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Abstract

The increasing demand for reliable computers has led to pro-
posals for hardware-assisted rollback of memory state. Such
approach promises major reductions in Mean Time To Repair
(MTTR). The benefits are especially compelling for database
servers, where existing recovery software typically leads to down-
times of tens of minutes. Unfortunately, adoption of such proposals
is hindered by the lack of efficient mechanisms for I/O recovery.

This paper presents and evaluates ReViveI/O, a scheme for I/O
undo and redo that is compatible with mechanisms for hardware-
assisted rollback of memory state. We have fully implemented a
Linux-based prototype that shows that low-overhead, low-MTTR
recovery of I/O is feasible. For 20–120 ms between checkpoints, a
throughput-oriented workload such as TPC-C has negligible over-
head. Moreover, for 50 ms or less between checkpoints, the re-
sponse time of a latency-bound workload such as WebStone re-
mains tolerable. In all cases, the recovery time of ReViveI/O
is practically negligible. The result is a cost-effective highly-
available server.

1. Introduction
Highly-available shared-memory servers have to be able to cope
with system-level faults. Faults are often transient, such as hard-
ware glitches caused by high-energy particles, or OS panic due to
unusual interleavings of software events. There are also perma-
nent hardware faults, which can bring down part of the machine.
Fault frequencies are projected to remain high in the future. This is
worrisome, given the growing number of businesses with database
applications that crucially depend on their servers being up practi-
cally all the time.

One approach to attain fault tolerance is to employ extensive
self-checking and correcting hardware, often through redundancy
and even lock-step execution. This is the approach used by HP’s
Nonstop Architecture [11] and IBM’s S/390 mainframes [33]. Un-
fortunately, this approach is too expensive for many users.

An alternative approach is to use plain server hardware and
support software-based checkpoint and rollback recovery. In such
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systems, the operating system [18, 19, 32], virtual machine mon-
itor [5], or application (e.g., the database [8]) periodically check-
points the state of the machine, virtual machine, or processes, re-
spectively, to safe storage. If a fault is detected, the system rolls
back to a state preceding the fault. However, since software check-
pointing has significant overhead, checkpoints are typically only
taken every few minutes or less frequently. As a result, when a
fault occurs, the Mean Time To Repair (MTTR) is significant, and
the machine becomes unavailable for a sizable period. For exam-
ple, the recovery time of Oracle 9.2 on a Solaris server is typically
tens of minutes [22].

A second shortcoming of software-based checkpointing ap-
pears in workloads where server and clients frequently exchange
messages. To correctly support recovery, the server must delay
sending messages until after they are checkpointed. If checkpoints
are infrequent to minimize overheads, messages suffer long de-
lays.

One way to significantly reduce server MTTR and avoid long
message delays is to supporthigh-frequencycheckpointing (e.g.,
one every few tens of milliseconds). Several architectures with
such support have been proposed [21, 24, 29, 34]. These archi-
tectures rely on hardware assistance for checkpointing or for data
buffering, logging or replication. For example, ReVive induces
about 6% overhead and recovers from the types of faults supported
in less than 1 second [29]. Such tiny MTTR boosts machine avail-
ability. Moreover, as suggested by the ROC project, it opens up
opportunities to lower cost of ownership [27].

Unfortunately, past work on these high-frequency checkpoint-
ing architectures has focused on recovering thememory stateof
the machine. It has not fully addressed the problem of rollback
recovery in the presence of I/O. When workloads perform I/O,
rollback is tricky: how can the server “undo” a disk write or a
message send? Can it “redo” it? Unless these issues are ad-
dressed, the proposed high-frequency checkpointing solutions are
unusable. These issues are also particularly relevant to architec-
tures for transactional memory [10], which rely on the ability to
roll back a section of code and then re-execute it.

A known approach to handle I/O in checkpointing systems
is to delay the commit of output until the next checkpoint (out-
put commit problem). To accomplish this, Masubuchiet al. [21]
proposed adding a “virtual” or “Pseudo” Device Driver (PDD)
layer between the kernel and the Device Drivers (DD). Disk out-
put requests are redirected to the PDD rather than the DD. The
PDD blocks any output-requesting process until the next check-



point [20], after which the output is performed. Masubuchiet
al.’s design has limitations, such as (i) blocking processes until a
checkpoint and (ii) only supporting disk I/O. However, their gen-
eral method is attractive because it requires no kernel or appli-
cation modification. It can be built upon to provide efficient I/O
undo/redo for high-frequency checkpointing architectures.

1.1. Contribution of This Paper

Our main contribution is the full implementation, testing, and ex-
perimental evaluation ofReViveI/O, an efficient I/O undo/redo
scheme that is compatible with high-frequency checkpointing
architectures such as ReVive [29] and SafetyNet [34]. Our
work completes the viability assessment of such novel memory-
recovery architectures. It is only through a complete implementa-
tion that we identify true overheads, relevant ordering constraints,
and corner cases. Moreover, we perform a sensitivity analysis of
what checkpoint frequencies are required to maintain acceptable
throughput and tolerable response times.

We also enhance Masubuchiet al.’s approach in two ways.
First, the PDD now also supports network I/O. Secondly, the disk
PDD, rather than blocking the output-requesting process, quickly
buffers the output and returns. After the next checkpoint, the I/O
operation is committed in the background. This provides efficient
I/O undo/redo.

We installed our ReViveI/O prototype on a Linux 2.4-based
multiprocessor server running TPC-C on Oracle, and WebStone
on Apache. Our prototype shows that low-overhead, tiny-MTTR
recovery of I/O is feasible. Specifically, for 20–120 ms between
checkpoints, a throughput-oriented workload such as TPC-C has
negligible overhead. In addition, for 50 ms or less between check-
points, the response time of a latency-bound workload such as
WebStone on Apache remains tolerable. In all cases, the recov-
ery time of ReViveI/O is practically negligible. Finally, combin-
ing ReVive and ReViveI/O is likely to reduce the throughput of
TPC-C-class applications by 7% or less for 60–120 ms checkpoint
intervals, while incurring a tiny MTTR of less than 1 second.

Our work is significant in that, with ReVive and ReViveI/O,
a shared-memory server can quickly recover from: (i) any hard-
ware (and some software) transient faults in the machine, and (ii)
permanent faults that at most take out one node in the machine.
Indeed, both the processor/memory state (thanks to ReVive) and
the I/O state (thanks to ReViveI/O) are restored to the preceding
checkpointwithin 1 second and transparentlyto the database. No
ongoing database transactions are lost.

There are rare faults for which ReVive cannot restore the pro-
cessor/memory state, such as the simultaneous permanent loss of
multiple nodes. In this case, the fault is not transparent to the
database. A few seconds after the machine is rebooted, ReViveI/O
brings the I/O state to its correct state at the preceding checkpoint.
Then, we simply depend on the normal recovery mechanisms of
the database to reconstruct the state from the logs saved on disk.

The overall result is much higher server availability: the ma-
jority of faults are recovered from with sub-second MTTR and
transparently, while only infrequent faults require the much slower
recovery mechanism of the database.

