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Abstract—To enable high-performance, programmable, and
resilient distributed systems, Distributed Data Persistency (DDP)
models provide specific data consistency and persistency guar-
antees. Since these models target leaderless systems (i.e., systems
where any node can initiate requests), they deliver high perfor-
mance and are scalable. However, they are also more complex.

In this paper, we develop detailed distributed algorithms for
DDP models. They support Linearizable consistency with five
different types of persistency. We call these algorithms MINOS-
Baseline (MINOS-B) and evaluate them on a 5-node distributed
machine. Additionally, to improve performance, we also redesign
the algorithms to offload them to a new SmartNIC architecture.
The resulting system is called MINOS-Offload (MINOS-O). The
MINOS-O SmartNIC introduces optimizations such as selec-
tive data coherence in hardware between host and SmartNIC,
message batching, and message broadcasting. Our evaluation
shows that offloading is very beneficial. It substantially reduces
request latency and increases request throughput for various
workloads and number of nodes. For example, compared to
MINOS-B, MINOS-O reduces the average end-to-end latency of
two microservice functions by 35%.

I. INTRODUCTION

A key component of modern cloud infrastructure is dis-
tributed storage systems, including key value stores, file sys-
tems, and databases [6], [11], [14]. To satisfy user needs,
these systems must provide high performance, availability, and
resilience to failures [2], [15], [16], [45]. To achieve these
goals, they replicate data across multiple nodes. Such data
replicas improve performance and allow the system to continue
operation even if some of the machines become unavailable.
However, supporting replicas requires the system to ensure
their consistency when updates occur. For this purpose, dif-
ferent distributed data consistency models exist that describe
when updates need to become visible to the replica nodes.
Still, consistency models by themselves do not guarantee the
resilience of the system, as they are not concerned with system
recovery on a fault. To support recovery, data need to be
persisted to non-volatile media. Memory persistency models
describe when updates need to be persisted [30], [46].

Over the years, several distributed consistency models have
been proposed, including Sequential [4], Linearizable [4], [13],
[22], [27], [59], Eventual [60], Causal [5], [37], [38], and
Transactional [15], [16], [62]. These models differ in the
guarantees of replica consistency that they provide to the
user, and offer different trade-offs between performance and
programmer intuition. Similarly, several persistency models
have been proposed, including Synchronous [30], Strict [46],

Read-Enforced [19], Eventual [30], and Scope [30], [34].
Persistency models differ in the data persistency guarantees
that they provide to the user, and offer different trade-offs
between performance and durability. Finally, Distributed Data
Persistency (DDP) models [30] combine consistency and per-
sistency models, by introducing a unified framework for data
consistency and persistency.

The operation of different DDP models was described by
Kokolis at al. [30] at a relatively high level. An important
contribution of the DDP models is that they target Leaderless
distributed systems [27]. These are systems where any node
in the system can initiate read or write requests. Compared
to leader-based systems, where all write requests need to be
initiated by one leader node, leaderless systems deliver higher
performance and are scalable. However, they are conceptually
more involved. The DDP models have not been fleshed out in
detailed algorithms.

In distributed computing systems, network interface cards
(NICs) are responsible for the communication between servers
and the network [7], [10], [28], [47], [49]. Traditionally, they
are implemented as a PCIe card, and come with limited
processing capabilities. However, recently, a new class of NICs
with substantial processing and storage capabilities called
SmartNICs have become available. SmartNICs have been used
to offload operations such as packet processing, encryption,
and compression from the CPU [35], [41], [48]. They could
potentially offload DDP model protocols.

To improve the performance, availability, and durability of
distributed systems, this paper develops detailed distributed
algorithms for DDP models and, additionally, offloads their
operation from the CPUs to SmartNICs. Specifically, we take
the DDP models outlined in Kokolis et al. [30] and develop
detailed leaderless algorithms. We focus on Linearizable con-
sistency with Synchronous, Strict, Read-Enforced, Eventual, or
Scope persistency. We call these algorithms MINOS-Baseline
(MINOS-B) and evaluate them on a 5-node distributed ma-
chine.

Then, we redesign the algorithms to offload them to a
new SmartNIC architecture that we introduce. The SmartNIC
architecture introduces several optimizations, including selec-
tive data coherence in hardware between host and SmartNIC,
message batching, and message broadcasting. The resulting
DDP algorithms and SmartNIC architecture are called MINOS-
Offload (MINOS-O).

An evaluation of MINOS-O using simulations shows that



offloading is very beneficial. It substantially reduces request
latency and increases request throughput for various workloads
and number of nodes. For example, compared to MINOS-
B, MINOS-O reduces the average end-to-end latency of two
microservice functions by 35%. We also evaluate the impact
of individual optimizations.

The contributions of this paper are:
• The leaderless MINOS-B algorithms of several DDP models
and their evaluation.
• The MINOS-O NIC-offloaded algorithms and SmartNIC.
• A comparative evaluation of the MINOS-B and MINOS-O
algorithms.

II. BACKGROUND

A. Consistency and Persistency Models
Distributed storage systems keep copies of a record (i.e.,

replicas) in multiple nodes. How these replicas are kept
consistent is given by the consistency model. Specifically, on
a write, strict or strong consistency models update the replicas
eagerly, while relaxed or weak models update them lazily—
potentially allowing reads to get stale values. Moreover, how
updates to these different replicas in volatile memory are
made persistent to durable storage is given by the persistency
model. Specifically, when a replica is updated, strict or strong
persistency models persist it eagerly, while relaxed or weak
models persist it lazily—risking that a machine failure wipes
out the updated value.

A Distributed Data Persistency (DDP) model [30] combines
a specific consistency model and a specific persistency model.
It is defined by the supported Visibility and Durability points
of updates. The Visibility point of an update is the time when
the update becomes available for consumption, and is given by
the consistency model; the Durability point is the time when
the update is made durable and, hence, cannot be wiped out
by a failure, and is given by the persistency model. One can
have a DDP model that combines strong consistency and weak
persistency, or any combination of them.

Kokolis at al. [30] describe various DDP models at a
relatively high level, expressing the operations and messages
that are needed, but not the detailed algorithms that need to be
running on a real machine to support them. The DDP protocols
assume an environment where: (i) for simplicity, a record is
replicated in all the nodes rather than in a subset of them;
and (ii) importantly, read and write requests can be initiated
from any node rather than from a single, leader node. The
latter assumption makes the protocols Leaderless, which are
more general, deliver higher performance, and are scalable—
although they are more involved.

In this paper, we focus on DDP models that combine one
important consistency model (Linearizable [13], [22], [27],
[59]) with one of five persistency models (Synchronous [30],
Strict [46], Read-Enforced [19], Eventual [30], and Scope [30],
[34]). Space constraints prevent analyzing more models.

Messages in DDP Models. Following the Hermes proto-
col [27], the node that initiates the request is called Coordina-
tor, while all the others are called Followers. Consider a write

request to a record. The Coordinator issues an invalidation
(INV) message to all the Followers. The message carries
the new data but it initially invalidates the previous version
of the record in all the Followers. The Followers respond
with an acknowledgment (ACK) message to the Coordinator,
confirming that the update is performed in terms of consis-
tency, or persistency, or both. The Coordinator then sends the
validation (VAL) message to all the Followers to mark the
completion of the transaction. Depending on the consistency
and persistency model used, separate ACK or VAL messages
may be generated for consistency (ACK C, VAL C) and for
persistency (ACK P, VAL P), respectively.

Brief Model Definitions. We briefly describe the models
considered. More detailed descriptions can be found else-
where [13], [19], [22], [27], [30], [34], [46], [59].

