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Abstract
Despite the ubiquity of multicores, it is as important as

ever to deliver high single-thread performance. An ap-

pealing way to accomplish this is by shutting down the

idle cores in the chip and running the busy, performance-

critical core(s) at higher-than-nominal frequencies. To en-

able such frequencies, two low-overhead approaches ei-

ther boost voltage beyond nominal values, or pair cores in

leader-checker configurations and let them run beyond safe

frequency margins.

We observe that, in a large multicore with varying num-

bers of busy cores, individual application of either of these

two techniques is suboptimal. Each alone is often unable

to bring the multicore all the way to its power or tempera-

ture envelopes due to limitations in supply voltage or error

rate. Moreover, we show that the two techniques are com-

plementary, and can be synergistically combined to unlock

much higher levels of single-thread performance. Finally,

we demonstrate a dynamic controller that optimizes the two

techniques. Our data shows that, given a 16-core multi-

core where half of the cores are already busy, an additional,

performance-critical thread now attains 34% higher perfor-

mance than before, while consuming 220% more power.

1 Introduction
Although multicores are becoming the commodity archi-

tecture for a wide range of platforms, it is as important

as ever for processors to deliver high single-thread per-
formance. To tackle this problem, many techniques have

been proposed, such as thread-level speculation (e.g., [10,

19, 28, 29]) or core fusion/composition [16, 17]. To be

attractive, these techniques have to deliver high single-

thread performance enhancements with modest hardware

complexity.

Often, some of the cores in a multicore are idle. Conse-
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quently, an appealing approach to improve per-thread per-

formance is to shut down the idle cores in the chip and

run the busy, performance-critical core(s) at higher-than-

nominal frequencies. To enable such frequencies, two rel-

atively low-complexity techniques are: either boost the

voltage beyond its nominal value, or pair cores in leader-

checker configurations and let them run beyond safe mar-

gins.

The first technique is included in Intel’s Nehalem proces-

sor as Turbo Boost [14]. The idea is to increase the voltage

and frequency of the active cores beyond the values cor-

responding to nominal operating conditions until the chip

reaches the extremes of its power envelope. The hardware

overhead is modest because it uses similar mechanisms as

dynamic voltage-frequency scaling (DVFS), which is al-

ready widely deployed for power savings. Further, we ex-

pect that future power-constrained multicores will include

flexible DVFS capabilities such as several voltage and fre-

quency domains in order to maximize power efficiency.

The second technique is configurable timing specula-

tion using a leader–checker core pair. The idea, as imple-

mented in the Paceline microarchitecture [9], follows the

Slipstream design [30] where the same thread runs on two

nearby cores. The leader core is overclocked to the point

of suffering timing errors, while the checker core runs at

a safe frequency and periodically checks (and corrects) the

leader. The checker keeps up because the leader supplies

branch predictions and brings data into an L2 cache shared

by the two cores. Overall, the two cores effectively run an

unmodified thread at a higher frequency. The key hardware

changes involve passing branch predictions and comparing

register checkpoints, leaving the core mostly unmodified.

As multicores scale to more cores, they will often run

a mixed workload that leaves some cores idle, uses some

set of cores for throughput, and demands maximum se-

quential performance from a few latency-critical threads.

Since these workloads will be dynamic, the number of

throughput-oriented and latency-critical threads will vary

over time and from application to application. In such
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an environment, this paper observes that individual ap-

plication of either voltage–frequency boosting or leader–

checker execution is suboptimal. Alone, neither tech-

nique will be able to consistently bring the multicore to

the extremes of its power envelope or to its limit temper-

ature. Instead, each individual technique will be limited by

other factors, such as the maximum supply voltage (beyond

which reliability suffers) or maximum error rate (beyond

which performance drops due to frequent recovery), leav-

ing some of the available power and temperature headroom

untapped.

This paper shows that the two techniques are in fact or-

thogonal and can combine synergistically to unlock much

higher levels of single-thread performance than either can

alone. Moreover, we demonstrate a dynamic controller that

optimizes the two techniques. Under a variety of loading

conditions, the two techniques together bring the multicore

to the extremes of its power and temperature envelope.

Finally, this paper evaluates the controlled combination

of these techniques on a 16-core configurable multicore

where each core has its own voltage and frequency domain.

Our results show that, when half of the cores are busy and

the goal is to optimize an additional, performance-critical

thread, combining these techniques enables the thread to

attain 34% higher performance than it had before, while

consuming 220% more power. Moreover, the configurabil-

ity of the proposed multicore enables similar gains under

various load conditions.

This paper is organized as follows: Section 2 gives a

background; Section 3 shows that the two techniques for

single-thread performance are synergistic; Section 4 de-

scribes a practical control system to manage the techniques;

Sections 5 and 6 evaluate the system; and Section 7 dis-

cusses related work.

2 Background
This section reviews the two techniques to support

higher-than-nominal frequency.

2.1 Boosting Voltage Beyond Nominal Point

The Intel Core i7 (“Nehalem”) processor introduces the

Intel Turbo Boost technology, where both supply voltage

(Vdd) and frequency (f) are increased when high perfor-

mance is desired [14]. To support this feature, the proces-

sor includes sensors and an on-chip controller that contin-

uously monitors the power and temperature in the chip.

When the operating system requests performance state

P0 (highest performance) for one or more cores and places

other cores into an inactive state, the on-chip controller

transparently attempts to scale up Vdd and f on the active

cores. As long as the on-chip sensors report safe con-

ditions, the controller increases the frequency in steps of

133.33 MHz with a corresponding voltage increase. The

maximum frequency increase (maximum number of steps)

is determined by the number of inactive cores. If, at any

time, the power and temperature conditions reach unsafe

values, the hardware automatically decreases Vdd and f one

133.33 MHz step.

Note that in Intel’s Turbo Boost, all active cores increase

and decrease Vdd and f at the same time. In this paper, we

use a more advanced design where each core can change its

Vdd and f independently of the other cores. Per-core voltage

domains can be implemented with multiple on-die [18] or

external regulators. Current systems already include per-

core frequency domains [6].

