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Backward recovery through check-
pointing and rollback is a popular approach
in modern processors to providing recovery
from transient and intermittent faults.1 This
approach is especially attractive when design-
ers can implement it with very low overhead,
typically using dedicated hardware support.

The many proposals for low-overhead
checkpointing and rollback schemes differ in
a variety of ways, including the level of the
memory hierarchy checkpointed and the
organization of the checkpoint relative to the
active data. Schemes that checkpoint at the
cache level occupy an especially attractive
design point.2,3 The hardware for these
schemes, which works by regularly saving the
data in the cache in a checkpoint that can later
serve for fault recovery, can be integrated rel-
atively inexpensively and used efficiently in
modern processor microarchitectures.

Unfortunately, cache-level checkpointing
schemes such as Carer2 and Sequoia3 don’t con-

tinuously support a large rollback window—
the set of instructions that the processor can
undo by returning to a previous checkpoint if
it detects a fault. Specifically, in these schemes,
immediately after the processor takes a check-
point, the window of code that it can roll back
typically is reduced to zero.

In this article, we describe the microarchi-
tecture of a new cache-level checkpointing
scheme that designers can efficiently and inex-
pensively implement in modern processors
and that supports a large rollback window
continuously. To do this, the cache keeps data
from two consecutive checkpoints (or epochs)
at all times. We call this approach a sliding roll-
back window, and we’ve named our scheme
Swich—for Sliding-Window Cache-Level
Checkpointing.

We’ve implemented a prototype of Swich
using field-programmable gate arrays
(FPGAs), and our evaluation of the prototype
shows that supporting cache-level check-
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pointing with a sliding window is promising.
For applications without frequent I/O or sys-
tem calls, the technique sustains a large min-
imum rollback window and adds little
additional logic and memory hardware to a
simple processor.

Low-overhead checkpointing schemes
To help in situating Swich among the alter-

natives, it’s useful to classify hardware-based
checkpointing and rollback schemes into a
taxonomy with three axes:

• the scope of the sphere of backward error
recovery (BER),

• the relative location of the checkpoint
and active data (the most current ver-
sions), and

• the way the scheme separates the check-
point from the active data.

Figure 1 shows the taxonomy.
The sphere of BER is the part of the system

that is checkpointed and, upon fault detec-
tion, rolls back to a previous state. Any scheme
assumes that a datum that propagates outside
the sphere is correct, because it has no mech-
anism to roll it back. Typically, the sphere of
BER encloses the memory hierarchy up to a

particular level. Consequently, we define three
design points on this axis, depending on
whether the sphere extends to the registers, the
caches, or the main memory (Figure 2).

The second axis in the taxonomy compares
the level of the memory hierarchy checkpoint-
ed (M, where M is register, cache, or memory)
and the level where the checkpoint is stored.
This axis has two design points:4 Dual means
that the two levels are the same. This includes
schemes that store the checkpoint in a special
hardware structure closely attached to M. Lev-
eled means the scheme saves the checkpoint at
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a lower level than M—for example, a scheme
might save a checkpoint of a cache in memory.

The third axis, which considers how the
scheme separates the checkpoint from the active
data, has two design points.5 In full separation,
the checkpoint is completely separated from the
active data. In partial separation, the checkpoint
and the active data are one and the same, except
the data that has been modified since the last
checkpoint. For this data, the checkpoint keeps
both the old value at the time of the last check-
point and the most current value.

Partial separation includes the subcategories
buffering, renaming, and logging. In buffering,
any modification to location L accumulates
in a special buffer; at the next checkpoint, the
modification is applied to L. In renaming, a
modification to L does not overwrite the old
value but is written to a different place, and
the mapping of L is updated to point to this
new place; at the next checkpoint, the new
mapping of L is committed. In logging, a
modification to L occurs in place, but the old
value is copied elsewhere; at the next check-
point, the old value is discarded.

Table 1 lists characteristics of several
existing hardware-based checkpointing
schemes and where they fit in our taxono-
my. The “Checkpointing scheme compari-
son” sidebar provides more details on the
schemes listed.

Trade-offs
The design points in our taxonomy in Fig-

ure 1 correspond to different trade-offs among
fault detection latency, execution overhead,
recovery latency, space overhead, type of faults
supported, and hardware required. Figure 3
illustrates the trade-offs.