Linearizable Consistency (Lin) enforces a total ordering of
writes to volatile state across all nodes and, additionally, re-
quires that all reads and writes be ordered by their timestamps.
It is implemented by returning to the client a write response
only when all volatile replicas have been updated.

Synchronous Persistency (Synch) mandates that, in a node,
a write be persisted when the local volatile replica is updated.
When we combine <Lin, Synch>, the response of a write is
returned to the client as soon as all the replicas have been
updated and persisted. Implementation-wise, this is when all
the ACKs are received by the Coordinator.

Read-Enforced Persistency (REnf) mandates that, on a write,
all the updated replicas be persisted by the time any of them
is read. When we combine <Lin, REnf>, the response of
a write is returned to the client as soon as all the replicas
have been updated (i.e., the Coordinator has received all
ACK Cs). Once all replicas have been updated and persisted
(i.e., the Coordinator has received all ACK Cs and ACK Ps),
the Coordinator informs all Followers (i.e., it sends VALs). On
reception of the VAL, a Follower enables reads to the record.

Eventual Persistency (Event) mandates that the updated
replicas be eventually persisted at some point in the future.
No read or write is stalled waiting for that time. When we
combine <Lin, Event>, the response of a write is returned to
the client as soon as all the replicas have been updated.

Scope Persistency (Scope) uses the notion of scopes. A
scope is a set of read and write operations. The messages in
this model are marked with an additional sc, which denotes the
scope they belong to—e.g., [INV]sc. At the end of a scope, a
client issues the [PERSIST]sc command. The model mandates
that, when the response of a [PERSIST]sc is returned to the
client, all the updates in the scope have been persisted. When
we combine <Lin, Scope>, the response to a write within the
scope returns to the client when the write has updated all the
replicas. However, the response to the [PERSIST]sc is returned
when all the writes in the scope have updated their replicas
and persisted them (i.e., the Coordinator received [ACK P]sc
for the [PERSIST]sc from all the Followers).

Strict Persistency (Strict) This is the strictest model. It
dictates that a write should be persisted in all the replica



nodes by the time the write response returns to the client—
possibly even before the replicas in the volatile memories
of the replica nodes are updated. In contrast to Synch, it
decouples consistency and persistency using two types of
acknowledgments (ACK C and ACK P). When we combine
<Lin, Strict>, the response of a write is returned to the client
as soon as all the replicas have been updated and persisted.

The combination of <consistency, persistency> places con-
straints on when a local read to a record can access the result
of a prior update (from any node) to the record. Specifically,
because of Lin consistency in all the models discussed in
this paper, it is required that the update be completed across
all nodes consistency-wise. This is known at the Coordinator
upon the reception of all consistency ACKs, and known
at a Follower upon the reception of the consistency VAL.
Further, because of the persistency model, there are additional
requirements for two of the models. Specifically, for <Lin,
Synch> and <Lin, REnf>, it is also required that the update
be completed across all nodes persistency-wise. In <Lin,
Synch>, this is known at the Coordinator upon the reception
of all ACKs, and known at a Follower upon the reception
of the single VAL; this requirement matches the consistency
one. In <Lin, REnf>, this is known at the Coordinator upon
the reception of all ACK Cs and all ACK Ps, and known
at a Follower upon the reception of the single VAL; this
requirement adds to the consistency one.

B. SmartNICs

SmartNICs are NICs with programmable logic that of-
floads some of the processing tasks from the CPU. They
have recently been introduced to improve performance. They
usually contain low-end energy-efficient computing units with
caches and an on-board DRAM. Typically, SmartNICs handle
network-related tasks or completely offload network process-
ing workloads [47], [56]. They can also offload complex tasks
such as replication and persistency [35].

III. MINOS-BASELINE ALGORITHMS

In this section, we introduce detailed algorithms for the effi-
cient implementation of the DDP model protocols outlined by
Kokolis at al. [30]. We call these algorithms MINOS-Baseline
(MINOS-B). As already mentioned, we focus on models that
combine Lin consistency with one of five persistency models.
Next, we first introduce some definitions and then describe the
protocol algorithms for writes and for reads.

A. Definitions

Our algorithms use Locks and Logical Timestamps. In
this section, we define them and describe their use. In our
description, we refer to two types of writes. A write transaction
(i.e., operation) initiated by a client is called a “client-write”.
During the transaction, there are substeps that involve updating
the local memory subsystem of a node (e.g., the last-level
cache (LLC)); we call such writes “local-writes”.

Locks. Our algorithms use two types of locks for the two
types of writes: read locks (RDLock Owner or RDLock for

short) for client-writes and write locks (WRLock) for local-
writes.

Figure 1(a) shows the metadata associated with a data
record. RDLock Owner tells whether the read lock for the
record is taken and, if so, who the read lock owner is; WRLock
tells whether the write lock for the record is taken. The other
three fields relate to the timestamps.

(a) Record Metadata

(b) Timestamp Format

node_id version

RDLock_Owner volatileTS glb_durableTSWRLock glb_volatileTS

Fig. 1 – Record metadata and timestamp format.

The locks of a record are used as follows. In a given node,
if one or more threads are attempting to perform a client-write
(initiated locally or remotely) on a given record concurrently,
one of them holds RDLock Owner for the record. A taken
RDLock Owner prevents concurrent read transactions from
accessing the record.

Assume that there is a single thread that is performing a
client-write on the record. Such thread holds RDLock Owner.
During a client-write transaction, there is point when the
thread, say T1, updates the local record (i.e., it performs a
local-write). During this time, T1 must grab and hold the
WRLock to ensure that no other client-write transaction to
the same record tries to write concurrently. Once T1 finishes
the update of the local record, it releases the WRLock and
continues with the client-write operation. Once T1 completes
the client-write operation, if it still holds RDLock Owner, it
releases it.

It is possible that a second thread, say T2, wants to perform
a concurrent client-write on the same record while T1 is
executing its client-write. If T2 has a higher timestamp (i.e.,
comes later in time), our algorithm allows T2 to “snatch”
RDLock Owner from T1, by updating RDLock Owner. T1
continues execution and can even attempt and grab the WR-
Lock. However, as we will see later, T1 will not be able
to update the local record to a stale value. The benefit of
snatching RDLock Owner is that it will ensure that T2’s
completion will not be delayed by T1’s completion. T2 is the
only thread that can release RDLock Owner. When it does,
the record can be read by other threads.

Logical Timestamps. In our design, each data record in the
volatile local memory of a node keeps three logical times-
tamps [31]: volatileTS, glb volatileTS, and glb durableTS
(Figure 1(a)). volatileTS describes the record’s version in the
local volatile memory; glb volatileTS describes the record’s
global version in the machine-wide volatile memory as deter-
mined by the consistency model; and glb durableTS describes
the global version in the machine-wide non-volatile memory as
determined by the persistency model. As shown in Figure 1(b),



each timestamp is a tuple with a node identifier (node id) and
a version number.

When a node initiates a client-write, it generates a new
timestamp for the write. The timestamp’s node id is set to
the Coordinator node ID, while the version is set by reading
the volatileTS version of the record in the Coordinator node
and adding one (without updating volatileTS). The resulting
timestamp is included in a field called TSWR in all the mes-
sages sent for this client-write. Moreover, TSWR is eventually
applied to the timestamp metadata of the record in all the
nodes (including the Coordinator). Specifically, in any node,
as soon as the volatile record is updated, the volatileTS is
set to TSWR. Similarly, once the volatile record is updated
across all replicas, the glb volatileTS is set to TSWR, and
when the durable record is updated across all replicas, the
glb durableTS is set to TSWR. Note that TSWR is unique for
a write transaction.

