ACQUIRE:))

Update Commit While(lock==taken) {} if(Squashed) Commit CheckgsStall(addr, T1-T0) UncachedWrite(addr,time)

Commit Hold Stall(Duration) Acquire Acquire Acquire
. Acquire

Hold) imbalanced REé—EQﬁ i FELEASE RELEASE: RELEASE:
(@) BB:[I:grced Barrier © Lock RELEASE: ReEIea$sé Release léeleagf
c) Lock Elision Release if(Commitflag) i Sl

Commit Commit (f) Check&sStall [i] UncachedWrite(addr,clear)

(d): High Cont. CS (e) Call-Path Commit

ACQUIRE: : SET: WAIT: WAIT: WAIT:
Acquire A%%‘;’r:ri'i' Set(flag) if('flag) { if(flag) { if(flag) {
RELEASE: P Commit Commit Commit Commit
cquire)) .
Release . while ('flag) {} while ('flag) { iter=0
o RELEASE: () set Work while (flag) {
After the Relea_se, periodically Release o Commit iter++
Check&Commit(addr) Commit (k) Wait with } Work
i No Work s
(h) CheckaCommit] el S EE e } f(iter MOD Num ==0) {
(i) Check&Commit [() Wait with Commit
Large Work } }
}

(g) Check&Stall [j]

(m) Wait with Small Work

Figure 7: Synchronization macros used by the optimizer.

between successive accesses to the Hazard is less than Th;gqp. In
this case, the analyzer distributes the loop and inserts commits as
per Figure 3(e). The Call-Path Commit is applicable if there is one
or more call-path contexts for which the squash rate is higher than
Thh9% In this case, the analyzer uses the code of Figure 3(c). The
Check&Commit and Check&Stall are applicable if, after the pro-
filer instruments the code appropriately and measures the squash
rate, the latter is higher than Th9% More details on the imple-
mentation of these two algorithms are presented in Section 5.3.

For a flag set-wait, if its squash rate is less than T'hs,, it is not
considered further. Otherwise, the set is followed by a commit.
Moreover, if the wait has no work, the analyzer chooses the Head
Commit algorithm of Figure 6(a). If it has work, the analyzer com-
pares the Instruction Gap between successive accesses to T higap.
Based on this, it chooses the Head&Iteration or Head&Loop Com-
mit algorithms of Figures 6(b) and (c).

5.3 Optimization Module

The optimizer transforms the code around the Squash Hazards
according to the chosen algorithms, and then recompiles it. The
transformations use the four operations of Table 1, and augment
high-level synchronization constructs such as M4 macros [14]. In
the following discussion, we assume we have macros for BAR-
RIER, ACQUIRE, RELEASE, SET, and WAIT.

The BARRIER macro is shown in Figures 7(a) or (b) depending
on whether the barrier is load-balanced or not. The Update and
Hold sections were shown in Figure 2(a).

The ACQUIRE and RELEASE macros for critical sections that
use lock elision are shown in Figure 7(c). Otherwise, those for
high-contention critical sections and for the Call-Path Commit al-
gorithm are shown in Figures 7(d) and (e), respectively. For the
Loop Commit algorithm, the macros do not change.

The ACQUIRE and RELEASE macros for the two thread types
in the Check&Stall algorithm are shown in Figures 7(f) and (g).
Those for the Check&Commit algorithm are in Figures 7(h) and
(i). The thread that initiates the communication (call it j) per-
forms an uncached write to a memory location (call it addr). In the
Check&Stall algorithm, it writes the current time; in the Check&
Commit one, it sets the location. Such write does not terminate
the current chunk. Moreover, if j gets squashed, it is acceptable to

leave the addr location set. Later, in both algorithms, when thread
j commits its chunk, it clears addr, so that future reader threads do
not get confused.

The reader threads (call them i) perform either Check&Stall or
Check&Commit operations in the Check&Stall and Check& Commit
algorithms, respectively. Recall from Section 4.1 that each of these
operations is implemented as a non-atomic combination of multiple
instructions. They include an uncached read to addr that does not
terminate the chunk. In the Check& Commit algorithm, once thread
i commits the chunk, it sets a local variable, so that the execution
of any future Check&Commit operation has no effect until i finds
another commit operation in its execution.