Consider the maximum tolerable fault
detection latency. Moving from register-, to
cache-, to memory-level checkpointing, the
tolerable fault detection latency increases. This
is because the corresponding checkpoints
increase in size and can thus hold more exe-
cution history. Consequently, the time
between when the error occurs and when it is
detected can be larger while still allowing sys-
tem recovery.

The fault-free execution overhead has an
interesting shape. In register-level check-
pointing, the overhead is negligible because
these schemes save at most a few hundred
bytes (for example, a few registers or the reg-
ister alias table), and efficiently copy them
nearby in hardware. At the other levels, a
checkpoint has significant overhead, because
the processors copy larger chunks of data over
longer distances. An individual checkpoint’s
overhead tends to increase moving from
cache- to memory-level checkpointing. How-
ever, designers tune the different designs’
checkpointing frequencies to keep the overall
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Table 1. Characteristics of some existing hardware-based checkpointing and rollback schemes.

Design point Tolerable fault Fault-free 
in the Hardware detection Recovery execution 

Scheme taxonomy support latency latency overhead
IBM G5 Register, dual, full Redundant copy of Pipeline depth 1,000 cycles Negligible

register unit (R-unit), 
lock-stepping units

Sparc64, out-of-order Register, dual, Register alias table (RAT) 
processor renaming copy and restore on Pipeline depth 10 to100 cycles Negligible

branch speculation
Carer Cache, dual, logging Extra cache line state Cache fill time Cache invalidation Not available
Sequoia Cache, leveled, full Cache flush Cache fill time Cache invalidation Not available
Swich Cache, dual, logging Extra cache line states Cache fill time Cache invalidation 1%
ReVive Memory, dual, logging Memory logging, flush 100 ms 0.1 to 1 s 5%

cache at checkpoint
SafetyNet Memory, dual, logging Cache and memory 0.1 to 1 ms Not available 1%

logging
Cache-Only Memory Memory, dual, Mirroring by cache 2 to 200 ms Not available 5 to 35%

Architecture renaming coherence protocol
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Register-level checkpointing
IBM’s S/390 G5 processor (in our taxonomy from Figure 1, dual; full

separation) includes a redundant copy of the register file called the R-
unit, which lets the processor roll back by one instruction.1 In addition, it
has duplicate lock-stepping instruction and execution units, and it can
detect errors by comparing the signals from these units.

Fujitsu’s Sparc64 processor leverages a mechanism present in most
out-of-order processors: To handle branch misspeculation, processors can
discard the uncommitted state in the pipeline and resume execution from
an older instruction.2 The register writes update renamed register loca-
tions (dual; partial separation by renaming). For this mechanism to provide
recovery, it must detect faults before the affected instruction commits.
In Sparc64, parity protects about 80 percent of the latches, and the exe-
cution units have a residue check mechanism—for instance, the Sparc64
checks integer multiplication using mod3(A × B) = mod3[mod3(A) × mod3(B)].

Cache-level checkpointing
Carer checkpoints the cache by writing back dirty lines to memory (lev-

eled; full separation).3 An optimized protocol introduces a new cache line
state called unchangeable. Under this protocol, at a checkpoint, the
processor does not write back dirty lines; it simply write-protects them and
marks them as unchangeable. Execution continues, and the processor
lazily writes these lines back to memory either when they need to be
updated or when space is needed (dual; partial separation by logging).
For this optimization, the cache needs some forward error recovery (FER)
protection such as error-correcting code (ECC), because the unchange-
able lines in the cache are part of a checkpoint.

Sequoia flushes all dirty cache lines to the memory when the cache
overflows or when an I/O operation is initiated.4 Thus, the memory con-
tains the checkpointed state (leveled; full separation).

Our proposed mechanism, Swich, is similar to Carer in that it can hold
checkpointed data in the cache (dual; partial separation by logging). Unlike
Carer, Swich holds two checkpoints simultaneously in the cache. Thus, Swich
makes a large rollback window available continuously during execution.

Memory-level checkpointing
ReVive flushes dirty lines in the cache to memory at checkpoints.5 It also

uses a special directory controller to log memory updates in the memory
(dual; partial separation by logging). SafetyNet logs updates to memory
(and caches) in special checkpoint log buffers.6 Therefore, we categorize
SafetyNet’s memory checkpointing as dual; partial separation by logging.

