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Abstract

Speculative thread-level parallelization is a promising way to
speed up codes that compilers fail to parallelize. While several
speculative parallelization schemes have been proposed for differ-
ent machine sizes and types of codes, the results so far show that it
is hard to deliver scalable speedups. Often, the problem is not true
dependence violations, but sub-optimal architectural design. Con-
sequently, we attempt to identify and eliminate major architectural
bottlenecks that limit the scalability of speculative parallelization.
The solutions that we propose are: low-complexity commit in con-
stant time to eliminate the task commit bottleneck, a memory-based
overflow area to eliminate stall due to speculative buffer overflow,
and exploiting high-level access patterns to minimize speculation-
induced traffic. To show that the resulting system is truly scalable,
we perform simulations with up to 128 processors. With our opti-
mizations, the speedups for 128 and 64 processors reach 63 and 48,
respectively. The average speedup for 64 processors is 32, nearly
four times higher than without our optimizations.

1 Introduction
While shared-memory multiprocessors have become widespread
and microprocessors are being designed with multiprocessing sup-
port, many applications are still being developed with sequential
machines in mind. Moreover, explicitly-parallel applications, like
many web and database systems, are typically developed at a very
high cost. This state of affairs is mainly due to the higher difficulty
of programming, debugging, and testing parallel programs.

To address this problem, automatic compiler parallelization has
been tried. Unfortunately, this approach is usually ineffective for
codes with unknown or complicated dependence patterns. Exam-
ples of such codes are those with pointer-based accesses, indirect ac-
cesses to arrays, irregular control flow, accesses to structures across
complicated procedure calling patterns, and accesses whose pattern
depends on input data.

One way to extract parallelism from these codes is to use spec-
ulative thread-level parallelization [1, 5, 7, 8, 9, 11, 13, 15, 17, 19,
20, 21, 22, 23, 24, 26, 27]. In this technique, the computation in the
program is divided into tasks and assigned to different threads. The
threads execute in parallel, optimistically assuming that sequential
semantics will not be violated. As the threads run, their control flow
and the data that they access are tracked. If a dependence violation
is detected, the offending threads are stopped and a repair action is
initiated. Such a repair action involves re-executing offending tasks,
possibly after recovering some old, safe state.

Speculative parallelization can be done purely in software [8, 19,
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20]. In this case, the run-time checking for dependence violations is
performed by code inserted by the compiler.

To reduce the software overhead of this technique, hardware sup-
port can be added to detect dependence violations, help repair the
state, or speed up other operations. For example, data dependence
violations may be detected by enhancing the cache coherence proto-
col support, which already tracks accesses from different processors
to ensure data coherence. State repair may use hardware support to
speed up the detection of tasks that need to be re-executed and the
destruction of the incorrect state in their caches.

In recent years, many schemes with hardware support for specu-
lative parallelization have been proposed [1, 5, 7, 9, 11, 13, 15, 21,
22, 23, 24, 26, 27]. Among other issues, they differ in their target
machine size and type of code, as well as in their relative emphasis
on hardware and software support.

Some of these schemes have focused on architecting a solution
for scalable machines [5, 22, 26, 27]. The evaluation of such so-
lutions for up to 16 processors has shown that it is hard to deliver
scalable speedups. This is the case even for applications with large
task sizes and few true cross-task dependences, which suggests that
the reason may be sub-optimal architectural design. Since we be-
lieve that scalable machines will eventually incorporate some form
of support for speculative parallelization, uncovering and removing
the bottlenecks to the scalability of this technique is very important.

In this paper, we attempt to identify generic architectural bottle-
necks to the scalability of speculative parallelization and provide
general solutions to eliminate them. The solutions that we propose
are: low-complexity commit in constant time to eliminate the task
commit bottleneck, a memory-based set-associative overflow area
to eliminate stall due to speculative buffer overflow, and exploiting
high-level access patterns to minimize speculation-induced traffic.
With these three supports, we find that speculative parallelization is
truly scalable. To show it, we use simulations with up to 128 proces-
sors. With the optimizations, the speedups for 128 and 64 processors
reach 63 and 48, respectively. The average speedup for 64 proces-
sors is 32, nearly four times higher than without the optimizations.

This paper is organized as follows: Section 2 overviews specula-
tive parallelization and lists architectural bottlenecks to scalability,
Section 3 proposes solutions to eliminate them, Section 4 discusses
our evaluation setup, Section 5 evaluates the solutions, and Section 6
discusses related work.

2 Background
2.1 Speculative Thread-Level Parallelization
Speculative thread-level parallelization consists of extracting tasks
of work from sequential code and executing them on parallel
threads, hoping not to violate sequential semantics. The control
flow of the sequential code imposes a control dependence relation
between the tasks. This relation establishes an order of the tasks,
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and we can use the terms predecessor and successor to express this
order. The sequential code also yields a data dependence relation
on the memory accesses issued by the different tasks that parallel
execution cannot violate.

A task is speculative when it may perform or may have performed
operations that violate data or control dependences with its prede-
cessor tasks. Otherwise, the task is non-speculative.

When a non-speculative task finishes execution, it is ready to
commit. The role of commit is to inform the rest of the system
that the data generated by the task are now part of the safe, non-
speculative program state. Among other operations, committing al-
ways involves passing the non-speculative status to a successor task.
This is because we need to maintain correct sequential semantics
in the parallel execution, which requires that tasks commit in order
from predecessor to successor. If a task reaches its end and is still
speculative, it cannot commit until it acquires non-speculative status.

Memory accesses issued by a speculative task must be handled
carefully. Stores generate speculative versions of data that cannot be
merged with the non-speculative state of the program. The reason is
that they may be incorrect. Consequently, these versions are stored
in a speculative buffer local to the processor running the task. Only
when the task becomes non-speculative can its versions be allowed
to merge with the non-speculative program state.

Loads issued by a speculative task try to find the requested datum
in the local speculative buffer. If they miss, they fetch the closest
predecessor version from the speculative buffers of other tasks. If
no such version exists, they fetch the datum from memory.

As tasks execute in parallel, the system must identify any viola-
tions of cross-task data dependences. Typically, this is done with
special hardware or software support that tracks, for each individual
task, the data written and the data read without first writing it. A
data dependence violation is flagged when a task modifies a version
of a datum that may have been loaded earlier by a successor task. At
this point, the consumer task is squashed and all the data versions
that it has produced are discarded. Then, the task is re-executed.

With less sophisticated schemes, it is possible that other types of
data-dependent accesses also induce task squashes. For example,
consider a system that only tracks accesses on a per-line basis. It
cannot disambiguate accesses to different words in the same mem-
ory line. In this case, false sharing can also trigger squashes. An ex-
ample is a write preceded by a read by a successor task to a different
word in the same line. Furthermore, if there is no support to keep
multiple versions of the same datum in the speculative buffers of
the system, cross-task WAR and WAW dependence violations also
cause squashes [5].

Finally, while speculative parallelization can be applied to vari-
ous code structures, it is most often applied to loops. In this case,
tasks are typically formed by a set of consecutive iterations and are
dynamically scheduled on the processors of the system. In general,
such an environment is mostly concerned with not violating data de-
pendences. The only control dependence violation to check for is
speculative tasks executing past the loop exit. For this reason, this
paper focuses exclusively on checking for data dependences.