If a Set-Wait pair has a high squash rate, we use the SET macro
of Figure 7(j) and one of the WAIT macros of Figures 7(k)-(m).
For library functions, we use the same algorithms as for the rest of
the code.

6. EVALUATION SETUP

We model the FlexBulk profiler with an analysis tool based on
the Pin [13] binary instrumenter. The tool runs the applications
with a smaller input data set (training set) and dumps commit and
squash information. The FlexBulk analyzer and optimizer are mod-
eled with a set of automated scripts that analyze the information,
and then choose the appropriate squash-elimination algorithms and
M4 macros. The resulting applications are then run with a bigger
input data set (deployment set) under Pin.

Pin is connected to a detailed multiprocessor architecture simu-
lator based on SESC [20]. We model a chip multiprocessor (CMP)
with 16 cores interconnected with a multistage network. The archi-
tectural parameters are shown in Figure 8(a). We simulate an archi-
tecture similar to BulkSC [6]. This is a lazy conflict-detection sys-
tem with potentially false positive squashes due to signatures. The
signatures are similar to Notary’s PBX [24]. Figure 8(a) shows rep-
resentative values of the visible latency of a commit operation (400-
500 cycles) and a squash operation (1500-4000 cycles beyond the
work wasted). The commit latency includes compressing the sig-
natures, sending them to the arbiter and, when the latter responds,
clearing them. The squash latency includes using the signatures to
identify and invalidate the dirty speculative lines in the caches and

Simulated System Configuration Application Training Deployment Envir. Explanation
System: CMP with 16 cores Input Size Input Size Perfect. No cache overflow. Perfect disambiguation
Core: two—issue, in—order at 1GHz PARSEC PerfBase| of addresses for conflicts (addresses are at word le|
L1: 16KB, 4-way, 32B line Canneal simsmall | simmedium and access |nf0rmat|qn IS cache lines)
Private, write—through, 16-entry MSHR | | copret simsmall | simmedium PerfOpt | PerfBase after our optimizations
L;'Eggﬁ% %fygﬁ%@gq%g'p Streanjcluster simsmall s?mmed?um False Sharing. Cache overflow is possible. False
Private, write—back, 16—entry MSHR Swaptions simsmall | simmedium FSBase | sharing is possible (disambiguation uses cache-lin
Hit delay: 8 cycles round trip SPLASH-2 addressesg). Access information is in cache lines
Victim cache: 64-entry, full-asso, 32B line FSOpt | FSBase after our optimizations
Dggﬁoryf“hg modulfe |‘|)er e Barnes 4K particles | 32K particles Real. Cache overflow is possible. False sharing is
Mu|ﬁst§8é'|ensté,cc‘,'¥ﬁgct“ map Cholesky tk15.0 tk29.*O RealBase| possible (disamb. uses cache-line addresses). Fal
L2 miss delegl:] Ocean 66 * 66 ocean258 * 258 ocean positives are possible (access inform. is in signatur
To other LZs: 30 cyc round tr(ljp (avg) Radiosity test room RealB P imizadi
To memory: 250 cycles round trip Radix 64K keys 256K keys Real Opt ase after our optimizations
Mem: DDR2 DRAM. Datarate: 667MHz Raytrace teapot car ©
Write/read signature: 4096 bits each
similar to Notary's PBX i e .
Commit cost: approx. 400 — 500 cycles Thg Thear | Thes Thes™ | Thy Thigap
Squash cost: approx. 1500 - 4000 cycles -
Target chunk size: 2K, 5K, 10K, 20K ins ®) 1% 60% 75% 0% 30% 400 instr.
(@) (d)

Figure 8: Parameters used in the evaluation: simulated system configuration (a), applications and input sizes (b),
environments considered (c), and threshold values used (d). We use StrCl for Streamcluster.

then restoring a checkpoint. The squash latency varies significantly
based on the cache state.

The target chunk sizes evaluated are 2K, 5K, 10K, and 20K in-
structions. These are sizes targeted by the software; the effective
average sizes are smaller because our algorithms have limited in-
formation and need to be conservative. Moreover, they insert early
commits to avoid squashes. For example, with the 20K target, we
attain an average chunk size of 17,000 instructions. We use 2K as
baseline because it is used in [6].