Morin et al. modified the cache coherence protocol of Cache-Only Mem-
ory Architecture (COMA) machines to ensure that at any time, every mem-
ory line has exactly two copies of data from the last checkpoint in two
distinct nodes.7 Thus, the machines can recover the memory from single-
node failures (dual; partial separation by renaming).
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execution time overhead tolerable—about 5
percent, as shown in Figure 3.

The designs with relatively more expensive
individual checkpoints take less frequent
checkpoints. As a result, both their recovery
latency and their space overhead increase
along the axis from cache- to memory-level
checkpoints. The trend is the same moving
from dual systems (solid lines in Figure 3) to
leveled systems (dashed lines) because indi-
vidual checkpoints in leveled systems involve
moving data between levels and, therefore, are
more expensive. A similar effect also occurs as
we move from partial- (solid lines in Figure
3) to full-separation designs (dashed lines),
which require more data copying.

Finally, moving from register-, to cache-, to
memory-level checkpointing, the number of
recoverable faults increases. The reason is
twofold: First, these schemes support more
faults of a given type, thanks to the longer
detection latencies tolerated. Second, they
support more types of faults (for example,
faults that occur at the new hierarchy level).
However, recovering from these faults requires
additional hardware support, which is more
expensive because it is spread more widely
throughout the machine.

Motivation for the Swich architecture
Clearly, the different checkpointing

schemes address a large set of trade-offs; our
main focus in this article is cache-level check-
pointing schemes with their advantages and
drawbacks.

On the positive side, trends in technology
are making the cache level more attractive.
More on-chip integration means the possibil-
ity of larger caches, which let cache-level
checkpointing offer increased fault detection

latencies. In addition, the hardware for cache-
level checkpointing is relatively inexpensive
and functions efficiently in modern architec-
tures. Specifically, the primary hardware these
schemes require is new cache line states to
mark lines related to the checkpoint. Modifi-
cation of the cache replacement algorithm
might be necessary to encourage these lines to
remain cached. Cache-level checkpointing
schemes also need to change the state of
groups of cache lines at commit and rollback
points. Schemes can support this by accessing
the cache tags one at a time to change each
concerned tag individually, or by adding hard-
ware signals that modify all the concerned tags
in one shot. Finally, processors using cache-
level checkpointing must save registers effi-
ciently at a checkpoint and restore them at a
rollback—similarly to the way processors han-
dle branch speculation.

On the negative side, it is difficult to con-
trol the checkpointing frequency in cache-
level checkpointing schemes because the
displacement of a dirty cache line triggers a
checkpoint.6 Such displacements are highly
dependent on the application and the cache
organization. Thus, a system’s performance
with a cache-level checkpointing scheme is
relatively unpredictable.

Another problem of existing implementa-
tions of cache-level checkpointing2,3 is that the
length of the code that they can roll back (the
rollback window) is at times very small.
Specifically, suppose a fault occurs immedi-
ately before a checkpoint, and is only detect-
ed after the checkpoint has completed (when
the data from the previous checkpoint has
been discarded). At this point, the amount of
code that can be rolled back is very small, or
even zero. Figure 4a shows how the rollback
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window length evolves in existing cache-level
checkpointing schemes. Right after each
checkpoint, the window empties completely.

Sliding-window cache-level checkpointing
Swich addresses the problem of the empty

rollback window by providing a sliding roll-
back window, increasing the chances that the
rollback window always has a significant min-
imum length. The basic idea is to always keep
in the cache the state generated by two uncom-
mitted checkpoint intervals, which we call spec-
ulative epochs. Each epoch lasts as long as it
takes to generate a dirty data footprint about
half the cache size. When the cache is getting
full of speculative data, the older epoch is com-
mitted and a newer one starts. With this
approach, the evolution of the rollback win-
dow length is closer to that illustrated in Fig-
ure 4b. When rollback is necessary, the scheme
rolls back both speculative epochs. In the worst
case (when rollback is necessary immediately
after a checkpoint), the system can roll back at
least one whole speculative epoch. Previously
proposed schemes have a worst-case scenario of
an empty rollback window.