Writes to the same record are ordered from older to newer
based on their timestamp. Given two writes, the newer one is
the one that has the higher version field or, if the versions are
the same, the one with the higher node id.

In our implementation, RDLock Owner has the same for-
mat as a timestamp. Hence, it is a tuple of <node id,
version>. When RDLock Owner is acquired, it is atomically
set to the client-write’s TSWR. When RDLock Owner is
released, it is atomically set to <-1, -1>.

Outdated Writes. It is possible that, when a Coordinator
or a Follower node is about to process a write transaction
WR1 with timestamp τ1, the volatileTS timestamp of the local
record already has a newer timestamp τ2, where τ2 > τ1. In
this case, we would like to cut WR1 short: return to the client
right away and not inform other nodes (if the local node is the
Coordinator) or return an ACK to the Coordinator right away
(if the local node is a Follower). In either case, we want to
skip updating the record’s volatile and non-volatile data.

Before we can do this, however, we need to ensure that the
new transaction WR2 that renders WR1 obsolete has reached
a correct state. There are both consistency and persistency
concerns. Consider consistency first, recalling that we are only
concerned with Lin consistency. Before cutting WR1 short, we
need to make sure that WR2 has updated the volatile record
in all the nodes and, therefore, no read will see the value
before WR2. To ensure this, the Coordinator node for WR2
must have received consistency ACKs from all the nodes in the
system, and the Follower nodes for WR2 must have received a
consistency VAL. Note that WR2 has already updated the local
volatile record (as reflected by the volatileTS). Consequently,
if the local node is the Coordinator for WR2, before cutting
WR1 short, the thread processing WR1 must spin until all
the WR2 consistency ACKs are received from all the nodes.
Similarly, if the local node is a Follower for WR2, before
cutting WR1 short, the thread processing WR1 must spin until
the WR2 consistency VAL has been received. In other words,
in both cases, the thread must spin until glb volatileTS in the
local record is updated. We define a primitive to perform this

operation called ConsistencySpin.
A similar analysis is performed for persistency issues, and

we define a primitive called PersistencySpin. For brevity, we
do not discuss the details.

We also define the primitive Obsolete, which compares the
timestamp of a client-write to the volatileTS timestamp of the
local record. If the client-write has an older timestamp, the
primitive returns true; otherwise, it returns false.

B. Protocol Algorithm for Writes

The write algorithm is similar in different persistency
models. Consequently, we describe the algorithm for <Lin,
Synch> in detail and then the differences for the rest of
the persistency models. Figure 2 shows the algorithmic steps
(Coordinator on the left side and Follower on the right side)
as well as the messages exchanged in the protocol for <Lin,
Synch>. We use a helper function called “handleObsolete”
(Lines 1-3, 23-25) to run the ConsistencySpin and the Persisten-
cySpin. We start by describing the Coordinator steps, and then
the Follower steps.

Coordinator. When the Coordinator receives a write request
WR1 for key (i.e., record) k (Line 4), a timestamp TSWR is
generated as explained before. The algorithm first checks if
WR1 is Obsolete (Line 5). If the check returns true, it means that
there is another outstanding write WR2 to the same record that
is more recent. Hence, WR1 should be skipped and execution
should return to the client. Before doing so, however, the
algorithm calls handleObsolete (Line 6), which performs the
ConsistencySpin (Line 2) and PersistencySpin (Line 3) operations.

If WR1 is not obsolete, it proceeds to perform a “Snatch
RDLock” operation on key k (Line 8), which consists of the
following: (i) if RDLock is free, WR1 grabs the lock; (ii)
if RDLock is taken by an older write, WR1 snatches the
RDLock from it; and (iii) if RDLock is taken by a younger
thread, WR1 simply continues without grabbing the RDLock.
This third case is fine because, in the presence of a younger
write, we will see that WR1 cannot create an inconsistent state.
What is important is that the RDLock be held by the youngest
concurrent WR transaction to the record at a time, and that
the owner of the RDLock is the one that later releases it.
With such arrangement, read transactions to the record are
prevented from proceeding concurrently with LLC updates,
and LLC updates always produce a consistent state. Note that
if WR1 successfully grabs the RDLock, a younger client-write
WR2 may later snatch the RDLock from WR1; as we will see,
correctness is guaranteed in all cases.

At this point, WR1 spins until it is able to grab the WRLock
of key k (Line 9). Obtaining WRLock is essential because
WR1 is about to perform a local-write to the record. Before
performing the local-write, WR1 performs a final timestamp
check (Line 10) to see if, since Line 5, WR1 has become obsolete.
If WR1 remains the latest write, the algorithm sends the
INV messages (Line 11) to all Followers and updates the local,
volatile state of the record in the LLC (Line 12). When the
local volatile state is updated, the local volatileTS (not shown)



handleObsolete()

If INVs sent:

Coordinator

Process new WR for key k
If Obsolete(TSWR):

Host NIC
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WRUnlock(k)
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// RDLock is set. 
// This thread may be the RDLock Owner.
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If !Obsolete(TSWR):
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c

Exit

12.
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ConsistencySpin()

a

function handleObsolete():1.

2.

3.

Else: 
    WRUnlock(k) 
    handleObsolete() 

10.
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15.
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 RDUnlock(k)

Exit
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WRUnlock(k)
Else: 
    WRUnlock(k)
    handleObsolete()

PersistencySpin()
ConsistencySpin()

function handleObsolete():23.

24.

25. h

37.

40.

< Not applicable > m44.

Fig. 2 – Detailed algorithm for the <Lin, Synch> model, with the Coordinator on the left side and the Follower on
the right side. The steps in the algorithm that may change for different persistency models are highlighted.

Coordinator

(ii) <Lin, Strict>

i Send ACK_P

j Update LLC
Send ACK_C

k Send ACK_P

l Process new VAL_C for key k

Send ACK_C
PersistencySpin()

h

(i) <Lin, Strict>

Spin for all ACK_Cse
f If INVs sent:

   Send VAL_Cs
   Spin for all ACK_Ps
   Send VAL_Ps

(vi) <Lin, Event>

i < Not applicable >

j

k

h Send ACK_C

Update LLC
Send ACK_C

< Not applicable >

l Process new VAL_C for key k

(vii) <Lin, Scope>

Send [INV]scb

Send [PERSIST]sc
Spin for all [ACK_P]sc
Send [VAL_P]sc

a

<As Event, but using 
[INV]sc, [ACK_C]sc, and 
[VAL_C]sc instead of INV, 
ACK_C, and VAL_C>

< Not applicable >

(viii) <Lin, Scope>

i j
k l

g Process new [INV]sc for key k

h
<As Event, but using 
[ACK_C]sc and [VAL_C]sc 
instead of ACK_C and VAL_C>

Send [ACK_C]sc

Receive [PERSIST]sc
When persists in scope sc are done:         
        Send [ACK_P]sc        
Process [VAL_P]sc

(iv) <Lin, REnf>

Send ACK_P

Update LLC
Send ACK_C

Send ACK_C
PersistencySpin()

Send ACK_P

j
i

k

h

(v) <Lin, Event>

Spin for all ACK_Cse
f If  INVs sent: Send VAL_Cs

a < Not applicable >

Persist to NVM in backgroundd

(iii) <Lin, REnf>

Persist to NVM in backgroundd
Spin for all ACK_Cse

Receive all ACK_Ps
Return to Client

Follower Coordinator Follower

Coordinator Follower Coordinator Follower

If [INV]sc sent:c

m Process new VAL_P for key k

d e
f

Fig. 3 – Differences of Strict, REnf, Event, and Scope persistency over Synch persistency (Figure 2). If a letter is not
present, it means that the step does not change from Figure 2.

is also updated. After these steps, the WRLock is released
(Line 13). Instead, if WR1 has been made obsolete by another
client-write, WR1 first releases the WRLock (Line 15) and then

calls handleObsolete (Line 16). Releasing WRLock as soon as
possible improves performance, as a concurrent write can grab
it while WR1 performs additional operations. Holding the



WRLock is not needed when handleObsolete() is invoked.
If INVs were sent (Line 17), the update is persisted to non-

volatile memory (NVM) (Line 18). Moreover, the thread spins
until all ACKs are received (Line 19). Note that, while the
volatile state is always updated in increasing order of write
TSWR, the NVM can be updated by writes out of order. This
is acceptable because we use a log structure for the persists.