The paper is organized as follows: Section 2 gives background;
Sections 3 and 4 present ReViveI/O’s architecture and implemen-
tation; Section 5 describes our evaluation methodology; Section 6

evaluates ReViveI/O; and Section 7 discusses related work. Note
that fault detection is beyond the scope of this paper.

2. Background
2.1. Context of Our Work
The context of our work is shared-memory multiprocessors such
as IBM’s eServer pSeries p5 595 [14] or HP’s Integrity Super-
dome [12] used as back-end database servers. These servers store
the database in local disk subsystems and communicate over net-
works with many clients. They execute transaction-processing ap-
plications similar to TPC-C.

A major issue in these systems is server uptime. Unfortunately,
a high-energy particle impact may cause a processor reset, an un-
usual data race may crash the OS, or a link failure may discon-
nect a node. In these cases, transactions are typically aborted and
the database attempts to recover. Such recovery often renders the
server unavailable for tens of minutes [22].

To understand the recovery requirements of these systems, note
that I/O is practically limited to disk and network. Moreover, these
workloads are typically not latency bound. For example, in TPC-
C, 88% of transactions are NewOrder or Payment, which involve
the exchange of a single request and response between client and
server. IBM’s p5 595 reports an average response time of 340 ms
for these transactions [37]. Consequently, adding a few tens of ms
to each transaction to support a recovery scheme is tolerable.

2.2. Fault Model
We leverage proposed rollback-recovery architectures [21, 24, 29,
34] that support high-frequency checkpointing (ten times or more
per second) and, for the fault types supported, are able to recover
thememory stateof the machine before the fault. These schemes
typically have low overhead and a tiny MTTR.

As an example, we use ReVive [29] in this paper. Appendix
A outlines ReVive. With 100 ms between checkpoints, ReVive
has an average execution overhead of 6.3%. Moreover, it recov-
ers from the supported faults in under 1 second. This results in
99.999% availability even with one fault per day.

Specifically, ReVive recovers the memory state of the machine
for: (i) transient faults and (ii) permanent faults that at most take
out one node in the machine. Although fault detection is beyond
the scope of this paper, the implicit assumption is that some mech-
anism detects these faults within a checkpoint interval. Such short
detection latency is more feasible for hardware faults than for soft-
ware ones. However, there are some software transient faults that
are fail fast. For example, Guet al. [9] show that a sizable portion
of kernel errors can be detected within 100,000 cycles. Overall,
we refer to all these faults, from which ReVive can recover the
memory state, asMemory-Recoverable(MR) faults.

The other faults, from which ReVive cannot recover the ma-
chine’s memory state, we callNon-Memory-Recoverable(NMR).
An example is the simultaneous permanent loss of multiple
nodes [29].

In this paper, we also assume that non-volatile storage,
namely disks and any closely-attached non-volatile memories
(NVRAMs), can only suffer transient faults. They have the ap-
propriate support (e.g., RAID 5) to avoid permanent faults.

With these assumptions, we will show that, for MR faults, we
restore both the processor/memory state (thanks to ReVive) and



the I/O state (thanks to ReViveI/O) to the preceding checkpoint.
The restoration istransparentto the database. No ongoing trans-
actions are lost (Figure 1).

Fault!

Memory-
recoverable?

Yes No

Roll back and recover
memory and I/O state
transparently to apps

Conventional recovery
by apps, if any

Make the I/O state
consistent (after reboot)

Figure 1. Faults handled by the combination of ReVive and
ReViveI/O.

For NMR faults, recovery is not transparent to the database.
The machine has to be fixed and rebooted. ReViveI/O then restores
the I/O state to its consistent state at the preceding checkpoint. Fi-
nally, the conventional recovery mechanisms of the database re-
construct the database state.

2.3. Integrating I/O with Checkpoints

Work on checkpointed message-based distributed systems [7, 17]
shows how to support I/O undo/redo under checkpointing. The
commit of outputs is delayed until the next checkpoint (output
commit problem); only then can the system guarantee that it will
not have to roll back to a state prior to issuing the outputs.

To address the output commit problem without kernel modi-
fications, Masubuchiet al. proposed the Pseudo Device Driver
(PDD) [21] (Figure 2). Disk output requests are redirected to
the PDD rather than the Device Driver (DD). The PDD blocks
any output-requesting process until the next checkpoint [20], after
which the output is performed. The PDD can be considered an
extremely thin virtual machine layer for I/O checkpointing.

Kernel

Pseudo Device Driver (PDD)

Device Driver (DD)

Device

Figure 2. The Pseudo Device Driver software layer.

We enhance Masubuchiet al.’s scheme in two ways. First, pro-
cesses requesting disk writes are not blocked until the next check-
point. Secondly, we also support network I/O. Kernel, DDs, and
server/client applications remain unmodified.

3. Architecture of ReViveI/O
This section describes the organization ReViveI/O, with key order-
ing issues, overheads, and limitations.

3.1. Description of Operation

We start by examining three properties that we leverage. Then, for
readability, we describe ReViveI/O in two steps: first, an initial
incomplete solution, and then the complete one.

3.1.1. Properties Leveraged
We leverage three properties to build a low-overhead I/O
undo/redo prototype. First, ReVive’s ability to roll back the mem-
ory state is leveraged to restore PDD consistency after a fault.
Specifically, we assign to the PDD a portion of main memory
called theMemory Buffer. In there, the PDD buffers all the output
requests until the next checkpoint; after the checkpoint, the outputs
are performed in the background and removed from the buffer. If
a fault occurs, ReVive returns the memory state to the previous
checkpoint. This automatically makes the PDD consistent: all the
output requests in the current checkpoint interval disappear from
the Memory Buffer, and all those from the previous checkpoint
interval re-appear in the Memory Buffer and are ready to be per-
formed again.

Second, the fact that the output operations under consideration
are idempotent (i.e., replayable) is leveraged to allow the recovery
scheme to re-perform output operations without hurting correct-
ness. Indeed, disk output operations are trivially idempotent. Net-
work output is idempotent due to the high-level support provided
by TCP [36]. With TCP, each packet has a sequence number. If the
client receives the same packet twice, TCP sees the same sequence
number and discards one of them1. Consequently, correctness is
not compromised when, after a rollback, the requests in the Mem-
ory Buffer force our scheme to re-write the same disk blocks and
re-send the same messages.

Finally, properties of the I/O considered are leveraged to not
have to buffer any inputs for later “re-consumption” should roll-
back be needed. Specifically, disk inputs need no buffering be-
cause the application will automatically re-issue them if it needs
to. For network input, we avoid buffering by again relying on TCP
properties. With TCP, packets are acknowledged by the receiver;
if the client does not receive an acknowledgment (ACK) from the
server within a timeout period, it resends the packet. In our design,
ACKs, like all outgoing messages, are delayed by the server until
after the next checkpoint.

Consequently, suppose that the server receives an input mes-
sage, issues an ACK that gets stored in the Memory Buffer, and
a fault occurs. Two cases are possible. First, if the fault occurs
before the end of the next checkpoint, the rollback removes the
effect of the input message from the server, as well as the ACK
from the Memory Buffer. In this case, the ACK is not sent and the
client will resend the input message. If, instead, the fault occurs
after the next checkpoint, the rollback removes neither the effect of
the input message from the server, nor the ACK from the Memory
Buffer. This case is also correct because the ACK will eventually
be sent. In either case, the server does not need to buffer network
input.