Checkpoint, commit, and rollback
We extend each line in the cache with two

epoch bits, E1E0. If the line contains non-
speculative (that is, committed) data, E1E0 are
00; if it contains data generated by one of the
two active speculative epochs, E1E0 are 01 or
10. Only dirty lines (those with the Dirty bit
set) can have E1E0 other than 00.

A checkpoint consists of three steps: com-
mitting the older speculative epoch, saving
the current register file and processor state,
and starting a new speculative epoch with the
same E1E0 identifier as the one just commit-
ted. Committing a speculative epoch involves
discarding its saved register file and processor
state and clearing the epoch bits of all the
cache lines whose E1E0 bits are equal to the
epoch’s identifier. It is preferable to clear such
bits all in one shot, with a hardware signal
connected to all the tags that takes no more
than a handful of cycles to actuate.

On a fault, the two speculative epochs roll
back. This involves restoring the older of the
two saved register files and processor states,
invalidating all the cache lines whose E1E0 bits
are not 00, and clearing all the E1E0 bits. A

one-shot hardware signal is sufficient for the
operations on the E1E0 bits. However, because
rollback is probably infrequent, these opera-
tions can also use slower hardware that walks
the cache tags and individually sets the bits of
the relevant tags. For a write-through L1 cache,
it is simpler to invalidate the entire cache.

Speculative line management
Swich manages the speculative versions of

lines, namely those belonging to the specula-
tive epochs, following two invariants. First,
only writes can create speculative versions of
lines. Second, the cache can contain only a
single version of a given line. Such a version
can be nonspeculative or speculative with a
given E1E0 identifier. In the latter case, the line
is necessarily dirty and cannot be displaced
from the cache. Following the first invariant,
a processor read simply returns the data cur-
rently in the cache and does not change its
line’s E1E0 identifier. If the read misses in the
cache, the line is brought from memory, and
E1E0 are set to 00.

The second invariant determines the
actions on a write. There are four cases: First,
if the write misses, the line is brought from
memory, it is updated in the cache, and its
E1E0 bits are set to the epoch identifier. Sec-
ond, if the write hits on a nonspeculative line
in the cache, the line is first written back to
memory (if dirty), then it is updated in the
cache, and finally its E1E0 bits are set to the
epoch identifier. In these two cases, a count
of the number of lines belonging to this epoch
(SpecCnt) is incremented. Third, if the write
hits on a speculative line of the same epoch,
the update proceeds normally. Finally, if the
write from current epoch i hits on a specula-
tive line from the other epoch (i – 1), then
epoch i − 1 is committed, and the write initi-
ates a new epoch, i + 1. The line is written
back to memory, then updated in the cache,
and finally its E1E0 bits are set to the new
epoch identifier. When the SpecCnt count of
a given epoch (say, epoch i) reaches the equiv-
alent of half the cache size, epoch i – 1 is com-
mitted, and epoch i + 1 begins.

Recall that speculative lines cannot be dis-
placed from the cache. Consequently, if space
is needed in a cache set, the algorithm first
chooses a nonspeculative line as its victim. If all
lines in the set are speculative, Swich commits
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the older speculative epoch (say, epoch i – 1)
and starts a new epoch (epoch i + 1). Then,
the algorithm chooses one of the lines just
committed as a victim for displacement.

A fourth condition that also leads to an
epoch commitment occurs when the current
epoch (say epoch i) is about to use all the lines
of a given cache set. If the scheme allows it to
do so, the sliding window becomes vulnera-
ble: If the epoch later needs an additional line
in the same set, the hardware would have to
commit i (and i – 1), decreasing the sliding
window size to zero. To avoid this, when an
epoch is about to use all the lines in a set, the
hardware first commits the previous epoch 
(i – 1) and then starts a new epoch with the
access that requires a new line.

Finally, in the current design, when the pro-
gram performs I/O or issues a system call that
has side effects beyond generating cached
state, the two speculative epochs are commit-
ted. At that point, the size of the sliding win-
dow falls to zero.

Two-level cache hierarchies
In a two-level cache hierarchy, the algo-

rithm we have described is implemented in
the L2 cache. The L1 cache can use a simpler
algorithm and does not need the E1E0 bits per
line. For example, consider a write-through,
no-allocate L1. On a read, L1 provides the
data that it has or that it obtains from L2. On
a write hit, L1 is updated, and both the update
and epoch bits are propagated to L2. On a
commit, no action is taken, whereas in the
rare case of a rollback, all of L1 is invalidated.