2.2 Leader–Checker Core Pairing

In a leader-checker microarchitecture with timing spec-

ulation such as Paceline, cores arranged as pairs (usually

two cores at close physical proximity) run the exact same

thread [9]. One of the cores (Leader) is overclocked to

the point of suffering occasional timing errors. The other

core (Checker) runs at a safe clock frequency. The leader

remains ahead of the checker, and by bringing data into

the L2 cache that it shares with the checker, it prefetches

for the checker — although its updates are prevented from

reaching the L2 cache. Moreover, it also passes branch

outcomes to the checker through a link called the Branch

Queue (BQ), giving the checker near-perfect branch pre-

diction. As a result, the checker keeps up with the acceler-

ated leader. The net effect is that the thread executes faster

than on a single base core. This idea is a variant of Slip-

stream [30], where the leader was faster (and incorrect) be-

cause it skipped some instructions.

To ensure correctness, there is hardware that periodically

compares the architectural states in the two cores and re-

covers on a mismatch. Specifically, each core has logic that

takes periodic register checkpoints and generates a hashed

signature for each checkpoint. Then, there is a shared Vali-

dation Queue (VQ) that collects the signatures from the two

cores and compares them. If there is a mismatch, a register

checkpoint from the checker is copied to the leader.

As it executes, the overclocked leader dissipates higher

power than a base core. Meanwhile, the checker lever-

ages the branch outcomes and prefetches from the leader,

executing far fewer wrong-path instructions and suffering

fewer L2 misses. Together, the leader–checker pair dissi-

pates only slighly more total power than two base cores.

To manage the thermal imbalance that results from over-

clocking the leader, the two cores periodically alternate the

leader position. Note that although the leader and checker

cores redundantly execute the same thread, they do not

execute in lock-step. Moreover, the cores can sever their

Branch and Validation Queue links at any time and run dif-

ferent threads in uncoupled mode.

Figure 1(a) shows a typical curve of error rate (labeled

PE for probability of error) versus f for a core, where point

A denotes the nominal operating point. As the core f in-

creases from its nominal value f0, first the guardband is
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Figure 1: Qualitative depiction of increases in processor f when the VBoost and LeadCheck techniques are applied.

consumed and there are no errors. Once the guardband is

exhausted, PE starts increasing, first slowly, then rapidly.

In these architectures, the optimal performance point is

found when the leader runs at a f with a small PE (point

B in Figure 1(b)). For higher f, recovery costs negate any

performance gains.

3 The Two Techniques are
Complementary & Synergistic

A key novel insight of this paper is that the two tech-

niques described are complementary and synergistic, mul-

tiplying their speedups on single-thread performance.

3.1 Characterizing Power Consumption

We call the techniques described in Sections 2.1 and 2.2

VBoost and LeadCheck, respectively. Of the two tech-

niques, VBoost is simpler to implement. While LeadCheck
is harder to build than VBoost, it entails fewer changes to

the core than other major microarchitectural techniques for

single-thread performance — such as thread-level specu-

lation, core fusion/composition, or very wide superscalars.

LeadCheck requires only the addition of a branch queue

and validation/checkpointing logic. These are concentrated

in the fetch and retire stages, where they are unlikely to af-

fect critical paths.

Our goal is to apply these two techniques to threads

that demand single-thread performance until the cores

reach their maximum allowed power (Pmax) or tempera-

ture (Tmax). These techniques have different power be-

haviors. Per-core power (and, therefore, temperature) in-

creases faster with VBoost than with LeadCheck. This

arises from the fact that VBoost increases both Vdd and f,
while LeadCheck only increases f. We can see this from

the formulae for static power due to leakage (Pleak in Equa-

tion 6), dynamic power (Pdyn in Equation 5), and logic gate

delay [23] (Tg in Equation 3).

Vt = Vt0+Ktemp (T−T0)+KDIBL (Vdd−Vdd0) (1)

μ ∝ T−1.5 (2) Tg ∝ Vdd Leff

μ (Vdd − Vt)α
(3)

Ileak ∝ μ

Leff
T 2 e−q Vt/(k T n) (4)

Pdyn ∝ C V 2
dd f (5) Pleak = Vdd Ileak (6)

As VBoost increases Vdd, both Pdyn and Pleak increase

rapidly. Indeed, Pleak depends directly on Vdd (Equa-

tion 6) and, through Ileak (Equation 4), exponentially on

Vdd (since Vt is a function of Vdd in Equation 1). Mean-

while, Pdyn has a quadratic dependence on Vdd (Equa-

tion 5) and a linear dependence on f (which itself depends

on Vdd).

In general, when speeding up a single thread with ei-

ther of these techniques, VBoost will reach power or tem-

perature constraints at lower frequencies than LeadCheck
— assuming that no other constraint limits the frequency

increase earlier. One way to improve the effectiveness of

VBoost is to add activity migration [11], which moves the

thread among two available cores to reduce the formation

of hotspots. We call the combination of VBoost and migra-

tion VBo+Mig.

3.2 Composing the Techniques

The two techniques are complementary because, in prin-

ciple, the application of each one is limited by a differ-

ent constraint. Specifically, suppose that we have as much

power and temperature headroom as we want and use one

of the techniques to gradually increase the frequency of a

core. If we apply LeadCheck, the limiting factor will be

the value of the error rate PEmax beyond which the per-

formance begins to drop because of the frequency of error

recovery. Instead, if we apply VBoost, the limiting factor

will be the value of the process maximum supply voltage

(Vddmax), beyond which the devices become unreliable.