We use all the SPLASH-2 and PARSEC applications that have
a squash overhead of 3% or more for the 20K target chunk size.
Figure 8(b) shows the applications and input sets.

We model the environments of Figure 8(c). There are three
main groups: Perf, FS, and Real. Perf is a perfect environment,
where chunk squashes only occur due to same-address data con-
flicts (memory addresses are examined at word granularity and the
cache tags record which locations were accessed). FS is Perf aug-
mented with squashes caused by cache overflows and conflicts due
to false sharing (addresses are examined at line granularity). Given
the sizes of our caches and victim caches, cache overflow is very
minor. Real is FS augmented with squashes caused by false posi-
tive conflicts due to address aliasing in signatures. In each of these
three groups, we have an environment without our optimizations
(Base) and one with them (Opt). When we refer to an environ-
ment, we append the target chunk size that it uses in instructions
(e.g., PerfBase2K). The default is 2K chunks. Figure 8(d) shows
the thresholds used by the analyzer.

7. EVALUATION

We first characterize the PerfBase system, then examine the im-
provement attained by our framework (PerfOpt), and then measure
the realistic systems with overflow, false sharing and false positives
(FSOpt and RealOpt).

7.1 PerfBase: Performance Characterization

Figure 9 compares the execution time of PerfBase2K, PerfBase5K,
PerfBasel0K, and PerfBase20K. The bars are normalized to Perf-
Base2K, as in BulkSC. They are broken down into Squash (squashed
work plus squash overhead), Commit (commit overhead), and Use-
ful (the rest). We also show the geometric mean bars. Note that the

geometric mean bars cannot be meaningfully broken down into the
three components.

Under this perfect, yet unoptimized environment, PerfBase2K
suffers moderately from squashes. Because of its small chunks, it
also suffers from commit overhead. As the target chunk size in-
creases, squash time generally goes up and commit time decreases.
For 20K chunks, the commit time is minor, but the squash time
is significant, especially for some applications such as Swaptions,
Ocean and Radiosity. Based on the geometric mean, PerfBase20K’s
execution time is 10% higher than PerfBase2K’s, while the best de-
sign point is SK chunks.

The average fraction of time wasted to squashes changes from
8% in PerfBase2K to 25% in PerfBase20K. Our goal is to under-
stand and remove this overhead. From now on, we focus on the
environment with 20K target chunks because it has the least com-
mit time and, therefore, the highest performance potential. We use
the environment with 2K target chunks as baseline.

7.2 PerfBase: Breakdown of Squash Cycles

Table 4 breaks down the squash time of PerfBase20K into the
contribution of each Squash Hazard type. The numbers are given
as percentages of the total execution time of the application. Other
are unassigned squashes.

Appl. Barrier | High | Medium| Flag Data | Other || Total

Cont. | Cont. Set Races Squas|

Critic.| Critic. Wait

Sect. | Sect.
Canneal 0.0 0.0 5.9 0.0 0.0 0.5 6.4
Ferret 0.0 0.0 0.0 0.0 24 0.7 3.1
StrCl 19.4 0.0 0.0 0.0 0.0 22 21.6
Swaptions || 0.0 0.0 49.5 0.0 0.0 2.6 52.1
Barnes 0.0 4.6 0.0 0.5 0.6 0.1 5.8
Cholesky 0.1 0.3 10.7 0.8 0.0 1.4 13.3
Ocean 339 1.1 0.0 0.0 0.7 0.7 36.4
Radiosity 0.9 13.0 | 415 233 | 0.0 7.8 86.5
Radix 10.4 0.0 0.0 0.0 0.0 1.2 11.6
Raytrace 0.0 10.2 0.0 0.0 0.0 0.4 10.6
Average 6.5 2.9 10.8 2.5 0.4 1.9 24.7

Table 4: Squash time as a percentage of execution time in

PerfBase20K for each type of Squash Hazard.

