1250

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS; VOL. 7, NO. 12, DECEMBER 1996

Data Forwarding in
Scalable Shared-Memory Multiprocessors

David A. Koufaty, Xiangfeng Chen, David K. Poulsen, and Josep Torrellas, Member, IEEE

Abstract—Scalable shared-memory multiprocessors:are often slowed down by long-latency memory accesses. One way to cope
with this problem is to-use data forwarding to overlap memory accesses with computation. With data forwarding, when a processor
produces a datum, in addition to updating its cache, it sends a copy of the datuim to the caches of the processors that the compiler
identified'as consumers of it. As a result, when the consumer processors access the datum, they find it in their caches.

This paper addresses two main issues. First, it presents a framework for a compiler algorithm for forwarding. Second, using address
traces, it evaluates the performance impact of different levels of support for forwarding. Our simulations of a 32-processor machine show
that an opﬁmistic suppert for forwarding speeds up five applications by an average of 50% for large caches and 30% for small caches.

~ For large caches, most sharing read misses are eliminated, while for small caches, forwarding does not increase the number of conflict
misses significantly. Overall, support for forwarding in shared-memory multiprocessors promises to deliver good application speedups.

Index Terms—Memory latency hiding, forwarding and prefétching, multiprocessor caches, scalable shared-memory

multiprocessors, address trace analysis.

INTRODUCTION

1
CALABLE ' shared-memory multiprocessors are often
S slowed down by long-latency memory accesses. To cope
with this problem, researchers have proposed techniques
that reduce the latency of memory accesses. Example of such
techniques are sophisticated ‘cache ‘hierarchies or compiler
- optimizations for locality enhancement. However, while
these techniques indeed reduce the average memory access
latency significantly, they tend to handle sharing-induced
misses poorly. '
To deal with sharing-induced misses, we often need
techniques that overlap memory accesses with computation
or with other memory accesses. These techniques include
multithreading [2], relaxed memory consistency models [1],
[7], data prefetching [13], and data forwarding [19]. In both
prefetching and forwarding, the data is moved close to the
consumer ‘processors before it is actually needed. Then,
when the consumer processors finally access the data, they
can do so with low latency. In data. prefetching, the con-
sumer processors request the data in advance; in data for-
warding, the producer processor, after updating its cache,
sends a copy of the data to the consumer processors.
Data forwarding is different from update cache coher-
ence protocols [22]. In an update protocol, when a proces-
sor writes, all current sharer processors are updated. In our

e D.A. Koufaty and J. Torrellas ave with the Center for Supercomputing
Research and Development, University of Hlinois at Urbana-Champaign,
1308 W. Main Ave., Urbana, IT. 61801.

E-mail: {koufaty, torrellaj@csrd.uiuc.edu.

¢ X. Chen is with Silicon Graphics Inc., Mountain View, CA 94043.
E-mail: xchen@mti.sgi.com.)

¢ D.K. Poulsen is with Kuck and Associates, Inc., Champaign, IL 61820.
E-mail: poulsen@kai.com.

Manuscript received April 18,1995. A shorter version of this paper was presented
at the Ninth International Conference on Supercomputing, July 1995.

For information on obtaining reprints of this article, please send e-mail to;
transpds@computer.org, and reference IEEECS Log Number D95235.

4

design of data forwarding, instead, the producer processor
updates a set of processors selected by the compiler. The
updated processors may or may not be current sharers, and
the rest of the current sharers are invalidated. Data . for-
warding, in fact, has much in common with data prefetch-
ing. It can be thought of as producer-initiated prefetching.
Data forwarding and prefetching are complementary tech-
niques that can be combined. In this paper, however, we
focus on data forwarding exclusively.

There is little previous work on data forwarding. For-
warding was added to the DASH architecture with the
Deliver instruction [12]. This instruction sends the data to
several clusters specified in the instruction with a bit vec-
tor. A recent performance evaluation of the deliver instruc-
tion [15] shows that, in general, prefetching is more effec-
tive than the deliver instruction. The deliver instruction is
reported to outperform prefetching only when the cache
size and the memory latency are very large. However, the
consumer processors are computed at run-time, using spe-
cial hardware to predict the future communication: behav-
ior based on the recent history of the application behavior.
In this paper, instead, the compiler is responsible for identi-
fying the consumer processors. Poulsen and Yew [17], [19]
studied compiler-initiated data forwarding alone and in
combination with data prefetching. They showed that, in
both cases, large performance gains can be achieved. How-
ever, they only examined large caches, which tend to show
only the positive side of forwarding. Furthermore, they
only evaluated a simple strategy for forwarding.