2.2 Scalability Bottlenecks
We have tried to identify architectural mechanisms in speculative
parallelization that induce overheads that are both large and likely to
increase with the number of processors. We briefly list them here.
Task Commit. When a task commits, before it passes the non-
speculative status to a successor, it typically performs certain op-
erations designed to ensure that the committing data can be later
located by the cache coherence protocol. These operations depend
on the protocol. For example, they may consist of writing the data
generated by the task back to main memory [5, 9] or asking for its

ownership [22]. In any case, since tasks must commit in order, these
operations are serialized across tasks. As the number of tasks exe-
cuting in parallel increases, committing them eventually becomes a
bottleneck.
Speculative Buffer Overflow. Typically, if the memory state of a
speculative task is about to overflow the buffer that holds it, the pro-
cessor stalls. Otherwise, we could lose record of what data has been
accessed by the task and could even pollute memory with incor-
rect data. Unfortunately, even modest stalls in an environment with
many processors can cause serious slowdowns. Indeed, the stall of
one task may force its successors to remain speculative for a longer
time. This, in turn, causes speculative buffers to accumulate more
speculative state and greatly increases the risk of further stalls.
Speculation-Induced Traffic. The false sharing of data between
tasks in a speculation environment can lead to squashes, as ac-
cesses appear to violate dependences. To eliminate these unnec-
essary squashes, we need to disambiguate accesses at a finer grain
than memory lines. For this reason, most speculation schemes keep
at least some access information on a per-word basis [5, 7, 9, 13, 21,
22, 24, 26, 27] instead of only per line. Unfortunately, protocols with
full per-word dependence tracking cause more traffic: an invalida-
tion or dependence-checking message for one word does not elimi-
nate the need for a similar message for another word in the same line.
In general, as the number of processors increases, the total number
of messages in the system per unit time tends to increase faster than
the memory system bandwidth, eventually creating a scalability bot-
tleneck. If, in addition, we use a protocol with per-word dependence
tracking, we are likely to reach this bottleneck sooner.
Other. Other architecture-related overheads include spawning
threads at the beginning of the application, barrier synchronization
and related operations performed at each speculative section entry
and exit, and dynamically scheduling speculative tasks to threads.
For the environment considered in this paper, we find these over-
heads to be negligible. Specifically, for our applications running on
64 processors, the combination of these overheads accounts for an
average of only 0.7% of the total execution time.

Finally, another important overhead is processor stall at the end of
each speculative section due to load imbalance. While this overhead
is sometimes significant, it is not speculation-specific. Furthermore,
it is probably best dealt with in software, through improved task
partitioning and scheduling. Therefore, in this paper, we focus only
on the three architectural bottlenecks described above.

3 Removing Scalability Bottlenecks
In this section, we propose architectural mechanisms to address the
three main bottlenecks identified above.

3.1 Task Commit
While tasks can execute in parallel, they commit necessarily in se-
quence, since a task can commit only after all its predecessors have
done so. This serialization may become a bottleneck when the num-
ber of processors is large. For example, consider tasks that take E
cycles to execute and C cycles to commit in the background (Fig-
ure 1). Individual processors overlap the commit of a task with the
execution of the next task. When the number of processors is E=C,
commit has become the bottleneck, and the application will not run
faster with more processors.

Increasing the task size does not postpone this bottleneck if com-
mit is done in a way that takes a time largely proportional to the
amount of data generated by a task. Indeed, bigger tasks (longer
E) will usually generate more data, which in turn will take longer
to commit (longer C). The result will again be as shown in Fig-
ure 1. Instead, for true scalability, task commit needs to complete in
constant time, irrespective of the task size.
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Figure 1: Commit serialization is a scalability bottleneck.

In existing speculation schemes, task commit typically consists of
two steps. The first one is designed to ensure that the data generated
by the task survive the commit and can be located by the coherence
protocol in the future. The second step is to pass the non-speculative
status to another task. Typical operations performed in the first step
are writing back to memory the cache lines or data elements updated
by the task [5, 9] or requesting ownership of the cache lines updated
by the task that can be in other caches [22]. Unfortunately, these
operations tend to grow longer with task size and, therefore, make
commit not scalable.

The one proposed directory-based scheme with constant commit
time is [26]. Task commit only involves advancing a shared vari-
able (last-commit) that contains the ID of the last committed task.
This operation informs the rest of the system of the change in non-
speculative status. At all times, versions of data from committed
tasks can remain in the caches and are treated as usual: a request
from a reader obtains the version created by the closest producer
predecessor.

Since write-backs or ownership requests at commit time are not
required in [26], caches only need to write dirty data back to mem-
ory lazily, on displacement. In [26], main memory accepts displaced
data that has been generated by committed or uncommitted tasks.
This is in contrast to all other schemes, which do not allow uncom-
mitted (and therefore, unsafe) data to be written to main memory.

One advantage of protocols with lazy write-back is that traffic
from each individual processor to main memory is spread over a long
time. This is unlike other schemes, which transfer data or change
their state eagerly at commit [5, 9, 22]. A second advantage of lazy
write-back is that the total volume of data written back to memory is
potentially lower than in eager protocols. Indeed, assume that a node
has two committed versions of the same variable, generated by two
tasks. In this case, only the newer version needs to be sent to main
memory on displacement. The older one can be silently discarded
from the cache, as it is made obsolete by the newer one.

To avoid WAW violations, any speculation scheme must guaran-
tee that the different versions of a given variable are merged with
the main memory state in the correct order. In most protocols, this is
trivially ensured by the eager write-back or ownership request oper-
ations, which are performed on all the variables generated by a task
when the task commits. However, in a lazy protocol like [26], other
mechanisms are required.

In [26], WAW dependences are satisfied by keeping at the home,
for each shared word in memory, the ID of the task that generated
the data version currently held in memory. With this support, the
order in which data are sent back to main memory is irrelevant. The
home updates memory selectively, i.e., only when the task ID for the
arriving data is higher than the task ID for the data it already has.

Overall, the protocol in [26] commits in constant time but also has
two shortcomings. First, allowing uncommitted data to be written to
main memory introduces many complications, especially when re-
covering from dependence violations. Second, the protocol requires
keeping, for each shared word in main memory, the ID of the task
that produced it. More details are found in Section 6.

3.1.1 Low-Complexity Commit in Constant Time

We want to commit a task in constant time irrespective of its size,
without the complexity of having to keep a version number for each
location in main memory. To commit in constant time, we follow the
approach in [26]: commit only involves advancing the last-commit
shared variable; the dirty cache lines generated by the committed
task are lazily written back to memory on displacement or external
request, potentially much later. To eliminate the need for version
numbers in memory, we guarantee that, for any given line, all its
cached versions in the multiprocessor are always written back to
main memory in the correct order. Only then can we be sure that no
older version of the line overwrites a newer one already in memory.

The support required to eliminate from the commit any eager data
transfers or state changes is similar to [26]. The directory keeps a
bit vector of sharers for each line and, when necessary, queries them
all. It uses the version numbers in the returned lines to choose the
correct data version.