The largest contributors to squashes are medium-contention crit-
ical sections and barriers. The former strongly affect Swaptions

Execution Time normalized to PerfBase2K

Execution Time normalized to PerfBase2K

160%

H
8
X

120%
100%
80%
60%
40%
20%
0%

160%
140%
120%
100%
80%
60%
40%
20%
0%

PerfBase2K
PerfBase5K
PerfBasel0K
PerfBase20K

Canneal

PerfBase2K
PerfOpt2K
PerfBase20K

PerfOpt20K

g
g

PerfBase2K
PerfBase5K
PerfBasel0K
PerfBase20K

Ferret

PerfBase2K
PerfBase5K
PerfBase10K
PerfBase20K

PerfBase2K
PerfBase5K
PerfBasel0K
PerfBase20K
PerfBase2K
PerfBase5K
PerfBasel0K
PerfBase20K

Swaptions Barnes

PerfBase2K
PerfBase5K

Cholesky

Figure 9: Execution time breakdown of PerfBase for different target chunk sizes.

PerfOpt2K
PerfBase20K

PerfOpt20K

PerfBase2K

Ferret

PerfOpt2K
PerfBase20K

PerfOpt20K

PerfBase2K

@
o

PerfBase2K
PerfOpt2K
PerfBase20K
PerfOpt20K
PerfBase2K
PerfOpt2K
PerfBase20K
PerfOpt20K

Swaptions Barnes

PerfOpt2K

PerfBase2K

Cholesky

D GeoMean
O squash
. Commit
B ussul
5 £2pp EEpp 2Epp Blpy BEpp
Ocean Radiosity Radix Raytrace GeoMean
D GeoMean
[squash
. Commit
B useful

éé X X X X X N X X X X X X X X X M X X X X
S BEEE 93T Iy sy
i3 coBs cols 28ks S8 40ks
B8 22p8 BEpE BEGR BIGR RBIES

Ocean Radiosity Radix Raytrace ~ GeoMean

Figure 10: Impact of FlexBulk on the execution time under Perf for 2K and 20K target chunk sizes.

and Radiosity, while the latter impact StrCl and Ocean. Other cat-
egories are also noticeable. For example, squashes due to high-
contention critical sections affect Radiosity and Raytrace, while
flags have a major impact on Radiosity. Overall, we need a vari-
ety of algorithms to handle all of these cases.

7.3 PerfOpt: Performance Using FlexBulk

Figure 10 compares the execution time of two environments be-
fore optimization (PerfBase2K and PerfBase20K) and after (Per-
fOpt2K and PerfOpt20K). The bars are normalized to PerfBase2K.

FlexBulk’s intelligent chunk generation eliminates much of the
squash time in both environments. The reduction in the 20K chunk
environment is large. Specifically, the average fraction of squash
time in PerfBase20K was 25%, which now becomes 4% in Per-
fOpt20K. The reduction in the 2K chunk environment is relatively
lower because our algorithm must necessarily be more conserva-
tive: cutting small chunks smaller risks increasing the commit time.
Opverall, as shown by the mean, PerfOpt20K is now 17% faster than
PerfOpt2K. Neither has much squash time, but PerfOpt20K has less
commit overhead thanks to using larger chunks.

To understand PerfOpt20K’s improvement, Table 5 shows the re-
duction in squash time delivered by each of our squash-elimination
algorithms with 20K target chunks. The reduction is given as a
percentage of the squash time in PerfBase20K. Each column refers
to one algorithm and each row to one application. A given box in
the table shows the reduction in squash time attained by applying
only that algorithm. For example, in Radix, applying Barrier Tail
Commit alone eliminates 74.8% of the squash time. The algorithms

missing did not have any noticeable impact. The last column cor-
responds to the application of all the algorithms together.

On average, FlexBulk eliminates about 92% of the squash time
in the applications. This is a large reduction. The algorithms that
have the biggest impact vary across applications. Moreover, as
shown in bold in the table, many of the algorithms in FlexBulk are
needed. For example, the two flavors of barrier are effective. High-
contention critical sections are optimized with Head&Tail Commit
& Stall and with Lock Elision. The latter is effective for the load-
tree function in Barnes, as illustrated in Section 3.

Some of the algorithms for medium-contention critical sections
are key to one or more applications. For example, Call-Path Com-
mit is effective for the Ger wrapper function for atomic operation
in Canneal. Loop Commit and Check& Commit are effective in Ra-
diosity. The former is used in the enqueue_task function, which
accesses a lock repeatedly in a loop; the latter algorithm is used
in a critical section in the dequeue_task function, where a thread
gets squashed occasionally, when other threads enqueue a task in
its queue.

