
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

HotTiles: Accelerating SpMM with Heterogeneous
Accelerator Architectures

Gerasimos Gerogiannis†‡, Sriram Aananthakrishnan†, Josep Torrellas‡, and Ibrahim Hur†
†Intel Corporation ‡University of Illinois at Urbana-Champaign

gg24@illinois.edu, sriram.aananthakrishnan@intel.com, torrella@illinois.edu, ibrahim.hur@intel.com

Abstract—Sparse Matrix Dense Matrix Multiplication (SpMM)
is an important kernel with application across a wide range of
domains, including machine learning and linear algebra solvers.
In many sparse matrices, the pattern of nonzeros is nonuniform:
nonzeros form dense and sparse regions, rather than being
uniformly distributed across the whole matrix. We refer to this
property as Intra-Matrix Heterogeneity (IMH). Currently, SpMM
accelerator designs do not leverage this heterogeneity. They
employ the same processing elements (PEs) for all the regions of
a sparse matrix, resulting in suboptimal acceleration.

To address this limitation, we utilize heterogeneous SpMM
accelerator architectures, which include different types of PEs
to exploit IMH. We develop an analytical modeling framework
to predict the performance of different types of accelerator PEs
taking into account IMH. Furthermore, we present a heuristic
for partitioning sparse matrices among heterogeneous PEs. We
call our matrix modeling and partitioning method HotTiles.
To evaluate HotTiles, we simulate three different heterogeneous
architectures. Each one consists of two types of workers (i.e.,
PEs): one suited for compute-bound denser regions (Hot Worker)
and one for memory-bound sparser regions (Cold Worker). Our
results show that exploiting IMH with HotTiles is very effective.
Depending on the architecture, heterogeneous execution with
HotTiles outperforms homogeneous execution using only hot or
only cold workers by 9.2-16.8× and 1.4-3.7×, respectively. In
addition, HotTiles outperforms the best worker type used on a
per-matrix basis by 1.3-2.5×. Finally, HotTiles outperforms an
IMH-unaware heterogeneous execution strategy by 1.4-2.2×.

I. INTRODUCTION

Sparse Matrix Dense Matrix Multiplication (SpMM) has
recently gained a lot of attention due to its wide applicability
in a variety of domains, including machine learning [29], [65],
Graph Neural Networks (GNNs) [40], [45], [56], [62], drug
design [18], environmental analysis [51], and linear algebra
solvers [4], [7], [14], [39]. Optimizing SpMM is a challenging
task, as the density and pattern of the nonzeros (i.e., the spar-
sity pattern) in the sparse matrix determine the characteristics
of the kernel. For example, SpMM is memory-bound when
the sparse matrix has high sparsity, whereas it is compute-
bound in low sparsity scenarios. Given the widespread use of
SpMM, a variety of hardware accelerators for SpMM have
been proposed [3], [24], [28], [30], [55], [58], [59].

In many sparse matrices, nonzeros form dense and sparse re-
gions, rather than being uniformly distributed across the whole
matrix. For example, consider power-law graphs [2]. In such
graphs, most of the edges are associated with a small number
of nodes. Consequently, the nonzeros in the corresponding
sparse adjacency matrix are not uniformly distributed across

the whole sparse matrix. We refer to this property as Intra-
Matrix Heterogeneity (IMH).

Currently, accelerator designs do not leverage IMH. In-
stead, they are built out of homogeneous processing elements
(PEs) with identical compute capacity, latency tolerance, and
interface to the memory subsystem. Some designs provide
flexibility to leverage different sparsity patterns across different
matrices but are not designed to exploit IMH. For example, the
SPADE architecture [24] offers three different flexibility knobs
that can be configured on a per-matrix basis. AESPA [54]
introduces the concept of heterogeneous subaccelerators that
target different levels of sparsity and compression formats.
However, AESPA does not map different regions of a given
matrix to the subaccelerators that would suit them the most,
and thus fails to exploit IMH.

In this work, we argue that combining heterogeneous PEs in
a single accelerator and carefully mapping different regions of
a matrix to the most appropriate PE type to leverage IMH can
substantially improve performance. Hence, we investigate the
potential of heterogeneous accelerator architectures to leverage
IMH. The denser regions of a sparse matrix are associated with
higher arithmetic intensity and, therefore, are more suitable for
PEs with higher computing capability. On the other hand, the
sparser regions are dominated by memory accesses and, there-
fore, are more suitable for PEs with higher latency tolerance
capabilities. Based on these ideas, we utilize heterogeneous
accelerators that incorporate two types of workers (i.e., PEs):
Hot Workers, which are more appropriate for compute-bound
regions (i.e., hot tiles), and Cold Workers, which are more
appropriate for memory-bound regions (i.e., cold tiles).

Our approach partitions the sparse matrix between the two
types of workers to maximize performance. However, this is
not a straightforward task. First, we need a model to estimate
the performance of each worker for a given region. Then, we
need a method to map each region to the appropriate worker
type. Our evaluation shows that using holistic performance
models is insufficient, since such models do not account for
IMH. In addition, for a fixed collection of hot and cold workers
and a set of regions, the problem of optimally scheduling
regions to workers requires an exhaustive search over an
exponentially large number of possible options [47], [61].

To address these problems, we develop (1) an analytical
model that quickly predicts the performance of a worker for a
given region, and (2) a heuristic-based technique to partition
the matrix among the different worker types to maximize

overall performance. First, for each sparse matrix region,
we analytically estimate the execution time and number of
main memory accesses for each worker type. Then, we apply
a lightweight algorithm to partition the matrix among the
different worker types in polynomial time. We collectively
refer to our IMH-aware modeling and partitioning method as
HotTiles.

We evaluate HotTiles through simulation for three distinct
heterogeneous accelerator architectures: (1) a combination
of SPADE [24] and Sextans-like [58] PEs integrated into
the same die and sharing memory; (2) a combination of
SPADE PEs with off-die Sextans-like PEs with enhanced
computational capabilities; and (3) Intel’s PIUMA architecture
for graph analytics [1]. Our results show that the combination
of heterogeneous PEs and our IMH-aware modeling and
partitioning technique is very effective. Depending on the ar-
chitecture, heterogeneous execution with HotTiles outperforms
homogeneous execution using only hot or only cold workers
by 9.2-16.8× and 1.4-3.7×, respectively. In addition, HotTiles
outperforms the best worker type used on a per-matrix basis
by 1.3-2.5×. Finally, HotTiles outperforms an IMH-unaware
heterogeneous execution strategy by 1.4-2.2×.

Overall, this paper’s contributions are:
• The proposal of using heterogeneous SpMM accelerators

to leverage intra-matrix heterogeneity in sparse matrices.
• An analytical modeling framework to predict the perfor-

mance of different accelerator PEs that takes into account
intra-matrix heterogeneity.

• A heuristic to partition sparse matrices among heteroge-
neous workers.

• A simulation-based evaluation for three different hetero-
geneous SpMM accelerator architectures.

II. BACKGROUND

A. SpMM Basics

SpMM is the multiplication of a sparse input matrix (in our
case square) ANxN with a dense input matrix DinNxK . The
result is a dense output matrix DoutNxK . In SpMM, each
nonzero of A triggers accesses to full rows of the two dense
matrices. The rows of the dense matrices that will be accessed
for a given nonzero are determined by the nonzero’s row index
(r id) and column index (c id). Figure 1 illustrates this for
the nonzero with value=z which has r id=3 and c id=1. This
nonzero triggers the access of the row indexed by 1 (c id of
z) in Din and the row indexed by 3 (r id of z) in Dout.
The dense input row is multiplied by the nonzero value z and
accumulated on top of the output row in a SIMD manner as
shown in the upper right part of Figure 1. It is evident that
the structure of the input sparse matrix is highly correlated
with the reuse opportunities for Din and Dout. For example,
a denser sub-region of A will have more nonzeros in the same
column or row, which will trigger more reuse of the same Din
or Dout row, respectively.

A generalized version of SpMM (gSpMM) over algebraic
semirings is presented by Davis et al. [19]. gSpMM has the

a b

x c d e

g y

j z

w l

0

1

2

3

4

5

0 1 2 3 4 5

Dout

c_id

r_id

Din

=

A



= 
z ()K

N

N

K

Fig. 1: gSpMM operation.

same memory access pattern as SpMM but can have different
arithmetic intensity. Similar to SpMM, dense rows indexed by
the r id and c id are accessed for every nonzero. However,
the operations involved differ. The multiplication operation
is substituted by the generalized multiplicative monoid ⊗,
while the addition operation is substituted by the generalized
additive monoid ⊕. Depending on the computational cost
of these monoids compared to their vanilla versions, the
arithmetic intensity of the kernel can increase or decrease.
The generalized version of SpMM is an important primitive
for GNN applications [63].

B. Processing Elements Used in SpMM Accelerators

In this section, we give a high-level description of the
processing elements (PEs) that we use as building elements
for our heterogeneous accelerator architectures.
SPADE: The SPADE accelerator [24] has lightweight PEs
(Figure 2(a)) that are out-of-order (OoO) non-speculative
vector engines. The PEs operate on tiles of the sparse matrix.
The SPADE architecture includes three levels of caches and a
Bypass Buffer (BBF) that bypasses the cache subsystem. The
BBF is used to access the sparse matrix A and, depending
on A, potentially the Din and/or Dout dense matrices. The
out-of-order PE design overlaps many outstanding memory
accesses with computation and allows for latency tolerance
and scalability.

SPADE PE

BBF L1

SIMD
SEXTANS

SPAD

SIMD

A Din,Dout A Din,Dout

MEM

L2

LLC

MEM

PIUMA MTP

L1
A,Din,Dout

MEM

OoO
PIUMA STP

Din

MEM

(a) (b) (c) (d)

DMA

SPAD

Din,Dout

Dout

A

Fig. 2: PEs used in our SpMM accelerators.

Sextans: Sextans [58] is an accelerator for SpMM that
relies on streaming accesses for both the dense and sparse
structures. It employs large scratchpads in order to utilize
the reuse of dense rows (Figure 2(b)). Similar to SPADE
PEs, Sextans executes computations in a SIMD manner and

offers high computational throughput. Since Sextans relies on
a scratchpad, full dense tiles should be streamed in and out,
regardless of whether all their contents are necessary in a given
sparse matrix tile. As explained later in Section III-A, PEs
employing scratchpads are more effective for relatively denser
sparse matrix regions and less effective for sparser ones.
PIUMA: PIUMA [1] is an architecture designed by Intel
to address graph analytics challenges at scale. The PIUMA
architecture includes two types of pipelines: Multi-Threaded
Pipelines (MTPs) and Single-Threaded Pipelines (STPs). The
MTPs are designed to tolerate high memory access latencies
through fine-grained round-robin multithreading, whereas the
STPs are simple in-order cores designed for single-threaded
tasks (Figures 2(c) and (d)). Both STPs and MTPs implement
the same custom RISC ISA. In addition to the pipelines, the
PIUMA architecture includes scratchpads, DMA engines capa-
ble of executing arithmetic operations near memory, collective
engines, and atomic engines. In this work, we aim to accelerate
SpMM by using the various heterogeneous features of the
PIUMA architecture.