Pictorially, this is shown in Figure 1. Figure 1(a) shows

a typical PE versus f curve for a core. The core works at

f=A. If we apply LeadCheck, we eliminate the guardband

and even allow the processor to tolerate some errors. We

work at f=B in Figure 1(b), and accomplish an f increase

of ΔfL. Instead, if we apply VBoost alone, the entire PE

versus f curve shifts to the right — while changing its slope

in some way. Figure 1(c) shows that the processor can now

work at f=C while still respecting the guardband. We have

obtained an f increase of ΔfB . Finally, if we combine both

VBoost and LeadCheck, we still have the same curve as

Figure 1(c) but, as shown in Figure 1(d), we eliminate the

guardband and tolerate some timing errors to operate at f=D
for an f increase of ΔfL&B .

In practice, the core may reach its power or temperature

limits before the two techniques are applied to their full ex-
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Bounding Constraints

Regime LeadCheck alone VBoost alone VBo+LC Gain from Multicore Loading

T/P PE T/P Vdd T/P Vdd/PE Combining? Condition

Individual � � �
Very Unlikely Very High� � �

Synergistic � � �
Likely High to Moderate� � �

Unfulfilled � � � Definitely Low

Table 1: Multicore constraint regimes. T/P stands for temperature or power.

tent. Figure 1(e) shows such a case where the f reaches only

E. Note that the core running the critical thread reaches the

temperature or power constraint sooner or later depending

on the load in the rest of the multicore. Specifically, if the

load is high, the temperature of the chip and, therefore, of

the core is higher to start with. Moreover, a higher tem-

perature induces higher leakage power, reducing the room

to Pmax. Overall, we define three operational regimes, as

shown in Table 1.

In the Individual regime, the application of LeadCheck
alone is sufficient to bring the core to its temperature or

power limit (T/P in the table). The combination of the two

techniques — which we refer to as VBo+LC — should not

deliver further gains. This is because the voltage of the

LeadCheck cores cannot be increased now without violat-

ing T/P constraints (as shown in the first row for Individ-
ual of Table 1). Alternatively, if we started with a VBoost
configuration bounded by Vdd and applied LeadCheck, we

could not get to a frequency higher than that of LeadCheck
alone without violating T/P constraints (second row for In-
dividual of Table 1). In general, this regime has a higher

chance to occur when the rest of the chip is heavily loaded,

since the other active cores generate a background of high

temperature that reduces the room to Tmax and Pmax for

the performance-critical core(s).

In the Synergistic regime, LeadCheck alone does not

bring the core to its T/P limits. Instead, it reaches the max-

imum timing error rate first (PE in the table). However,

the application of both techniques together does bring the

core to its T/P limits. In this regime, the combination of

techniques is likely to deliver gains. In Section 6 we show

that this regime dominates when the chip is under high to

moderate load.

Finally, in the Unfulfilled regime, even when both tech-

niques are applied together, the processor reaches the max-

imum supply voltage (Vdd) and limiting timing error rate

(PE) before arriving at the T/P constraint. In this case,

the combination of techniques delivers gains, but there is

power available for per-thread performance improvement

that goes unused and could be spent on additional tech-

niques if they were available. In Section 6 we demonstrate

that this regime is common in lightly-loaded multicores.

3.3 A Configurable Multicore

To take advantage of these techniques, we propose the

configurable multicore of Figure 2. To support LeadCheck,

cores are grouped in pairs, where two cores share an L2

cache. The two cores also have a communication link

for passing branch predictions from leader to the checker,

and for comparing the hashed register checkpoints. When

throughput matters, the two cores are decoupled; when

LeadCheck is used to enhance single-thread performance,

the cores are coupled and run the same thread, periodically

swapping leader and checker roles.
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Figure 2: Core (left) and die (right) floorplan of the configurable

multicore in 32-nm technology.

To support VBoost and VBo+Mig, each processor has its

own V and f domain. When single-thread performance mat-

ters, the core’s V and f are ramped up. Under VBo+Mig, the

thread bounces between the core and its neighbor to equal-

ize T. In this case, each of the two cores oscillates between

a high-V and f mode and a shut-down mode. While we

could migrate the thread to a remote core, the benefits of a

shared cache more than compensate for the slightly higher

T resulting from lateral heat conduction between the adja-

cent cores.

The configurable multicore operates as follows. At any

time, there are R threads where throughput matters and

S threads where single-thread performance is paramount.

The multicore can assign each of the S threads either to a

single core using VBoost, or to a core pair using VBo+Mig,

LeadCheck, or VBo+LC (which is VBoost plus LeadCheck)

— the decision is made by an optimizing controller. The R
threads run normally on remaining cores, and any unused

cores are shut down. As the load (R, S) changes, the con-

troller reconfigures the mode, f, and Vdd of each core to

maximize overall performance.
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4 Dynamic Controller Design
To manage the configurability of the multicore, we de-

sign a hierarchical dynamic controller that runs in software.

In this section, we formulate the problem, present the per-

thread controllers, and finally present the global controller.

4.1 Problem Formulation

Our goal is to maximize the speed of the S threads, which

are performance-critical. We do this by consuming all the

power and thermal headroom available in the cores that run

them. To ensure reliable operation, we must respect two

constraints: the per-core power consumption must be less

than Pmax, and the hottest point in the core must have a

temperature less than Tmax. Additionally, to simplify the

control, when using the LeadCheck technique, the timing

error rate PE is constrained to be less than PEmax = 10−5.

It can be shown that this number is very close to the break-

even point where the extra performance and time to recover

from errors cancel each other. Note that we use per-core

constraints rather than chip-wide ones because our hard-

ware has independent per-core power grids and supplies,

with no sharing of the current load between cores.