3.1.2. Initial Incomplete Solution: BufferVolatile
All network and disk output requests issued by the application
(OutReq1and OutReq2in Figure 3-(a)) are transparently inter-
cepted by the PDD and buffered in the Memory Buffer. The
buffered information includes the output data and metadata such
as the destination block number in the device. After the next

1The User Datagram Protocol (UDP) does not provide TCP’s support to
eliminate duplicates. UDP is unreliable by definition, and the application
(e.g., NFS over UDP) is responsible for dealing with duplicate and lost
packets. Consequently, we only focus on TCP.



checkpoint (C2 in Figure 3-(a)), the PDD passes the information to
the DDs, which perform the output operations (e.g., DMA writes
to disk or to the network card) in the background (OutOp1and
OutOp2in Figure 3-(a)).

OutReq1 OutReq2 Logical Time

Checkpoint
OutOp1 OutOp2

C1 C2 C3

Fault 3 Fault 2

(a)

OutReq1 OutReq2

OutOp1 OutOp2

C1 C2

C3

(b)

OutReq1 OutReq2

OutOp1 OutOp2

C1 C2 C3

(c)

Fault 1

C4

Fault 3 Fault 2

OUTPUTS

InReq1 Logical Time

Checkpoint
InOp1

C1 C2 C3

Fault 2

(d)

InReq1

InOp1

C1

C2 C3

(e)

InReq1

InOp1

C1 C2 C3

(f)

Fault 1

Fault 3

Fault 2

INPUTS

Figure 3. I/O operations and faults in different scenarios. In
the figure, InReq, OutReq, InOp, and OutOpmean input re-
quest, output request, input operation, and output operation,
respectively.

Consider now input requests, such as reads from the disk or the
network card. On receiving the request (InReq1in Figure 3-(d)),
the PDD checks if the requested data is in the Memory Buffer. If
so, the data is provided. Otherwise, the PDD passes the request to
the DD, which performs the operation in the background (InOp1
in Figure 3-(d)). As indicated in Section 3.1.1, no buffering is
needed.

We call this initial solutionBufferVolatile. With it, if an MR
fault (Section 2.2) occurs, the server recovers both memory and
I/O statestransparentlyto the running application. Consider the
four possible timeframes wherein a fault can occur.
1. Fault before the end of the checkpoint that immediately fol-
lows the I/O request (Fault 1 in Figures 3-(b) and (e)). In this
case, ReVive rolls back the memory state to the previous check-
point C1. As a result, the Memory Buffer loses any record of out-
put requestOutReq1. This automatically “undoes”OutReq1, as
desired. Thus,OutOp1is not performed. As for input I/O, since
the rollback operation involves resetting the devices, any ongoing
input operation such asInOp1 is aborted.
2. Fault after the end of the checkpoint that immediately fol-
lows the I/O request; the I/O is already performed(Fault 2 in
Figures 3-(b) and (e)). ReVive rolls back the memory state to the
previous checkpointC2. The only interesting case is for outputs.
The Memory Buffer gets restored to the state it had atC2, where
it contained a record of the output operations to perform. Conse-
quently, the PDD will eventually automatically re-issueOutOp1
andOutOp2to the DDs. This is correct because of the idempotent
nature of the I/O in consideration.
3. Like Case 2 but the background I/O is not yet completely
performed when the fault occurs(Fault 3 in Figure 3-(b)). As
the system rolls back, the devices are reset and the ongoing I/O

is aborted. Then, all I/O operations (OutOp1andOutOp2) will
eventually be performed again.
4. Special case: Fault in an interval preceded by a checkpoint
overlapped with an I/O operation. Sometimes, an I/O opera-
tion initiated before a checkpoint extends past it. This is seen for
OutOp2in Figure 3-(c) andInOp1 in Figure 3-(f). If a fault such
as Fault 2 or Fault 3 in these figures occurs, the memory state
rolls back to the checkpoint that overlapped with the I/O opera-
tion. During the recovery process, the I/O operation (OutOp2or
InOp1) gets killed, since all I/O devices (disk controller and net-
work adapter) get reset. This is discussed in Section 3.3.2. Unfor-
tunately, the rollback would leave the memory state in inconsistent
state: while the I/O operation is killed, it is incorrectly marked “in
progress”, and it is only partially performed.

To solve this problem, after the recovery process rolls back the
memory state to the previous checkpoint, the PDD re-issues to
the DDs any checkpoint-overlapping I/O operationfrom the begin-
ning. Note that the PDD can find out what are the I/O operations
that are (incorrectly) marked “in progress” (OutOp2andInOp1).
Optionally, the PDD can skip re-issuing the network input opera-
tions that overlapped with the checkpoint: there is no need to re-
initiate the transfer of data from the network adapter to memory
because TCP will ensure that incoming packets are retransmitted.

Overall, ourBufferVolatile scheme ensures database consis-
tency in an environment with MR faults (and/or transient faults
in non-volatile storage as per Section 2.2). For example, assume
that a client starts a transaction that involves writes to disk (Fig-
ure 4-(a)). After the disk PDD has buffered the data and desti-
nation block number in the Memory Buffer, the database sends a
response message to the client. The message is buffered by the
network PDD. After the next checkpoint, the message is sent and
the write is issued to the disk. If an MR fault occurs before this
checkpoint,BufferVolatilewill roll back and eventually receive
the automatic retransmission of the original request message af-
ter the timeout. Moreover, if the PDD observes a transient disk
error when it issues the write, it will simply retry until it succeeds.
In any case, when the client receives the response message, it can
assume that the disk write in the transaction has been committed.
Some ordering issues are examined in Section 3.2.

3.1.3. Complete Solutions: Buffer and Rename

BufferVolatileis inadequate if an NMR fault (Section 2.2) occurs,
such as the simultaneous permanent loss of multiple nodes. As an
example, consider Figure 4-(a) after the second checkpoint. Sup-
pose that an NMR fault occurs after the response to the client is
sent but before the disk is updated in the background. ReVive can-
not restore the contents of the Memory Buffer and, therefore, re-
issue the buffered write to disk. The disk is left in a state that is in-
consistent with the information passed to the client. Note that con-
ventional database recovery mechanisms cannot help: the missing
write can be a log write, without which the database cannot redo
the operation.

To solve this problem, we enhanceBufferVolatileto ensure that
the PDD also saves the output request information in non-volatile
“temporary” storage before the next checkpoint. If an NMR fault
occurs as in the example just described, we can copy the infor-
mation from the non-volatile temporary storage to the server disk,
and thus make the disk consistent. Then, we can rely on the con-
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Figure 4. Operation of ReViveI/O. The scenario depicts a transaction with a disk write. NVRAM and Dststand for Non-Volatile RAM and
the destination block number, respectively.

ventional mechanisms of the database for recovery, although the
downtime will be longer (Figure 1).