III. MOTIVATION

In this section, we first motivate the need for heterogeneous
PEs when processing heterogeneous sparse matrix regions. We
then discuss the pitfalls of Intra-Matrix Heterogeneity (IMH)-
unaware performance modeling and partitioning in SpMM
accelerator architectures with heterogeneous PEs.

A. Heterogeneous PEs for Heterogeneous Matrix Regions

We start with a motivating example of how different worker
(i.e., PE) types are more appropriate for different sparse matrix
regions. We refer to the workers that are better suited for
compute-bound, denser regions as Hot Workers, while we
refer to the workers that are better suited for highly memory-
intensive, sparser regions as Cold Workers. We also refer to
the tiles that are assigned to the corresponding worker type
as Hot and Cold. The main tasks of an SpMM accelerator
worker are reading the appropriate elements of the sparse
input, dense input, and dense output; executing the SIMD
multiply-accumulate (MAC) operation; and writing back the
final dense output elements. Naturally, workers of different
types execute and overlap these operations in different ways.

As an example, Figure 3 focuses on the task of reading the
dense input (Din). Recall that the nonzero c ids index the
rows of Din that need to be accessed. The figure includes
two workers: Worker 1 (cold), which does not store Din in
any fast local memory (FLM), and Worker 2 (hot), which uses
a scratchpad. We consider two different 3x3 tiles (T1 and T2)
of a sparse matrix. T1 is highly sparse and contains only a
single nonzero, while T2 is denser and contains five nonzeros.

Figure 3(a) shows the cold worker processing T1. Since
the cold worker does not use any FLM and accesses Din
on demand, it only issues a memory access for a single
Din row during T1 execution. Figure 3(b) shows the hot
worker processing T1. The hot worker is forced to transfer
from memory to its scratchpad all three Din rows that might

a

a

a c

g

a a

WORKER 1

(COLD)

Din

A

a

a

a c

g

a a

Din

A

WORKER 2

(HOT)

a

SPAD

a

T1 T2

T3 T4

T2

T3 T4

M

E

M

O

R

Y

on-demand

access

(one dense row)
streaming access

(a tile of dense

 rows)

T1

a

b a

c d
e g f

a a

WORKER 1

(COLD)

Din

A

b

T2

T3 T4

aT1

c d e f

a

b a

c d
e g f

a a

WORKER 2

(HOT)

Din

A

b

T2

T3 T4

aT1

c d e f

SPAD

(a) (b)

(c) (d)

Fig. 3: Number of memory accesses to Din for two different
sparse matrix tiles and two different worker types.

be accessed during T1 execution. This is because, unlike
caches, scratchpads do not include a hardware mechanism for
detecting and handling misses. Unfortunately, since only the
first Din row is eventually useful, two of the main memory
accesses are unnecessary.

Figures 3(c) and 3(d) illustrate the main memory accesses
issued by the cold and hot workers, respectively, for the denser
tile T2. The cold worker requests one row for every nonzero
of the tile. Therefore, it requests a total of five rows from main
memory. On the other hand, since the hot worker can reuse
data through its scratchpad, it only requests three rows from
main memory. Therefore, for T1, the cold worker accesses
Din more efficiently than the hot worker while, for T2, the
hot worker is better. Thus, we classify T1 as a Cold tile and
T2 as a Hot tile.

In practice, accurately predicting which worker type is more
suitable for each tile requires taking into account more factors
than the number of memory accesses due to the presence of
scratchpads. As a second example, consider two workers with
scratchpads that have the following differences: (1) the cold
worker can overlap memory requests, effectively hiding some
of the memory access latency, and (2) the hot worker has
higher computational capability. Assuming the same tiles as
the ones in Figure 3, there is no difference in the amount of
Din memory accesses—both workers access memory three
times. For T1, both workers perform three Din memory
accesses and one SIMD MAC operation (for nonzero a). For
T2, both workers perform three Din memory accesses and five
SIMD MAC operations. Thus, one can expect that, for T1, the

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik ski pa
p de

l
dg

r kro myc pa
c ser po

k wik
1

10

100
Sp

ee
du

p
ov

er
wo

rs
t h

om
og

en
eo

us
ex

ec
ut

io
n

(lo
g-

sc
al

e)

SPADE-Sextans PIUMA

Hot Homogeneous Cold Homogeneous IUnaware Heterogeneous

Fig. 4: Comparing the performance of IUnaware and homogeneous execution.

cold worker will do better than the hot one, while for T2, the
hot worker will likely do better than the cold one (depending
on the relative cost of accessing memory and performing a
SIMD MAC).

In fact, determining the appropriate worker for each tile is a
much more complex task, since one should also consider the
Dout reads and writes, the sparse input reads, and the over-
lapping of the different operations in each PE. In Section IV,
we describe our IMH-aware performance models.
B. Pitfalls of IMH-unaware Modeling and Partitioning

In this section, we discuss a method to model and partition
sparse matrices without considering IMH and discuss its
pitfalls. We refer to the heterogeneous execution that stems
from this modeling and partitioning as IUnaware.

We start by estimating the performance when processing
the whole matrix by a single worker. We use the Roofline
model [66], where the execution time is estimated as the
maximum of the computation time and the memory access
time. The computation time is the number of GFLOPs needed
to process the whole matrix divided by the computational
throughput of the worker. The number of GFLOPs needed
is determined by the number of nonzeros in the matrix and is
not affected by the nonzero distribution. The memory access
time is the number of memory bytes accessed divided by the
memory bandwidth. To estimate the number of memory bytes
accessed, we assume a uniform distribution of nonzeros in the
matrix, similar to AESPA [54]. With this model, we compute
the predicted execution time with a single hot worker (th) and
the predicted execution time with a single cold worker (tc).

We can now partition the processing of the matrix among
hot and cold workers as follows. Assume we have Nhw hot
workers and Ncw cold workers. If we use only the hot workers
operating in parallel, the total execution time of processing
the matrix can be approximated as Exhw = th/Nhw; if we
use only cold workers, it can be approximated as Excw =
tc/Ncw. We would like to use all hot and cold workers working
in parallel and assign a fraction of the tiles to each type of
worker so that the total execution time is minimized. To find
the fraction of tiles to be assigned to each type of worker, we
use the technique proposed by Huang et al. [34]. Specifically,
the fraction of tiles to be assigned to hot workers is:

frac tilehot =
Excw

Excw + Exhw
(1)

Then, we distribute tiles randomly to the two worker types
while ensuring that the total fraction of tiles assigned to hot

workers satisfies Equation 1. This partitioning scheme, which
we call IUnaware, resembles the one used by AESPA [54].

In Figure 4, we compare the heterogeneous execution using
the IUnaware method to homogeneous executions, in which
the whole matrix is assigned to either hot workers or to cold
workers. We use ten matrices from SparseSuite [20] (Table V)
with a tile size of 8192x8192, and two different heterogeneous
architectures that will be described in Section VI. One of
the architectures consists of SPADE (cold) and Sextans (hot)
workers; the other consists of PIUMA MTPs (cold) and
STPs (hot). For SPADE-Sextans, we use 16 cold workers
and a single high-performance hot worker (Ncw=16, Nhw=1),
while for PIUMA, Ncw=4 and Nhw=2. For each matrix, we
present the speedups over the worst-performing homogeneous
execution (hot or cold). Note that, for a given matrix, the three
bars correspond to different numbers of workers used.

As shown in Figure 4, IUnaware delivers speedups over the
worst-performing homogeneous execution for all the matrices
and architectures. However, compared to the best-performing
homogeneous execution, the results are unimpressive. Specif-
ically, in PIUMA, IUnaware performs about the same as the
best-performing homogeneous execution. Further, in SPADE-
Sextans, IUnaware performs significantly worse than the best-
performing homogeneous execution. The reason is that, in
SPADE-Sextans, the cold workers already have enough com-
pute power, and execution is mostly limited by memory
accesses. Adding hot workers in an IMH-unaware manner as
in IUnaware increases the pressure on the memory bandwidth
without visibly improving the compute time. The result is an
increase in execution time. Overall, our results reveal that
heterogeneous execution with IMH-unaware modeling and
partitioning is undesirable.

To improve the performance of heterogeneous execution,
this paper proposes to assign individual tiles to the most
appropriate worker type, using IMH awareness, as presented
in Sections IV and V. We call this approach HotTiles. To see
if HotTiles would generate an assignment of tiles to workers
that is significantly different than in IUnaware, we generated
Figure 5. The figure shows, for SPADE-Sextans (SP-SE), the
tiles assigned to hot workers in black and the tiles assigned to
cold workers in white, in IUnaware and in HotTiles. The data
corresponds to the coPapersCiteseer (pap) matrix (Table V)
with an 8192x8192 tile size.

The figure shows that IUnaware and HotTiles assign the tiles
very differently. IUnaware assigns tiles in a random manner,

(a) SP-SE:
IUnaware

(b) SP-SE:
HotTiles

Fig. 5: Assignment of tiles to hot workers (in black) and to
cold workers (in white) in IUnaware and HotTiles for the pap
matrix.
with the only constraint that the fraction of hot tiles satisfies
Equation 1. HotTiles, instead, exhibits an obvious pattern:
tiles classified as hot do cluster around the diagonal and in
the upper left corner. Upon inspection, we find that the pap
graph, which represents a paper citation network, forms denser
sub-communities around the diagonal. This observation agrees
with the findings in [5]. HotTiles realizes that these sub-
communities are associated with higher arithmetic intensity
and assigns them to hot workers. As a result, the percentage
of nonzeros assigned to hot workers changes from 52% in
IUnaware to 72% in HotTiles.

IV. INTRA MATRIX HETEROGENEITY (IMH) AWARE
PERFORMANCE MODELING

The goal of an IMH-aware performance modeling method-
ology is to extract quantitative metrics that will enable us
to determine a suitable worker type for each sparse matrix
tile. The sparse matrix should be initially partitioned into tiles
of a specific size. If one or both of the worker types use
scratchpads to store Din and/or Dout, then the tile width
and/or height are set to the largest value that does not overflow
any of the worker’s scratchpads. For example, in Figure 3,
the tile width is set to 3 elements, since any larger value
would overflow the hot worker’s scratchpad. If none of the
worker types uses scratchpads for Din, then the tile width
is free and can be set to any value; if none of the worker
types uses scratchpads for Dout, the tile height can be set to
any value. For a free dimension, the IMH-aware modeling and
partitioning methodology can be iteratively applied to find the
value that is predicted to deliver the maximum performance.
For the rest of this work, tile width and tile height will
refer to the tiles of the sparse matrix.

After the tile height and width have been defined, we assume
that each tile could be executed by a hot or by a cold worker.
Then, we predict the tile’s execution time and the number of
main memory accesses for each worker type. For the execution
time, we assume that each worker is operating independently,
without any other worker of the same or different type being
active. Thus, when we compute the execution time, we ignore
memory bandwidth contention. We account for the compu-
tation time, the memory access time (ignoring bandwidth
contention), and their overlapping. Specifically, we take the
maximum of the two times for workers that overlap memory
accesses with computation, and the sum of the two times for
workers that do not. We estimate the number of main memory
accesses separately in order to account for potential memory

bandwidth contention when multiple workers are operating in
parallel.