When all ACKs are received, we know that the consistency
and persistency requirements are satisfied across all nodes,
hence the glb volatileTS and glb durableTS are also updated.
Therefore, if WR1 remains the RDLock Owner (which means
that there is no other more recent write to the same record in
the node), the read lock can be released (Lines 20-21). Finally,
if INVs were sent earlier (in Line 11), VALs are now sent to
all Followers (Line 22), which mark the completion of the write
transaction. After this step, execution returns to the client.

Follower. When a Follower receives the INV for a write
request WR1 to key k and timestamp TSWR (Line 26), the
algorithm performs the following steps. First, it checks if WR1
is obsolete (Line 27). If so, it calls handleObsolete (Line 28 and
Lines 23-25), and then responds to the Coordinator with an ACK
(Line 29) as if the write was done. This completes the transaction
for an obsolete WR1 (Line 30). A VAL will be received later on
but will be discarded.

If WR1 was not obsolete, the algorithm executes similar
steps as in the Coordinator (Lines 31-38), namely, WR1: (i)
performs a “Snatch RDLock” operation on key k, (ii) grabs the
WRLock, (iii) checks again if WR1 is obsolete and it either
updates the local state in the LLC (and the volatileTS) and
releases the WRLock, or releases the WRLock and invokes
handleObsolete. Then, if the LLC was updated (Line 34), WR1
persists the update to NVM (Line 39). Next, WR1 responds to
the Coordinator with an ACK, signifying that the write is
performed consistency- and persistency-wise (Line 40).

Read transactions in the Follower node cannot yet see
WR1’s update. Only after the Follower receives the VAL
message from the Coordinator (Line 41) can the owner of the
RDLock release it (Lines 42-43). Upon the release of the RDLock,
any read transaction can read the key. Furthermore, at this
point, the glb volatileTS and glb durableTS are also updated
to reflect that the write is performed in all the replica nodes
consistency- and persistency-wise.

C. Algorithm for Writes for Other Persistency Models
In Figure 2, we highlight with a shade and a letter some

steps of the <Lin, Synch> algorithm. These are the steps that
may change as we keep Lin consistency but move to other
persistency models. All other steps remain unchanged. As
explained in §II, some models have different INV, ACK, and
VAL messages for consistency and persistency enforcement.

Figure 3 shows the changes to the algorithm for the combi-
nations of Lin consistency and other persistency models. The
text next to a letter in Figure 3 replaces the text next to the
same letter in Figure 2.

For <Lin, Strict> Coordinator (Figure 3(i)), instead of
using ACKs and VALs, the Coordinator spins for ACK Cs in

Step e and then, in Step f, sends VAL Cs, spins for ACK Ps,
and sends VAL Ps. Similarly, at the Follower side (Fig-
ure 3(ii)), instead of ACKs, the Follower sends ACK Cs and
ACK Ps. First, if the received client-write is obsolete (Line 27),
the algorithm performs ConsistencySpin(), sends ACK C, and
then performs the PersistencySpin() and sends ACK P (Line 29).
If the client-write is not obsolete, after the LLC is updated,
ACK C is sent, and after the update is persisted to NVM,
ACK P is sent. Later, after VAL C is received, the RDLock
is released. Finally, after VAL P is received in Step m, the
write operation completes.

For the rest of the models, persisting the update to NVM
is performed outside of the critical path. Consequently, Step d
in the Coordinator (Line 18) is changed to persist NVM in the
background, but line Line 39 in the Follower needs no change
because the operation is not in the critical path: ACK C has
already been sent.

In <Lin, REnf> (Figure 3(iii)), Step e of the Coordinator in-
volves waiting for all ACK Cs and then returning to the client.
In the meantime, ACK Ps will arrive. When all ACK Ps are
received, the RDLock is released and the VALs are sent. At
the Follower side (Figure 3(iv)), the only difference compared
to Strict is that, since there is only one type of VAL, there is
no change for Step l and there is no Step m.

In the rest of the models, the algorithm does not need to
perform PersistencySpin() in Step a or Step h. This is because,
in these weak models, accesses do not need to stall for the
persist of prior writes that are still outstanding. However,
ConsistencySpin() remains because of the Linearizable con-
sistency.

In <Lin, Event> (Figure 3(v)), Step e of the Coordinator
involves waiting for all ACK Cs. After that, the RDLock
is released and then, in Step f, VAL Cs are sent before
returning to the client. In this model, persistency will happen
eventually and, therefore, there is no message exchange to
track persistency. At the Follower side (Figure 3(vi)), in
all cases, the Follower sends ACK Cs. Later, it receives a
VAL C. No persistency-related messages are exchanged.

In <Lin, Scope>, the protocol steps are similar to <Lin,
Event>, although the message names are different. In addition,
there is the new [PERSIST]sc transaction, shown in boxes
without letters in Figures 3(vii) and (viii). The [PERSIST]sc
transaction for scope sc consists of the following messages.
The Coordinator sends the [PERSIST]sc to its Followers,
spins until it receives all the [ACK P]sc, and finally sends
the [VAL P]sc to its Followers, marking the end of the
[PERSIST]sc transaction. A Follower, when it receives the
[PERSIST]sc, it completes persisting all the WR operations
inside scope sc and the [PERSIST]sc request itself, and
then responds with an [ACK P]sc to the Coordinator. Later,
it receives [VAL P]sc, which terminates the [PERSIST]sc
transaction.

D. Protocol Algorithm for Reads

Like write operations, read operations can be initiated from
any node. Since, in our environment, all records are replicated



in all nodes, all read operations are satisfied locally. A read
operation to a record is only stalled when the record’s RDLock
is taken by a write. Once the RDLock is free, the read
operation can proceed. The handling of read operations is the
same across all models.

E. Failure Detection and Recovery

While the DDP designs [30] do not discuss failure detection
or recovery, MINOS-B has protocol extensions for failure
detection and recovery that are similar for all the models
considered. We assume that nodes can fail due to a crash or
network disconnection and that, eventually, such nodes are re-
inserted back into the cluster.

Failure detection is attained with timeout mechanisms [27],
[45] that identify the non-responding node(s) (F) and alert all
the other nodes. Later, when F is re-inserted back into the
cluster, we need to bring F’s logs up-to-date. This is done by
having a designated node send to F a message with the log of
all the updates that have been committed since the time when
F stopped responding. F then applies the updates to its local
persistent and volatile state. More details of the recovery are
left for future work.

IV. MINOS-BASELINE PERFORMANCE

To understand the bottlenecks in the MINOS-B algorithms,
we implement and run them on a cluster and measure their
performance. We run them on a 5-node cluster where each
node has a Xeon E5-2450 processor running at 2.1 GHz, and
keep 5 cores busy per node. We use the eRPC [25] library for
communication. More details are discussed in §VII.