The support required to guarantee that the versions of any given
line are always written back to main memory in order requires en-
forcing two new conditions:

First, only lines belonging to committed tasks are allowed to be
displaced and written back to memory. If we allowed write-backs of
lines from uncommitted tasks, we would risk out-of-order updates
when a line from an older, yet-to-complete task is subsequently writ-
ten back. To enforce this condition, each cache hierarchy has a copy
of the last-commit variable, which is kept largely up-to-date by the
local processor. A line displacement is allowed only if the task ID
of the line is not higher than the local copy of last-commit.

The second condition is that, when a write-back occurs, the di-
rectory controller at the home collects from all other caches their
own older versions of the line. These are all merged before updating
memory. This condition ensures that the home will not later receive
any write-back of an older version of the line. Consequently, when
a task T suffers the displacement of a dirty line, the message sent
to the home includes T ’s ID and the dirty words in the line. The
home then asks the sharer processors to write back all the versions
of the same line that were written by tasks older than T . Each re-
ply message includes the writer task ID and the dirty words in the
line. If a node has more than one version of the line that needs to be
sent to memory, the node combines them so that the reply message
includes, for each word, only the last version and its task ID. The
home then combines the initial message with all the replies into a
single line that contains the newest version of each word. Finally,
all the dirty words in this line are written to memory. With this ap-
proach, memory is always updated with newer versions.

Overall, with constant-time commit, our scheme (and [26]) can
potentially speed up a program over a conventional eager scheme
like [5, 9, 22]. The major potential speedup comes from remov-
ing any data transfer or state change from the critical path of the
commit. A second-order potential speedup comes from the benefits
of lazy write-back. Specifically, the memory system contention is
moderated by two effects: the write-back traffic from an individual
processor is not bursty and, thanks to version combining, potentially
smaller.
Implementation
To enforce in-order write-back of committed versions to memory,
we use Version Combining Registers (VCR) in the directory con-
troller of each node. A VCR contains as many words as a memory
line (Figure 2). Each word is associated with a task ID and a validity
bit. When a line write-back reaches the home (message 1), an avail-
able VCR is allocated. Then, all dirty words in the line and their
task ID(s) are copied into this VCR. As the subsequent replies arrive
(messages 3), the VCR is updated with the newest versions. After
all the replies have been received, the valid words in the VCR are
copied to memory and the VCR is released.
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Figure 2: The eviction of a line from processor 0’s cache
(left) triggers a transaction in three steps (1-3) that fills a
VCR as shown. TID, R, W, and V stand for task ID, read,
write, and valid, respectively. A word is dirty if its W is 1.

Since a home may have to process write-backs for several lines
concurrently, each directory controller contains a few VCRs, for ex-
ample 8-16. To avoid complications and races, two concurrent write-
backs of the same memory line are not allowed. Consequently, if
two nodes displace two cache lines with the same address, only the
message that arrives first at the home allocates a VCR. The second
one is negatively acknowledged. After the first transaction is fully
completed, the second one is undertaken if it is still necessary.

VCRs are also useful to supply data on demand in a multi-version
coherence protocol. To see how, consider the case when differ-
ent words of a given memory line have been written by different
tasks in different caches, and a successor task reads the line. The
line returned to the reader must contain the correct version of each
word, namely the version generated by the closest predecessor to the
reader. To combine the different word versions from potentially dif-
ferent caches into a single line, the home uses a VCR. Note that, in
this case, the combined line may contain some words obtained from
uncommitted tasks. Consequently, the contents of the VCR cannot
be written to memory, nor can the versions supplied be marked as
clean in the caches.

3.2 Speculative Buffer Overflow
The memory state of a speculative task is often stored in hardware
buffers like caches, write buffers, or victim caches [5, 7, 9, 13, 22,
24]. This state includes versions of variables generated by the task
and, often, a record of what variables the task has read. If this state is
about to overflow, the task must stop to prevent the loss of informa-
tion and the possible pollution of memory. Typically, the processor
remains stalled until the task becomes non-speculative. Since tasks
commit in order, stopping a task may force its successors to remain
speculative for a longer time. In this case, speculative buffers ac-
cumulate more speculative state, which can cause further stalls. In
systems with many processors, these stalls may be a serious bottle-
neck.

In many applications, two levels of caches and victim caches can
easily hold the working set of a task. For other applications, how-
ever, this is false. For example, to amortize large communication
latencies, tasks in scalable multiprocessors are likely to have coarse
grains and, therefore, large working sets. Furthermore, due to com-
mit serialization or load imbalance, individual caches may end up
holding the state of several speculative tasks. This effect further in-
creases the volume of data to be buffered.

Ideally, we would like to have an unlimited-sized area for the
cache to safely overflow into, so that tasks never have to stop or
overwrite memory. Such an overflow area must be able to hold state
from several tasks. Further, it is possible that these several tasks
have created multiple versions of the same variable. This scenario
is likely in applications with privatization-like access patterns: each
task that accesses the variable writes it first, therefore creating a new
version, but the compiler cannot rule out the existence of true depen-
dences. Consequently, the overflow area must be designed to hold

multiple versions of the same variable.
The design proposed in [26] allocates an overflow area in the lo-

cal memory of a NUMA machine. The processor can access the
area through an address translation step at the page level. While
such a scheme does the job, it requires significant address transla-
tion hardware. Furthermore, it uses the overflow area eagerly, which
increases the overhead. More details are found in Section 6.

3.2.1 Overflowing Speculative Data Into Memory

We propose to use an unlimited-sized overflow area in the local
memory of a NUMA machine that is both relatively simple and spar-
ely accessed. The overflow area functions as a set-associative victim
buffer that grows in the local memory. It stores data from uncom-
mitted tasks that are either displaced from L2 or that are about to be
overwritten by a new task. For higher speed, it is managed by a hard-
ware cache controller, which can be either stand-alone (Figure 3-(a))
or part of the memory controller. It is organized and accessed like
a cache, with line granularity and no page-level address translation.
However, unlike a cache, it stores both tag and data in the same ar-
ray. In addition, it cannot overflow: if it runs out of space, a software
interrupt handler resizes it.

Table Area Chaining 
Area

Overflow
Counters

(a) Node organization

L2
CPU
+ L1

Overflow
Area

Overflow Area
Controller

     Local
Memory

(c) One set of the Table area

Tag Array Info for Line k
Tag Array Info for Line j

Tag Array Info for Line i

Line i Line kLine j

Address Tags

Access Bits

VersionPtrs to
Chaining Area

(b) Overflow area organization

Figure 3: Organization of the overflow area.

The organization of the overflow area is shown in Figure 3-(b). It
is composed of two data structures: the Table area, which functions
as the victim buffer proper, and the Chaining area, which will be
described later. When a line from an uncommitted task is displaced
from L2, the Table takes it in. Then, when an access by the local
or a remote processor misses in L2, the Table is accessed. If it has
the requested line, it provides it. To minimize unnecessary accesses
to the Table, each set of L2 keeps an Overflow Counter with the
number of lines mapped to this set that are currently in the overflow
area (Figure 3-(a)). If this counter is zero, the Table is not accessed
and the miss proceeds normally.