A. Estimating the Number of Main Memory Accesses

When predicting the execution time, we must also estimate
the number of main memory accesses. Consider a scenario
where a worker type is estimated to be much faster for a given
tile, but at the cost of significantly more main memory ac-
cesses. This may introduce significant pressure on the memory
bandwidth, which is a shared resource of the heterogeneous
architecture. For accurate prediction of the execution time, this
effect should be taken into account.

The number of main memory accesses depends on the
worker’s fast local memory (FLM), the ordering of nonzeros
in the sparse matrix (i.e., row or column ordered), the sparse
matrix compression format (e.g., CSR or COO), and the matrix
traversal order (i.e., the order in which the elements of the
sparse matrices are accessed). Note that it is not necessary
that all workers traverse the sparse matrix in a tiled manner.
Depending on the traversal order, a worker may not need to
finish processing all the nonzeros of a tile before processing
nonzeros from another tile. Figure 6 illustrates untiled (Chart
a) and tiled (Chart b) traversals of a sparse matrix with row-
ordered nonzeros. The arrows represent the order in which a
worker processes the nonzeros of its assigned tiles. The matrix
traversal order directly impacts the number of accesses to main
memory and affects the reuse behavior of Din and Dout.

tile width

tile

height

(a) Untiled row-ordered traversal (b) Tiled row-ordered traversal

Din
Dout

A

Din
Dout

A

row

panel

0

Fig. 6: Untiled and tiled row-ordered sparse matrix traversal.

We consider four main types of data reuse:
Inter-tile: This reuse occurs when the dense rows needed for
a tile have already been brought in to fast local memory by a
previous tile. For example, consider a worker that stores Dout
in its scratchpad. In this case, the Dout rows requested from
memory by the first tile of a row panel (Figure 6) are reused
by the rest of the tiles of the row panel.
Intra-tile (stream): This reuse occurs when a worker streams
a full tile of dense rows into its scratchpad before the nonzeros
of the sparse tile are accessed. The reuse of Din by the hot
worker of Figure 3(d) falls into this category. For Din, a
full dense tile includes tile width rows, while for Dout, it
includes tile height rows.
Intra-tile (demand): This reuse occurs through registers or
caches. For example, consider a sparse matrix where the
nonzeros are row-ordered (Figure 6). When processing a tile,
all the nonzeros with the same r id access the same Dout

row. Hence, when a nonzero brings a Dout row to registers
or caches, the subsequent nonzeros with the same r id can
reuse it. As a result, the total number of Dout rows that will
be accessed from memory is equal to the number of unique
r ids of the nonzeros in the tile (tile uniq rids).
None: This case happens when each nonzero ends up bringing
from memory a dense row of the corresponding dense matrix.
As an example, consider two nonzeros of A in Figure 6(a) with
the same c id and in consecutive rows. If, between processing
the first and the second of these two nonzeros, there is a large
number of nonzeros to process and the worker does not have
a large enough FLM, Din rows will not be reused from the
FLM.

The upper part of Table I shows, for the different reuse
types, the number of dense rows from Din and Dout accessed
from main memory during the processing of a tile of the sparse
matrix.
TABLE I: Dense rows (upper subtable) and sparse input data
items (bottom subtable) accessed from main memory during
the processing of a tile under different reuse types and sparse
formats. Tile refers to sparse matrix tiles.

Reuse Type
Dense Input
Rows Accessed
From Memory

Dense Output
Rows Accessed
From Memory

Inter-tile 0 0
Intra-tile
(stream) tile width tile height

Intra-tile
(demand) tile uniq cids tile uniq rids

None tile nnzs tile nnzs

Sparse Format Sparse Input Data Items
Accessed From Memory

COO-like tile nnzs * 3
CSR-like tile height + tile nnzs * 2

The bottom part of Table I shows, for two sparse formats,
the number of sparse input data items accessed from main
memory during the processing of a tile of the sparse matrix.
By data item, we mean, for example, the r id, c id, or val
of a nonzero element in a COO-like format. For COO-like
formats, 3 ∗ tile nnzs data items are accessed per tile, since
each nonzero is represented with an r id, c id, and val. For
CSR-like formats, the r ids array is substituted by an array
holding the begin offsets of each row in the c ids and vals
arrays. Since each tile has tile height rows, a total of 2 ∗
tile nnzs+ tile height data items are accessed per tile.

We refer to the total number of bytes accessed from main
memory for tile i as bhi or bci, depending on whether the tile
is processed by a hot or a cold worker, respectively. Naturally,
these bytes are the sum of the bytes from Din, Dout, and A.

B. Estimating Execution Time

To estimate the execution time, we model the time needed
for each worker to perform all its five tasks: read the sparse
input; read the dense input; read the dense output; execute
the SIMD multiply-accumulate operation; and write back
the dense output. For each nonzero, a SIMD multiply and
accumulate operation is performed on rows with K elements

(Section II). Thus, the FLOPs associated with each sparse
matrix tile are 2 ∗ K ∗ tile nnzs. By dividing these FLOPs
by the computational throughput of a given worker, we can
get an estimate of the time needed by that worker to perform
the computation. To estimate the time needed for the memory
accesses, we multiply the number of bytes read/written from
main memory in each task by a parameter that we call visible
latency per byte (vis lat). This parameter captures the latency
hiding that a worker type is capable of. Quantifying this
parameter analytically is challenging. Hence, we determine
it in a data-driven manner by measuring the runtime of
homogeneous executions. More details about how vis lat is
obtained are given in Section VI-B.

To estimate the final tile execution time, we sum-up the
estimated times of the five tasks, while accounting for any
overlap of the tasks. For example, for a worker that overlaps
all the tasks, the execution time is given by the longest task,
while for a worker that does not overlap any task, the execution
time is given by the sum of the times of all the tasks. Workers
may overlap only some of these tasks.

In summary, the main novelty of our IMH-aware modeling
approach over IUnaware is that we model the execution time of
each individual tile, while IUnaware only models the execution
time of the whole matrix. Modeling at tile granularity enables
HotTiles to capture the unique sparsity pattern of the input
matrix. This type of modeling requires taking into account
the different inter- and intra-tile reuse types of Table I. An
additional novelty of HotTiles is the data-driven modeling of
memory access latency hiding through the vis lat parameter.

C. Modeling Limitations

In this subsection, we discuss two limitations of our mod-
eling methodology. The first one results from the fact that,
without knowing the final assignment of tiles to worker types
(which is decided in Section V), it is impossible to determine
the reuse types of Din and Dout in certain tiles. To understand
this limitation, note that our assignment of tiles to workers in
Section V takes all the tiles in a row panel and assigns all
the tiles deemed cold to a single cold worker, and all the
tiles deemed hot to a single hot worker. Moreover, the hot
worker can reuse state across its tiles without caring about
the potentially interleaved cold tiles in the same row panel
assigned to the cold worker (and vice-versa).

Keeping this in mind, we give two examples of this
limitation. First, consider a worker that streams Dout to
its scratchpad and implements a tiled row-ordered traversal
(Figure 6(b)). The reuse type for the first tile assigned to it
in a row panel is Intra-tile (stream), while the reuse type for
the remaining tiles assigned to it from the row panel is Inter-
tile. However, without knowing the final assignment of tiles
to worker types, it is impossible to determine whether a given
tile is the first one of its type in the row panel or not. In our
algorithm, we assume maximum reuse and, therefore, assume
that a tile is never the first one of its type in the row panel.

In a second example, consider a worker that uses an untiled
row-ordered sparse matrix traversal such as in Figure 6(a). In

T1 T3

T4 T5 T6

T7 T8 T9

Cold

Perf

Model
T2

Cold Estimate

- time

- mem bytes

Hot Estimate

- time

- mem bytes

T1 T2 T3

T4 T5 T6

T7 T8 T9
T1 T3

T4

T8

T2

T5 T6

T7 T9

P
A

R
T

IT
IO

N
IN

G

H
E

U
R

IS
T

IC

Hot Tiles

Cold Tiles

A A

A𝑐𝑜𝑙𝑑

Aℎ𝑜𝑡

A𝑐𝑜𝑙𝑑_𝑎𝑐𝑐𝑒𝑙

Aℎ𝑜𝑡_𝑎𝑐𝑐𝑒𝑙

Hot

Perf

Model

(1) Matrix Scan (2) Matrix Partitioning
(3) Creation of Sparse Matrix

Formats for Accelerators

T1 T3

T1T4

T1T8

Fig. 7: HotTiles preprocessing steps.

this case, the tile where a nonzero with a given r id appears
for the first time in the row has Intra-tile (demand) reuse for
Dout for this r id. All other tiles where a nonzero with this
r id appears have Inter-tile reuse. Again, without knowing the
final assignment of tiles to worker types, it is impossible to
determine whether a tile is the first one of its type with a
nonzero with this r id or not. As before, we assume maximum
reuse and, therefore, assume that the tile is never the first tile
of its type with a nonzero with this r id.

In the tile assignment of Section V, we initially use this
maximum reuse assumption. After that, when we know the
final assignment of tiles to worker types, we readjust the reuse
types if needed when predicting the final execution time. It is
evident that, since the tile assignment is done based on an
imprecise model, the quality of the derived solution is slightly
degraded.

The second limitation of our approach is that it disregards
any reuse through caches. Caches could help exploit two types
of reuse in Table I: Intra-tile (demand) and Inter-tile. However,
since caching effects are hard to model analytically, we make
this pessimistic assumption.

Despite our assumptions of maximum reuse and no reuse
through caches, our evaluation (Section VIII) suggests that our
modeling approach has low prediction error in the majority of
cases.

V. INTRA MATRIX HETEROGENEITY (IMH) AWARE
PARTITIONING

Figure 7 illustrates the preprocessing steps of our IMH-
aware modeling and partitioning method, which we call Hot-
Tiles. First, the matrix tiles are scanned and fed to the cold
and hot performance models of Section IV to extract, for each
tile and worker type, the estimated execution time and the es-
timated number of bytes accessed from main memory. Then, a
partitioning heuristic is used to split the sparse matrix into cold
and hot tiles. Finally, the cold and hot sections of the initial
sparse matrix are stored in the appropriate sparse compression
format as required by each heterogeneous accelerator. In this
section, we focus on the partitioning heuristic.

A. Optimal Partitioning

Let us call thi and tci the estimated times that a hot and
a cold worker, respectively, take to execute tile i. Similarly,
bhi and bci are the estimated number of bytes read/written

from memory if a hot and a cold worker, respectively, execute
tile i. Then, the total execution time of all the hot workers
processing the hot tiles in parallel (thtotal) and of all the cold
workers processing the cold tiles in parallel (tctotal) are:

thtotal = Σi∈hot
thi

Nhw
tctotal = Σi∈cold

tci
Ncw

(2)

and the total number of bytes read/written from memory by
all the workers (btotal), all the hot workers (bhtotal), and all
the cold workers (bctotal) are:

btotal = bhtotal + bctotal = Σi∈hotbhi +Σi∈coldbci (3)

Assuming that hot and cold workers are operating in parallel,
and that BW is the total memory bandwidth of the heteroge-
neous architecture, the optimal partitioning is the solution to
the following optimization problem:

minimize{max{max{thtotal, tctotal},
btotal
BW

}} (4)

This optimization problem is not trivial. For example, it cannot
be trivially solved by assigning each tile to the worker type that
is estimated to be faster. This is because of two factors: (1) the
workers operate in parallel and (2) the bandwidth saturation
impacts the total runtime.