We measure the average latency of a write transaction
(Figure 2). This is because, in our environment, write oper-
ations are much costlier than reads. We divide the latency
into communication and computation times. Communication
is the time taken by all the messages between hosts in a write
transaction. For a given message, communication time starts
after the sender host has deposited the message in its host
send queue in memory, and finishes when the message has
been deposited in the host receive queue in the memory of
the receiver node. The communication time then includes the
transfer of the message from the host send queue through the
PCIe bus to the sender NIC, the NIC actions to send the
message, the transfer of the message through the network,
and the equivalent operations at the receiving NIC. The rest
of the transaction is computation time, and can include LLC
and NVM accesses.

Roughly speaking, the communication time in a write
transaction is seen in Figure 2 as the time from when the
first INV is sent (Line 11) until when the last ACK is received
(Line 19), subtracting the average time it takes for a Follower
to handle an INV message (Lines 26-40). For other models, the
communication time may be accounted for slightly differently.

Figure 4 shows the average latency of a write transaction
broken down into communication and computation times for
the different <consistency, persistency> models. We see that

the models with the more conservative persistency enforce-
ment have higher write latencies. This is mostly because of
their higher computation times—which are greatly affected by
the overhead of persisting a record in the critical path of a write
operation in the conservative persistency models. In addition,
as multiple writes are sometimes trying to access the same
record concurrently, locks add overhead.
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Fig. 4 – Average latency of a write transaction for
different <consistency, persistency> models.

The communication time varies less across models. How-
ever, it is the highest contributor to the write latency, contribut-
ing 51–73% to each model’s total write time. A major reason
why communication time is so high is that the multiple INV
messages in a transaction are sent one at a time. Indeed, they
are taken one at a time from the send queue, transferred along
the slow PCIe bus, and then sent out to the network. The same
happens for the VAL messages. Current NICs lack the support
to process batched messages or to use (true) broadcasting [51]
of messages in the network. As we scale the protocols to many
nodes, this bottleneck is likely to get worse.

V. MINOS-OFFLOAD DESIGN

To reduce the latency of write transactions in MINOS-B, we
propose to offload supporting the consistency and persistency
model protocols from the host CPU to a SmartNIC. Based on
the characterization of the latency of write transactions from
Section IV, we propose modified algorithms to enforce consis-
tency and persistency models and a SmartNIC architecture to
support them. We call the algorithms and the SmartNIC archi-
tecture MINOS-Offload (MINOS-O). MINOS-O substantially
reduces both the communication and the computation time of
write transactions. In this section, we outline the SmartNIC
architecture, present mechanisms to minimize communication
and computation time, and describe the overall MINOS-O
algorithms to support <consistency, persistency> models. The
same SmartNIC design supports all the models discussed in
this paper.

A. MINOS-O SmartNIC Architecture

The MINOS-O SmartNIC architecture is broadly based on
the Mellanox Bluefield Data Processing Unit (DPU) [40]. Fig-
ure 5(a) shows the top level diagram. Like other SmartNICs,
MINOS-O includes multiple cores, three levels of caches, a
DRAM module, and interfaces to the network and the host.



The new components that MINOS-O adds are: (i) the host
interface is augmented with a module that provides some
selective cache coherence between the L3 cache of MINOS-O
and the L3 cache of the host; (ii) the network interface includes
a module that supports message broadcast; (iii) the NIC has an
NVM module that includes a durable FIFO queue (dFIFO) for
the persistency protocol; and (iv) the DRAM module includes
a volatile FIFO queue (vFIFO) for the consistency models.
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L2 $

core core

L2 $

core core

L2 $

core core

L2 $

core core

DDR
Mem.

Non-
Volatile
Mem.
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(a) Top level diagram
(b) Parallel insertion 
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Message Broadcast 
Module

Selective Coherence 
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Fig. 5 – MINOS-O SmartNIC architecture.

B. Mechanisms to Improve Performance

We modify the distributed consistency and persistency al-
gorithms of §III to leverage the SmartNIC architecture. In this
section, we describe the new mechanisms proposed to improve
performance.

1. Offloading Operations to the SmartNIC. We offload the
execution of most of the Coordinator and Follower write algo-
rithms of Figure 2 from the host to the SmartNIC (SNIC). Fig-
ure 6 shows the high-level operation. The algorithm changes
little from that in Figure 2. On the Coordinator side, the
host starts the write transaction (Lines 1-8 in Figure 2). After
snatching the RDLock, it sends the multiple INVs to the
SmartNIC. The SmartNIC takes over starting at Line 9 and
executes the rest of the algorithm. Every time an ACK is
received, it is passed to the host. Once the SmartNIC has
received all of the ACKs, it proceeds to release the RDLock
and send the VALs.

In the Follower, all the operations (Lines 23-44) are performed
in the SmartNIC. The host is not invoked. Note that a
SmartNIC can reject a request from its local host or from
the network if it runs out of resources.

With this support, MINOS-O reduces the data and control
transfers between SmartNIC and host in the Follower and,
to a lesser extent, in the Coordinator. The result is that both
the communication and the computation overheads of write
transactions in Figure 4 decrease.

2. Coherence between Host and SmartNIC. When we
offload some operations of the algorithm to the SmartNIC, we
need to ensure that data which can be accessed concurrently
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lock

VAL

RDLock
unlock

Host SNIC
Write
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lock INV

INV

ACK

Return
Write VAL

RDLock
unlock

ACK

Fig. 6 – Offloading operations to the SmartNIC.

by host and SmartNIC is kept coherent. MINOS-O enables
fast sharing of some data structures by keeping them coherent
between host and SmartNIC in hardware.

There are only four types of data structures that need to be
kept coherent. They are four of the metadata fields of data
records shown in Figure 1(a): RDLock Owner, volatileTS,
glb volatileTS, and glb durableTS. The WRLock is not in-
cluded because, as we will see, MINOS-O does not use it.

Recall that RDLock Owner (also called RDLock for short)
for a record in a node is set when there is at least one ongoing
write transaction to the record locally. As shown in Figure 6,
there are four places in a write transaction where either the
host or the SmartNIC can update RDLock. In addition, when
a host receives a read transaction, it needs to check RDLock.
MINOS-O enables fast access by providing coherence in
hardware.

The volatileTS, glb volatileTS, and glb durableTS times-
tamps of a record are set in the Coordinator and Follower
algorithms when the record in local volatile storage is updated,
when the consistency of the record is enforced across all repli-
cas, and when the persistency of the record is enforced across
all replicas, respectively (§III-B). In MINOS-O, the code that
updates these timestamps is executed by the SmartNIC.

These timestamps are read when the algorithm checks for
the obsoleteness of a write (i.e., Obsolete(TSWR)) and when
performing the consistency and persistency spinning (i.e.,
handleObsolete()) (§III-B). In MINOS-O, the code that reads
these timestamps is executed by the host and by the SmartNIC.

To provide hardware coherence for these four data struc-
tures, MINOS-O places them in a special range of addresses
mapped to a small on-chip memory in both host and Smart-
NIC. A dedicated bus supports MSI snoopy coherence between
these two memories. This hardware is logically placed in the
Selective Coherence Module of Figure 5(a).

3. Message Batching and Broadcasting. A source of
overhead in distributed protocols that replicate data in multiple
nodes is that, on a write operation, messages have to be sent
to update all the replicas. MINOS-O minimizes this overhead
by supporting two mechanisms that have been proposed in



other contexts. The first one focuses on minimizing the many
messages that the Coordinator’s host and SmartNIC exchange
through the slow PCIe bus. Indeed, as shown in Figure 6,
the host sends as many INV messages as Followers, and
the SNIC responds with as many ACKs as Followers. To
reduce this overhead, MINOS-O performs batching [24], [47],
[52], whereby the host sends a single INV message with
information about which nodes should receive it, and the
SmartNIC responds with a single ACK message when it has
received all the ACKs. Later, the SmartNIC sends the VALs
without host involvement.