We propose two alternative schemes, calledBuffer and Re-
name, as shown in Figures 4-(b) and (c), respectively.Buffer is
based on temporarily buffering output request data, and is concep-
tually simpler.Renameis based on renaming the data, and can be
more efficient because it requires fewer disk writes. To describe
the schemes, we focus on disk I/O because network I/O does not
distinguish between the schemes.

In Buffer, a disk write request updates the Memory Buffer and
a disk buffer area before returning (Figure 4-(b)). The update in-
cludes both the data and some metadata such as the destination
block number. To speed up this operation, the updates to the disk
buffer are done on sequential blocks. Moreover, the disk buffer
can be a dedicated small, fast disk, similar to the Disk Caching
Disk [13]. After the next checkpoint, all data in the Memory
Buffer are copied to their true locations on the main disk. In fault-
free conditions, the disk buffer is never read.

In Rename, a write request writes the output data to a new
disk block in a rename area, and saves the new logical-to-physical
block number mapping in the Memory Buffer before returning
(Figure 4-(c)). During the checkpoint, the mappings in the Mem-
ory Buffer are copied to a small (e.g., 32 MB) Non-Volatile RAM
(NVRAM) associated with the disk. Later, the mappings in the
NVRAM are committed to disk in the background.

The NVRAM is not a single point of failure. Specifically, there
are commodity disk adapters with internal NVRAM where the
NVRAM is transparently backed up by an additional copy of the
data. An example is IBM’s Fast Write Cache [15]. Moreover,
transient errors in the NVRAM or associated disk are handled by
the PDD retrying the request. Recall that we assume there are no
permanent faults in non-volatile storage.

Note that these NVRAMs usually work asynchronously — the
data is destaged to the disk only when the NVRAM is getting full
or the data has stayed in the NVRAM for a certain time. Therefore,
if a fault occurs during a checkpoint, an asynchronous NVRAM
could incorrectly write its mappings to disk while we are rolling
back to the previous checkpoint. This problem is solved by also
storing the original mapping information in the NVRAM, so that
if the problem occurs, we can undo the changes of mapping.

An important design issue inRenameis the policy for allocat-
ing the renamed blocks. One option is to write the new blocks
sequentially on a free disk area, just like the log-structured file
system (LFS) [31]. With this design, occasional defragmentation

of the disk may be needed. Another option is to map each block
to either one of two physically consecutive blocks in the disk as in
TWIST [30]. This design requires double disk space for blocks.
However, the mapping information per block is only one bit, com-
pared to (typically) 8 bytes for the first design.

With Bufferor Rename, the disk can always be brought to the
state corresponding to the checkpoint immediately preceding the
fault, even for an NMR fault. Indeed, consider a disk write request.
If the fault happens between the request and the end of the next
checkpoint, the contents of the disk buffer are discarded (Buffer)
or the new mapping information is not written to NVRAM (Re-
name); the main disk remains unmodified and the client is never
notified. If, instead, the fault happens after the next checkpoint,
a disk update is guaranteed to occur: the data and metadata in the
disk buffer (Buffer) or the mapping in NVRAM (Rename) are used
to update the disk.

3.2. Ordering Issues

Our schemes (BufferandRename) change the timing of I/O opera-
tions. However, they always satisfy the ordering properties of I/O
in databases, which require that logs are fully committed before
data is. This is accomplished by updating the Memory Buffer and
the disk buffer or rename area in the order that the disk write re-
quests are received. Moreover, after the subsequent checkpoint, all
updates are guaranteed to commit to their final storage locations.

As the updates commit after the checkpoint, our schemes do
not force disk write serialization across different block addresses.
Instead, the data blocks buffered in the Memory Buffer (or map-
pings in the NVRAM) are written to the final disk location in an
overlapped manner. They can even proceed with some re-ordering.
Overlapping and re-ordering enables higher performance without
affecting correctness. In theory, the performance could be even
higher than a system without recovery.

We have seen that in all cases, if a client receives a transaction-
completion message (Figure 4), then disk updates are guaranteed
to commit. Still, it is possible that the client receives the com-
pletion message and sends another request before the server has
physically finished the disk writes. Even if this request needs to
read the data that is still being written to disk, no race occurs. The
reason is that the PDD will automatically redirect the request to
the Memory Buffer, which only deallocates an entry when the fi-
nal disk update is completed.



3.3. Overheads and Recovery Latency
3.3.1. Overheads
ReViveI/O increases the latency of network messages because the
server PDD does not send packets until after the next checkpoint.
In practice, back-end database servers running TPC-C class appli-
cations are not particularly latency bound. Adding tens of ms to
each transaction to support recovery is tolerable.

However, we tune TCP in two ways. First, since packets now
take longer to be acknowledged, we increase the sliding win-
dow [36] that buffers yet-to-be-acknowledged packets. There is no
danger of buffer overflow because TCP throttles packet sending as
a buffer becomes full. Second, since the server PDD sends packets
after checkpoints, the packet round trip time becomes more vari-
able. This additional variability disrupts TCP’s flow control mech-
anism. To solve this problem, the server PDD does not send all the
packets as fast as it can after a checkpoint; instead, it smooths out
the traffic.

ReViveI/O’s impact on computation, memory, and disk ac-
cesses may also affect application throughput. Consider compu-
tation and memory accesses. For each output request, ReViveI/O
requires an initial write and a later read to the Memory Buffer
(Figure 4). For network I/O, the data written/read is only a pointer
to the socket buffer; the actual packet payload is retained in the
sliding window elsewhere in memory. For disk I/O, the data writ-
ten/read is the block data and metadata (Buffer), or the mapping
only (Rename). For Rename, the mapping is also written to the
NVRAM at checkpoints. In addition, the PDD executes book-
keeping code to manage the Memory Buffer.

For disk accesses,Bufferperforms two disk writes per write re-
quest, although only one is in the critical path (Figure 4-(b)). The
one in the critical path is fast because the disk buffer is written
sequentially, and it can be a small, fast disk.Renameperforms
two writes on the same disk per request: one for the data and one
for the new mapping (Figure 4-(c)). The first one is in the crit-
ical path; the second one can be merged with other updates of
mappings from the same checkpoint interval. In addition,Rename
may require periodic disk block compaction.

3.3.2. Recovery Latency
The latency of a recovery depends on the type of fault. Consider
first an MR fault. Figure 5 shows a ReVive recovery time-line
from [29], for the worst MR fault: the permanent loss of one node
at a checkpoint. The latency numbers assume a 100 ms checkpoint
interval. On top of the ReVive recovery, the thick up-arrows show
the three actions performed by ReViveI/O.

Immediately after fault detection, ReViveI/O resets the I/O de-
vices, namely network card and disk. This operation kills any on-
going DMA, which could overwrite the data being restored in the
rollback. This operation is quick — 1 ms or less. It is also device
dependent: it involves writing to a special I/O port to reset the net-
work card, and sending a signal to reset the disk controller. It does
not require any slow disk access.

After the memory state has been rolled back to the checkpoint,
ReViveI/O re-initializes the device drivers (Figure 5). They have
been left in an inconsistent state relative to the reset devices. This
operation involves updating data structures in memory such as
buffers and pointers, and bringing back the device driver’s con-
figuration parameters. It typically takes 10 ms or less.