Multiprocessor issues
Swich is compatible with existing techniques

that support cache-level checkpointing in a
shared-memory multiprocessor.7,8 For exam-
ple, assume we use the approach of Wu et al.8

In this case, when a cache must supply a spec-
ulative dirty line to another cache, the source
cache must commit the epoch that owns the
line to ensure that the line’s data never rolls
back to a previous value. The additional advan-
tage of Swich is that the source cache needs
only to commit a single speculative epoch, if
the line provided belonged to its older specu-
lative epoch. In this case, the rollback window
length in the source cache does not fall to zero.
A similar operation occurs when a cache

receives an invalidation for a speculative dirty
line. The epoch commits, and the line is pro-
vided and then invalidated. Invalidations to all
other types of lines proceed as usual. A similar
discussion can be presented for other existing
techniques for shared-memory multiprocessor
checkpointing.

Swich prototype
We implemented a hardware prototype of

Swich using FPGAs. As the base for our
implementation, we used Leon2, a 32-bit
processor core compliant with the Sparc V8
architecture (http://www.gaisler.com). Leon2
is in synthesizable VHDL format. It has an
in-order, single-issue, five-stage pipeline. Most
instructions take five cycles to complete if no
stalls occur. The processor has a windowed
register file, and the instruction cache is 4
Kbytes. The data cache size, associativity, and
line size are configurable. In our experiments,
we set the line size to 32 bytes and the asso-
ciativity to 8, and we varied the cache size.
Because the processor initially had a write-
through data cache, we implemented a write-
back data cache controller.

We extended the processor in two major
ways: with cache support for buffering spec-
ulative data and rollback, and with register
support for checkpointing and rollback. We
also leveraged, in part, the rollback mecha-
nism presented elsewhere.9

Data cache extensions
Although the prototype implements most

of the design we described earlier, there are a
few differences. First, the prototype has a sin-
gle-level data cache. Second, for simplicity, we
allowed a speculative epoch to own at most
half the lines in any cache set. Third, the pro-
totype doesn’t perform epoch commit and
rollback using a one-shot hardware signal.
Instead, we designed a hardware state machine
that walks the cache tags performing the oper-
ations on the relevant cache lines. The reason
for this design is that we implemented the
cache with the synchronous RAM blocks pre-
sent in the Xilinx Virtex II series of FPGAs.
Such memory structures have only the ordi-
nary address and data inputs; they are diffi-
cult to modify to incorporate additional
control signals, such as those needed to sup-
port one-shot commit and rollback signals.
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We extended the cache controller with a
cache walk state machine (CWSM) that tra-
verses the cache tags and clears the corre-
sponding epoch bits (in a commit) and valid
bits (in a rollback). A commit or rollback sig-
nal activates the CWSM. At that point, the
pipeline stalls and the CWSM walks the
cache tags. The CWSM has three states,
shown in Figure 5a: idle, walk, and restore. In
idle, the CWSM is inactive. In walk, its main
working state, the CWSM can operate on one
or both of the speculative epochs. The tra-
versal takes one cycle for each line in the
cache. The restore state resumes the normal
cache controller operation and releases the
pipeline.

When operating system code is executed,
we conservatively assume that it cannot be
rolled back and, therefore, we commit both
speculative epochs and execute the system
code nonspeculatively. A more careful imple-
mentation would identify the sections of sys-
tem code that have no side effects beyond
memory updates, and allow their execution
to remain speculative.

Register extensions
Swich performs register checkpointing and

restoration using two shadow register files,
SRF0 and SRF1. Each of these memory struc-
tures is identical to the main register file.
When a checkpoint is to be taken, the pipeline
stalls and passes control to the register check-
pointing state machine (RCSM), which has
the four states shown in Figure 5b.

The RCSM is in the idle state while the
pipeline executes normally. When a register
checkpoint must be taken, it transitions to the
checkpoint state. In this state, the RCSM
copies the valid registers in the main register
file to one of the SRFs. The register files are
implemented in SRAM and have two read
ports and one write port. This means that the
RCSM can copy only one register per cycle.
Thus, the checkpoint stage takes about as many
cycles as there are valid registers in the regis-
ter file. The rollback state is activated when
the pipeline receives a rollback signal. In this
state, the RCSM restores the contents of the
register file from the checkpoint. Similarly,
this takes about as many cycles as there are
valid registers. The restore state reinitializes the
pipeline.