In this environment, we propose a thread controller in

software per S thread (which may control one or two cores,

depending on the technique used), and a simple global con-

troller also in software that oversees the thread controllers.

The inputs and outputs of each thread controller are:

Inputs: The controller reads a power and a temperature

sensor in the core (or each of the two cores) that it controls.

This is like the Intel Foxton [20] controller. Additionally,

if it controls two cores running in leader-checker mode, it

reads two other sensors. The first one is a counter with the

rate of checkpoint rollbacks observed — which gives the

error rate PE . The second one is the average occupancy of

the leader-checker coupling queues — which gives an indi-

cation of whether the checker is falling behind the leader.

Outputs: The controller sets the voltage and frequency of

the core (or each of the two cores) that it controls. We

assume that V and f can be modified arbitrarily at every

control interval (1 ms) with a minimum granularity of 10

mV and 100 MHz, respectively. The controller also sets

the microarchitectural configuration in the cores (VBoost,
VBo+Mig, LeadCheck, VBo+LC, or none).

4.2 Thread Controllers

A thread controller is implemented with two software

modules: the f-subcontroller that sets the core frequency

and the V-subcontroller that sets the core voltage. Next, we

describe the way they work for each of the techniques.

Thread Controller for VBoost: In this technique, the

thread controller increases the core’s f as much as possi-

ble while applying an elevated V. Figure 3(a) shows the

organization. The f-subcontroller drives the optimization

by executing a simple search for the maximum f as it mon-

itors the core’s P and T for constraint violations. In the

absence of violations, it attempts to increase f at the rate of

100 MHz every 2 ms. Otherwise, it initiates exponential

back-off starting with a reduction of 100 MHz for the next

control step.

(a) VBoost (b) VBo+LC

Core

Thread Controller

fckr V

CkrLdr

T,P

f V

Q

f

T,P

f

Vldr

V

PE

f V

T,P

f V

Thread Controller

Figure 3: Thread controller examples.

Whenever the f-subcontroller generates a f change, it

sends the new f to the V-subcontroller, which determines

whether a feasible V exists to support it. If so, the V-

subcontroller acknowledges the new f and instructs the core

PLLs and supplies to move to the new operating point. Oth-

erwise, it notifies the f-subcontroller that its f choice was in-

feasible and the f-subcontroller responds by proposing suc-

cessively lower f. The V-subcontroller implementation is

simple — just a lookup table indexed by f. At manufactur-

ing test time, the table is populated with Vs that guarantee

error-free (fully guardbanded) operation of the core for dif-

ferent f settings.

Thread Controller for VBo+LC: In this technique, the

thread controller drives the leader f as high as possible

while keeping the error rate below PEmax. Simultane-

ously, the checker frequency is adjusted to ensure that the

checker does not fall behind. Both the leader and checker

can receive elevated voltages. At all times, the checker is

operated in a fully-guardbanded mode to ensure error-free

operation just like a VBoosted core.

As shown in Figure 3(b), this thread controller uses a

f-subcontroller and a V-subcontroller for each of the two

cores. Compared to VBoost, the leader’s V-subcontroller

(Vldr) and the checker’s f-subcontroller (fckr) are slightly

different. The reason is that the Vldr-subcontroller provides

a V that accommodates a certain error rate, and the fckr-

subcontroller has the goal of enabling the checker to catch

up with the leader.

The controller works as follows. The leader uses the

same f-subcontroller as in VBoost to continuously search

for the highest f. However, the leader’s Vldr-subcontroller

provides a V that accommodates the f target with an accept-

able error rate PE . Like in VBoost, the Vldr-subcontroller

is implemented as a lookup table indexed by f, but unlike in

VBoost, it learns its entries dynamically in the field — since

they additionally depend on application and environmental

parameters. At power-on, all entries default to a minimum

Vdd. Whenever a frequency fviol is requested and PEmax

is exceeded, all table entries for f ≥ fviol increment their
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Chip parameters

# cores: 16 Per-core max power Pmax: 12W

Technology: 32nm Heatsink thermal resistance Rth: 0.33K/W

Core parameters

Area: 3× 3mm (excluding L2) Nominal unoptimized frequency: 5GHz

Width: 6-fetch 4-issue 4-retire OoO L1 D Cache: 16KB WT, 2 cyc access, 4 way, 64B line

ROB: 152-entries L1 I Cache: 16KB, 2 cyc access, 2 way, 64B line

Issue Window: 40 fp, 80 int L2 Cache: 2MB WB, 2ns access, 8 way, 64B line,

LSQ Size: 54 LD, 46 ST shared by two cores, has stride prefetcher

Branch pred: 80Kb tournament Memory: 80ns round trip, 10GB/s max. per core

LeadCheck parameters

Max. error rate: PEmax: 10−5 err/cyc Max Leader–Checker lag: 512 instrs or 64 stores

Migration interval: 250μs

Table 2: Microarchitecture parameters.

Vdd 0.8− 1.3V
Vt0 nom 250mV

T0 85◦C

Tmax 100◦C

KDIBL −150mV/V
Ktemp −1.5mV/K

n 1.5
α 1.3

Table 3: Technology parameters.

Vt0 random σ/μ 6.4%
Vt0 systematic σ/μ 6.4%
Leff random σ/μ 3.2%

Leff systematic σ/μ 3.2%
Corr. range (φ) 1cm

Table 4: Variation parameters.

V by 10mV . In this way, the table entries monotonically

converge toward the minimal Vs that ensure PE < PEmax.

However, because of the monotonicity, transient bursts of

errors can drive V to values that are unnecessarily high in

steady state. To combat this tendency, all entries are decre-

mented by 10 mV once per second.