We organize the Table as a set-associative cache where, like in
S3.mp [16], the tag array information of each set is stored in an
additional line. Specifically, Figure 3-(c) shows one set of a 3-way
set-associative Table. The first line contains the address tags, access
bits, and other information for the three lines that currently reside in
the set. To be able to access the Table, the overflow area controller
keeps in registers the base address and size of the Table. With these
registers and the physical address of the desired line, the controller
can identify the correct set in the Table. If we are attempting to insert
a new line and the set is full, a software interrupt handler doubles the
size of the Table and reorganizes the data in the process.
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As indicated before, it is possible that several tasks executed by
the processor create multiple versions of the same line. If a version
created by an uncommitted task is still in the cache hierarchy of the
processor when another task generates a new version, both versions
have to be kept locally. Rather than custom-designing L1 or L2 to
hold several lines with the same address tag and different task IDs,
it is better to move any such complexity to the overflow area.

Our approach is to allow in each of L1 and L2 only one version
of the line. These are the most recent local versions, which are the
most likely ones to be needed in the future. Any other uncommit-
ted versions of the line are sent to the overflow area right before the
processor is about to overwrite them. In the overflow area, all the
versions of the line are kept in a linked list, in order from the newest
one to the oldest one. They are available in case a dependence vi-
olation occurs and a software routine needs to roll back the state to
old versions. By keeping them in a linked list, we can get the most
recent versions first. Furthermore, if at any time a version in the
overflow area is found to belong to a task already committed, that
version and all the older versions in the list can be combined and
written back to the home memory, and the list can be truncated.

The linked list for a given memory line is organized as follows.
The line at the head of the list is kept in the Table. As part of the tag
array information for the line, we have a VersionPtr pointer (Fig-
ure 3-(c)). The latter points to the next version of the line in the
Chaining area (Figure 3-(b)). That entry contains tag array informa-
tion, the line version, and a pointer to the next version of the line,
also in the Chaining area (Figure 3-(b)). Lists are truncated and freed
up when versions are found to belong to tasks already committed,
which keeps them short. To speed up allocation and deallocation of
linked-list nodes, all free nodes in the Chaining area are linked in a
free list. The overflow area controller keeps the address of the free
list head.

In our design, we assume that the basic management of the over-
flow area is done in hardware by its controller. While it is important
to have an overflow area to prevent costly processor stalls, the area
is likely to be accessed infrequently compared to L2. Furthermore,
most of its accesses are not in the critical path of the processor, as
they are largely triggered by cache displacements. Consequently,
much of the support for the overflow area could be implemented
with software handlers with little performance impact.

3.3 Speculation-Induced Traffic
Speculation protocols tend to generate more traffic than plain cache
coherence protocols. The two main reasons are the need to track de-
pendences at a fine grain and, to a lesser extent, the need to identify
the correct data version to access. We consider each issue in turn.

Speculation protocols typically track dependences by recording
which data were written and which data were read by exposed loads
in each task. An exposed load is a load not preceded by a store to
the same datum by the same task. This information is often encoded
in extra bits added to the cached data. Without loss of generality,
we assume that it is encoded with the usual Write bit (W) and an
additional Exposed-Read bit (R).

This access information can be kept per line or at a finer grain (per
word). In protocols that keep state per line (Figure 4-(a)), tasks can
falsely share data. In coherence protocols, false sharing only causes
cache misses. In contrast, false sharing in speculation protocols may
lead to false dependence violations and, therefore, squashes. For
example, in Figure 4-(b) the two tasks access different words, but
the store by Ti triggers the squash of Ti+1. It has been shown that
false violations can be common [5].

To eliminate these unnecessary squashes, most speculation
schemes keep some or all access information on a per-word ba-
sis [5, 7, 9, 13, 21, 22, 24, 26, 27]. An example is shown in Fig-
ure 4-(c). With full per-word information and multi-version support,

(b)

(c) Info per Word

RWTID RW Wrd1Wrd0RWTID Wrd0 Wrd1

(a) Info per Line

Load Wrd1
Store Wrd0

Task Ti+1:
Task Ti:

(d)

Store Wrd1
Store Wrd0Task Ti:

Task Ti:

Figure 4: Keeping access information at the grain of a line
(a) or a word (c). TID stands for Task ID.

only true violations (i.e., same-word RAW violations) need to trig-
ger squashes [5].

Unfortunately, protocols with full per-word dependence tracking,
even while keeping per-line directory state, induce extra traffic: an
invalidation or dependence-checking message for one word does not
necessarily eliminate the need for a similar message for another
word in the same line. For example, in Figure 4-(d) Ti writes to
two words. In each case, a message is issued to the directory to
check for premature reads.

This additional traffic due to per-word dependence tracking can
be very large. As an example, we took the applications and the base-
line protocol presented in Section 4 and ran them with 16 processors,
using a word- and a line-based protocol. A line has 16 4-byte words.
Both protocols have multi-version support, and the line-based proto-
col is unrealistically enhanced to suffer only the squashes present in
the word-based one. We count the messages created in the memory
hierarchy below the L2 cache. The word-based protocol creates on
average 5.4 times more such messages than the line-based one. As
the number of processors is increased, in most systems the number
of messages per unit time is likely to increase faster than memory
system bandwidth. If, in addition to that, a per-word protocol is
used, traffic becomes a scalability bottleneck much sooner.

The second source of additional traffic in multi-version specula-
tion protocols is the need to identify the correct data version to ac-
cess. Specifically, a node typically generates a message every time
a given variable is accessed for the first time by the currently exe-
cuting task. Even if the variable is found in the node’s cache, most
protocols cannot immediately determine if that version is the correct
one, especially when it is still speculative. Thus, a message is sent to
the directory to identify the correct version and, in some protocols,
to record the access. Note that this additional traffic appears in both
word- and line-based protocols, albeit with different intensity.

Overall, to alleviate the traffic bottleneck, we want a protocol that
limits squashes to true violations (like word-based schemes) while
eliminating both sources of additional, speculation-induced, traffic.

3.3.1 Exploiting High-Level Access Patterns

Our approach is to select certain very common data access patterns
that, strictly speaking, do not need cross-task communication. We
then enhance a word-based protocol with support to anticipate these
patterns at run time. If one of these patterns is found for a whole line,
our protocol puts the line in a No-Traffic state in the cache. This state
allows tasks to access the line locally without inducing any traffic at
all while the pattern holds.

The line can remain in caches in this state across task commits
and initiations. As a result, processors can execute many tasks with-
out the line causing even a single message since the time the pattern
was identified. If, at any time, the accesses do not conform to any
of the patterns that we can anticipate, the line reverts to the default
word-based scheme seamlessly. In the following, we describe the
access patterns that we select and the protocol support required.
High-Level Access Patterns
We select three common access patterns that, strictly speaking,
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Figure 5: Exploiting high-level access patterns: new bits added to the directory and the tag array in the caches (a) and
transition diagrams to lock a line in and out of the three No-Traffic states (b)-(d). In the figure, UDD and UER stand for
Uncommitted Dirty Data and Uncommitted Exposed Reader, respectively.

do not need cross-task communication: No-Exposed-Reader, No-
Writer, and No-Sharing. In No-Exposed-Reader, each task writes
the data before reading them. This pattern occurs in data that are
privatizable. No-Writer occurs in data structures that are not modi-
fied, while No-Sharing occurs when the data are accessed by a sin-
gle processor. Of course, we are interested in the cases when the
compiler cannot identify these patterns statically. Consequently, our
hardware dynamically anticipates the situations when tasks start ac-
cessing lines with these patterns and when they stop.
Protocol Support
To support our protocol, we add one bit per memory line in the di-
rectory and two bits per line in the tag array of every cache (Fig-
ure 5-(a)). The new directory bit (rd) records whether any of the
current sharers has issued an exposed read to any word of the line.
We also relabel the conventional D bit in the directory to wr (Fig-
ure 5-(a)), which indicates whether any of the current sharers (po-
tentially several in a multi-version speculation protocol) has writ-
ten the line. These rd and wr bits we call the Anticipated Pattern
bits. Their meaning is as follows: (rd,wr=1,0) denotes No-Writer
and (rd,wr=0,1) represents No-Exposed-Reader, while a sharer bit
vector in the directory entry with a single bit set indicates the No-
Sharing pattern.