Checkpoint C

100ms 80ms 50ms ~100ms ~490ms ~20s

Machine Unavailable Degraded Execution

Phase 1 Phase 2 Phase 3 Phase 4

Detection
Latency

Self-check,
Rerouting

Reconstruct
Lost Log

Rollback Reconstruct Lost Data

Barriers

Error

Useful Work

Lost Work

ReVive Recovery

1. Reset Device
(~1ms)

2. Reinitialize Device
Driver (~10ms)

Recovery related to ReViveI/O

3. Re-issue Outputs in the
Background (<100ms)

Figure 5. Recovery time-line for the permanent loss of one
node at a checkpoint. ReViveI/O actions are shown with thick
arrows.

Finally, after application execution has resumed, ReViveI/O
performs in the background all the output operations needed to
bring the I/O state to the checkpoint immediately preceding the
fault. Performing all these operations is easy. Indeed, forBuffer,
the rolled-back Memory Buffer has an accurate record of all such
operations. ForRename, the Memory Buffer has the record for
the network operations, while the NVRAM has the record of the
disk mappings to save. Performing these actions degrades the ma-
chine’s performance for tens of ms, but does not make it unavail-
able.

Overall, the three ReViveI/O-related recovery actions negligi-
bly add to the unavailable time and keep the fault transparent to
the database.

Consider now an NMR fault. All currently-executing trans-
actions abort and the system is typically rebooted. Before the
database can use its own recovery mechanisms, ReViveI/O brings
the disk to the state at the checkpoint immediately preceding the
fault. This is done as follows: forBuffer, the disk output infor-
mation is recovered from the disk buffer area; forRename, the
disk mappings are recovered from the NVRAM. The latency of
performing these actions is much smaller than the time required
for rebooting or for the database to recover. Therefore, ReViveI/O
again adds negligibly to the unavailable time.

Finally, a second fault may occur while recovering. If ReVive
can recover the memory state, ReViveI/O re-executes the three ac-
tions shown in Figure 5. Otherwise, ReViveI/O brings the disk to
a consistent state after reboot as just described.

3.4. Limitations

ReViveI/O has several applicability limitations. First, it is not ap-
plicable to latency-critical workloads, such as those with user in-
teraction through graphics, keyboards, or other devices.

ReViveI/O relies on system-level code to intercept I/O requests,
buffer them, and perform the operations later. This approach rules
out, as they are currently implemented, user-level I/O and I/O co-
processors such as TCP Offload Engines (TOEs). User-level I/O
relies on user libraries to perform I/O, eliminating kernel involve-
ment. For example, uncached accesses from user mode to the net-
work interface send messages without involving the kernel. To be



able to support schemes similar to ReViveI/O, we would have to
add a PDD component to the user libraries

TOEs implement TCP operations in hardware. The kernel is
not involved in performing the low-level operations in packet han-
dling. Again, to support schemes similar to ReViveI/O, we would
have to modify the TOE hardware to perform the PDD operation,
namely buffer the packet for later issue. We would also have to
synchronize the processor and the TOE at checkpoints.

We feel that, while user-level I/O and TOEs are interesting al-
ternatives, they are still new technologies with poor standardiza-
tion and, as a result, are hard to maintain in large server instal-
lations. The standard software TCP solution that ReViveI/O sup-
ports is overwhelmingly the most popular one.

4. Implementation Aspects
We have implemented a ReViveI/O prototype on a multiprocessor
server with two 1.5 GHz AMD Athlon processors, 1.2 Gbytes of
memory, two 80-Gbyte IDE disks, and a 1 Gbit ethernet card. One
of the two disks is used as a disk buffer. The server runs Linux
2.4. The PDD is about 2,000 lines of C code for the disk and 2,000
for the network. The DDs, the Linux kernel, and the applications
remain unmodified.

Note that our server does not have ReVive hardware. Conse-
quently, when needed, we simulate its effect. Specifically, to test
recovery, we pretend that a fault occurs immediately after a check-
point and, therefore, the memory state rolls back instantly. Re-
ViveI/O can then proceed with resetting the devices, re-initializing
the DDs and issuing all the buffered outputs. Since the memory
state recovery and the I/O state recovery are conveniently decou-
pled (Figure 5), we can test the correctness of the I/O-related re-
covery without memory-checkpointing hardware. Under fault-free
conditions, we do not model ReVive. However, in Section 6.3, we
estimate the combined overhead and availability of ReVive and
ReViveI/O.

Except for the ReVive support, we have thoroughly tested
the prototype under many workload conditions (e.g., heavy disk
writes, frequent small messages, or bulk data transmission) and
restart scenarios (e.g., DMA in progress or many pending I/O re-
quests). We also injected different faults that allowed us to test
most software paths. In the following, we outline some imple-
mentation aspects.

4.1. Support for Disk I/O
ReViveI/O can be designed for disks accessed through a file sys-
tem or as raw devices. In our prototype, we use a file system.
Figure 6 expands Figure 2 showing the interface between ker-
nel, PDD, and disk DD [4] forBufferandRename. The modules
in shaded pattern are those added for ReViveI/O: PDD, Memory
Buffer, disk buffer or rename area, and NVRAM.

In a conventional system, a read request causes a buffer cache
access. If a miss occurs, the low-level DD satisfies the request. In
a write, a block is allocated in the buffer cache if it is not already
there. The block is updated and marked dirty. Sometime later, the
kernel writes it to disk.

With ReViveI/O, such dirty block writes are directed to the
PDD. As indicated before, the PDD buffers the information and
commits it after the next checkpoint. Although individual DMA
operations (e.g., setup, execution, postprocessing) performed by
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Figure 6. Interface between kernel, PDD, and disk DD for Buffer
(a) and Rename(b).

the low-level DD may not be idempotent, disk writes at the PDD
level are idempotent because the PDD triggers these low-level op-
erations as an indivisible operation.

The Memory Buffer is sized based on the machine’s total disk
bandwidth and the checkpoint interval. The same applies to the
NVRAM except that the bandwidth is per disk, since ReViveI/O
has one NVRAM per disk. For example, a 100 MB/s disk ar-
ray in a 100 ms checkpoint interval can consume 10 MB. Conse-
quently, forBuffer, a 20 MB Memory Buffer and a 20 MB disk
buffer area suffice. For this update rate,Renamegenerates about
20 KB of mappings per checkpoint interval. Consequently, forRe-
name, a 20 MB disk rename area, 40 KB Memory Buffer, and 40
KB NVRAM suffice. Since the checkpoint operation takes about 1
ms [29], an NVRAM built out of battery-backed SRAM has suffi-
cient bandwidth (∼100 MB/s [35]) to load these 20 KB mappings
during a checkpoint.

4.2. Support for Network I/O

The kernel does not use the usual interface (e.g.,eth0 ). Instead,
it uses the virtual interface provided by the network PDD (say,
veth0 ). The data structure passed between the kernel and the
network DD is the socket buffer, which contains the length of the
packet, a pointer to the packet, and other fields. When the kernel
passes a socket buffer to the PDD, a pointer to it is copied to the
Memory Buffer. We copy only the pointer to reduce overhead.
After the checkpoint, the socket buffer is passed to the network
DD.