The fckr-subcontroller in the checker, rather than maxi-

mizing the checker’s f, attempts to keep the leader–checker

coupling queues no more than half and no less than one

quarter full. It does so by treating the leader–checker pair

as a GALS system and applying the attack-decay control

algorithm [26] as follows. Whenever the queues are more

than half full, the checker f is increased (attack) by 200

MHz per ms. When they are less than one quarter full, the f
is decreased (negative attack) by 100 MHz per ms. Other-

wise, the f is decreased by 100 MHz every 10 ms (decay).

Thread Controllers for VBo+Mig and LeadCheck:

These controllers are special cases of the two organizations

already presented. In VBo+Mig, each of the two cores

has the f-subcontroller and V-subcontroller of VBoost.
The only difference is that, in the inactive core, the V-

subcontroller turns off the power supply to conserve power.

The thread controller for LeadCheck is a degenerate case of

VBo+LC’s where the two V-subcontrollers veto any f that

is infeasible at the nominal V.

4.3 Global Controller

The global controller receives information from a higher

level of the system (e.g., the operating system or the run-

time) about which threads are S threads and which cores are

idle. It then attempts to speed-up all the S threads and shut

down the remaining idle cores. To keep the control simple,

the global controller simply selects one technique, which

all the thread controllers apply to the S threads — VBoost,
VBo+Mig, LeadCheck, VBo+LC, or none. All thread con-

trollers are asked to apply the same technique.

The algorithm used by the global controller is based on

a greedy heuristic that works well in our experiments of

Section 6. Specifically, if the chip has enough idle cores to

dedicate two cores to each S thread, then the global con-

troller selects VBo+LC for application. Otherwise, it se-

lects VBoost. This heuristic is shown in Section 6 to be

suboptimal only in rare cases when the chip is in the Indi-
vidual regime of Section 3.2. Finally, the global controller

reruns its algorithm every time when the number of S or R
threads changes.

5 Experimental Setup
This section describes the modeling and optimization

procedure used to evaluate LeadOut.

5.1 Microarchitecture Model

We model a cache-coherent multicore comprising 16

high-performance out-of-order cores, each configured as

shown in Table 2. The core design is slightly more aggres-

sive than current designs like the Intel Core i7 [13]. The

cores contain the coupling link described in Section 3.3.

Pairs of cores share an L2 cache. Each core has an inde-

pendent Vdd and f domain, while the L2 caches have a fixed

f and a fixed Vdd of 1V.

Thermal parameters are modeled on a desktop processor

with a typical per-core power consumption of 6W and a

maximum per-core power consumption Pmax of 12W us-

ing a standard cooling solution. The floorplan, shown in

Figure 2, is loosely based on the default EV6 floorplan from

HotSpot [27].

5.2 Technology Model

We model a 32nm technology that is an incremental im-

provement on Intel’s current high-performance 45nm pro-

cess [3]. ITRS [15] projects that neither threshold nor sup-

ply voltage are scaling in the near term, so we use most

values directly from [3] in our model, as shown in Table 3.

The constant of proportionality for leakage in Equation 4

is set so that when all cores are active and under uniformly

nominal conditions (Vdd = 1V , T = 85◦C, and no process

variation), the die expends 20W of leakage power (out of a

total power of about 96W).

The maximum Vdd allowed by the process is an espe-

cially critical parameter that limits the performance scaling

6
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Figure 4: Performance improvements attained by the techniques at various multicore loading levels.

of VBoost. In the current 45nm process, the maximum Vdd

ranges from 1.26V to 1.38V depending on the processor’s

current draw [13] (lower values at higher currents). These

values are likely to decrease slightly in future technologies

in order to meet reliability requirements. Therefore, for

simplicity, we assume a maximum Vdd of 1.3V and a nom-

inal value of 1V.

The frequency guardband is critical to the performance

of LeadCheck schemes. We assume that during manufac-

turing test, the critical path delay of each core is measured

at Tmax. A worst-case timing margin – the guardband –

is then added to this delay to obtain the rated clock period.

Unfortunately, the exact guardbands for current processes

are not publicly disclosed. For most of the evaluation, we

set the guardband at 15%. Subsequently, Section 6.4.2 un-

dertakes a sensitivity study.

To model process variation, we use VARIUS [24], with

the parameters shown in Table 4. We model both ran-

dom (spatially uncorrelated) and systematic (spatially cor-

related) variations in Vt and Leff . The magnitude of the

random Vt0 variation assumed agrees with recent measure-

ments [1].

5.3 Simulation Method

To measure performance and power consumption, we

use a cycle-accurate timing simulator based on SESC [22],

augmented with Wattch [4] in a closed loop with the leak-

age model of Section 3.1 and HotSpot [27] for temperature

modeling. Die variation maps generated by VARIUS [24]

inform the leakage calculation. VARIUS also calculates the

per-core error rate for the current Vdd, T , and f conditions.

We run all the SPECint2000 applications except for eon.

Given this optimization infrastructure, we perform three

types of experiments. First, we characterize the perfor-

mance and power of each technique. These experiments

incorporate the effects of process variation. Specifically,

each result is the average of 50 simulations, each using a

different sample die variation map. Secondly, we construct

a pseudo-oracle against which to compare the results of

our proposed dynamic controller. The pseudo-oracle uses

Nelder-Mead optimization [21] to generate static (i.e., not

time-varying) values for the controller outputs from Sec-

tion 4.1. Finally, we conduct sensitivity studies. For these

experiments, we use only one typical die selected from

among the 50 samples created before due to limitations in

simulation time.

6 Evaluation
Our evaluation first examines the impact of each of

the techniques for single-thread performance (Sections 6.1

and 6.2). In the process, it compares the performance

of our thread controller to the pseudo-oracle, and identi-

fies the key performance-limiting constraints under differ-

ent loading conditions. Next, it characterizes the power-

performance tradeoffs available with the different tech-

niques (Section 6.3). It also provides a sensitivity study

(Section 6.4). Finally, it charts the performance of Lead-

Out on a workload requiring multiple high-speed threads

(Section 6.5).