The two new bits per cache line in the tag array are called the
Permission bits (Figure 5-(a)): CanRead (CR) and CanWrite (CW).
They indicate in which of the three No-Traffic states (if any) the line
is in. They are set by our hardware as it anticipates a certain access
pattern for the line.

Specifically, if the No-Exposed-Reader pattern is anticipated,
(CR,CW) are set to (0,1), the No-Exposed-Reader No-Traffic state.
Tasks in this processor can issue writes and unexposed reads to any
word of the line without generating traffic, for as long as the pattern
holds across the machine. Likewise, if the No-Writer pattern is an-
ticipated, (CR,CW) are set to (1,0), the No-Writer No-Traffic state.
Tasks in this processor can read the cached line without generating
traffic. Finally, if the No-Sharing pattern is anticipated, (CR,CW) get
set to (1,1), the No-Sharing No-Traffic state. Tasks in this processor
can read and write the line without generating any traffic at all.

Figures 5-(b) to (d) show the transition diagrams to lock a line in
and out of the three No-Traffic states. Since they are symmetric, we
only explain the diagram for the No-Exposed-Reader (Figure 5-(c)).

Edge 1 in Figure 5-(c) shows how a processor write (Own write)
takes a line to the No-Exposed-Reader state. There are two cases. In
the simpler case, the write finds that other processors have already
anticipated the No-Exposed-Reader pattern and set the Anticipated

Pattern bits in the directory to (rd,wr=0,1). In this case, the return
message from the directory sets the Permission bits to (CR,CW=0,1).
From now on, the processor can issue writes and unexposed reads to
any word in the line without causing any traffic (Edge 2). Note that
writes still set the W bit of the updated word. The line exits this
state when any processor (Own/other) breaks the pattern by issuing
an exposed read to a word of the line (Edge 3). In this case, the
Permission bits cannot filter out the request, which has to go to the
home to obtain the most recent version of the word. In the home, the
directory sets the rd bit and sends messages to all sharers to get their
version of the data. As sharers receive the message, they get the line
out of the state by clearing the line’s CW bit. We have seamlessly
reverted to the baseline word-based protocol.

Suppose that, later, the task that issued the exposed read com-
mits and the pattern returns to No-Exposed-Reader. Our line will
transition to the No-Traffic state seamlessly. In this case, the first
processor that issues a write will be the first one to anticipate the
pattern. It will follow the second case in Edge 1. Indeed, the write
finds (rd,wr=1,1) in the directory. Following the conventional proto-
col, the directory sends a message to all the sharers to see which ones
need to be squashed. However, in the acknowledgment message, no
sharer indicates that it has an uncommitted task with exposed reads
(R bit set) to any word of the line1. Consequently, the directory re-
sets the rd bit and replies to the initiating processor that it can take
the line to the No-Exposed-Reader state.

With this support, while a line exhibits one of these patterns, it
causes no traffic beyond cold misses and re-fetches after displace-
ments. As per the previous discussion, the traffic should decrease
dramatically without increasing the number of squashes.

3.4 Summary
As a way of summary, Table 1 shows which types of applications
should benefit the most from our optimizations.

4 Evaluation Setup
To evaluate our optimizations, we use simulations driven by several
applications. In this section, we describe the simulation environment
and the applications.

1Of course, at least one sharer must indicate that it has an uncommitted
task with dirty data (W bit set for at least one word). Otherwise we would be
transitioning to the No-Sharing state of Figure 5-(d). This is why Figure 5-(c)
has the condition UDD but no UER, which means Uncommitted Dirty Data,
but no Uncommitted Exposed Reader.
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Processor Memory System Support for Scalability

4-issue dynamic 1GHz L1: 32-KB size, 4-way assoc, 64-B line, write back # VCR: 16 per node, timing same as dir controller
Int,fp,ld/st FU: 4,2,2 L2: 512-KB size, 4-way assoc, 64-B line, write back TID size: 20 bits. Overflow counter size: 4 bits
Inst. window: 64 Victim cache: full assoc, 32 64-B lines Overflow area controller latency: 4 cycles
Pending ld,st: 8,16 RTrip: 1 (L1), 8 (L2), 57 (local mem), 137 (neighbor mem) cycles Overflow area controller to overflow area: 49
Branch penalty: 4 cycles Dir controller latency: 21 cycles (pipelined at 1=3 CPU freq) cycles round trip
Int,fp rename regs: 64,64 Network: 2-D torus, virtual cut-through, msg marshaling = 60 Table area: 512-KB size, 3-way assoc

cycles, msg transfer (line) = 4 * # hops + 14 cycles # of Chaining area entries: 512

Table 2: Architectural characteristics of the modeled CC-NUMA. RTrip stands for contention-free round-trip latency
from the processor. All cycle counts are in processor cycles.

Optimization Types of Applications

Low-Complexity
Commit in
Constant Time

Tasks that generate data to commit at a high rate
(measured as data to commit produced per in-
struction executed)

Overflow Into a
Memory-Based
Victim Buffer

Tasks with large working sets or severe cache
conflicts. Stalls or load imbalance that cause in-
dividual caches to hold the state of several spec-
ulative tasks (especially if these tasks generate
multiple versions of the same line)

Exploiting
High-Level
Access Patterns

Accesses with spatial locality to non-analyzable
data that are mostly: read-only, per-processor
private, or privatizable (no exposed reads)

Table 1: Types of applications that benefit the most from
our optimizations.

4.1 Simulation Environment
We use an execution-driven simulation environment based on an ex-
tension to MINT [25] that includes a dynamic superscalar processor
model [12]. The environment supports dynamic spawn, interrupt,
and roll-back of light-weight threads. The architecture modeled is a
CC-NUMA multiprocessor with up to 128 nodes. Each node con-
tains a fraction of the shared memory and the directory, as well as
a processor with a two-level cache hierarchy. The processor is a
4-issue dynamic superscalar with register renaming, branch predic-
tion, and non-blocking memory operations. Each level of cache can
hold only one version of a given line. However, each cache has a vic-
tim cache that can contain multiple versions of the same line. These
victim caches are accessed with one additional cycle. Table 2 lists
the characteristics of the architecture. All cycle counts in the table
are in processor cycles. Contention in the entire system is accurately
modeled.

Since many accesses to shared data are not compiler-analyzable,
shared data pages are allocated round-robin in the memory modules
of the participating processors. Private data are allocated locally.