In addition, in some architectures, there is no mechanism to
avoid data races when heterogeneous workers are writing to
the same output memory locations. In this case, each worker
type must update a private output buffer and the buffers
are merged at the end of the execution. This introduces an
additional tmerge cost term in the final execution time. This
term can be estimated by considering the memory footprint of
the output buffers and the system memory bandwidth. In this
case, the optimization problem can be expressed as:

minimize{max{max{thtotal, tctotal},
btotal
BW

}+ tmerge}
(5)

We assume a buffer accumulation design such that tmerge

does not depend on the data that has been written in each
buffer. Hence, tmerge has the same value for all the possible
partitionings. With this assumption, the optimal solution for
equations 4 and 5 is the same. In addition, for some sparse
matrices, the tmerge cost might be too high to justify parallel
operation of the heterogeneous workers. Instead, in such cases
it might be faster that the workers execute serially, using the

T8 T1 T4 T3 T2 T7 T6 T9 T5

T8 T1 T4 T3 T2 T7 T6 T9 T5

increasing hot - cold

execution time

difference

T3 T4 T7 T2 T1 T8 T5 T6 T9

T3 T4 T7 T2 T1 T8 T5 T6 T9

increasing hot – cold

mem bytes

difference

Optimization Subproblem Objective

minimize{max ෍

𝑖 ∈ℎ𝑜𝑡

𝑡ℎ𝑖

𝑁ℎ𝑤
 , ෍

𝑖 ∈𝑐𝑜𝑙𝑑

𝑡𝑐𝑖

𝑁𝑐𝑤
}

minimize ෍

𝑖 ∈ℎ𝑜𝑡

𝑡ℎ𝑖

𝑁ℎ𝑤
+ ෍

𝑖 ∈𝑐𝑜𝑙𝑑

𝑡𝑐𝑖

𝑁𝑐𝑤

Heuristic Tile Ordering

increasing hot – cold

mem bytes

difference

increasing hot - cold

execution time

difference

Cutoff Index Placement

MinTime

Parallel

MinTime

Serial

MinByte

Parallel

MinByte

Serial

Final Predicted Runtime

max max 𝑡ℎ𝑡𝑜𝑡𝑎𝑙 , 𝑡𝑐𝑡𝑜𝑡𝑎𝑙 ,
𝑏𝑡𝑜𝑡𝑎𝑙

𝐵𝑊
+ 𝑡𝑚𝑒𝑟𝑔𝑒

max 𝑡ℎ𝑡𝑜𝑡𝑎𝑙 ,
𝑏ℎ𝑡𝑜𝑡𝑎𝑙

𝐵𝑊
+ max 𝑡𝑐𝑡𝑜𝑡𝑎𝑙 ,

𝑏𝑐𝑡𝑜𝑡𝑎𝑙

𝐵𝑊

max max 𝑡ℎ𝑡𝑜𝑡𝑎𝑙 , 𝑡𝑐𝑡𝑜𝑡𝑎𝑙 ,
𝑏𝑡𝑜𝑡𝑎𝑙

𝐵𝑊
+ 𝑡𝑚𝑒𝑟𝑔𝑒

max 𝑡ℎ𝑡𝑜𝑡𝑎𝑙 ,
𝑏ℎ𝑡𝑜𝑡𝑎𝑙

𝐵𝑊
+ max 𝑡𝑐𝑡𝑜𝑡𝑎𝑙 ,

𝑏𝑐𝑡𝑜𝑡𝑎𝑙

𝐵𝑊

minimize 𝑏𝑡𝑜𝑡𝑎𝑙

minimize 𝑏𝑡𝑜𝑡𝑎𝑙

Hot tiles Cold Tiles

Fig. 8: Optimization subproblems.

same output buffer. In this case, the optimization problem
involves minimizing the minimum of

max{max{thtotal, tctotal},
btotal
BW

}+ tmerge (6)

and the predicted runtime for the serial operation:

max{thtotal,
bhtotal

BW
}+max{tctotal,

bctotal
BW

} (7)

Thus, the full optimization problem becomes:

minimize{min{max{max{thtotal, tctotal},
btotal
BW

}

+tmerge,max{thtotal,
bhtotal

BW
}+max{tctotal,

bctotal
BW

}}}
(8)

B. Proposed Heuristic Partitioning

In order to find the optimal solution, an exhaustive search
over all the possible combinations of hot and cold tiles
would be required. This corresponds to 2Ntiles combinations,
making the complexity of such an approach prohibitive. To
solve the problem approximately, we decompose it into four
simpler subproblems, each of which has NlogN complexity,
as explained later. Each of the subproblems produces a dif-
ferent partitioning. We then compare the predicted runtime
of each of the four partitioning decisions and keep the one
with the lowest predicted runtime. The four subproblems pro-
duce different heuristic-based partitioning decisions (HotTiles
heuristics). They aim at either minimizing the execution time
assuming that the system has sufficient memory bandwidth
(MinTime heuristics) or at minimizing the bytes read/written
from main memory (MinByte heuristics). In addition, they
either assume that the heterogeneous workers are operating in
parallel (Parallel heuristics) or serially (Serial heuristics).

Each heuristic is expected to work best for different system
configurations. For example, when one worker type is already
able to saturate the memory bandwidth (which is a shared
resource of the architecture), the Serial heuristics are expected
to perform better. This is because bandwidth contention will
limit the performance of Parallel heuristics, and the benefit of
parallel execution will not outweigh the cost of merging the
partial output buffers. In addition, in bandwidth-constrained

configurations, the MinByte heuristics are expected to per-
form better than the MinTime heuristics since they reduce
main memory accesses. Importantly, the effectiveness of each
heuristic also depends on the structure of the input sparse
matrix. For the same heterogeneous architecture, different
heuristics may work best for different sparse matrices. We
summarize the four heuristics in Table II.

TABLE II: HotTiles heuristics

Heuristic Minimizes Worker
execution

Effective when
memory bandwidth
pressure is

MinTime Parallel time parallel low
MinTime Serial time serial medium
MinByte Parallel bytes parallel medium
MinByte Serial bytes serial high

We now discuss how we derive the partitioning decisions by
solving the four optimization subproblems (Figure 8). All of
the optimization subproblems can be easily solved by sorting
the tiles and performing a linear pass over the sorted arrays.
For the MinTime heuristics, we create an array that is sorted
in increasing difference thi− tci. Hence, tiles estimated to be
executed faster by hot workers are placed first in the array.
Then, we initialize a pointer to the beginning of the array,
which represents the cutoff point between hot and cold tiles.
We call this pointer cutoff index (Figure 8). We start moving
the cutoff index to the right. Every time we move the cutoff
index, the partitioning assignment changes and we calculate
the new value of the subproblem optimization objective. If
the value has decreased, we continue moving the cutoff index.
Otherwise, we roll back to the previous position and the al-
gorithm has converged, producing an approximate partitioning
solution. Note that the optimization objective is different for
the MinTime Parallel and MinTime Serial heuristics.

To estimate the final execution time of the resulting parti-
tioning we use the formulas in the final column of Figure 8.
Of course, the formulas are different for MinTime Parallel
and MinTime Serial. Note that although we do not take into
account the system bandwidth effect or the merging cost while
deciding on the partitioning, we take these factors into account
when determining the predicted runtime.

The procedure for the MinByte heuristics is similar. The
only differences are: (1) the tiles are initially sorted in in-

SPADE PE

BBF L1

SPADE PE

BBF L1

… SEXTANS

SPAD

MEMMERGER

SPADE PE

BBF L1

SPADE PE

BBF L1

… SEXTANS

FLOPS+

SPAD

MEMMERGER

PCIe

PIUMA MTP PIUMA MTP

L1

… PIUMA STP

SPAD

MEM ATOMIC

ENGINE

DMA

… PIUMA STP

SPAD

DMA

(a) SPADE-Sextans (b) SPADE-Sextans+PCIe (c) PIUMA

L1

Fig. 9: Heterogeneous architectures evaluated.

creasing difference of bhi − bci and (2) the optimization
subproblem objective is different. Again, the final predicted
runtime is different between MinByte Parallel and MinByte
Serial heuristics.

Finally, we compare the predicted runtime of all four
heuristics and keep the partitioning from the heuristic that
produces the lowest runtime. Note that some architectures
support special writes that avoid data races when heteroge-
neous workers perform read-modify-write operations to the
same memory location. Then, there is no need for the output
buffers, and tmerge is zero. In such cases, it can be shown
that, under our model, there is no benefit in serial operation
and, therefore, we only consider the MinTime Parallel and
MinByte Parallel heuristics. Overall, the complexity of the
proposed heuristics is NlogN : the array sorting is known to
have NlogN complexity and the cutoff index placement can
be completed in linear time.

VI. ARCHITECTURES AND FRAMEWORK

A. Heterogeneous Architectures

In this section, we analyze the three heterogeneous archi-
tectures used in our evaluation. They include PEs from the
SPADE and Sextans SpMM accelerators, and from PIUMA,
which can support SpMM and other kernels. In total, we use
four different PE pipelines, with diverse characteristics (e.g.,
out-of-order, in-order, SIMD, and scalar). Table III describes
the PEs, which we call workers. The different workers access
sparse and dense structures like in Figure 2.

We evaluate both on-chip and off-chip PEs, as well as
different mechanisms to avoid data races. We selected three ar-
chitectures to emphasize the generality of our approach across
multiple settings. Figure 9 illustrates our three heterogeneous
architectures. We describe them next.

TABLE III: Heterogeneous workers.

Worker Worker
Type

Sparse
Format

Din
Reuse

Dout
Reuse

SPADE PE Cold COO-like None Inter-tile

Sextans Hot COO-like Intra-tile
(stream) Inter-tile

PIUMA MTP Cold CSR-like None Inter-tile

PIUMA STP Hot CSR-like Intra-tile
(stream)

Intra-tile
(demand)

(a) SPADE-Sextans: SPADE (cold) and Sextans (hot) PEs
are integrated in the same die and share the same memory
controllers (Figure 9(a)). For simplicity, we do not equip the
SPADE PEs with a 3-level cache subsystem as in [24]; we

only include a private L1 and a BBF. The SPADE PEs access
the sparse input and dense output through the BBF, while
they access the dense input through the L1. The SPADE
PEs traverse the sparse matrix using an untiled row-ordered
traversal (Figure 6(a)), while Sextans uses a tiled row-ordered
traversal (Figure 6(b)). The SPADE PEs and the Sextans PEs
can either operate in parallel or serially. To avoid data races
when the SPADE and Sextans PEs are operating in parallel, we
use two output buffers, one for each worker type. A Merger
module is responsible for merging the output buffers at the
end of execution. Note that in the serial operation mode,
the Merger module is not used. To avoid data races between
SPADE PEs, we closely follow the assignment and padding
requirements discussed in the SPADE paper. For example, cold
tiles in the same row panel are always assigned to the same
SPADE PE.
(b) SPADE-Sextans+PCIe: SPADE was proposed as an
accelerator that is integrated in the same die as the CPU
host. On the other hand, Sextans was proposed as a PCIe-
attached accelerator. For our second architecture, we use on-
chip SPADE PEs and an off-chip Sextans that accesses main
memory through PCIe. We additionally assume that Sextans
has enhanced computational throughput compared to the one
in SPADE-Sextans.
(c) PIUMA: This architecture consists of MTPs, STPs,
DMA engines, and an Atomic engine, all sharing the same
memory subsystem. The cold workers are the MTPs, which
are latency tolerant and access memory on-demand. The hot
workers are the STPs, which we equip with scratchpads and
with DMA engines to increase their ability to exploit memory-
level parallelism. The STPs access the sparse input on-demand
and issue DMA descriptors for Din and Dout. Din is stored
in the scratchpad. The Atomic engine enables MTPs and STPs
to perform read-modify-write operations on the same memory
location without suffering data races. As a result, the MTPs
and STPs always operate in parallel, and we only employ the
MinTime Parallel and MinByte Parallel heuristics (Figure 8).