6.1 Performance

The performance of both LeadCheck and VBoost is de-

termined by the application’s responsiveness to frequency

increase (i.e., the degree to which the application is CPU-

bound) and the amount of frequency increase that is pos-

sible within the Pmax, Tmax, Vddmax, and PEmax con-

straints. We begin with the goal of speeding up a single

target thread. This speedup will be highly dependent on the

chip’s loading conditions, which we measure in terms of

the number of idle cores that are available, constituting the

budget to run the target thread. An un-loaded chip would

have all 16 cores available, while a maximally-loaded chip

would have only one core available and the other cores

would be active running other load. Note that LeadCheck,

VBo+Mig, and VBo+LC require a core pair to run, so are

only applicable when there are at least two cores available.

Figure 4 shows the performance improvement attained

by the SPECint applications after applying each of the tech-

niques. Recall that each result is the mean across all sam-

ple variation-afflicted dies. The improvements are over the

application running on a plain core — an environment we

call Unoptimized. For each application, the individual bars

correspond to the different techniques. In a given bar, we

stack the improvements attained under different amounts of

load in the multicore — measured in number of available

cores. Specifically, the top segment represents the lightest
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possible load, where all 16 cores are available to run the

critical thread; the bottom segment represents the heaviest

load, where 15 cores are busy and only one core is avail-

able. The figure also shows the harmonic mean (hmean)

and the harmonic mean with oracle (hmean p-oracle). We

will discuss the latter later.

In situations with just one core available, the only ap-

plicable technique is VBoost. Looking at hmean, VBoost
improves performance by 12% on average. If two cores

are available, LeadCheck comes online to provide a perfor-

mance gain of 12% in hmean, compared to VBoost’s 14%.

Note that even at such high loading, the system is at least

in the Synergistic regime. This is seen by combining Lead-
Check and VBoost into VBo+LC, which delivers a 26% av-

erage performance improvement. The Individual regime is

not seen in these experiments. While certain dies may ex-

perience the Individual regime, the average of the 50 runs

never does. This can be seen from the fact that VBo+LC
always outperforms LeadCheck.

For all loads, VBo+Mig in hmean provides a consistent

and compelling improvement of 20% over Unoptimized. In

some lightly-loaded systems, it is slightly outperformed by

VBoost. This is due to an artifact of our thread controller

implementation1. Finally, VBo+LC performs much better

than either technique alone — especially as the number of

available cores increases. When all 16 cores are available,

we can see from hmean that VBo+LC’s average perfor-

mance improvement is 38%.

The rightmost group of bars (p-oracle) shows the per-

formance of the pseudo-oracular optimizer of Section 5.3.

We see that the real controller performs comparably to the

pseudo-oracle — although the latter does not provide a

strict upper bound on performance because its outputs are

static.

1For simplicity, we set the f of both cores in the VBo+Mig pair

to be that of the slower core in the pair. This makes it slightly

slower than VBoost under best-case conditions.

6.2 Limiting Constraints for Each Technique

To explain these performance trends, Figure 5 shows the

limiting constraints for each technique and loading level.

The size of each bar segment represents the fraction of sam-

ples (out of 550, given by 50 dies times 11 applications)

from the pseudo-oracular experiments in which the partic-

ular constraint was the limiting one. The constraints can be

PEmax, Pmax, Tmax, or Vddmax. The number above each

bar is the average power consumption of a latency-critical

(S) thread under that configuration (adding the contribu-

tions of two cores, if applicable).

The three regimes of Table 1 appear in the figure as fol-

lows. When LeadCheck is limited by Pmax or Tmax, the

system is in the Individual regime. This regime is seen in

about 10% of the cases when two cores are available. When

LeadCheck is limited by PEmax and VBo+LC is mostly

limited by Pmax or Tmax, the system is in the Synergistic
regime. This is the dominant regime for 2-8 available cores.

It also appears 50% of the time for 16 available cores. Fi-

nally, when VBo+LC is often limited by PEmax or Vddmax,

it is Unfulfilled. This is seen 50% of the time for 16 avail-

able cores.

In a heavily-loaded system (e.g., one core available),

the high total power consumption of all the cores on chip

raises the heatsink temperature, reducing thermal head-

room. Consequently, when we apply VBoost, it increases

the voltage only slightly before hitting the temperature

limit. The result is that VBoost provides only modest per-

formance improvements on a fully-loaded system.

When the system has two available cores, VBoost
remains temperature limited, able to dissipate only

9W on average. VBo+Mig addresses the thermal

problem effectively, allowing the thread to dissipate

12W (over two cores) on average and reach the

supply voltage limit in many cases. Referring to

Figure 4, this provides substantial marginal perfor-

mance gains over VBoost. Meanwhile, LeadCheck
opens a new avenue for performance enhancement:

LeadCheck is limited by PEmax and has ample room to
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grow in power and temperature. In other words, Lead-
Check provides an orthogonal means of increasing perfor-

mance. When VBoost and LeadCheck are used together in

VBo+LC, they work in the Synergistic regime. Referring

to Figure 4, they attain substantial improvements. They are

bounded mainly by temperature.

The cases of four to eight available cores show that Lead-
Check is usually limited by PEmax and VBo+Mig is often

limited by Vddmax, but by applying VBo+LC, we usually

arrive at the power or temperature limits. This is still the

Synergistic regime.

In unloaded systems (16 available cores), VBoost and

VBo+Mig are practically limited by Vddmax, while Lead-
Check is limited by PEmax. After combining them in

VBo+LC, the system is still limited by Vddmax about 50%

of the time. In these cases, the system works in the Un-
fulfilled regime. It has left-over power and temperature

headroom to accommodate other techniques that increase

single-thread performance.