The system uses a directory-based cache coherence protocol
along the lines of DASH [14] with the support for speculative thread-
level parallelization sketched in Section 2. In the baseline specula-
tion protocol, task commit involves eagerly writing back to memory
all the dirty lines generated by the task. Only after the operation
is complete can the non-speculative status be passed on to the next
task. When a line accessed by a speculative task is about to overflow
both caches and victim caches, the processor stalls until the task
becomes non-speculative. Finally, while the directory keeps only
per-line state, caches keep per-word access information, making the
protocol word-based. Other details are described in [18].

On top of this protocol, we optionally enable the optimizations
presented in Section 3. For them, we use the parameters shown in
the last column of Table 2. The table shows the size of the task ID
field (TID), which is a design choice that we have not explored. By
default, we use a value much larger than needed by our applications.

As for the support for the overflow area, we assume that the over-
flow counters in L2 are checked in hardware when L2 is accessed

and, therefore, do not add any additional latency. The overflow area
controller needs at least two accesses to the overflow area to obtain
a line, since the first access reads the tags (Section 3.2.1). Every ac-
cess takes a full round trip to the local memory. However, since the
overflow area is accessed relatively infrequently, the overall applica-
tion performance is not very sensitive to modest changes in such a
round-trip latency.

The Table area is large enough (Table 2) to need no resizes. The
Chaining area is large enough to hold all the lines conflicting in the
Table area. The overflow area controller follows the chains in the
Chaining area in hardware, paying a full round trip to memory for
each link in the chain. Given the modest number of accesses to
the Chaining area in our applications, if we implemented link chas-
ing with a software handler, we would not significantly increase the
overall overhead seen by the applications.

4.2 Applications
We execute a set of scientific applications where much of the code
has dependence structures that are not fully analyzable by a paral-
lelizing compiler. The reason for the non-analyzability is that the de-
pendence structure is either too complicated or dependent on input
data. Specifically, the codes often have doubly-subscripted accesses
to arrays, possible dependences across complex procedure calling
patterns, and complex control flow. One example of the latter is a
loop with a conditional that depends on array values and that jumps
to a code section that modifies the same array. Non-analyzable sec-
tions of code are not parallelized by the compiler and, therefore, we
do so speculatively.

The applications that we use are: Apsi from SPECfp2000 [10],
Bdna and Track from Perfect Club [3], Euler from HPF-2 [6], and
Tree from Univ. of Hawaii [2]. We use the standard input set for
the applications except for Apsi, where we scaled it down from
112�112�112 to 64�64�64 to reduce simulation time. To de-
termine the sections of these applications that are non-analyzable,
clearly parallel, or clearly serial, we use Polaris, a state-of-the-art
parallelizing compiler [4].

Columns 2-4 of Table 3 show the breakdown of the sequential
execution time (Tseq) of these applications, with I/O time excluded.
The version that we profile is a fully optimized sequential version
running on a single-processor Sun Ultra 5 workstation. The parallel
portion includes any loop that Polaris marks as parallel, accounts for
at least 1% of Tseq, and has at least 128 iterations.

From the breakdown, we see that the non-analyzable portion
dominates the execution time of these applications. On average, it
accounts for 75.6% of the sequential execution time. The parallel
portion accounts for the next biggest chunk of time. On average, it
accounts for 12.5% of the sequential execution time. Consequently,
if these applications were executed in parallel, we expect the relative
weight of the non-analyzable portion to increase.

The next column, labeled Execution Time Simulated shows the
fraction of the execution time that we simulate in our experiments.
Usually, this number is equal to the fraction of non-analyzable code
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Appl. Execution Time Execution Names of Avg. Written + Written Ownership Req
Breakdown (% of Tseq) Time Non-Analyzable Tasks Spec Read Data at Commit per

Non- Parallel Serial Simulated Loops per Data per Task per Task Task (Lines)
Analyzable (% of Tseq) Invoc. (Lines) (Lines)

run do[20,30,40,50,
60,70,100]

Apsi 93.5 1.3 5.2 53.8 dtdtz do40,dudtz do40, 63 1632 1170 330
dvdtz do40,dcdtz do40,
wcont do40,
dkzmh do[30,60]

Bdna 44.2 51.1 4.8 44.2 actfor do240 1499 605 582 368
dflux do[comb(100),
comb(200)]

Euler 89.8 5.2 5.0 89.8 psmoo do[comb(20)] 1871 287 287 256
eflux do[comb(100),
200,300]

Track 58.1 2.5 39.4 58.1 nlfilt do300 502 59 33 24
Tree 92.2 2.5 5.3 92.2 accel do10 4096 14 14 11

Average 75.6 12.5 11.9 67.6 1606 519 417 198

Table 3: Application characteristics. All times refer to sequential execution. Averages are arithmetic ones. In Apsi, the
loops that we simulate are printed in boldface. In Euler, each task consists of 32 consecutive iterations.

in the application, since we only simulate the non-analyzable por-
tion. However, since Apsi has such a large problem size, we can
only simulate a part of its non-analyzable portion. In the rest of the
paper, we focus exclusively on the code in this column. We apply
speculative parallelization to and report speedup numbers for only
the code in this column.
Characteristics of the Non-Analyzable Code
The non-analyzable portion of the applications consists of loops.
The remaining columns in the table show the loop names, the av-
erage number of tasks per loop invocation, and some information on
the working set sizes of the tasks. Unless otherwise indicated, each
task is one iteration of the loop. For a given loop, each processor
runs a single thread that dynamically picks up tasks to execute.

The working set size information is collected through simulation
of a 64-processor system, by tracking how much data are written and
speculatively read by each task. For comparison, we also give the
number of cache lines that are not only dirty at task commit time,
but would also induce ownership requests in a protocol like [22].

In each of these loops, the compiler identifies references to vari-
ables that are read-only, private, or profitably privatizable. The rest
of the references are marked by the compiler as speculative, since
they can cause violations. These references are recognized by our
simulator and trigger our speculation protocol.
Dependence Structure of the Non-Analyzable Code
We end this section by describing the non-analyzable portion of each
application.

Each loop in Apsi has multiple arrays with non-analyzable access
patterns. At run time, several of these arrays turn out to have a priva-
tization access pattern: loop iterations access overlapping data, but
each iteration generates the values before using them. The rest of
the arrays are either read-only or there is no overlap between ac-
cesses from different iterations. Consequently, there are no same-
word RAW dependences.

Bdna has multiple arrays with non-analyzable access patterns. At
run time, all of them have a privatization access pattern and, there-
fore, there are no same-word RAW dependences.

The loops in Euler perform compiler-verifiable reductions on an
array. However, the access pattern to the array is very sparse. As a
result, transforming the reduction at compile time for parallelization
results in loop slowdowns due to the high cost of the accumulation
step at the end. At run time, however, many of the accesses hap-

pen without same-word RAW dependence violations, so we run the
loops under speculative parallelization. Still, the number of same-
word RAW dependences in this application is very high, and many
of them are violated at run time.

Euler was also analyzed in [5], where no same-word RAW depen-
dences were reported. In [5], only inner loops were simulated. Such
loops do not have same-word RAW dependences, but are too small
to run with more than 16 processors. In this paper, we coalesce the
inner and the outer loops. The resulting loops have more iterations
but have dependences. The coverage of the non-analyzable code
barely changes.