The Head<eration Commit algorithm for flags is also benefi-
cial. Specifically, it is very effective in a large-work flag wait that is
part of a fuzzy barrier in Radiosity. Finally, our algorithm for data
races is useful in Ferret, which has races in the emd function.

7.4 FSOpt and RealOpt: Performance with
Overflow, False Sharing & False Positives

The FS environment augments Perf with squashes due to false
sharing and cache overflows, while Real augments F'S with squashes

Appl. Barrier High-Cont. CS Med-Cont. Crit. Sec. Flag Set Wait D. Race All
Tail Head Head & Tail Lock Call-Path Loop Check& | Check& Lock Head Head Decrease | Together
Commit & Tail Commit Elision | Commit | Commit Stall Commit | Elision | Commit | & Iteration Chunk
Commit & Stall Commit Size
Canneal 0 0 0 0 89.7 0 0 0 0 0 0 0 89.7
Ferret 0 0 0 0 0 0 0 0 0 0 0 69.5 69.5
StrCl 71.1 15.4 0 0 0 0 0 0 0 0 0 0 87.4
Swaptions 0 0 0 0 93.3 0 0 0 0 0 0 0 93.3
Barnes 0 0 74.1 83.3 0 0 18.4 0 0 9.2 0 11.1 95.7
Cholesky 0 0 0 0 26.7 58.9 14.8 21.1 30.0 5.0 0 0 97.6
Ocean 10.8 83.1 2.4 0 0 0 0 0 0 0 0 2.4 99.0
Radiosity 0.3 0 17.8 0 0 70.6 20.1 68.6 0 0 40.2 0 96.3
Radix 74.8 20.5 0 0 0 0 0 0 0 0 0 0 91.1
Raytrace 0 0 98.2 0 0 0 0 0 0 0 0 0 98.2
[Average [157 [119] 19.2 [83 [210 [130 J 53 [90 [30 [14] 4.0 [8.3 [918 1

Table 5: Reduction in squash time delivered by each of our squash-elimination algorithms for 20K target chunks. The
reduction is given as a percentage of the squash time in PerfBase20K.

160% [~

B
=
]
X

120%
100%
80%
60%
40%
20%

Execution Time normalized to PerfBase2K

0%

386%

GeoMean
Squash
Commit
Useful

(] [

XEXE XXXE XXX XHXX NYXE XX XYXX XYXE XXX XXX YXXXH
B288 BEGT B=GY BRRE ¥RGE ¥R B=GE EBRRE MRS EsRE ERRE
? ? 3 3 3 3 3 3 ? ? ?

au.%g ﬁu_%sg ﬁu.5§8 $L|.5§8 ﬁu.a8 3%4_5;8 au.ggg %u_ﬁ;g %u_%g %LL%B %u_$8
Loon oo@Qon Lo @Qon woow weon oL Lo Lo oo oo @Pon oo
Canneal Ferret StrCl Swaptions Barnes Cholesky Ocean Radiosity Radix Raytrace ~ GeoMean

Figure 11: Impact of FlexBulk on the execution time under FS for 2K and 20K target chunk sizes. The bars are

normalized to PerfBase2K.

due to false positives in the signatures. These environments are
evaluated in Figures 11 and 12, which show the impact of FlexBulk
on the execution time under F'S and Real, respectively. Specifi-
cally, Figure 11 compares the 2K and 20K chunk environments un-
der FS before optimization (FSBase2K and FSBase20K) and after
(FSOpt2K and FSOpt20K); Figure 12 compares the 2K and 20K
chunk environments under Real before optimization (RealBase2K
and RealBase20K) and after (RealOpt2K and RealOpt20K). In both
figures, the bars are normalized to the perfect environment with 2K
target chunks (PerfBase2K).