B. Framework Implementation Details

HotTiles is implemented as a framework that is fully in-
tegrated into the software pipeline that generates the sparse
matrix format for each accelerator. The HotTiles software is
executed on the host of the heterogeneous architecture. It
reads a sparse matrix from disk in MatrixMarket [12] file
format. It then analyzes it and partitions it into hot and cold
tiles transparently to the users. Finally, it generates the sparse

matrix formats. These formats, in combination with Din, can
be directly accessed by the heterogeneous workers to execute
the SpMM kernel. Alternatively, they can be stored for later
use—e.g., they can be generated and used during GNN training
and then saved and reused during GNN inference.

For the model, the users need to set the following traits of
the heterogeneous architecture: the maximum computational
throughput of each worker type (in GFLOP/s); the number of
workers of each type; the size of the workers’ scratchpads; the
shared main memory bandwidth (in GB/s); the Din and Dout
reuse types and the sparse matrix formats (Table I); and the
way that each worker overlaps the SpMM tasks (Section IV-B).

The visible latency per byte (vis lat) for each worker type
is hard to determine analytically. For this reason, a small
number of profiling runs are executed using a set of small
test matrices. In each run, only one worker type is used.
After these runs, vis lat is automatically determined using a
simple search method. The search objective is to minimize the
error between the execution times predicted by our framework
and the real execution times of the profiling runs. Note that
this tuning process only needs to be done once when the
HotTiles framework is first installed on a particular machine.
The derived vis lat values can be reused for SpMM runs
with different sparse matrices and thus do not contribute
to the preprocessing overhead. In future work, we aim at
employing sophisticated search or machine learning techniques
(e.g., similar to [38]) to automatically set the values of vis lat
and all the other heterogeneous architecture traits.

VII. METHODOLOGY

A. Architectures and simulation

We evaluate our architectures through simulation. For
SPADE-Sextans, we use SST [57] and DRAMSim3 [46]. For
PIUMA, we use an in-house simulator based on Sniper [16],
[17]. We preprocess the sparse matrices to generate the sparse
matrix formats on a dual-socket 48-core Intel Xeon Platinum
8260M CPU [35].

For the SPADE-Sextans archiecture, we test different system
scales. We keep the PE frequency and the memory bandwidth
constant, but we change: (1) the number of SPADE PEs and
(2) the computational throughput and the scratchpad size of
Sextans. The memory bandwidth is kept constant to evaluate
our approach under different worker to memory bandwidth
ratios.

Table IV displays the parameters for the different system
scales. We use the system scale 4 as the baseline scale. In
all scales, the cache line size is 64 bytes, the PE frequency
is 0.8 GHz, and the main memory bandwidth is 205 GB/s.
Note that this memory bandwidth is the maximum theoretical
value that the memory controllers can provide. The maximum
observed bandwidth for the heterogeneous architecture is 161
GB/s at system scale 8. For the SPADE PE out-of-order
pipeline, we use the parameters in the original paper. Although
SPADE supports different execution strategies, for simplicity,
we set the SPADE PEs to execute an untiled sparse matrix
traversal (Figure 6(a)), with each PE operating on a chunk

of 64 continuous sparse matrix rows at a time. SPADE PEs
use an untiled COO format, while Sextans operates on a tiled
COO format. Sparse and dense matrix values are stored using
single-precision floating point.

TABLE IV: Architectural parameters for different SPADE-
Sextans system scales. System scale 4 is the base one.

SPADE Sextans

System
Scale

Num
PEs

SIMD
MACs/
Cycle

L1
Size
(kB)

Num
PEs

SIMD
MACs/
Cycle

SPAD
Size

(MB)
1 4 1 32 1 5 0.5
2 8 1 32 1 10 1
4 16 1 32 1 20 2
8 32 1 32 1 40 4

For the SPADE-Sextans+PCIe architecture, we assume that
Sextans is connected to the on-chip memory bus through
PCIe, which has a maximum bandwidth of 32GB/s. We use
this architecture to evaluate gSpMM versions with higher
arithmetic intensity. As we increase the kernel arithmetic
intensity, more SIMD operations are required per nonzero. As
a result, the SPADE PEs require more cycles to execute all
the arithmetic operations per nonzero. However, we assume
that the off-chip Sextans increases its computational power
beyond the numbers in Table IV. Specifically, for system scale
4, Sextans can now process 20 nonzeros per cycle, regardless
of the arithmetic intensity of the kernel. All the other system
parameters are kept the same.

For the PIUMA architecture, we use 4 MTPs and 2 STPs.
The STPs use a tiled CSR-like format, while the MTPs use
untiled CSR. We choose to store the sparse and dense matrix
values using double-precision floating point to show that the
method generalizes to various data sizes and types.

B. Benchmark Matrices

We use ten square sparse matrices from SparseSuite [20]
as benchmarks. They have 100K to 4.2M rows and 22M to
100M nonzeros (Table V). Most of the matrices (pap, del,
kro, myc, pac, ser) are the same or scaled-down versions of
the ones used in SPADE [24]. Since the high fidelity of the
PIUMA simulator leads to significantly increased simulation
times, we replaced 4 of the matrices used in the SPADE
paper with smaller ones to decrease the PIUMA simulation
time. The 4 new matrices (ski, dgr, pok, wik) are selected
so that they represent different application domains than the
matrices borrowed from the SPADE paper. We set the number
of columns of the dense matrices (K) to 32, similar to prior
works [24], [31].

C. Heterogeneity Area, Power, and Control Overhead

Since PIUMA includes heterogeneous PEs by design, Hot-
Tiles can be supported without additional hardware overhead.
This is not the case for the SPADE-Sextans architecture, where
HotTiles adds some overheads associated with combining and
controlling different PEs. Specifically, HotTiles needs some
control logic to orchestrate the two subaccelerators. Since
when the two subaccelerators are operating in parallel they are

TABLE V: Benchmark sparse matrices used.

Benchmark Short Domain Rows
(Mill)

NNZ
(Mill) Density

as-Skitter ski Internet
topology 1.7 22 8 ∗ 10−6

coPapersCiteseer pap Citation
network 0.4 32 2 ∗ 10−4

delaunay n22 del Geometry
problem 4.2 25 1 ∗ 10−6

dgreen dgr VLSI 1.2 27 2 ∗ 10−5

kron g500-logn19 kro Synthetic
graph 0.5 44 2 ∗ 10−4

mycielskian17 myc Math. 0.1 100 1 ∗ 10−2

packing-500
x100x100-b050 pac Numerical

simulation 2.1 35 8 ∗ 10−6

Serena ser Environ.
science 1.4 64 3 ∗ 10−5

soc-Pokec pok Social
network 1.6 31 1 ∗ 10−5

wiki-topcats wik Web graph 1.8 29 9 ∗ 10−6

writing to private output buffers, all that is needed from the
new control logic is: (1) to signal the beginning of operation
of each PE, (2) to monitor the termination of operation of each
PE, and (3) to signal the beginning of operation of the Merger
module. This control functionality can be accomplished in
software by utilizing the SPADE Control Processing Element
(CPE) [24], which is a general-purpose core that can write to
memory-mapped registers.

The only additional hardware module that needs to be
integrated into the heterogeneous SPADE-Sextans architecture
is the Merger module. It includes a SIMD ADD module
and some registers. We estimate its area and power us-
ing CACTI [9] for the memory structures and the numbers
from [22] for the SIMD arithmetic. Similar to the SPADE
paper, we scale area and power to 10 nm using the scaling
factors from [60]. We compare them to the area and power
of a SPADE PE, including PE pipeline, L1 cache, and BBF.
Our results suggest that the Merger module has very small
overheads. It accounts for less than 20% of the area and power
of a single SPADE PE.

VIII. EVALUATION

The evaluation is organized in three parts. Subsec-
tion VIII-A compares the performance of heterogeneous ex-
ecution with HotTiles against other execution environments.
Then, subsection VIII-B investigates the effectiveness of us-
ing HotTiles for architecture exploration. Finally, subsec-
tion VIII-C discusses the preprocessing cost.

A. Performance Evaluation

We compare the performance of heterogeneous execution
with HotTiles against: (1) a homogeneous execution using only
the cold workers of each architecture (ColdOnly); (2) a homo-
geneous execution using only the hot workers (HotOnly); and
(3) a heterogeneous execution that partitions tiles based on the
IUnaware method. Note that IUnaware is very similar to the
partitioning technique used in AESPA [54]. We additionally
compare against the BestHomogeneous baseline, which man-
ually selects the best homogeneous strategy between HotOnly
and ColdOnly on a per-matrix basis.

Figure 10 presents the results for SPADE-Sextans (with
system scale 4), while Figure 11 presents the results for
PIUMA. The figures show the speedup over the worst-
performing homogeneous execution (hot or cold) on a per-
matrix basis. We observe that HotTiles is very effective. It
outperforms practically all the baselines. For SPADE-Sextans,
HotTiles provides average speedups of 8.7x, 1.9x, and 2.0x
over HotOnly, ColdOnly, and IUnaware, respectively. Al-
though not shown, it also provides average speedups of 1.25x
over BestHomogeneous. For PIUMA, the speedups are similar:
9.2x, 1.4x, and 1.4x over HotOnly, ColdOnly, and IUnaware,
and 1.4x over BestHomogeneous. Note that, typically, HotOnly
is the slower homogeneous execution due to the low density
of the benchmark sparse matrices. The exception is the myc
matrix, which is the densest matrix in our evaluation. For this
matrix, hot workers are significantly better than cold ones for
SPADE-Sextans, but only slightly better for PIUMA. This is
because the hot to cold worker computational throughput ratio
in PIUMA is smaller than in SPADE-Sextans.

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik

1

10

100

Sp
ee

du
p

vs
 w

or
st

 h
om

og
en

eo
us

ex
ec

ut
io

n
(lo

g-
sc

al
e) HotOnly ColdOnly IUnaware HotTiles

Fig. 10: Comparison of homogeneous and heterogeneous
execution for SPADE-Sextans.

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik

1

10

100

Sp
ee

du
p

vs
 w

or
st

 h
om

og
en

eo
us

ex
ec

ut
io

n
(lo

g-
sc

al
e) HotOnly ColdOnly IUnaware HotTiles

Fig. 11: Comparison of homogeneous and heterogeneous
execution for PIUMA.