Track has one array with non-analyzable access patterns. In most
cases, iterations only read some of the elements. However, some-
times they write and, in five cases, they cause a same-word RAW
dependence. At run time, three of these five dependences are vio-
lated. These violations are spread over different loop invocations.

In Tree, the one array under test is used as a stack, with each iter-
ation leaving the stack empty. However, the compiler cannot deter-
mine that the stack array is privatizable due to the complex control
flow. At run time, there are no same-word RAW dependences.

All these applications have some false sharing. Thus, they suffer
frequent squashes in line-based protocols. The number of depen-
dences in Bdna and Track is shown in Table 4 of [5]. That table
counts dependences to the same word and to different words of a
line assuming per-word disambiguation support. In multi-version
line-based protocols, all these RAWs and WAWs (both same-word
and false) cause squashes if they occur out of order. In fact, some of
the false WAWs in Table 4 of [5] will also appear as RAW violations
due to the inability to disambiguate at word level.

5 Evaluation
5.1 Application Potential
To assess how amenable our applications are to the optimizations,
we measure the characteristics listed in Table 1 for each application.
The results are shown in Table 4.

Based on Table 4, we can place each application on a qualitative
3-D chart (Figure 6). Each dimension of the chart shows whether or
not an optimization is expected to be beneficial. The origin corre-
sponds to no benefit from any optimization. From the figure, we see
that our applications cover a wide range of behaviors.
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Optimization Amenable Applications Non-Amenable Applications

Low-Complexity
Commit in
Constant Time

Apsi, Bdna: Tasks generate data to commit at a high rate
Track, Tree: Tasks generate data to commit at a lower
rate. Euler: Rate is unimportant; performance is limited
by violations

Overflow Into a
Memory-Based
Victim Buffer

Bdna: Tasks have large working sets and individual caches often
hold the state of several spec tasks. Tree: Cache conflicts

Apsi: Tasks have large working sets but individual caches
rarely hold the state of several spec tasks. Euler, Track:
Tasks have small working sets

Exploiting High-Level
Access Patterns

Apsi, Bdna, Tree: No-Exposed-Reader and No-Writer. Euler
(lesser): No-Sharing. Track: No-Sharing and mostly No-Writer.

Table 4: Potential of our applications to benefit from the optimizations.

Configuration Description

Opt All 3 proposed optimizations are enabled

Constant-time commit disabled; overflow area and exploiting access patterns enabled.
OptNoCT At commit, all dirty lines in caches and overflow area are written back to memory. Each level of the

hierarchy finds the lines using an ideal hardware table accessed in no time that points to the dirty lines
OptNoCTL1 Same as OptNoCT, but L1 does not have the table and needs to be traversed to find the dirty lines
OptNoCTL12 Same as OptNoCT, but L1 and L2 do not have the table and need to be traversed to find the lines

OptNoOvfL2 Overflow of speculative data from L2 disabled; constant-time commit and exploiting access patterns enabled
OptNoOvfL1 Overflow of speculative data from L1 disabled; constant-time commit and exploiting access patterns enabled

OptNoPat Exploiting access patterns disabled; constant-time commit and overflow area enabled
OptNoPatA Same as OptNoPat, but with Aggressive loads [5] implemented
OptLine Same as OptNoPat, but using a line-based protocol instead of a word-based one

NoOpt All 3 optimizations disabled. Writes back all dirty lines at commit time without any cache traversals (as
OptNoCT), cannot overflow from L2 (as OptNoOvfL2), and uses Aggressive loads (as OptNoPatA)

Table 5: System configurations used in the evaluation.

Low−Complexity
Commit in
Constant Time

No
Opt

Track

BdnaApsi

Euler

Tree
Exploiting High−Level
Access Patterns

Overflow
Into a Memory
Based Victim
Buffer

Figure 6: Which applications are likely to benefit from
which optimizations.

5.2 Impact of the Optimizations
To evaluate our three optimizations, we start by comparing a system
without any of them (NoOpt) to one that supports the three of them
(Opt). Then, we evaluate each optimization by comparing Opt to
a system in which the optimization in question is suppressed. Ta-
ble 5 describes the configurations used, ordered according to which
optimization we disable.

To compare systems, we use the speedups delivered by different
numbers of processors. The speedups are always relative to the ex-
ecution of the plain, compiler-optimized sequential version of the
code. Such a version includes no extra instructions or data copies
due to parallelization. It is simulated as running on a single node of
the NUMA machine, with all the data allocated locally. There are,
therefore, no remote accesses.

5.2.1 Combining the Optimizations

Figure 7 compares the system with the three optimizations (Opt) to
the one without any (NoOpt). We show the speedups for up to 64 or
128 processors. Note that both axes are logarithmic.

As expected from Figure 6, Apsi, Bdna, Track, and Tree benefit
from the optimizations significantly. The optimizations only benefit
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Figure 7: Comparing the system with the three optimiza-
tions (Opt) to the one without any (NoOpt).
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Euler moderately because Euler has many dependence violations. In
most applications, the impact of the scalability bottlenecks of Sec-
tion 3 does not appear until 16 processors or more. From that point
on, the Opt and NoOpt curves diverge, with Opt continuing to scale.

In the following sections, we examine which optimizations are
responsible for the much higher speedups in Opt.

5.2.2 Low-Complexity Commit in Constant Time

We first consider eliminating the optimization of low-complexity
commit in constant time. We consider three schemes from Table 5:
OptNoCT, OptNoCTL1, and OptNoCTL12. OptNoCT is somewhat
unrealistic for our applications. It assumes hardware tables in L1,
L2, and overflow area, which know the lines to write back. As we
can see from Table 3, some of our applications have tasks that need
to write back (or, depending on the protocol, ask for ownership of)
hundreds of lines. Therefore, the table would have to be too large.

For our applications, it is more realistic to use OptNoCTL1, where
L1 is traversed, and L2 and the overflow area have tables. For larger
applications, OptNoCTL12 (where both L1 and L2 are traversed) is
more realistic. Figure 8 compares all these scenarios.
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Figure 8: Effect of eliminating the optimization of low-
complexity commit in constant time.

Since OptNoCT includes no cache traversal overhead, if we com-
pare it to Opt, we see the true impact of the serialization induced by
a commit that is not done in constant time. For a few processors,
there is no difference. However, as the machine scales up, the two
curves diverge for Apsi and Bdna. This was expected from Figure 6.
For Track and Tree, we would need more processors to see a differ-
ence. For high-traffic Euler, the gains come indirectly from the fact
that Opt reduces the burstiness of the traffic.

If we also include the cache traversal overheads, we get lower
performance. Traversing L1 only (OptNoCTL1) does not slow down

the system much, except for applications with short-running tasks
like Track. Traversing both L1 and L2 (OptNoCTL12) can take very
long due to the large size and low speed of L2.

With some hardware support, the traversal of the caches need not
take as long as a full linear scan. In this case, the performance of
the system would be between that of OptNoCT and OptNoCTL1 (or
OptNoCTL12, for larger working sets).

5.2.3 Overflowing Speculative Data Into Memory

We now consider eliminating only the optimization of overflowing
speculative data into a memory-based victim buffer. Figure 9 com-
pares Opt to a system where no speculative data can be displaced
from L2 (OptNoOvfL2). For reference, the figure also shows a sys-
tem where speculative data cannot even be displaced from L1 (Opt-
NoOvfL1). Note that the number of processors in the system does
not affect task sizes.
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Figure 9: Effect of eliminating the optimization of over-
flowing speculative data into a memory-based victim buffer.