As we move from Figure 10 (Perf) to Figure 11 (FS), and to Fig-
ure 12 (Real), the execution time of the unoptimized environments
(Base2K and Base20K) increases because there are more squashes.
For example, in Base20K, the squash time accounts for an average
of 25%, 29%, and 40% of the time under Perf, FS, and Real, re-
spectively. Most of the effect of false sharing appears as data-race
induced squashes. They are common in functions like malloc, free,
and their wrapper functions. On the other hand, the squashes due
to false positives in the signatures are more random and distributed.
Some applications such as Cholesky and Radix (Figure 12) suffer
substantially from them.

Figures 11 and 12 also show that FlexBulk optimizes away much
of the squash time in both environments. This can be seen in bars
FSOpr20K (Figure 11) and RealOpt20K (Figure 12). Since both
squash and commit time are low, FlexBulk delivers good speedups.
From the mean, FSOpt20K is now 20% faster than FSOpt2K, and
RealOpt20K is also 20% faster than RealOpt2K. This shows that
our approach is robust and widely applicable.

7.5 Sensitivity to the Target Chunk Size

To understand the sensitivity to the size of the target chunks, we
now compare the impact of FlexBulk on the execution time under
2K, 5K, 10K, and 20K target chunk sizes. Due to space limitations,
we only show the geometric mean of the applications. The resulting
execution times for the Perf, F'S, and Real environments are shown
in Figures 13(a), (b), and (c), respectively. In all of the charts,
the execution time is normalized to that of the unoptimized perfect
environment with 2K target chunks (PerfBase2K).

These charts show several trends. Initially, without the FlexBulk
optimization (Base environments, shown in black), 5K chunks are
the sweet spot. Such chunks provide the best combination of mod-
est commit and squash overheads. However, when FlexBulk is ap-
plied (Opt environments, shown in gray), 20K chunks are always
best. The reason is that their commit overhead was low, and now
the squash overhead has been largely removed. Finally, the execu-
tion time of the unoptimized environments (Base) is clearly non-
competitive, compared to the optimized ones (Opf) — especially in
the most realistic scenario (Real).

7.6 Overall Speedups

Putting it all together, Figure 14 plots the execution speedups
of our optimized environments with 20K target chunks (Opr20K)
over the unoptimized ones with 2K target chunks (Base2K). We
show a chart for each of the Perf, FS, and Real environments. In
addition, each chart also shows the speedup that 20K would attain
if we managed to eliminate all of the squash and commit overheads
(Ideal). The charts show the geometric mean of all the codes.

Compared to unoptimized 2K target chunks as in BulkSC, FlexBulk

100%
80%
60%
40%
20%

0%

Execution Time normalized to PerfBase2K

NEEE XXEE XXX XXX wxxx
B5%5 B335 ¥s9Y 5% is%S
mﬁmo m@mo ‘“gmo "“gmo ‘“gmo
§cgf Zogl Bl Fepd Eogd

14 14 14 hd 14
Canneal Ferret StrCl Swaptions Barnes

Figure 12: Impact of FlexBulk on the execution time under Real for 2K and 20K target chunk sizes.

normalized to PerfBase2K.

206%

[] GeoMean

DSquad\

B commit

B ussul
SESS ESS NISS FISS (IS8 $E8S
BSHs beis Ioir keyr i lnie
go go go go g go
Beg8 Bcg8 Bcgl S&gE Bcgl Bogd
x® x x® x® x® x
Cholesky Ocean Radiosity Radix Raytrace GeoMean

The bars are

§140 §140 ;\0\140

X120 [X120 [e ¥ 120

B 100 g . ool ea W . % 100

£ 80 . £ 80 . £ 8

L . L . 2 6

e 2 2

£ g Or i g ©

E EZO*’ 1 ‘920

E s v gx s E g gx gz E s xpzzxz
: #585§:Ef ¢ : t:8:2§:9¢% s BslzizEis
E 394985 ¢E5 S 3Pap 85285 g 29:985%5
i r2peEEE oA p LfTERBIRE i 38385358
5 g g & b 14 o gx e

(a): Perf (b): FS (c): Real

Figure 13: Impact of FlexBulk on the execution time under Perf, FS, and Real for 2K, 5K, 10K, and 20K target chunk sizes.
The bars show the geometric mean of the applications and are normalized to PerfBase2K.