Table VI displays the absolute simulated runtimes for the
SPADE-Sextans architecture. Since the microarchitectural de-
tails of PIUMA are proprietary, we do not release the raw
execution times in this use-case.

TABLE VI: Runtime in ms for SPADE-Sextans.
Matrix HotOnly ColdOnly BestHom IUnaware HotTiles
ski 369.4 19.8 19.8 42.3 18.3
pap 42.1 18.6 18.6 29.0 8.9
del 138.0 20.8 20.8 34.3 22.8
dgr 46.8 35.6 35.6 38.5 23.3
kro 61.3 37.9 37.9 46.3 37.2
myc 13.5 108.6 13.5 17.9 14.1
pac 37.7 20.2 20.2 27.4 12.6
ser 38.8 27.0 27.0 29.3 23.1
pok 539.0 29.7 29.7 75.3 29.7
wik 642.2 24.3 24.3 70.5 22.1

Next, we focus on the four HotTiles partitioning heuristics.
Recall that during the partitioning step, they generate four
different partitioning variants. Then, HotTiles selects the one

that is predicted to take less time. To provide further insight,
we tested the four heuristics for different scales of the SPADE-
Sextans system (Table IV). Figure 12 compares the actual
average performance of HotTiles to the average performance
of the partitioning suggested by each individual heuristic. We
present the average speedup with respect to BestHomogeneous.
For each scale, we also display the system bandwidth utiliza-
tion averaged across both homogeneous executions (HotOnly
and ColdOnly).

1 2 4 8
System Scale

0.8

1.0

1.2

1.4

Av
er

ag
e

sp
ee

du
p

ov
er

 b
es

t
ho

m
og

en
eo

us
 e

xe
cu

tio
n

BW:20.0%

BW:34.4%
BW:54.1%

BW:75.9%

Hot Tiles
MinTime Parallel
MinByte Parallel
MinByte Serial
MinTime Serial

Fig. 12: Average performance of HotTiles and the different
heuristics for different SPADE-Sextans system scales.

We observe that, for all scales, HotTiles outperforms the best
of its heuristics. This is because, for a given scale, HotTiles
chooses different heuristics for different matrices. We see
that, for larger scales, where one worker type is typically
sufficient to saturate most of the system bandwidth, the Serial
heuristics perform better than the Parallel ones, since they
avoid the merging cost. In addition, focusing on the Parallel
heuristics, we see that, in smaller scales, due to smaller
bandwidth pressure, MinTime Parallel performs better, while
for larger scales, MinByte Parallel performs better. Overall,
the four heuristics act in a complementary manner, allowing
HotTiles to produce a high-quality partitioning under different
system scenarios. On average across all system scales, HotTiles
provides speedups of 16.8x, 2.0x, 2.2x, and 1.3x over HotOnly,
ColdOnly, IUnaware, and BestHomogeneous, respectively.

To provide further insight, Table VII displays different
utilization statistics for two different scales of the SPADE-
Sextans architecture. All the statistics are geomean values
across the 10 matrices. The table displays: the main memory
bandwidth utilization; the number of cache lines accessed from
memory normalized to the number of nonzeros of each matrix;
and the utilization of the computational units of the cold and
hot workers (measured in GFLOP/s) for the time period when
each worker type is not idle.

Consider first system scale 1. With HotTiles, the bandwidth
utilization is increased. This is partly because, with HotTiles,
both hot and cold workers are actively accessing the memory
subsystem in parallel. Note that, although this is also the case
with IUnaware, this baseline fails to increase the bandwidth
utilization due to its unsophisticated IMH-unaware matrix par-
titioning. In addition, with HotTiles, redundant main memory
accesses are reduced by an effective mapping of tiles to worker
types (Figure 3). Also, in HotTiles, the utilization of the SIMD
units of the SPADE workers slightly drops, since they are
mainly assigned the sparser, less arithmetic intense cold tiles.

TABLE VII: Architecture utilization statistics for SPADE-
Sextans (geometric mean).

System Scale 1
Measure HotOnly ColdOnly IUnaware HotTiles
Bandwidth Util.
(GB/s) 27.96 49.68 49.04 67.41

Cache Lines Acc.
from Memory
per Nonzero

6.78 1.59 2.27 1.47

SPADE GFLOP/s 0.00 48.72 46.49 43.52
Sextans GFLOP/s 6.44 0.00 4.94 51.14

System Scale 4
Measure HotOnly ColdOnly IUnaware HotTiles
Bandwidth Util.
(GB/s) 82.61 132.28 127.03 124.68

Cache Lines Acc.
from Memory
per Nonzero

3.13 1.60 1.99 1.02

SPADE GFLOP/s 0.00 129.58 102.50 85.63
Sextans GFLOP/s 41.18 0.00 25.47 228.37

However, this drop is compensated by an 8x increase in the
utilization of the Sextans workers.

Most of the HotTiles results for system scale 4 are similar.
However, (1) the geomean bandwidth utilization of HotTiles
is slightly lower than in the ColdOnly and IUnaware baselines
and (2) the decrease in redundant main memory accesses is
more significant. This is because, as shown in Figure 12,
for this system scale, the Serial and the MinByte heuristics
are preferred. Given the already high bandwidth pressure
caused by the larger number of workers at this scale, HotTiles
smartly trades-off a marginally lower bandwidth utilization
for a significant decrease in the memory accesses—reducing
overall execution time.

Next, we compare the performance of heterogeneous exe-
cution with HotTiles against homogeneous architectures that
have double the number of hot or cold workers (Figure 13). We
use the SPADE-Sextans system scale 4 as our heterogeneous
architecture (HotTiles4). For the homogeneous architectures,
we use only the hot or only the cold workers from system scale
8 (HotOnly8 and ColdOnly8). HotTiles4 provides an average
speedup of 2.9x and 1.6x against HotOnly8 and ColdOnly8,
respectively. This reveals that a heterogeneous architecture
with both worker types is more effective than a homogeneous
architecture with twice the number of workers of one type.

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik
AVG0.1

1

10

He
te

ro
ge

ne
ou

s E
xe

cu
tio

n
Sp

ee
du

p
(lo

g-
sc

al
e) Speedup over ColdOnly8 Speedup over HotOnly8

Fig. 13: Speedup of HotTiles with system scale 4 over homo-
geneous execution with system scale 8.

As discussed in Section VII, for the SPADE-Sextans+PCIe
architecture, we test gSpMM variants with higher arithmetic
intensity (AI). As AI increases, more SIMD operations are
required per nonzero. As the AI increases, a SPADE PE
requires more cycles to execute all the arithmetic operations

for one nonzero. However, as mentioned in Section VII, we
assume an enhanced Sextans that increases its computational
power proportionally to the number of arithmetic operations
per nonzero to keep up with the increased AI. Since we
consider a system scale of 4, the enhanced Sextans can now
process 20 nonzeros per cycle irrespective of the AI.

Figure 14 displays the speedup of HotTiles over HotOnly
and ColdOnly as the number of SIMD operations per nonzero
(and thus the AI) increases. We also show the percentage of
nonzeros that are assigned to the hot workers. We observe
that, at low AIs, most of the nonzeros are assigned to the cold
workers, since they provide enough computational throughput
to accommodate the low arithmetic intensity. At these AIs, the
speedup of HotTiles against HotOnly execution is high, since
the low-bandwidth PCIe bus makes data transfer a significant
bottleneck, while the speedup against ColdOnly is low, since
most of the nonzeros are assigned to the cold workers anyway.
As the AI increases, the situation is reversed, as computational
time dominates over data transfers. In all cases, HotTiles offers
clear benefits. On average across all AIs, HotTiles provides
average speedups of 11.9x, 3.7x, and 2.5x over HotOnly,
ColdOnly, and BestHomogeneous, respectively.

1 2 4 8 16 32 64 128
SIMD operations per nonzero

0.1

1

10

Ho
tT

ile
s s

pe
ed

up

19.9x 19.1x 17.2x 14.3x
10.3x

6.8x
4.5x

3.1x

1.2x 1.2x 1.3x 1.8x
2.7x

4.2x
7.1x

10.4x
Average speedup over HotOnly
Average speedup over ColdOnly

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

150.00%

175.00%

200.00%

Pe
rc

en
ta

ge
 o

f h
ot

 n
on

ze
ro

s

Hot nonzero percentage

Fig. 14: Performance of HotTiles for different gSpMM arith-
metic intensities for the SPADE-Sextans+PCIe architecture.

Finally, since most of the matrices of Table V favor the cold
workers, we evaluated HotTiles on an additional set of matrices
from SparseSuite. We selected five denser matrices with a
similar number of nonzeros and different application domains
than the original ten. They are shown in Table VIII. Figure 15
illustrates the effectiveness of HotTiles in this new matrix set
for SPADE-Sextans with system scale 1 and system scale 4.
From the figure, we see that HotTiles is again faster than the
other architectures. The average speedups of HotTiles across
both system scales are 1.5x, 3.8x, and 1.4x over HotOnly,
ColdOnly, and IUnaware, respectively. It can be shown that
the speedup is 1.5x over BestHomogeneous.

ge
a

mou nd
2

rm
0 si4 ge

a
mou nd

2
rm

0 si4

1

10

Sp
ee

du
p

vs
 w

or
st

 h
om

og
en

eo
us

ex
ec

ut
io

n
(lo

g-
sc

al
e)

System Scale 1 System Scale 4

HotOnly ColdOnly IUnaware HotTiles

Fig. 15: Comparison of homogeneous and heterogeneous ex-
ecution of SPADE-Sextans for higher-density sparse matrices.

TABLE VIII: Additional set of higher-density sparse matrices.

Benchmark Short Domain Rows
(Mill)

NNZ
(Mill) Density

gearbox gea Aerospace
engineering 0.15 9 4 ∗ 10−4

mouse gene mou Molecular
biology 0.05 29 1 ∗ 10−2

nd24k nd2 2D/3D prblm. 0.07 29 1 ∗ 10−2

RM07R rm0 Comput.
dynamics 0.38 37 3 ∗ 10−4

Si41Ge
41H72 si4 Quantum

chemistry 0.19 15 4 ∗ 10−4

B. Architecture Exploration with HotTiles

In this subsection, we use the performance prediction
capabilities of HotTiles to explore different heterogeneous
architecture alternatives. We focus mostly on the SPADE-
Sextans architecture. We examine heterogeneous architectures
that have more workers of one type at the expense of fewer
workers of the other type. Specifically, we start with our scale
4 SPADE-Sextans architecture in Table IV, which we call 4-
4. Then we consider ”skewed” SPADE-Sextans architectures,
such as 0-8, which includes no cold workers and hot workers
with the same parameters as a scale 8 SPADE-Sextans archi-
tecture. We focus on skewed architectures where the sum of
cold and hot scales equals to 8, namely 0-8, 1-7, 2-6, 3-5, 4-4,
5-3, 6-2, 7-1, and 8-0. We call these architectures iso-scale.