When an input packet arrives at the network card, the appro-
priate handler is triggered in the network DD, which in turn calls
thenetif rx function in the kernel to process the packet. TCP
would get confused if the kernel sent a packet throughveth0 and
received the reply frometh0 . Consequently, the DD call is routed
through anetif rx function in a special library that changes the
device field of the socket buffer toveth0 . Neither DD nor kernel
are modified.



Workload Description I/O

RandomWrite Repeatedly write blocks of a given size to disk. The writes are Disk
Micro- synchronous and directed to random locations. Size can be set.
Benchmarks SequentialWrite Like RandomWrite but writes are directed to sequential locations. Disk

Iperf [16] Repeatedly send messages of a given size. Size can be set. Network
Throughput TPC-C-like 32 warehouses, 30 remote clients, no think time, Disk and
oriented on Oracle 9.0.2 400-Mbyte database buffer, and 4-Kbyte blocks network
Latency WebStone 2.5 Memory resident, variable number of remote clients, no think time,Network
bound with Apache 2.0 85 HTML documents of 100 KB on average

Table 1. Workloads used in the evaluation. We use the term “TPC-C-like” because compliance with the specification is not fully checked.

5. Evaluation Methodology
We evaluate the three schemes of Table 2. Of the ReViveI/O ap-
proaches, we selectBuffer for evaluation.NoRollbackis the un-
modified server, which has no provision for I/O undo/redo.Stall is
a scheme for disk I/O similar to Masubuchiet al.[20, 21]. InStall,
there is no data buffering; requesting processes are not notified of
output I/O completion until the next checkpoint.

Scheme Description

Buffer ReViveI/O approach. Supports I/O undo/redo
for disk & network I/O.

NoRollback Unmodified server. No provision for I/O undo/redo.
Stall Output I/O blocks until next checkpoint. Scheme for

disk I/O only. Similar to Masubuchiet al. [20, 21].

Table 2. Schemes evaluated.

We run the workloads of Table 1: a throughput-oriented one
(TPC-C on Oracle 9.0.2), a latency-bound one (WebStone [38] on
the Apache server [1]), and several microbenchmarks.

We experiment with 20-240 ms checkpoint intervals. For each
checkpoint interval, we set the TCP sliding window size to buffer
all unacknowledged packets at the 1 Gbit ethernet bandwidth, and
the Memory Buffer size to hold all the data that can be written to
disk. For 80 ms intervals, this is 12 MB for the sliding window and
8 MB for the buffer. The ratio is the same for the other intervals.

6. Evaluation
To evaluate our ReViveI/O prototype, we measure its overhead in
fault-free execution (Section 6.1) and the latency of fault recov-
ery (Section 6.2). Then, we project the impact of combining Re-
ViveI/O and ReVive (Section 6.3).

6.1. Execution Overhead

6.1.1. Disk I/O Microbenchmarks

The RandomWrite and SequentialWrite microbenchmarks test
worst-case disk I/O conditions. They consist of a loop that syn-
chronously writes blocks of a given size to disk. Consequently,
the disk is constantly busy. In our server, one disk can support up
to 32 Mbytes/s of write throughput, while the other (used as disk
buffer) up to 36 Mbytes/s. With such hardware, Figure 7 shows the
resulting system throughput as a function of the size of the blocks
written. We consider 20 and 160 ms checkpoint intervals.

We see that the various overheads ofBuffer (Section 3.3.1) do
not reduce throughput relative toNoRollbackunder heavy disk
write traffic. In fact,Buffer’s throughput is slightly higher than
NoRollback’s. The reason is that a write request inBuffer returns
as soon as the data is written to the faster disksequentially, rather
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Figure 7. Disk I/O throughput for random and sequential syn-
chronous writes.

than to the other disk randomly (RandomWrite) or sequentially
(SequentialWrite).

The checkpoint interval size has little effect onBuffer. The
reason is that PDD operations have only tiny overhead. Finally,
Stall delivers a very low throughput; effectively,Stall manages
only a single synchronous write per thread per checkpoint.

6.1.2. Network I/O Microbenchmark
The Iperf microbenchmark measures the maximum TCP band-
width. Figure 8 shows the sustained throughput as a function of
the message size for two cases: our server sends messages to one
client (Unidirectional) and both client and server send messages to
each other (Bidirectional). The case where the client sends mes-
sages to the server is similar to Unidirectional — messages have
the same Round Trip Time (RTT) because the server delays all
packets, including ACKs. In this experiment,Stalldoes not apply.
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Figure 8. Uni- and bi-directional throughput between one client
and the server over 1 Gbit ethernet.

We see that, under these extreme conditions,Buffer lowers
the throughput relative toNoRollback. This is due to PDD over-
heads (Section 3.3.1) and suboptimal TCP operation in a high-
bandwidth, high-latency network. However, the throughput reduc-
tion is modest: it ranges from 5% with a 20 ms interval to less than
20% with 160 ms.

Finally, Bufferalso increases packet RTT. The resulting impact
on the response time depends on the application. The impact is tol-
erable in applications where the server performs substantial work



or where the communication pattern involves bulk data transmis-
sion. We consider this issue next.

6.1.3. Throughput-Oriented Workload: TPC-C + Oracle

This workload is typical of back-end database servers. The ma-
jor concern is not response time, but maintaining high throughput.
Individual transactions can take significant time, as they typically
perform disk I/O in the server. InBuffer, this workload exercises
both disk and network PDDs.

Figure 9 shows the average TPC-C throughput with different
schemes and checkpoint intervals normalized to that inNoRoll-
back2. The throughput of our moderately tunedNoRollbacksetup
is 1561 transactions per minute and its average response time is
612 ms. The figure shows data forStall, and forBufferwith disk
PDD only and with disk plus network PDDs. To minimize er-
rors, we report conditions of the first 10-minute interval after the
database is warmed up and the throughput becomes steady. During
that period, we take a measurement every 30 seconds. The figure
shows the mean and standard deviation of such measurements.
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Figure 9. Transaction throughput with different schemes and
checkpoint intervals normalized to NoRollback. The experi-
ments run with 30 remote clients.

ConsiderStall first. If we can only tolerate a 5% reduction in
throughput, none of the checkpoint intervals shown is acceptable.
In contrast,Buffer keeps the throughput reduction within 1% up
to 120 ms checkpoint intervals. Note that for checkpoint intervals
above 120 ms, the throughput reduction comes mainly from net-
work PDD overhead. Interestingly, the average response time does
not degrade as we increase the checkpoint interval. In fact, it goes
down slightly, decreasing to 590 ms by the time we use 240 ms
checkpoint interval. The reason is that long intervals reduce the
transaction rate, which in turn diminishes disk contention.

We have repeated theBuffer experiments for different num-
bers of clients and obtained similar results. Figure 10 shows the
normalized throughput for a range of checkpoint intervals for 60
and 90 clients. Each bar is normalized toNoRollbackfor the same
number of clients. As we increase the number of clients (i.e., more
transactions overlap in time), the delay incurred by the network
PDD is less visible and, therefore, long checkpoint intervals be-
come more tolerable.