1.8x 1.8x [l — 18x T---T--- T -
N 4 e . 16X [.
o LA . Tax b n 14x - .
S H 1o k- _ 12x [s
e 1] X — Dy .
0.8x 1 | 1 0.8x - _| 08x 11 | B
0.6x | |- 1 1 0.6x L | 0.6x 1 | -
oax | [11 [oak] 04x H | 5
0.2x 1 | 1 A 4X 02x H | -
0x 0.2x - — Ox

8 &8 VI g 8 8

133 988 ¥ g3

a0 3 s 3 a O 8

EZE % BB S 88 3

L w & ¥ o &

(a): Perf (b): FS (c): Real

Figure 14: Geometric mean speedup attained by FlexBulk and
20K chunks under the Perf, FS, and Real environments.

applied to 20K target chunks attains an average application speedup
of 1.32x, 1.40x, and 1.43x for the Perf, F'S, and Real environments,
respectively. These are substantial speedups for the 16-threaded
applications — especially given that we attain them with very little
additional hardware support. Indeed, FlexBulk profiles and opti-
mizes the code in software. Of all the operations in Table 1, the
only one that really needs a new hardware instruction is Commit.
However, even such an instruction only provides a software inter-
face to already existing hardware mechanisms for chunk start and
commit in the baseline blocked-execution architecture.

If we could magically eliminate all of the squash and commit

overhead (Ideal bars), we would attain only modestly higher speedups,

namely, 1.42x, 1.52x, and 1.62x, respectively. Consequently, our
optimizations represent a good design point.

8. RELATED WORK

Several authors have proposed compiler-based techniques to op-
timize the execution of atomic chunks of instructions. Some of
the most related efforts are those of Ahn ef al [1], Neelakantam et
al [17], and Borin et al [5, 4]. We described the first two in Sec-
tion 2. They want the compiler to improve the code within chunks,
either by optimizing for a certain control path, or by optimizing
code across synchronization operations. Our goal, instead, is to en-
able large chunks in the first place, by starting-off with large chunks
and intelligently setting the boundaries to avoid squashes. The ef-
forts are synergistic in that our larger chunks will enable more ag-
gressive compiler optimizations. Borin ez al [5, 4] also try to attain
larger chunks but, rather than focusing on squashes due to data con-
flicts, they focus on those due to cache overflows. They minimize
the impact of limited cache capacity by devising novel hardware
for two-level buffering [5] and conditional commit [4]. With our
large caches and R signature use, we have not observed significant
cache overflow. However, their techniques are complementary.

Bobba et al [3] present several high-level thread interaction pat-
terns that cause thread stalls or squashes in transactional memory
systems. They use contention management methods to remove

these pathologies. Our goal and approach are different. Our goal is
to remove squash time, and do it by cutting the code into chunks at
key points. They cannot cut transactions short.

Other authors have proposed hardware-based techniques for dy-
namic prediction and synchronization of cross-thread dependences
for thread-level speculation (e.g., [8, 16]). These techniques can
augment our FlexBulk framework.

9. CONCLUSION

A limitation of blocked-execution multiprocessors is that, if they
use large chunks to minimize chunk-commit overhead and to en-
able aggressive compiler optimization, inter-thread data conflicts
lead to frequent squashes.

To solve this problem, this paper has presented automatic tech-
niques to form chunks that minimize the cycles lost to squashes.
We identified and characterized common types of Squash Hazards.
We then proposed squash-removing algorithms tailored to them.
These are simple code transformations, often embedded in synchro-

nization macros, that create chunk boundaries for minimal squashes.

We described the FlexBulk software framework that chooses and
applies these transformations. Finally, we evaluated FlexBulk on
a simulated 16-processor blocked-execution architecture running
PARSEC and SPLASH-2 codes. We showed that this approach is
very effective. With 17,000-instruction chunks, FlexBulk elimi-
nates, on average, over 90% of the squash cycles in the applica-
tions. As a result, compared to a baseline execution with fixed
2,000-instruction chunks as in BulkSC, the applications run on av-
erage 1.43x faster. Our next step is to exploit these larger chunks
with novel compiler optimization.

10. ACKNOWLEDGMENTS

We thank the anonymous reviewers and the - ACOMA group
members for their comments. This work was supported in part
by NSF under grant CCF-1012759; Intel and Microsoft under the
Universal Parallel Computing Research Center (UPCRC); Sun Mi-
crosystems under the UIUC OpenSPARC Center of Excellence;
DARPA under UHPC Contract Number HR0011-10-3-0007; and
DOE ASCR under Award Number DE-FC02-10ER2599.