Evaluating the Swich prototype
The processor is part of a SoC infrastruc-

ture that includes a synthesizable SDRAM
controller, and PCI and Ethernet interfaces.
We synthesized the system using Xilinx ISE
v6.1.03 (http://www.xilinx.com). The target
FPGA chip was a Xilinx Virtex II XC2V3000
running on a GR-PCI-XC2V development
board (http://www.pender.ch). The processor
runs at 40 MHz, and the board has 64 Mbytes
of SDRAM for main memory. Communica-
tion with the board and loading of programs
in memory take place through the PCI inter-
face from a host computer.

On this hardware, we run a special version
of the SnapGear Embedded Linux distribu-
tion (http://www.snapgear.org). SnapGear
Linux is a full-source package, containing ker-
nel, libraries, and application code for rapid
development of embedded Linux systems. We
used a cross-compilation tool chain for the
Sparc architecture to compile the kernel and
applications.

We experimented with the prototype using
a set of applications that included open-source
Linux applications and microbenchmarks that
we ran atop SnapGear Linux. We chose codes
that exhibited a variety of memory and sys-
tem code access patterns to give us a sense of
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how workload characteristics affect Swich.
Table 2 describes the applications we used.

Results
We have not yet accurately measured

Swich’s execution overhead or recovery
latency, because of the limitations of our
implementation—specifically that we imple-
mented epoch commit and rollback with
inefficient cache tag walking rather than with
an efficient one-shot hardware signal. This
problem slows down the Swich FPGA pro-
totype, but it would not be present in a
CMOS implementation.

Consequently, we focused our evaluation
on measuring Swich’s hardware overhead and
rollback window size, and on roughly esti-
mating Swich’s performance overhead and
recovery latency using a simple model.

Hardware overhead
For each of Swich’s two components—the

register checkpointing mechanism and the
data cache support for speculative data—we
measured the hardware overhead in both logic
and memory structures. Our measurements
considered only the processor core and caches,
not the other on-chip modules such as the
PCI and memory controllers. As a reference,
we also measured the overheads of a cache
checkpointing scheme with one speculative
epoch at a time (a system similar to Sequoia3).

Figure 6 shows the logic consumed, mea-
sured in number of configurable logic block
(CLB) slices. CLBs are the FPGA blocks used
to build combinational and synchronous logic
components. A CLB comprises four similar
slices; each slice includes two four-input func-
tion generators, carry logic, arithmetic logic
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Table 2. Applications evaluated using Swich.

Application Description
hennessy Collection of small, computation-intensive applications; little or no system code
polymorph Converts Windows-style file names to Unix; moderate system code
memtest Microbenchmark that simulates large array traversals; no system code
sort Linux utility that sorts lines in text files; system-code intensive
ncompress Compression and decompression utility; moderate system code
ps Linux process status command; very system-code intensive
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Figure 6. Amount of logic consumed by different designs and components.



gates, wide-function multiplexers, and two
storage elements. Figure 6 graphs hardware
overhead for the Sequoia-like system and the
Swich system, each with several different data
cache sizes (ranging from 4 Kbytes to 64
Kbytes). Each bar shows the CLBs consumed
by the logic to support speculative data in the
cache (spec cache), register checkpointing (reg
ckpt), and the original processor (base).

With Swich, the logic overhead of the com-
bined extensions was only 6.5 percent on aver-
age and relatively constant across the range of
caches we evaluated; the support we propose
does not use much logic. In addition, the
number of CLBs used for Swich is only about
2 percent higher than for the Sequoia-like sys-
tem. In other words, the difference in logic
between a simple window and a sliding win-
dow is small.

Figure 7 shows the memory consumed,
measured in number of SelectRAM memory
blocks. These blocks, used to implement the
caches, register files, and other structures, are
18-Kbit, dual-port RAM blocks with two
independently clocked and independently
controlled synchronous ports that access a
common storage area. The overhead in mem-
ory blocks of the combined Swich extensions
is again small for all the caches that we evalu-
ated, indicating that the support we propose
consumes few hardware resources. In addi-
tion, Swich’s overhead in memory blocks is

again very similar to that of the Sequoia-like
system. The Swich additions are primarily
additional register checkpoint storage and
additional state bits in the cache tags.