By comparing Opt to OptNoOvfL2, we see that Bdna benefits the
most from the overflow area. For a few processors, the two curves
overlap because a task in Bdna largely fits in L2. However, with 64-
128 processors, various processor stalls force individual processors
to hold the state of more than one speculative task in the cache. In
these cases, L2 may overflow, which causes the processor to stall in
OptNoOvfL2.

Apsi’s tasks have a larger working set than Bdna’s. However,
because Apsi’s loops have only 63 tasks, caches rarely hold the
state of multiple tasks and, therefore, do not overflow. If we used
Apsi’s standard input set, however, OptNoOvfL2 would perform
much worse because there would be more tasks and each task would
have a working set of 400 Kbytes.

In Tree, OptNoOvfL2 is slower due to many L2 conflicts between

0-7695-1162-7/01/$10.00 (C) 2001 IEEE



the state of speculative tasks. The reason is Tree’s privatization-
like patterns, whereby each task creates its own version of the same
variable. The rest of the applications have too small working sets to
overflow, as indicated in Figure 6.

Overall, we conclude that our optimization can be useful for some
applications. We also see that OptNoOvfL1, which simulates what
happens in most speculative CMPs, has a low performance.

5.2.4 Exploiting High-Level Access Patterns

Finally, we consider eliminating only the optimization of exploit-
ing high-level access patterns. The resulting system is OptNoPat.
Figure 10 compares Opt and OptNoPat. It also shows OptNoPatA,
which is OptNoPat enhanced with Aggressive loads [5]. These are
per-task first-time accesses to a word that do not perform a version-
correctness check in the directory before returning the data to the
processor. Instead, the data is returned from the cache immediately
and the check is performed in the background. This speeds up ex-
ecution, but does not reduce traffic. Finally, we show OptLine, a
line-based protocol.
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Figure 10: Effect of eliminating the optimization of exploit-
ing high-level access patterns.

By comparing Opt and OptNoPat, we see that all applications
benefit significantly from this optimization, especially Bdna. Al-
though Figure 6 predicted that Euler is relatively less amenable to
this optimization, it still benefits significantly.

Most of the overhead of OptNoPat comes from issuing more re-
mote accesses than Opt. With OptNoPatA, some of these accesses
are acknowledged to the processor locally, but still perform a remote
check operation. However, the figure shows that, while OptNoPatA
gets closer to Opt in some applications, there is still a significant gap
for large numbers of processors. Consequently, our proposed opti-
mization is required for scalability. We also note that OptLine per-

forms poorly because it suffers many false dependence violations.
Overall, summarizing the whole evaluation, we conclude that we

need all of the three optimizations to achieve scalability. Exploiting
access patterns is the most widely-applicable optimization, while
committing in constant time and overflowing speculative data into
memory are important for applications that generate data to commit
fast, and that have tasks with large working sets, respectively. With
the three optimizations, 128-processor executions reach speedups of
over 63, while 64-processor executions reach speedups of up to 48
and, on average, 32.

6 Related Work
Architectures for Speculative Thread-Level Parallelization.
Many architectures have been proposed, including an early sys-
tem [11], small-scale systems [1, 7, 9, 13, 15, 21, 23, 24], and scal-
able systems [5, 22, 26, 27]. Our work has been inspired by the
bottlenecks found in scalable systems.
Low-Complexity Commit in Constant Time. The only other
scheme that supports constant-time commit is [26]. It has two main
drawbacks: it keeps a version number (task ID) associated with each
shared word in memory, and it complicates the protocol by allowing
uncommitted data in memory.

Keeping per-word version numbers in memory eliminates the
need for VCRs because data can be safely sent to main memory out
of order. However, per-word version numbers take space. Further-
more, memory needs logic to compare the version number of each
incoming write-back to its own, and potentially discard the write-
back.

Allowing the write-back of uncommitted data to main memory
speeds up the eventual merging of data at the home. However, it
makes memory unsafe, which complicates the recovery procedure
in case of a violation. In addition, when a dirty line is written back
to memory, a copy usually needs to be saved locally in the node,
in case the version in memory is later overwritten by an incorrect,
uncommitted version.
Overflowing Speculative Data Into Memory. The only other
scheme that supports unlimited buffering in memory is [26]. It is
different from our scheme in two ways: it needs more hardware sup-
port because it requires a page-level address translation step, and it
uses the overflow area eagerly.

On a L2 miss, an address translation module associated with the
directory controller intercepts the request and translates the shared
address into a local address. The corresponding page in the over-
flow area is accessed. Cache displacements also follow this route.
Sometimes, this scheme suffers fragmentation.

The eager use of the overflow area is mostly a result of the
lazy commit protocol used, which allows uncommitted data in main
memory. Since the data in main memory may be unsafe, when a
processor is about to overwrite a dirty local version or to displace it
to main memory, it often saves a copy of that version locally. This is
true even for committed versions. The version goes to the overflow
area. In our scheme, we only send data to the area if the version that
is about to be overwritten or displaced is uncommitted. Therefore,
our overflow area is accessed less frequently.
Exploiting High-Level Access Patterns. Our support combines
even lower traffic than line-based protocols with the fine-grain de-
pendence disambiguation of word-based protocols. Under a No-
Writer or No-Sharing pattern, line-based protocols may get close
to the low traffic of our scheme. Indeed, while many line-based
protocols would still induce traffic every time a task accesses the
line for the first time, an optimized protocol like the baseline in [22]
keeps the traffic as low as in our scheme. However, under a No-
Exposed-Reader pattern, all line-based protocols suffer much more
traffic than our scheme. The reason is that any out-of-order (same-
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word or false) WAW present in the pattern forces them to squash
threads.

Line-based protocols cannot perform fine-grain dependence dis-
ambiguation. Consequently, false sharing may cause squashes. The
protocol in [22] has a clever extension where it adds some per-word
state (Fine-Grain SM bits). The resulting hybrid protocol handles
the No-Exposed-Reader pattern without squashes and eliminates
nearly as much traffic as our scheme. However, since it is not a
full word-based protocol, it still suffers some additional squashes.
For example, it squashes under false RAWs, as when task i reads
and writes word i and task j reads and writes word j of the same line.

7 Conclusions
The contribution of this paper is twofold: it proposes several archi-
tectural supports to eliminate key scalability bottlenecks to specu-
lative parallelization, and reports speedups for runs on up to 128
processors. The paper shows that, by using our solutions to three
bottlenecks, and by combining them into a single system, we deliver
architectural scalability for 64-128 processor systems.

The speedup of our applications on 128 and 64 processors reaches
up to 63 and 48, respectively. Furthermore, the average speedup for
64 processors is 32, which is nearly four times higher than with-
out our optimizations. Of the three supports, exploiting high-level
access patterns is the most widely-applicable one. The support for
low-complexity commit in constant time is important for applica-
tions that generate data to commit at a high rate. Finally, the support
for memory-based overflow can be useful for applications with large
working sets, cache-conflicting data structures, or when individual
caches end up holding the state of several speculative tasks. Overall,
the three supports are necessary since, if any one of them is elimi-
nated, at least one class of applications suffers significantly.
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