The second mechanism addresses the SmartNIC overhead
of preparing and sending the same INV and VAL messages
to multiple Followers. Rather that considering these messages
as completely different messages, MINOS-O provides special
hardware and an RDMA verb [51] that broadcasts a message.
Specifically, the SmartNIC deposits an INV or VAL message
into the Send Buffer only once, and fills a Destination Map
register. Then, an FSM broadcasts the message to all the
destinations. This hardware is logically placed in the Message
Broadcast Module of Figure 5(a). In contrast, the baseline
approach requires depositing the same message on the Send
Buffer multiple times.

4. Eliminating Write Locks. In the Coordinator and Follower
algorithms of Figure 2, a thread must grab the WRLock for
a record before it can update the local version of the record
in local volatile memory. Grabbing the WRLock is needed
for two reasons. First, it prevents record corruption when
more than one thread are trying to update the same record
concurrently. Second, locking is also needed to safely identify
an obsolete write to the local volatile memory (thanks to the
Obsolete(TSWR) check), and avoid it.

Note that the update to the local non-volatile log is outside
the WRLock critical section. The reason is that updates are
deposited into the log in an atomic fashion. It is possible that
entries are inserted into the log in an out-of-order manner,
therefore creating obsolete entries. However, correctness is
maintained because, before the log entries are applied to the
non-volatile database, they are checked for obsoleteness.

Spinning on, grabbing, and releasing the WRLock adds
overhead. To eliminate this overhead, MINOS-O adds special
hardware that serializes the updates to the same record in the
local volatile memory and skips obsolete updates to the local
volatile memory. This hardware is the vFIFO queue. There
is also the dFIFO queue that persists the updates locally in
the SmartNIC, avoiding the need to push them to the host in
the critical path. Both vFIFO and dFIFO queues are shown in
Figure 5(b).

When a thread executing the Coordinator algorithm wants to
write to a record, rather that grabbing the WRLock, it directly
checks whether the write is obsolete. If it is not, the SmartNIC
sends the INVs and writes to the vFIFO queue atomically and
to the dFIFO queue atomically. When the hardware dequeues
an entry from the vFIFO queue in the background, it checks
for obsoleteness before updating the LLC. If the entry is not

obsolete, a DMA operation pushes the update to the host’s
LLC. Dequeueing can be done in parallel for updates to
different records. When the hardware dequeues an entry from
the dFIFO, it pushes it to the host NVM log. A thread cannot
proceed to unlocking the RDLock until (1) the update has
drained from the vFIFO to the LLC, and (2) all the ACKs
have been received. There is no need to wait for the update to
drain from the dFIFO because the update is already durable.

When a thread executing the Follower algorithm in the
SmartNIC wants to write to a record, the process is similar.
First, it checks whether the update is obsolete. If it is not, it
writes to the vFIFO queue atomically and to the dFIFO queue
atomically. Finally, it sends the ACK. When the hardware
dequeues the entry from the vFIFO queue, it checks for
obsoleteness before updating the LLC; when the hardware
dequeues an entry from the dFIFO, it pushes it to the host
NVM log. After the update has drained from the vFIFO
and the VAL has been received, the thread can proceed to
unlocking the RDLock.

C. Overall MINOS-O Algorithms

When all the mechanisms are applied together, we obtain
the MINOS-O algorithm. Figure 7(a) shows the message
exchanges of the MINOS-O algorithm for a write and a read
using the <Lin, Synch> model. As shown in the figure, for a
client-write, the Coordinator host grabs the RDLock and sends
a batched INV message to its SNIC. The SNIC broadcasts
the INV message to all the Followers. Afterwards, the SNIC
enqueues the update in vFIFO and dFIFO. Later, when all
the corresponding ACKs are received, the Coordinator’s SNIC
sends a batched ACK to the host, which marks the end of
the client-write operation. After the corresponding data entry
is drained from vFIFO, the SNIC releases the RDlock and
broadcasts the VALs to all the Followers.

Figure 7(a) also shows that, in a Follower, when the SNIC
receives an INV, a thread grabs the RDLock, enqueues the
update in vFIFO and dFIFO, and returns an ACK. Later, when
the Follower receives a VAL and the corresponding data entry
is drained from vFIFO, the Follower releases the RDLock. In
both Coordinator and Follower, a client-read can only proceed
when the RDLock is free.

Figure 8 shows the detailed MINOS-O algorithm for the
Coordinator and Follower for <Lin, Synch>. The algorithm
is organized as Figure 2 with the four MINOS-O optimizations
applied.

D. Supporting Other Persistency Models

Figures 7(b)–(e) show the algorithms for the other per-
sistency models. They are similar to <Lin, Synch> except
for the following differences. First, ACKs and VALs can be
for consistency (ACK C, VAL C) or persistency (ACK P,
VAL P). Second, different models have slightly different logic,
as discussed in Section III-C and shown in Figure 3. For ex-
ample, different algorithms use different conditions to release
the RDLock in the Coordinator and in the Follower, and to
return to the client.
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Fig. 7 – Timeline of the MINOS-O algorithms for consistency and persistency models using SmartNICs (SNICs).

Note that, in some cases, we have separated the enqueuing
to the vFIFO from the enqueuing to the dFIFO. We do this
when only the enqueuing to the vFIFO is in the critical
path and, therefore, waiting for the slower enqueuing to the
dFIFO in the critical path in unnecessary. For the [PERSIST]sc
command of the <Lin, Scope> model, we do not include
the bookkeeping operations in the volatile and non-volatile
memory in order to simplify the picture.

VI. PROTOCOL VERIFICATION

To verify the correctness of the MINOS-B and MINOS-O
protocols, we use the TLA+ formal specification and verifica-
tion language, and model-check the protocols in TLC [32]. Our
TLA+ work draws upon the Hermes [27] TLA+ design. With
TLA+, we specify all the states and possible actions from all
the states, and then check that certain correctness conditions
hold. We model-check all <consistency, persistency> models
analyzed.

Table I shows the correctness conditions checked for all the
<consistency, persistency> models analyzed. We first check
two concurrency conditions: no deadlock and no livelock.
Next, for data consistency correctness, we check three invari-

ants related to the values of the volatileTS and glb volatileTS
metadata of records. Next, for data persistency correctness,
we check two invariants involving the value of glb durableTS.
Finally, we perform a set of type checks that ensure: a) only
legal messages are sent, b) record metadata and locks take
only legal values, and c) bookkeeping data in write operations
take only legal values.

VII. METHODOLOGY

We evaluate MINOS-B using a distributed machine. Since
the proposed MINOS-O hardware does not exist, we evalu-
ate MINOS-O and also MINOS-B (for comparison) using a
simulated distributed machine.
Distributed Machine. We implement MINOS-B in a 5-
node cluster provided by CloudLab [17] with the parameters
shown in Table II. Since we do not have access to a modern
persistent memory device, we use information from prior
works [30], [58], [61] and assume 1295ns to persist 1KB
of data. One way to exchange messages between nodes is
to use one-sided Remote Direct Memory Access (RDMA),
which is the state-of-the-art paradigm for server-to-server com-
munications in datacenters [1], [20], [57], [65]. However, in
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Fig. 8 – MINOS-O algorithm for <Lin, Synch>.