Size of the rollback window
We particularly wanted to determine the

size of the Swich rollback window in number
of dynamic instructions. This number deter-
mines how far the system can roll back at a
given time if it detects a fault. We were espe-
cially interested in the minimum points in
Figure 4b, which represent the cases when
only the shortest rollback windows are avail-
able. Figure 4b shows an ideal case. In prac-
tice, the minima aren’t all at the same value.
The actual values of the minimum points
depend on the code being executed: the actu-
al memory footprint of the code and the pres-
ence of system code. In our current
implementation, execution of system code
causes the commit of both speculative epochs
and, therefore, induces a minimum in the roll-
back window.

For our experiments, we measured the win-
dow size at each of the minima and took per-
application averages. Figure 8 shows the
average window size at minimum points for
the different applications and cache sizes rang-
ing from 8 Kbytes to 64 Kbytes. The same
information for the Sequoia and Carer systems
would show rollback windows of size zero.
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As Figure 8 shows, the hennessy
microbenchmark has the largest minimum
rollback window. The application is compu-
tationally intensive, has little system code, and
has a relatively small memory footprint. As
the cache increases, the window size increas-
es. For 8- to 64-Kbyte caches, the minimum
rollback window ranges from 120,000 to
180,000 instructions. The polymorph and
memtest applications have more system code
and a larger memory footprint, respectively.
Their rollback windows are smaller, although
they increase substantially with the cache size,
to reach 120,000 and 80,000 instructions,
respectively, for the 64-Kbyte cache. The sort,
ncompress, and ps applications are system-
code-intensive applications with short roll-
back windows, regardless of the cache size.
One way to increase their minimum rollback
windows is to identify the sections of system
code that have no side effects beyond memo-
ry updates and allow their execution to remain
speculative.

For completeness, we also measured Swich’s
average rollback window size and compared
it to that of the implementation similar to
Sequoia and Carer. Again, we looked at four
different data cache sizes and six applications;
Figure 9 shows the results. Except in system-
code-intensive applications, Swich’s average
rollback window is significantly larger than
that of Sequoia-Carer. The reason, as Figure 8

shows, is that for Swich the rollback window
has a nonzero average minimum value. For ps
and the other two system-intensive applica-
tions, there is little difference between the two
schemes. Overall, at least for applications
without frequent system code, Swich supports
a large minimum rollback window.

Estimating performance overhead and recovery
latency

A rough way of estimating Swich’s perfor-
mance overhead is to compute the ratio
between the time needed to generate a check-
point and the duration of the execution
between checkpoints. This approach, of
course, neglects any overheads that the scheme
might induce between checkpoints. To model
worst-case conditions, we used the average size
of the rollback window at minimum points
(Figure 8) as the number of instructions
between checkpoints. Across all the applica-
tions, this is about 60,000 instructions for 64-
Kbyte caches. If we assume an average of one
cycle per instruction, this corresponds to
60,000 cycles. On the other hand, a check-
point can very conservatively take about 256
cycles, because it involves saving registers and
asserting a one-shot hardware signal that mod-
ifies cache tag bits. Overall, the ratio results
in a 0.4 percent overhead.

We estimated the recovery latency by assum-
ing 256 cycles to both restore the registers and
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assert a one-shot hardware signal that modi-
fies cache tag bits. In addition, as the proces-
sor reexecutes, it must reload into the cache all
the dirty speculative lines that were invalidat-
ed during rollback. Overall, the combined
overhead of both effects is likely to be in the
milliseconds at most. Given the low frequen-
cy of rollbacks, we believe this is tolerable.

Cache-level checkpointing provides an effi-
cient recovery mechanism that can be

implemented inexpensively in modern proces-
sors. This work shows that maintaining two
speculative epochs at all times to form a slid-
ing rollback window lets Swich support a large
minimum (and average) rollback window.
Moreover, our FPGA prototype showed that
the added hardware is minimal and that it can
be well integrated with existing processor
microarchitectures. We expect that support-
ing Swich will significantly help processors
recover from transient and intermittent faults,
as well as from software errors that have low
detection latency. We are currently examin-
ing the behavior of Swich under a wider range
of workloads. We are also examining how
Swich can be supported while the processor
executes system code. MICRO
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