11. REFERENCES

[1] W. Ahn, S. Qi, J. Lee, M. Nicolaides, X. Fang, J. Torrellas,
D. Wong, and S. Midkiff. BulkCompiler: High-performance
sequential consistency through cooperative compiler and
hardware support. In Int. Symp. on Microarch., Dec 2009.

[2] C. Blundell, M. Martin, and T. Wenisch. InvisiFence:
Performance-transparent memory ordering in conventional
multiprocessors. In Int. Symp. on Comp. Arch., June 2009.

[3] J. Bobba, K. Moore, H. Volos, L. Yen, M. Hill, M. Swift, and
D. Wood. Performance pathologies in hardware transactional
memory. In Int. Symp. on Comp. Arch., June 2007.

[4] E. Borin, Y. Wu, C. Wang, and M. Breternitz. LAR-CC:
Large atomic regions with conditional commits. In Inz. Symp.
on Code Gen. and Opt., April 2011.

[5] E. Borin, Y. Wu, C. Wang, W. Liu, M. Breternitz, S. Hu,

E. Natanzon, S. Rotem, and R. Rosner. TAO: Two-level
atomicity for dynamic binary optimizations. In Int. Symp. on
Code Gen. and Opt., April 2010.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk enforcement of sequential consistency. In Int. Symp. on
Comp. Arch., June 2007.

[7] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A scalable,
non-blocking approach to transactional memory. In Int.
Symp. on High Perf. Comp. Arch., Feb 2007.

[8] M. Cintra and J. Torrellas. Eliminating squashes through

learning cross-thread violations in speculative parallelization

for multiprocessors. In Int. Symp. on High Perf. Comp. Arch.,

Feb 2002.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:

Deterministic shared memory multiprocessing. In Archit.

Sup. for Prog. Lang. and Oper. Sys., March 2009.

[10] S. Ghemawat and P. Menage. TCMalloc: Thread-caching
malloc. //goog-perftools.sourceforge.net/doc/tcmalloc.html.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. In Int. Symp. on Comp. Arch., June 2004.

[12] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and surviving atomicity violations. In Int. Symp.
on Comp. Arch., June 2008.

[13] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. In Prog. Lang. Design and Impl., June 2005.

[14] E. Lusk, J. Boyle, R. Butler, T. Disz, B. Glickfeld,

R. Overbeek, J. Patterson, and R. Stevens. Portable programs
for parallel processors. Nov 1988.

[15] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean:
Recording and deterministically replaying shared-memory
multiprocessor execution efficiently. In Int. Symp. on Comp.
Arch., June 2008.

[16] A.Moshovos, S. Breach, T. Vijaykumar, and G. Sohi.
Dynamic speculation and synchronization of data
dependences. In Int. Symp. on Comp. Arch., June 1997.

[17] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and
C. Zilles. Hardware atomicity for reliable software
speculation. In Inter. Symp. on Comp. Arch., June 2007.

[18] S. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and
R. Balasubramonian. Scalable and reliable communication
for hardware transactional memory. In Par. Arch. and Comp.
Tech., Sep 2008.

[19] R. Rajwar and J. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In Int.
Symp. on Microarch., Dec 2001.

[20] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,

L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator, Jan 2005. http://sesc.sourceforge.net.

[21] J. Torrellas, L. Ceze, J. Tuck, C. Cascaval, P. Montesinos,
W. Ahn, and M. Prvulovic. The Bulk Multicore Architecture
for improved programmability. Communications of the ACM,
52(12), 2009.

[22] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide,

P. Stenstrom, J. E. Smith, and M. Valero. Implementing
kilo-instruction multiprocessors. In Int. Conf. on Pervasive
Sys., July 2005.

[23] T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for store-wait-free multiprocessors. In Int.
Symp. on Comp. Arch., June 2007.

[24] L. Yen, S. C. Draper, and M. D. Hill. Notary: Hardware
techniques to enhance signatures. In Int. Symp. on
Microarch., Dec 2008.

[9

—