We consider two different scenarios. In the first one, we
assume that the architecture is not reconfigurable, and want to
find which of the 9 iso-scale architectures delivers the highest
average performance for our benchmarks. In the second sce-
nario, we assume that the architecture is reconfigurable, and
want to find which of the 9 possible configurations delivers the
highest performance for each individual benchmark. The first
scenario corresponds to an ASIC accelerator, while the second
one corresponds, e.g., to an FPGA-based one. In both cases,
we use the execution time predictions made by HotTiles. For
simplicity, we ignore any differences in area or power among
the 9 iso-scale architectures. A future, more detailed analysis
can compare performance per unit area or unit power.

0-8 1-7 2-6 3-5 4-4 5-3 6-2 7-1 8-0
Iso-scale Architecture (Cold Scale-Hot Scale)

0.8

1.0

1.2

1.4

Av
er

ag
e

sp
ee

du
p

ov
er

ba
se

lin
e

ar
ch

ite
ct

ur
e

(4
-4

) Predicted Average Speedup
Actual Average Speedup

Fig. 16: Predicted and actual average performance of different
iso-scale heterogeneous architectures.

We focus first on the first scenario. Figure 16 shows,
for each iso-scale architecture, the performance predicted by
HotTiles and the actual performance. The performance is
given as speedup over the base SPADE-Sextans architecture
(i.e., 4-4) and is the average across all the benchmarks of

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik
AVG ski pa

p de
l

dg
r kro myc pa

c ser po
k wik

AVG
0.00%

50.00%

100.00%

150.00%
Pr

ed
ict

io
n

er
ro

r

SPADE-Sextans PIUMA

HotOnly ColdOnly HotTiles

Fig. 17: Error in the predicted execution time of different homogeneous and heterogeneous executions.

Table V. We observe that, although the predicted performance
is slightly higher than the actual one for the architectures
that are dominated by hot workers, the trends of predicted
and actual performance are the same. In the 7-1 and 8-
0 architectures, which are dominated by cold workers, the
predicted performance is slightly lower than the actual one.
This is because, as explained before, HotTiles ignores reuse in
caches. Overall, the architecture predicted to perform the best
(3-5) is also the one that performs the best.

We now focus on the second scenario, where the hetero-
geneous architecture is reconfigurable on a per-matrix basis.
Table IX displays, for each matrix, the predicted best ar-
chitecture, its speedup with respect to 4-4, the actual best
architecture, its speedup with respect to 4-4, and whether
the prediction is correct. We see that HotTiles selects the
best architecture out of the nine iso-scale alternatives in
50% of the matrices. HotTiles predictions have some bias
towards using more hot workers than needed. Again, this is
due to ignoring caching effects and therefore under-predicting
the true capabilities of cold workers. Despite this limitation,
we observe that reconfiguring the architecture based on the
predictions delivers a 1.23x speedup over the baseline 4-4
architecture. This is an encouraging result, considering that
the oracle speedup is 1.33x.
TABLE IX: Predicted and actual best architecture per matrix.

Matrix
Pred.
Best
Arch.

Speedup
of Pred.

Best

Actual
Best
Arch.

Speedup
of Actual

Best

Correct
Pred?

ski 3-5 0.95 8-0 1.11 N
pap 1-7 0.78 4-4 1.00 N
del 3-5 1.01 8-0 1.28 N
dgr 1-7 1.59 1-7 1.59 Y
kro 0-8 1.93 0-8 1.93 Y
myc 0-8 1.63 0-8 1.63 Y
pac 2-6 1.16 2-6 1.16 Y
ser 0-8 1.36 0-8 1.36 Y
pok 3-5 0.89 8-0 1.14 N
wik 3-5 0.96 8-0 1.08 N
AVG 1.23 1.33 50%

Finally, Figure 17 shows the error in the execution time
predicted by HotTiles compared to the actual execution time
for SPADE-Sextans and PIUMA. The figure also includes
the error in the predictions for the homogeneous executions
(HotOnly and ColdOnly), although we do not directly utilize
these predictions. For both SPADE-Sextans and PIUMA, the
average error between the predicted and actual execution time

is relatively low, at 4.8%, 19.6%, and 12.4% for HotOnly,
ColdOnly, and HotTiles, respectively. The highest error occurs
for certain matrices (pap, myc, pac, ser) in the ColdOnly
execution. Upon further investigation, we found that these
matrices display significant Din reuse through caches. Since
our model ignores caching effects, the predicted ColdOnly
execution time is higher than the actual one. This prediction
error is more significant in SPADE-Sextans because the caches
of the SPADE PEs are larger than the caches of the PIUMA
MTPs. We believe that extending our modeling methodology
to account for caching effects can further enhance the effec-
tiveness of HotTiles predictions.

C. Preprocessing Cost

HotTiles requires the data preprocessing steps shown in
Figure 7: matrix scan, matrix partitioning, and creation of the
sparse matrix formats for the two worker types. In reality,
code generation for homogeneous accelerators such as SPADE
or Sextans also needs the third preprocessing step, except
that it is for a single worker type. For example, the input
matrix may be stored in matrix market file format [12], and
should be converted to the specific format that the accelerator
operates on. Hence, when we quantify HotTiles’ preprocessing
overhead, in the third step, we only consider the cost of
generating the matrix format for one additional worker type.

The HotTiles preprocessing overhead is a one-time cost
only. For example, it can be incurred once during GNN
training and not affect GNN inference later on, or it can be
incurred once and amortized across many SpMM iterations.

Figure 18 shows the normalized execution time of the
preprocessing operations on a Xeon host for the PIUMA ar-
chitecture. We break it down into matrix format creation for a
homogeneous accelerator (which is not HotTiles specific), and
the rest of the preprocessing steps listed above, which we call
Hot Tiles Overhead. On average, Hot Tiles Overhead is 73% of
the total preprocessing overhead. This means that HotTiles has
about four times the preprocessing overhead of a homogeneous
accelerator. This is a small overhead, which is amortized
over many SpMM iterations. We obtain similar numbers for
SPADE-Sextans and SPADE-Sextans+PCIe. Finally, note that,
in practice, this overhead is dwarfed by the overhead of reading
the matrix from disk. If we include reading the matrix from
disk in the preprocessing overhead, it can be shown that Hot
Tiles Overhead increases the preprocessing overhead by only
6% on average.

ski pa
p de

l
dg

r kro myc pa
c ser po

k wik
AVG

0.00

0.25

0.50

0.75

1.00

1.25

1.50
No

rm
al

ize
d

ex
ec

ut
io

n
tim

e
Hot Tiles Overhead
Format Creation for Hom Accel

Fig. 18: Normalized execution time of the preprocessing
operations on a Xeon host for the PIUMA architecture.

IX. RELATED WORK

A. SpMM accelerators: In recent years, many domain-
specific systems and accelerators that support SpMM have
been proposed [3], [24], [25], [28], [30], [37], [53], [55],
[58], [59]. Commonly, they employ homogeneous processing
elements, missing opportunities to exploit IMH. For example,
Adiletta et al. [3] use the PIUMA MTPs and DMA engines
to accelerate SpMM in the context of Graph Convolutional
Networks. However, they use PIUMA in a homogeneous mode
by disabling the STPs. AESPA [54] is an architecture that
consists of heterogeneous subaccelerators that target different
levels of sparsity and compression formats. However, that
work assumes uniform random sparsity. Therefore, it does not
map matrix regions to the subaccelerators that suit them the
most and thus fails to exploit IMH. Our IUnaware baseline is
inspired by that work.
B. Sparse accelerator modeling: Some works present ab-
stractions and models for sparse tensor algebra [33], [50],
[67]. In this work, we use a simple analytical model that can
accurately predict the performance of different heterogeneous
PEs at a tile level. Importantly, our performance estimation
method increases the preprocessing time by only a small
amount. Extending or incorporating alternative performance
models is a valuable research direction.
C. Work partitioning and scheduling for heterogeneous
systems: Some works investigate work partitioning and
scheduling for heterogeneous systems [10], [27], [32], [36],
[44], [47], [64], [69], [70]. These works mainly focus on
partitioning dense kernels among different workers or map-
ping different functions to different workers. In contrast, our
work focuses on partitioning sparse kernels for heterogeneous
accelerators—a topic that has barely been explored. We show
that the partitioning problem in such scenarios is non-trivial
and requires taking into account both IMH and the low-level
microarchitecture details of the heterogeneous workers.
D. SpMM for general-purpose systems and tiling: Prior art
incorporates tiling and other optimizations in order to optimize
SpMM on CPUs and/or GPUs [15], [23], [26], [31], [43], [45],
[68]. In particular, ASpT [31] partitions the matrix into denser
and sparse regions, which are then however assigned to the
same homogeneous entities (e.g., CPU cores). Two-Face [11]
leverages IMH to minimize the communication in SpMM for
distributed CPU systems. Some of these works incorporate
reordering [5], [8], [13] to transform the sparse matrix into
an equivalent more ”favorable” form. As shown by Arai et
al. [5], the reordered sparse matrix can have more well-formed

dense and sparse regions, leading to more efficient execution.
Reordering could also increase the effectiveness of HotTiles.

NVIDIA’s cuSPARSE [49] supports Block-SpMM [52], an
SpMM variant that targets sparse matrices that are partitioned
into high-density and completely empty tiles (block-level spar-
sity). Optimizations for block-level sparsity are also proposed
by Demmel et al. [21]. On the contrary, our method does not
require the sparse tiles to be completely empty. In fact, we
completely eliminate empty tiles during preprocessing.

X. FUTURE WORK

We broadly categorize future work under two main direc-
tions. The first one is the application of HotTiles to other
heterogeneous architectures and sparse kernels. An interesting
additional architecture is a heterogeneous system consisting
of CPUs and on-chip accelerators such as the Intel Data
Streaming Accelerator (DSA) [42], [48]. In addition, HotTiles
is applicable to SpMV and SDDMM [41], which exhibit
access patterns similar to SpMM. Further, we believe that,
with some modifications, our methodology can be extended
to more sparse kernels such as SpGEMM [6].

The second direction of future work is the further explo-
ration of the HotTiles partitioning space and modeling capa-
bilities. We believe that making the model account for reuse
through caches and removing the maximum reuse assumption
(Section IV-C) can further enhance the model’s accuracy. In
addition, accounting for reuse through shared levels of fast
local memory such as lower level caches can make HotTiles
applicable to more heterogeneous architectures. Finally, smart
tile sizing in cases where one or both of the sparse tile
dimensions are free, and heterogeneity-aware sparse matrix
reordering approaches can augment the HotTiles partitioning
space, leading to further performance improvements.

XI. CONCLUSION

In many sparse matrices, nonzeros form dense and sparse
regions—a property that we call intra-matrix heterogeneity
(IMH). To leverage IMH to improve performance, we utilize
SpMM accelerator architectures that include different types
of PEs. We develop a modeling framework to predict the
performance of different PE types, and a heuristic to partition
sparse matrices among heterogeneous PEs. We call our mod-
eling and partitioning method HotTiles. To evaluate HotTiles,
we simulate three heterogeneous architectures with compute-
intensive PEs (Hot Workers) and memory-latency tolerant
PEs (Cold Workers). Heterogeneous execution with HotTiles
outperforms homogeneous execution using only hot or only
cold workers by 9.2-16.8× and 1.4-3.7×, respectively. In ad-
dition, HotTiles outperforms an IMH-unaware heterogeneous
execution strategy by 1.4-2.2×.