Overall, the key benefit of combining LeadCheck with

VBoost is that they provide orthogonal means of improv-

ing performance because they have different limiting con-

straints. This leads to the Synergistic and Unfulfilled
regimes.

6.3 Power–Performance Tradeoffs

To fully assess the different techniques, Figure 6 shows

the performance and power consumption of a latency-

critical (S) thread under the different techniques and a range

of loading conditions. The power and performance re-

ported are the mean across all applications and dies. The

performance is normalized to the Unoptimized environ-

ment. In the figure, each curve corresponds to one tech-

nique. The diamond point on each curve represents an

unloaded system with 16 available cores, while the cir-

cle (or the triangle in the case of LeadCheck, VBo+Mig,

and VBo+LC), represents a heavily-loaded system. Other

markers on each curve identify the remaining loading

points from Figures 4 and 5.

This plot shows the composability of the LeadCheck and

VBoost (or VBo+Mig) techniques, and the great capabil-
ity of the VBo+LC technique. Indeed, the figure shows

that, roughly speaking, LeadCheck, VBoost, or VBo+Mig
deliver at best a 20% improvement in single-thread per-

formance at the cost of doubling the power of the thread.

However, VBo+LC delivers a 38% improvement in single-

thread performance at the cost of trebling the thread power.

This is a remarkably high performance improvement. It is

unreachable with either base technique alone, and shows

that the two base techniques are orthogonal. For the ar-

guably more likely case when only 8 cores are avail-

able, VBo+LC improves single-thread performance by 34%

while consuming 220% more power than Unoptimized.

The figure also shows that, in practice, VBoost (and

VBo+Mig) are more power-efficient than LeadCheck. At

approximately the same power, VBoost and VBo+Mig de-

liver higher performance than LeadCheck.

Finally, we note that power consumption does not in-

crease monotonically with performance. For most tech-

niques, power decreases slightly for the highest perfor-

mance point — namely, the one with the lowest load. This

is due to the decrease in leakage power at the lower die tem-

peratures that prevail under light load. When most of the

cores on the die are idle, the total chip power dissipation is

low, so the heatsink is cold. A low temperature means that

leakage is low.

6.4 Sensitivity Analysis

We now characterize the sensitivity of the performance

improvements. In many cases, Tmax is a limiting factor, so

we examine different thermal design points. Additionally,

LeadCheck systems achieve their performance improve-

ments primarily by consuming guardband, so we evaluate

several different guardband sizes. Finally, we consider dif-

ferent per-core power limits that correspond to weaker and

more robust per-core power grids. Figure 7 shows the three

sensitivity studies, varying the parameters that have been

assumed for the preceding experiments (labeled as “de-

fault”). All numbers are normalized to the performance

of Unoptimized with the same parameters under the same

conditions. Note that the default-parameter bars are not ex-

actly like those in Figure 4 because here, we only simulate

a single (typical) die, rather than 50 samples. In the follow-

ing, we consider each plot in turn.

6.4.1 Power/Thermal Envelope

We consider three different power/thermal environ-

ments, namely laptop, desktop, and server, as shown in Ta-

ble 5. The configurations vary the total number of cores on

the chip to fit into their respective thermal envelopes — 4

cores in laptop, 16 cores in desktop, and 24 cores in server.

Additionally, server assumes a powerful high-airflow cool-

ing system typical of datacenter installations, while laptop
is constrained by a relatively weak heatsink due to its phys-

ical confines2.

Laptop Desktop Server

# Cores 4 16 24

TDP (W) 24 96 144

Heatsink Rth (K/W) 1.3 0.33 0.30

Ambient T (K) 313 313 305

Table 5: Power/thermal environments for the sensi-

tivity study.

Figure 7(a) shows that the performance trends are very

similar in all three thermal environments. For example, in

an unloaded system, the performance gains for each tech-

nique are very close across all environments. This is a re-

sult of changing the number of cores in the chip at the same

2Laptop, desktop, and server heatsinks are modeled on Aavid

Thermalloy types 3680, 1002/D, and 037704, respectively.
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Figure 7: Sensitivity of performance improvements to the thermal environment (a), process guardband (b), and power grid design (c).

time as we change the quality of the heatsinks.

6.4.2 Guardband

Figure 7(b) shows that, as the process guardband in-

creases from 10% to 20%, the effectiveness of LeadCheck
also grows. This is because LeadCheck gets much of

its speedup from removing the guardband (refer to Fig-

ure 1(b)). As the guardband increases from 10% to 15%,

the returns from LeadCheck grow by roughly 0.04. How-

ever, if the guardband increases above 15%, the perfor-

mance benefits from LeadCheck rise at a slower rate —

tempered by the responsiveness of the application perfor-

mance to frequency increases and by the lower frequency

of the checker core.

6.4.3 Power Grid Capacity

Figure 7(c) shows how increasing the per-core power

constraint Pmax impacts performance. From a design per-

spective, supporting a higher Pmax requires a more robust

per-core supply grid with lower resistance, higher decou-

pling capacitance, and lower inductance, which can be dif-

ficult to achieve. The default design assumed a grid ca-

pable of supplying a worst-case power equal to twice the

average power consumption of the applications, which we

believe represents a typical design. Decreasing that budget

by one third to arrive at Pmax = 8W degrades all tech-

niques except LeadCheck, but they still provide compelling

speedups. Increasing the budget by one third to 16W ben-

efits only the most power-hungry cases and even then, only

slightly. The heavily-loaded systems benefit little because

they are temperature-limited. Overall, we conclude that

none of the techniques requires more than a standard power

distribution system.