2Throughput is given in New Order transactions per minute; response
time is for New Order transactions as well.

�����������
	���
����������������������! "�$#

�
��%$&
��%('
��%�)
��%�*
��%�+
��%(�
��%-,
��%�.
��%�/
&

&0%$&

'�� *!� .1� &2'�� &2��� '��3� '0*4�
���2�156
87:9��� "��;< "�$�!=?>0@A�"BDCE#0F

G�HI
JKLM�N
OPQ
R IH S
TR�U S
V

WYX"Z[Z$�4=�BD\]�^#0
`_bac�d�eF

�����������
	���
����������������������! "�$#

�
��%$&
��%('
��%�)
��%�*
��%�+
��%(,
��%.-
��%�/
��%��
&

&0%$&

'1� *!� /2� &3'1� &3,1� '1��� '0*4�
���3�256
87:91�� "��;< "�$�!=?>0@A�"BDCE#0F

G�HI
JKLM�N
OPQ
R IH S
TR�U S
V

WYX"Z[Z$�4=�BD\]�^#0
`_bac�d�eF

Figure 10. Normalized transaction throughput as a function of
the checkpoint interval for different numbers of clients.

Overall, we conclude that in throughput-oriented workloads
like TPC-C, and for 20–120 ms checkpoint intervals, our pro-
posedBufferscheme induces very small throughput reductions of
up to 1%. In such workloads, the progress of transaction process-
ing typically depends on the rate of synchronous writes issued by
the database log-writer process. OurBuffer scheme affects such
progress minimally.

6.1.4. Latency-Bound Workload: WebStone + Apache

In this workload, multiple remote clients read HTML documents
that are memory-resident in the server. Each transaction involves
establishing the connection with a three-way handshake, reading
a file, and closing the connection. Transactions are short because
there is no disk I/O — only the network PDD is exercised. This
workload simulates an interactive environment. Consequently, we
are interested in response time, measured as the time between re-
questing the connection until the whole file is received.

Figure 11 shows the response time for different numbers of
clients and checkpoint intervals. The figure is organized in num-
bers of clients. In each group, there are bars forNoRollback, and
for Buffer with different checkpoint intervals. Since there is no
disk I/O, theStall scheme is irrelevant. To obtain the data, we
run each experiment for 10 minutes, with the server at 100% CPU
usage.

We see that the response time quickly increases with the check-
point interval. With a checkpoint intervalT , the response time
should increase by2× T , since we addT to establish the connec-
tion andT to get the data (Recall from Section 3.3.1 that the PDD
smooths out outgoing messages). This is what we observe with
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Figure 11. Response time for different numbers of clients and
checkpoint intervals.

100 clients. For more than 300 clients andT ≥ 80ms, contention
causes larger increases in the response time.

According to [25], it is acceptable to add up to 100 ms to the
response time of a transaction. Consequently, ourBuffer scheme
can be used in the web server measured, as long as the checkpoint
interval is∼50 ms or shorter.

6.2. Latency of Fault Recovery

To recover from an MR fault, our schemes perform three actions
(Section 3.3.2): reset the devices, re-initialize the DDs and, in the
background, perform all the buffered output operations to bring the
I/O state to the checkpoint immediately preceding the fault. While
our prototype server lacks ReVive hardware, we can measure the
recovery latency of ReViveI/O as discussed in Section 4.

We have measured the latency of each part of the recovery for
Buffer, and listed average values in Table 3. From the table, we
see that device reset and DD re-initialization are quick. Note that,
to re-initialize the disk DD, we do not need to access the disk to
get information such as the number of cylinders and the sector
size; these parameters are obtained from the recovered memory.
Finally, the third operation takes tens of ms, but it is executed in
the background. Overall, compared to the ReVive recovery latency
(Figure 5), ReViveI/O adds negligible recovery overhead.

Operation Duration
Disk Network

Reset device 1 ms 15µs
Re-initialize device driver 10 ms 60µs
Re-issue operations in background ∼ T ∼ T

Table 3. Latencies of the operations needed to recover from an
MR fault. T is the checkpoint interval.

If the fault is NMR,Bufferonly needs to re-issue the buffered
output operations. This activity takes several seconds, asBuffer
has to read data and mappings from the disk buffer. Such latency
is negligible compared to the tens of minutes needed to reboot the
server and run a database recovery routine after this type of fault.

6.3. Combining ReVive and ReViveI/O: Performance
Overheads and Availability

We would like to estimate the impact of combining ReViveI/O and
ReVive. In [29], ReVive was evaluated for a checkpoint interval
T = 100 ms, where each checkpoint took 1 ms. ReVive induced
a 6% execution overhead.

We model ReVive as inducing ac = 1 ms overhead every
checkpoint, and a fixedr = 5% overhead for the period between
checkpoints, independently ofT . Therefore, the throughput reduc-
tion factor induced by ReVive isf = c+(T−c)×r

T
. The response

time increase due to ReVive ists × f
1−f

, wherets is the time that
the transaction spends executing in the server.

Figure 12 takes the impact ofBuffer on TPC-C throughput
(Section 6.1.3) and WebStone response time (Section 6.1.4), and
adds the estimated effect of ReVive. We can see that a throughput-
oriented workload such as TPC-C keeps the throughput reduction
at 7% or below for checkpoint intervals between 60 and 120 ms.
Most of the overhead is due to ReVive. On the other hand, the
response time increase in a latency-bound workload such as Web-
Stone is practically all due to ReViveI/O. The increase is2 × T ,
whereT is the checkpoint interval (Section 6.1.4).
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Figure 12. Estimated combined effect of ReVive and ReViveI/O
on the throughput of TPC-C (left) and the response time of
WebStone (right).

To complete the picture, we compare the availability ofRe-
Vive+BufferandNoRollback. For the former, we assume that MR
and NMR faults are independent and distributed exponentially. As
a result, the availability ofReVive+Bufferis 1 − MTTRMR

MTBFMR
−

MTTRNMR
MTBFNMR

. We estimateMTTRNMR as 5 minutes for ma-
chine reboot plus 5 minutes for database recovery [22]. We set
MTTRMR to 1 second [29]. ForNoRollback, all faults have the
same MTTR, namelyMTTRNMR.

Figure 13 shows the unavailability as a function ofMTBFMR.
Note that both axes in the figure are logarithmic. For
ReVive+Buffer, we show two curves: 1:100 assumes that
MTBFNMR = 100 × MTBFMR, while 1:1000 assumes that
MTBFNMR = 1000 × MTBFMR. For NoRollback, both
curves are practically the same, and we show only one.
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Figure 13. Unavailability as a function of the MTBF of MR faults.
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The figure shows thatReVive+Bufferhas much lower unavail-
ability thanNoRollbackthanks to its tiny recovery latency for the
more common MR faults. For example, for 1-weekMTBFMR,
ReVive+Buffer(1:100) has an unavailability of∼10−5, which cor-
responds to 99.999% availability, whileNoRollbackhas an un-
availability of 0.001, which corresponds to 99.9% availability.
Overall,ReVive+Buffer’s unavailability is 86 and 375 times lower
thanNoRollback’s for 1:100 and 1:1000, respectively.