1. Concurrency Checks
Absence of deadlocks and livelocks.
2. Consistency Checks
a) When a record is read-unlocked in all nodes, the volatileTS and
glb volatileTS of the record are the same across all nodes.
b) When all ACKs for consistency have been received for a write to
a record, the volatileTS of the record is the same across all nodes.
c) When not all ACKs for consistency have been received for a write to
a record, the glb volatileTS of the record is the same across all nodes.
3. Persistency Checks
a) When a record is read-unlocked in all nodes, the glb durableTS
of the record is the same across all nodes.
b) When not all ACKs for persistency have been received for a write to
a record, the glb durableTS of the record is the same across all nodes.
4. Type Checks
a) Each message ∈ {INV, ACK, ACK C, ACK P, VAL, VAL C,
VAL P, [INV]sc, [ACK C]sc, [ACK P]sc, [VAL C]sc, [VAL P]sc,
[PERSIST]sc}
b) Record metadata:
i) For volatileTS, glb volatileTS, and glb durableTS:
version ∈ {0...(MAX VERS-1)}, node id ∈ {0...(MAX NODES-1)}
ii) For RDLock Owner:
version ∈ {-1...(MAX VERS-1)}, node id ∈ {-1...(MAX NODES-1)}
iii) WRLock ∈ {0, 1}
c) Bookkeeping: ∀ node id,
{RcvedACK SenderID[node id], RcvedACK C SenderID[node id],
and RcvedACK P SenderID[node id]} ∈ {0...(MAX NODES-1)
\ node id}

TABLE I – Conditions checked using TLA+ for all
the <consistency, persistency> models analyzed.

our protocol, a message received by a node performs multiple
operations before triggering a response to the requester node.
Using RDMA would require multiple messages to perform
these multiple operations, resulting in performance overhead.
Hence, we instead use eRPC [25], [26] for communication,
which provides performance similar to RDMA.

This distributed machine was used in the experiments of
Section IV and to calibrate the parameters of the simulated

Number of nodes 5
CPU per node Xeon E5-2450 (5 cores, 2.1 GHz)
Main memory per node 16GB of DRAM (DDR3-1600)
NIC per node Mellanox MX354A FDR CX3
Emulated NVM per node 1295 ns to persist 1KB of data

TABLE II – Distributed machine running MINOS-B.

distributed machine.
Simulated Distributed Machine. The simulator we use is
SimGrid [8], [9], which is an accurate and scalable simulator
for distributed systems. We model a distributed architecture
similar to the CloudLab one with 2, 4, 5 (default), 6, 8, 10,
or 16 nodes. The various access latencies of the memory
hierarchy of the host are set based on measurements of the
CloudLab system. The various overheads and latencies in the
SmartNIC are set based on measurements of the BlueField-
2 HDR100 100Gb/s SmartNIC [44] of the Thor cluster at
the HPC-AI Advisory Council Cluster Center [21]. Other pa-
rameters of the SmartNIC and of the communication between
SmartNIC and host or between SmartNICs are obtained from
the literature [35], [39], [43] or from measurements on the
CloudLab system.

Some parameters used in the simulator are shown in Ta-
ble III. The synchronization latency is the average latency
to perform a compare-and-swap. The table also shows the
latencies to send an INV and an ACK message. Further, it
shows the time between consecutive messages when sending
the same INV to a set of Followers without broadcasting.

Number of Nodes 2, 4, 5 (default), 6, 8, 10, or 16
Node Host SmartNIC
Number of Cores 5 8
Core frequency 2.1 GHz 2 GHz
Synchronization latency 42 ns 105 ns
Communication Link Latency BW
PCIe between Host and SmartNIC 500 ns [35] 6.25 GB/s [43]
Network link between SmartNICs 150 ns 7 GB/s [39]
MINOS-O Parameters
vFIFO & dFIFO latency (wr 1KB) 465 ns and 1295 ns
vFIFO & dFIFO size 5 and 5 entries
Send one INV and send one ACK 200 ns and 100 ns
Time between consecutive msgs 100 ns (with no broadcast support)

TABLE III – Parameters of the simulated system.

In addition to running the MINOS-O algorithms on the
simulated distributed architecture, we also run the MINOS-B
algorithms on a simulated model of the CloudLab distributed
machine. With our parameters, MINOS-B performs similarly
in both the real and the simulated machine.
Workloads Used. To support our proposed metadata format
(Figure 1), we implement our own key-value store, named
MINOS-KV. Requests are generated using a C++ version of
Yahoo! Cloud Serving Benchmark (YCSB) [12], [50]. The
back-end in-memory application used is a Hashtable [11].

We use various workloads with different write and read
ratios. The database of each node has 100,000 records. The
default workload uses a zipfian distribution for keys, has 50%
write and 50% read operations, and issues 100,000 requests
per node. We use a record size of 1KB, which is the default



in YCSB. In some experiments, we use the DeathStar [18]
benchmark suite for microservices.

All nodes contain replicas of all records. Therefore, all write
operations initiated in a node need to be propagated to all other
nodes. Read operations are always local.

VIII. EVALUATION

In this section, we compare MINOS-B and MINOS-O under
a variety of conditions, evaluate the impact of the MINOS-O
optimizations, and perform a sensitivity analysis of some
parameters.

A. Comparing MINOS-B and MINOS-O

Figure 9 compares the latency and throughput of client
writes (a) and client reads (b) under various conditions in
MINOS-B and MINOS-O. In each chart, the latency is repre-
sented with bars and is measured in the left Y-axis, while the
throughput is represented with triangles and is measured in
the right Y-axis. The bars/triangles are organized in groups
corresponding to the different <consistency, persistency>
models. For each model, the different bars/triangles correspond
to workloads with 20%, 50%, 80%, and 100% of writes or
reads. In each figure, the bars and triangles are normalized to
MINOS-B with <Lin, Synch> and 50% writes or reads.
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Fig. 9 – Normalized latency (bars and left Y-axis)
and throughput (triangles and right Y-axis) of writes
(a) and reads (b) for MINOS-B and MINOS-O for
different workloads.

Consider the write transactions first (Figure 9(a)). For
all the workloads and <consistency, persistency> models,
MINOS-O typically reduces the average write latency by 2-3x

over MINOS-B, and increases the average write throughput
by 2-3x over MINOS-B. These are major improvements.
Also, MINOS-O is much less sensitive to the persistency
model than MINOS-B. In addition, as the fraction of writes
increases, MINOS-O’s throughput increases, but its latency
barely changes. In contrast, MINOS-B’s throughput typically
improves little with higher fraction of writes. Overall, MINOS-
O is a high performance scheme, robust to changes in consis-
tency and load.

Consider now read transactions (Figure 9(b)). The trends are
similar. MINOS-O often reduces the average latency by 2x or
more over MINOS-B, and increases the average throughput
by 2x or more over MINOS-B. For both schemes, as the
fraction of reads increases, the read latency decreases and the
throughput increases. This is due to the high cost of writes.

On average across models and workloads, MINOS-O’s write
and read latency are 2.1x and 2.2x lower than MINOS-
B’s, respectively; MINOS-O’s throughput is 2.3x higher than
MINOS-B’s for both writes and reads.

B. Comparison for Different Node Counts

Figure 10 compares the latency and throughput of client
writes (a) and client reads (b) in MINOS-B and MINOS-O
for different node counts (2, 4, 6, 8, and 10). The figure is
organized as Figure 9. In each figure, the bars and triangles are
normalized to MINOS-B with <Lin, Synch> and two nodes.
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Fig. 10 – Normalized latency (bars and left Y-axis)
and throughput (triangles and right Y-axis) of writes
(a) and reads (b) for MINOS-B and MINOS-O for
different node counts.