6.5 Configurability

The previous evaluations focused on the goal of optimiz-

ing a single thread, but when executing a multiprogrammed

workload or an application with some, limited parallelism,

it will often be necessary to speed up a larger number S of

latency-critical threads (Section 3.3). Here, the key ques-

tion is how much performance can be delivered to the S
latency-critical threads while the chip concurrently runs a

specified number R of throughput-oriented threads.

In this section, we again use 16 cores per chip. Recall

that LeadCheck, VBo+Mig, and VBo+LC all use two cores

to speed-up a single S thread. Therefore, they can execute

at most S = 8 latency-critical threads when the system

is otherwise unloaded. Only VBoost is able to speed-up

S > 8 threads.

Figure 8 shows the percentages of performance improve-

ment experienced by an S thread for each technique when

the application demands different numbers of R and S
threads. Plots (a)-(d) correspond to one technique (or a

fixed combination of them) each, while plot (e) corresponds

to the algorithm used by the global controller (Section 4.3),

namely choose VBo+LC if there are twice as many idle

cores as S threads, or VBoost otherwise. Each plot shows

iso-performance contours for the S threads in increments of

2%. Performance is normalized to that of an unoptimized

chip running the same number of threads. For techniques

that use two cores per S thread (plots (b), (c), and (d)), the

region where R + 2S > 16 is infeasible; for VBoost (plot

(a)), the region where R + S > 16 is infeasible. Finally,

plot (e) is an “overlay” of plot (d) when VBo+LC is feasible

and plot (a) otherwise.

For their feasible configurations, both VBo+Mig and

LeadCheck offer consistent per-thread performance im-

provement, varying by less than 2% over the entire fea-

sible range of S and R. When available, VBo+LC always

offers superior performance improvements to either tech-

nique alone. However, that performance is more sensitive

to the particular value of S and R demanded. Likewise, the

performance of VBoost falls off as the number of S threads

approaches the limit.

Plot (e) demonstrates the benefits of having a config-

urable multicore. When the chip must run many S and R
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Figure 8: Performance improvements (in percent) experienced by each S thread when the application demands different numbers of

R and S threads. For each technique, there is an area of infeasible configurations. Iso-performance contours are shown in the feasible

regions.

threads at the same time (darker region), the system uses

VBoost and attains good performance. When the number

of S threads is low or the load is light (light region), it then

switches to VBo+LC, delivering higher performance than

VBoost alone would deliver. If the system only had Lead-
Check, it would provide less performance increase in the

light region and would be helpless in the dark region.

7 Related Work
Architects have long recognized the need for config-

urable multicores. Slipstream [12] used cores in cou-

pled mode to execute parallel applications and found that,

even for the highly-parallel SPLASH-2 benchmarks, a 32-

processor system running 16 threads in coupled mode usu-

ally outperformed the same system running twice as many

threads in uncoupled mode. More recently, Core Fu-

sion [16] and TFlex [17] have shown speedups over static

heterogeneous multicores on a wide range of applications

by combining pipeline resources from neighboring cores to

improve the IPC of critical threads.

Although it uses similar hardware support, the VBoost
technique is distinct from DVFS, which has been proposed

and used [5] to minimize power consumption by throttling

back core frequency and voltage when performance is not

required. VBoost applies the concept in reverse, to increase

performance when possible. Intel’s Turbo Boost [14] is the

first commercial example.

Leader-checker schemes such as Slipstream [12, 30],

Dual-Core Execution [31], Future Execution [8], and Pace-

line [9] are a somewhat new development emerging in an

era of plentiful cores. They allow two cores to be cou-

pled in executing a single thread, but each boosts the leader

performance in different ways: Paceline relies on timing

speculation, Slipstream elides instructions, Dual-Core Ex-

ecution speculates past cache misses, and Future Execution

uses value prediction.

The combination of timing speculation with DVFS has

also been examined before. Specifically, Razor [7] com-

bined voltage reduction with latch-level timing speculation

and error correction to save power. Similarly, EVAL [25]

proposed trading off performance, error rate, and power in

a configurable core with timing speculation support. EVAL

differs from LeadOut in three key ways. First, EVAL uses

several intra-core supply voltage and frequency domains,

while LeadOut uses only one domain per core. Second,

EVAL’s timing speculation is not configurable, since its

per-core DIVA-style [2] checker is always on, consuming

power and area. Finally, EVAL configures microarchitec-

ture structures inside the core (e.g., the size of the issue

queue or the body bias applied to the execution unit), while
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LeadOut considers a core as a unit.

8 Conclusion
An intuitive approach to improve single-thread perfor-

mance is to shut down the idle cores in the chip and run the

busy, performance-critical ones at higher-than-nominal fre-

quencies. To enable such frequencies, two relatively low-

overhead techniques either boost voltage beyond nominal

values, or pair cores in leader-checker configurations and

let them run beyond safe margins.

This paper has observed that, in a large multicore with

varying numbers of busy cores and critical threads, indi-

vidual application of either of these two techniques alone

is suboptimal. Due to supply voltage or error rate limita-

tions, they are often unable to bring the multicore all the

way to the extremes of its power or temperature envelopes.

Moreover, this paper also showed that these two techniques

are complementary and can be synergistically combined to

unlock much higher levels of single-thread performance.

Finally, the paper demonstrated a dynamic controller that

optimizes the two techniques.

We evaluated these techniques and their combination on

a simulated 16-core configurable multicore. We saw that,

when half of the cores are busy and we want to run one

additional, performance-critical thread, application of ei-

ther leader-checker execution or voltage boosting increases

the thread’s performance by about 20% at most, while in-

creasing its power by about 100%. However, if we com-

bine both techniques, the thread attains 34% higher perfor-

mance, while consuming 220% more power. Similar gains

are enabled for various load conditions.
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