In summary,ReVive+Bufferprovides higher availability than
conventional systems while delivering slightly lower throughput.
We believe that, at least in the applications considered, reducing
downtime is much more important than achieving peak throughput
while the machine is up.

7. Related Work
Masubuchiet al. [21] proposed adding a PDD to the kernel to sup-
port disk I/O recovery. Their scheme corresponds toStall in Sec-
tion 5, which blocks disk writes until the next checkpoint [20].
ReViveI/O differs as follows: (i) instead of blocking, it buffers
the data and commits them later in the background, and (ii) it
supports network I/O. More importantly, this paper contributed
with the full implementation, testing, and evaluation of an effi-
cient I/O undo/redo prototype compatible with solutions such as
ReVive [29] or SafetyNet [34].

High-availability machines such as HP’s Nonstop Architec-
ture [11] and IBM’s S/390 mainframes [33] attain fault tolerance
through expensive hardware support, often involving extensive
component replication. We seek a less expensive design point.

Sequoia [3] is an SMP where mirrored main memory is consid-
ered to be the checkpointed state. When a dirty line is evicted from
a cache, a checkpoint is triggered. A checkpoint is also forced ev-
ery time a processor requests I/O, which is an inefficient approach.

OS- and library-based checkpointing includes UNICOS [18],
KeyKOS [19], diskless checkpointing [28], and fault-tolerant
Mach [32]. Their checkpoint interval is typically minutes or
longer. This results in high MTTR and would induce intolerably
long message delays. Some schemes provide disk I/O recovery by
journaling, but none addresses network I/O recovery.

Database management systems (DBMS) have their own well-
known I/O recovery mechanisms [8]. Checkpoint intervals are in
the order of minutes to achieve low enough overheads, and the re-
covery process takes tens of minutes [22] or more. For example,
for System B of [22], targeting a 5-minute database recovery time,
incurs 8.2% overhead in throughput. Note that such database re-
covery time does not include the system recovery time (e.g., repair
and reboot), which at least adds minutes. Similarly, targeting a 20-
minute database recovery time incurs 6.6% overhead. Also, the
fault results in the loss of ongoing transactions. In contrast, for
the frequent faults (MR faults), ReVive plus ReViveI/O has three
advantages: (i) ongoing transactions are not lost, (ii) the system
recovers in less than 1 second, and (iii) applications and kernel
need no modification. When a DBMS runs on ReVive with our
I/O undo/redo layer, only the infrequent faults (NMR faults) trig-
ger database recovery. Consequently, the DBMS can use lower-
overhead checkpointing, at the expense of longer recovery time.

There are cluster options for databases such as Oracle RAC
(Real Application Clusters) [26]. These solutions use multiple ma-
chines to provide higher system availability. However, to achieve

good performance, they require major changes to the database
management system and, possibly, to the applications that run on
top of it.

Our mechanisms overlap with ideas from other works. Hu
and Yang [13] proposed the Disk Caching Disk (DCD), mainly to
boost the performance of random disk writes; our disk buffer area
is like a DCD for reliability. Several systems, such as the Legato
Prestoserve [23] and Bakeret al.’s scheme [2] have used NVRAM
to speed up disk writes; we use NVRAM to speed up writes within
checkpoints. Our PDD can be thought of as a thin Virtual Machine
(VM) for I/O; VMs have been used for forward error recovery [5]
and for post-intrusion replay [6], rather than for rollback recovery
of faults.

ReViveI/O is also related to transactional memory systems
(TMS) [10]. TMS share similar I/O issues with hardware-based
memory checkpointing systems: when a transaction is aborted,
TMS need to undo any work done by that transaction, including
I/O. On the other hand, there are some differences: (i) TMS do not
need to redo I/O after a transaction is aborted, (ii) TMS have less
emphasis on durability than memory checkpointing systems be-
cause their primary purpose is to support atomicity, not reliability,
and (iii) TMS may additionally need some mechanism to detect
and track the dependences and conflicts between threads that are
induced by I/O operations.

8. Conclusion
The main contribution of this paper is the full implementation,
testing, and experimental evaluation ofReViveI/O, an efficient
scheme for I/O undo/redo that is compatible with high-frequency
checkpointing architectures such as ReVive and SafetyNet. In ad-
dition, we perform a sensitivity analysis of what checkpoint fre-
quencies are required to maintain acceptable throughput and re-
sponse times. Overall, this work completes the viability assess-
ment of such novel memory-recovery architectures.

Our ReViveI/O prototype shows that low-overhead, tiny-
MTTR recovery of I/O is feasible. For 20–120 ms between check-
points, the throughput of a throughput-oriented workload such as
TPC-C on Oracle decreases by no more than 1%. Moreover, for
50 ms between checkpoints or less, the response time of a latency-
bound workload such as WebStone on Apache remains tolerable.
In all cases, the recovery time is practically negligible. Moreover,
kernel, device drivers, and applications remain unmodified. Fi-
nally, the combination of ReVive and ReViveI/O is likely to re-
duce the throughput of TPC-C-class applications by 7% or less for
60–120 ms checkpoint intervals, while incurring a tiny MTTR of
less than 1 second.

Our analysis suggests that support for ReVive plus ReViveI/O
makes for a very cost-effective high-availability server. In general,
compared to software-based recovery solutions (OS, library, and
database), our approach has a higher error coverage, lower over-
head, and much smaller MTTR. We estimate that it delivers a 2–3
orders of magnitude reduction in unavailability over a database
server that we evaluated. Finally, compared to hardware-intensive
solutions such as HP NonStop systems, it is much cheaper while
maintaining high availability.

An avenue for future work is to apply our techniques to transac-
tional memory systems. We expect that ReViveI/O can be applied
to transactional memory systems by adding support for per-thread



output commit and for some dependence/conflict tracking mecha-
nism through the Memory Buffer.
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Appendix A: Summarized Operation of ReVive
During fault-free execution, all processors are periodically inter-
rupted to establish a global checkpoint. Establishing a checkpoint
involves writing back register and modified cache state to memory.
As a result, main memoryis the checkpointed state at that point.
Between checkpoints, the program may modify the memory con-
tents. However, when a line of checkpoint data in main memory
is about to be overwritten by a cache eviction, the memory con-
troller saves the line in a log. Later, after the next checkpoint is
established, the logs are discarded. At any time, if a fault is de-
tected, the logs are used to restore the memory state to that of the
last checkpoint.

To enable recovery from faults that result in lost memory con-
tent, ReVive organizes pages from different nodes into parity
groups. Each main memory write is intercepted by the memory
controller in the node, triggering an update of the corresponding
parity bits located in a page on another node. The parity informa-
tion is used when the system detects a fault in the memory of one
node (e.g., permanent loss of a node’s memory). Then, the parity
bits and data from the remaining nodes’ memories are used to re-
construct the lost memory content (both logs and program state).
More details are found in [29].