We again see the effectiveness of MINOS-O. As the number
of nodes increases, MINOS-O rapidly increases the through-
put, while keeping latency increases modest (for writes) or
non-existing (for reads). The write latency increases are due
to higher contention. In contrast, as the number of nodes
increases, MINOS-B increases the latency quickly and is
typically unable to improve the throughput.

On average across models and node counts, MINOS-O’s
write and read latency are 2.3x and 3.1x lower than MINOS-
B’s; MINOS-O’s throughput is 2.4x higher than MINOS-B’s
for both writes and reads.

C. Comparison for Real Applications

We compare the end-to-end latency of running Death-
Star [18] functions on MINOS-B and MINOS-O. We evaluate
the Login function of the UserService microservice in the
Social Network and Media Microservices applications. In each
SET and GET operation, we invoke our client-write and
client-read algorithm, respectively. We assume a node-to-node
round-trip latency of 500µs, which has been measured in
datacenters [3]. We model a cluster with 16 nodes.

Figure 11 shows the end-to-end latencies for MINOS-
B and MINOS-O. The bars are grouped by <consistency,
persistency> model. For each model, there are bars for the
two functions and for MINOS-B and MINOS-O. The bars are
normalized to <Lin, Synch> MINOS-B and Social. From the
figure, we see that MINOS-O reduces the end-to-end latency
across the board. On average, it reduces the end-to-end latency
by 35%.
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Fig. 11 – End-to-end latency of real applications.

D. Evaluating the MINOS-O Optimizations

To evaluate the impact of the MINOS-O optimizations
of §V-B, we group them into three groups: (i) offloading
operations to the SmartNIC plus supporting coherence be-
tween host and SmartNIC, and eliminating write locks; (ii)
message batching; and (iii) message broadcasting. The first
group, called Combined, combines three optimizations because
applying them separately is sub-optimal. Also note that batch-
ing can only be beneficial if Combined is applied first.

Figure 12 compares the average write latency of a workload
that issues only client write operations for different archi-
tectures: MINOS-B, MINOS-B plus broadcast, MINOS-B
plus batching, MINOS-B plus Combined (represented as

Offl+Coh+WRLock), MINOS-B plus Combined and broad-
cast, MINOS-B plus Combined and batching, and MINOS-O.
The bars are normalized to MINOS-B and the evaluated model
is <Lin, Synch>.
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Fig. 12 – Impact of the MINOS-O optimizations.

We see that augmenting MINOS-B with broadcast or batch-
ing has no noticeable effect. However, augmenting MINOS-B
with the Combined optimization is very effective: the write
latency goes down by 43.3%. The reasons are the high effi-
ciency of operation execution in the SmartNIC and the reduced
number of host-SNIC communications. Taking this design and
adding broadcast barely affects the write latency, as the system
is already quite efficient. On the other hand, taking MINOS-B
with the Combined optimization and adding batching slows the
execution. The reason is that, as a batched message arrives at
the SmartNIC, the latter has to unpack it, which adds overhead.
However, if we add all the optimizations (creating MINOS-O),
batching is beneficial because, with broadcast, the message
does not need to be unpacked. Overall, MINOS-O reduces the
average write latency by 50.7% over MINOS-B.

E. Sensitivity Analysis

In this section, we perform a sensitivity analysis of different
MINOS-O parameters. We use a workload with 50% writes
and 50% reads running with <Lin, Synch>, and measure the
average write latency. Figure 13 shows the normalized write
latency of MINOS-O as we vary the FIFO size. The figure
shows bars for 1, 2, 3, 4, 5, and 100 entries in each of vFIFO
and dFIFO. The bars are normalized to the MINOS-O write
latency with an unlimited number of FIFO entries. We see
that, with 3-5 entries, one attains the same average latency as
with an unlimited number of them.

Figure 14 compares the average execution time of a write
in MINOS-O and MINOS-B. Specifically, it shows the write
transaction speedup of MINOS-O over MINOS-B under dif-
ferent values of persist latency, key distribution, and database
size. In the first set of bars, we vary the time it takes to persist
a 1KB record from 100ns to 100µs. These values are selected
to represent current and future durable mediums. For example,
today, persisting a 64B cache line to NVM takes about 100
ns [58], and persisting a block to SSD takes about 100 µs [63].
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We can see that MINOS-O speeds-up write transactions in all
cases. The speedups increase with the persist latency and are,
on average, 2.2x.
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Fig. 14 – Sensitivity to other parameters.

In the second set of bars, we vary the key distribution
between zipfian (default) and uniform. In general, with zipfian,
we would expect more conflicts on the same keys, therefore
reducing performance. As already mentioned, however, our
algorithms can support concurrent and conflicting writes in
both MINOS-B and MINOS-O. As a result, the figure shows
that MINOS-O delivers a speedup of 2x over MINOS-B in
both distributions.

Finally, in the third set of bars, we vary the database size
from 10 records to 100K records. In general, the smaller the
database size is, the more the conflicts that are expected. Since
both algorithms handle conflicting writes well, the changes
as we increase the database size are minimal. On average,
MINOS-O delivers a speedup of 2x over MINOS-B.

IX. RELATED WORK

Consistency and persistency models. There are several key
works in this area. Pelley et al. [46] introduce memory
persistency models. Ganesan et al. [19] introduce the Read-
Enforced persistency model. For consistency models, Her-
mes [27] proposes a leaderless design for Linearizable con-
sistency. DDP [30], which is closest to our work, introduces
a set of combinations of consistency and persistency models
and their high-level operation.
NICs in datacenters. NICs can improve performance in
datacenters. Caulfield et al. [10] use NICs to enable direct
communication between pools of FPGAs. FLOEM [47] intro-
duces a framework to program NIC-accelerated applications.
Some works extend RDMA capabilities: Reda et al. [49]
support self-modifying RDMA chains, PRISM [7] introduces

new primitives, and Hyperloop [28] supports distributed trans-
actions. RAMBDA [64] offloads CPU tasks into a cache-
coherent accelerator that can directly interact with RDMA
NICs.
Programmable NICs and switches. They are used in datacen-
ters [41], [56]. The NetCache [23] and IncBricks [36] switches
cache data in the network, and PMNet [53] also persists
data in the network (whether it is a programmable switch
or a NIC). Several works optimize/extend existing RDMA
primitives using SmartNICs [3], [33], [51], or offload storage
operations [42]. In SmartNICs, LineFS [29] supports dis-
tributed file systems with support to persist at the client’s side,
TURBO [54] load-balances light-tailed RPCs, and Xenic [52]
accelerates distributed transactions by maintaining locks and
hot data at the NIC. iPipe [35] provides a new programming
model to offload distributed applications onto SmartNICs,
and SKV [55] offloads key-value stores to SmartNICs while
persisting at the host. MINOS is different from prior works
in that it targets offloading both consistency and persistency
protocols to the SmartNIC, and uses rigorous definitions of
consistency and persistency models.

X. CONCLUSION

To enable high-performance, programmable, and durable
distributed systems, this paper has developed detailed dis-
tributed algorithms for DDP models. The algorithms support
Linearizable consistency with five different types of persis-
tency. We call them MINOS-B. Then, to improve performance,
we redesigned the algorithms to offload them to a new Smart-
NIC architecture. The architecture introduces optimizations
such as selective data coherence in hardware between host and
SmartNIC, message batching, and message broadcasting. The
resulting algorithms and architecture are called MINOS-O.
Our evaluation of MINOS-O showed that offloading substan-
tially reduces request latency and increases request throughput
for various workloads and number of nodes. For example,
compared to MINOS-B, MINOS-O reduced the average end-
to-end latency of two microservice functions by 35%.
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