ACKNOWLEDGEMENTS

This work was supported in part by Intel Corporation and
ACE, one of the 7 centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
The work was done while the first author was an intern at
Intel.

REFERENCES

[1] S. Aananthakrishnan, S. Abedin, V. Cavé, F. Checconi, K. D. Bois,
S. Eyerman, J. B. Fryman, W. Heirman, J. Howard, I. Hur, S. Jain, M. M.
Landowski, K. Ma, J. A. Nelson, R. Pawlowski, F. Petrini, S. Szkoda,
S. Tayal, J. J. Tithi, and Y. Vandriessche, “The Intel Programmable and
Integrated Unified Memory Architecture Graph Analytics Processor,”
IEEE Micro, vol. 43, no. 5, pp. 78–87, 2023.

[2] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium. IEEE, 2006, pp. 10–pp.

[3] M. J. Adiletta, J. J. Tithi, E.-I. Farsarakis, G. Gerogiannis, R. Adolf,
R. Benke, S. Kashyap, S. Hsia, K. Lakhotia, F. Petrini, G.-Y. Wei,
and D. Brooks, “Characterizing the Scalability of Graph Convolutional
Networks on Intel® PIUMA,” in 2023 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2023, pp.
168–177.

[4] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang, “Optimizing
Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration
Interaction Calculations,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, 2014, pp. 1213–1222.

[5] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2016, pp. 22–31.

[6] A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
Templates for the solution of algebraic eigenvalue problems: a practical
guide. SIAM, 2000.

[8] V. Balaji, N. C. Crago, A. Jaleel, and S. W. Keckler, “Community-based
Matrix Reordering for Sparse Linear Algebra Optimization,” in 2023
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2023, pp. 214–223.

[9] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[10] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “REVAMP:
A Systematic Framework for Heterogeneous CGRA Realization,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 918–932.

[11] C. Block, G. Gerogiannis, C. Mendis, A. Azad, and J. Torrellas, “Two-
Face: Combining Collective and One-Sided Communication for Efficient
Distributed SpMM,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2024.

[12] R. F. Boisvert, R. F. Boisvert, and K. A. Remington, The matrix market
exchange formats: Initial design. Citeseer, 1996, vol. 5935.

[13] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, 2011, pp. 587–596.

[14] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in 2017 IEEE international parallel and
distributed processing symposium workshops (IPDPSW). IEEE, 2017,
pp. 643–652.

[15] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplica-
tion Using Compressed Sparse Blocks,” in Proceedings of the Twenty-
First Annual Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 233–244.

[16] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’11.
New York, NY, USA: Association for Computing Machinery, 2011.

[17] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An Evaluation of High-Level Mechanistic Core Models,” ACM Trans.
Archit. Code Optim., vol. 11, no. 3, aug 2014.

[18] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin,
M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini,
V. Consonni, V. E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rath-
man, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, “QSAR
Modeling: Where Have You Been? Where Are You Going To?” Journal
of Medicinal Chemistry, vol. 57, no. 12, pp. 4977–5010, 2014.

[19] T. A. Davis, “Algorithm 1000: SuiteSparse: GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra,” ACM Transactions on
Mathematical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[20] T. A. Davis and Y. Hu, “The University of Florida sparse matrix col-
lection,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

[21] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
R. C. Whaley, and K. Yelick, “Self-adapting linear algebra algorithms
and software,” Proceedings of the IEEE, vol. 93, no. 2, pp. 293–312,
2005.

[22] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Transactions on computers, vol. 60, no. 7, pp. 913–922, 2010.

[23] T. Gale, M. Zaharia, C. Young, and E. Elsen, “Sparse GPU Kernels for
Deep Learning,” in SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2020, pp. 1–14.

[24] G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, and J. Tor-
rellas, “SPADE: A Flexible and Scalable Accelerator for SpMM and
SDDMM,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023.

[25] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas, and
O. Mutlu, “SparseP: Towards Efficient Sparse Matrix Vector Multipli-
cation on Real Processing-In-Memory Architectures,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 6, no. 1, feb 2022.

[26] Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“Graphite: Optimizing Graph Neural Networks on CPUs through Co-
operative Software-Hardware Techniques,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, ser. ISCA
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 916–931.

[27] D. Grewe and M. F. O’Boyle, “A static task partitioning approach for
heterogeneous systems using OpenCL,” in 20th International Conference
on Compiler Construction. Springer, 2011, pp. 286–305.

[28] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 243–254.

[29] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[30] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Acceler-
ator for Sparse Tensor Algebra,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing Machinery,
2019, p. 319–333.

[31] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive Sparse Tiling for Sparse Matrix Multiplication,” in Proceed-
ings of the 24th Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 300–314.

[32] K.-C. Hsu and H.-W. Tseng, “Simultaneous and Heterogenous Multi-
threading,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 137–152.

[33] O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer,
M. A. Horowitz, and F. Kjølstad, “The Sparse Abstract Machine,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
ser. ASPLOS 2023. New York, NY, USA: Association for Computing
Machinery, 2023, p. 710–726.

[34] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-
Luna, S. R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu,
D. Chen, and W.-m. Hwu, “Analysis and Modeling of Collaborative
Execution Strategies for Heterogeneous CPU-FPGA Architectures,” in

Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering, ser. ICPE ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 79–90.

[35] Intel, “Intel Xeon Platinum 8260 Processor 35.75MB Cache
2.40 GHz Product Specifications,” 2019. [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/192474/
intel-xeon-platinum-8260-processor-35-75m-cache-2-40-ghz.html

[36] Z. Jia, M. Zaharia, and A. Aiken, “Beyond Data and Model Parallelism
for Deep Neural Networks,” Proceedings of Machine Learning and
Systems, vol. 1, pp. 1–13, 2019.

[37] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula,
N. M. Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu, “SMASH: Co-
Designing Software Compression and Hardware-Accelerated Indexing
for Efficient Sparse Matrix Operations,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 600–614.

[38] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A learned performance model for tensor processing
units,” Proceedings of Machine Learning and Systems, vol. 3, pp. 387–
400, 2021.

[39] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira,
“Mathematical foundations of the GraphBLAS,” in 2016 IEEE High
Performance Extreme Computing Conference (HPEC), 2016, pp. 1–9.

[40] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[41] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 1–29, 2017.

[42] R. Kuper, I. Jeong, Y. Yuan, J. Hu, R. Wang, N. Ranganathan, and
N. S. Kim, “A Quantitative Analysis and Guideline of Data Streaming
Accelerator in Intel 4th Gen Xeon Scalable Processors,” arXiv preprint
arXiv:2305.02480, 2023.

[43] S. E. Kurt, A. Sukumaran-Rajam, F. Rastello, and P. Sadayyapan, “Ef-
ficient Tiled Sparse Matrix Multiplication through Matrix Signatures,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–14.

[44] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous Dataflow Accelerators for Multi-DNN Workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 71–83.

[45] D. Lenadora, V. Sathia, G. Gerogiannis, S. Yesil, J. Torrellas, and
C. Mendis, “Input-sensitive dense-sparse primitive compositions for
GNN acceleration,” arXiv preprint arXiv:2306.15155, 2023.

[46] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[47] N. R. Miniskar, F. Liu, A. R. Young, D. Chakraborty, and J. S. Vetter,
“A Hierarchical Task Scheduler for Heterogeneous Computing,” in
International Conference on High Performance Computing. Springer,
2021, pp. 57–76.

[48] N. Nassif, A. O. Munch, C. L. Molnar, G. Pasdast, S. V. Lyer, Z. Yang,
O. Mendoza, M. Huddart, S. Venkataraman, S. Kandula et al., “Sapphire
Rapids: The next-generation Intel Xeon scalable processor,” in 2022
IEEE International Solid-State Circuits Conference (ISSCC), vol. 65.
IEEE, 2022, pp. 44–46.

[49] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “cuSPARSE
library,” in GPU Technology Conference, 2010.

[50] N. Nayak, T. O. Odemuyiwa, S. Ugare, C. Fletcher, M. Pellauer, and
J. Emer, “TeAAL: A Declarative Framework for Modeling Sparse Tensor
Accelerators,” in Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1255–1270.

[51] M. K. Ng and Z. Zhu, “Sparse matrix computation for air quality forecast
data assimilation,” Numerical Algorithms, vol. 80, pp. 687–707, 2019.

[52] NVIDIA, “Accelerating Matrix Multiplication with Block
Sparse Format and NVIDIA Tensor Cores,” 2021. [On-
line]. Available: https://developer.nvidia.com/blog/accelerating-matrix-
multiplication-with-block-sparse-format-and-nvidia-tensor-cores

[53] M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragón, D. Went-
zlaff, and M. Martonosi, “Tiny but Mighty: Designing and Realizing
Scalable Latency Tolerance for Manycore SoCs,” in Proceedings of the

49th Annual International Symposium on Computer Architecture, ser.
ISCA ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 817–830.

[54] E. Qin, R. Garg, A. Bambhaniya, M. Pellauer, A. Parashar, S. Rajaman-
ickam, C. Hao, and T. Krishna, “Enabling flexibility for sparse tensor
acceleration via heterogeneity,” arXiv preprint arXiv:2201.08916, 2022.

[55] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Ac-
celerator with Flexible Interconnects for DNN Training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 58–70.

[56] S. Qiu, L. You, and Z. Wang, “Optimizing sparse matrix multiplications
for graph neural networks,” in International Workshop on Languages
and Compilers for Parallel Computing. Springer, 2021, pp. 101–117.

[57] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and
B. Jacob, “The Structural Simulation Toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, no. 4, p. 37–42, mar 2011.

[58] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong,
“Sextans: A Streaming Accelerator for General-Purpose Sparse-Matrix
Dense-Matrix Multiplication,” in Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’22. New York, NY, USA: Association for Computing Ma-
chinery, 2022, p. 65–77.

[59] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations,” in 2020 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2020, pp. 689–702.

[60] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,” Integration,
vol. 58, pp. 74–81, 2017.

[61] J. D. Ullman, “NP-complete scheduling problems,” Journal of Computer
and System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[62] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[63] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li,
A. J. Smola, and Z. Zhang, “Deep Graph Library: Towards Efficient and
Scalable Deep Learning on Graphs,” arXiv preprint arXiv:1909.01315,
2019.

[64] S. Wang, Y. Liang, and W. Zhang, “Poly: Efficient heterogeneous system
and application management for interactive applications,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 199–210.

[65] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[66] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[67] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:
An analytical approach to sparse tensor accelerator modeling,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 1377–1395.

[68] S. Yesil, J. E. Moreira, and J. Torrellas, “Dense Dynamic Blocks:
Optimizing SpMM for Processors with Vector and Matrix Units Us-
ing Machine Learning Techniques,” in Proceedings of the 36th ACM
International Conference on Supercomputing, ser. ICS ’22. New York,
NY, USA: Association for Computing Machinery, 2022.

[69] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “FlexTensor:
An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation on Heterogeneous System,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
859–873.

[70] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive Parallel Execution of Deep Neural Networks on Heteroge-
neous Edge Devices,” in Proceedings of the 4th ACM/IEEE Symposium
on Edge Computing, ser. SEC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 195–208.