There are other related schemes that allow a processor. to
broadcast the updated value of a variable. These schemes are
the KSR Poststore mechanism [21], the DASH Update Write
[12], the Ultracomputer UpdateAll primitive [4], and the
Multicube Notify primitive [9]. However, in both the KSR
Poststore mechanism and the DASH Update Write, only the
processors holding a copy of that data receive the update.

1045-9219/96$05.00 ©1996 IEEE

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

Moreover, the UpdateAll and Notify primitives were both
proposed and studied primarily to optimize interprocessor
synchronization operations—not the sharing of data.

In this paper, we present a framework for a compiler al-
gorithm for forwarding. In addition, using address traces,
we evaluate the performance impact of different levels of
support for forwarding. We simulate a 32-processor scal-
able shared-memory multiprocessor. We find that an opti-
mistic support for forwarding speeds up five Perfect Club
codes by an average of 50% for large caches and 30% for
small caches. For large caches, most sharing read misses are
eliminated, while for small caches, forwarding does not
increase the number of conflict misses significantly.

The rest of this paper is organized in four sections: Sec-
tion 2 describes data forwarding; Section 3 presents the
framework for a compiler algorithm; Section 4 describes the
method used to evaluate the performance impact of data
forwarding; finally, Section 5 evaluates data forwarding.

2 DATA FORWARDING

Data forwarding is a technique that can be used in shared-
memory multiprocessors to hide the latency of interprocessor
communication. In data forwarding, when a processor up-
dates a word in its cache, it also propagates the update to the
caches of processors that are expected to use the word in the
near future. Hopefully, when these consumer processors
read the word later on, they will find the updated data in
their caches and, therefore, proceed without stalling.

Data forwarding can be integrated well with invalidation-
based hardware cache coherence protocols. Indeed, the pro-
ducer processor sends a forward message with the update
and the list of processors to receive the update. The message
is sent to the directory that keeps the list of sharers of the
word. The directory will update memory, send the update to
the consumer processors, and mark the producer and the
consumer processors as sharers. Furthermore, it will send
invalidations to all the other processors that currently have
the data and remove them from the sharer list. When the
caches of the consumer processors receive the update, they
send an acknowledgment message to the producer processor
to inform it of the completion of the transaction. Note, there-
fore, the difference between an update protocol and data
forwarding: In an update protocol, all current sharers are
updated; in data forwarding, a set of processors that may or
may not be current sharers are updated and any current
sharers that are not in this set are invalidated. Note that data
forwarding can displace data from the consumer's cache.
This can cause deadlock if the displaced data is dirty and the
write buffer cannot take because it is full. To avoid this
deadlock the data being forwarded is discarded if the data
being evicted is in state dirty and the write buffer is full.

Data forwarding can be supported efficiently in caches
with multiword lines. Following Poulsen and Yew’s work
[19], we support it-with a Write-and-Forward assembly in-
struction. This instruction is inserted by the compiler in lieu
of -an ordinary write instruction. It uses one more register
than an ordinary write instruction: A mask register that
indicates the processors that should receive the update.
This register is used implicitly by the instruction, and must

1251

have as many bits as there are processors in the machine. A
write-and-forward instruction does not stall the processor.
If the write-and-forward access hits a line that is dirty in
the producer’s cache, the whole cache line is forwarded to
the directory-memory and the line is marked shared in the
producer’s cache. Otherwise, if the access hits a shared line
or misses in the producer’s cache, only the updated word is
forwarded to the directory-memory. If the access missed in
the producer’s cache, the directory-memory will send the
complete memory line to the producer processor in addi-
tion to sending it to the consumer processors. In all cases,
for every forward, an entry is allocated in the write buffer
of the producer processor and kept until the acknowledg-
ments from the consumers have been received. At that
point, it can be retired. Note that a nonforwarding system
does not allocate an entry in the write buffer for writes to
dirty data. Therefore, the write buffer in forwarding system
needs to be deeper than in nonforwarding systems.

The reason why forward messages go first to the directory
and then to the consumer processors. instead of going di-
rectly to the latter is to prevent races in the cache coherence
protocol. Indeed, by sending the forwards to the directory,
we make sure that two updates to the same cache line are
serialized in the directory. If, instead, the forwards were sent
directly from the producer to the consumer cache without a
mid-trip hop in the directory, races could occur. For example,
suppose that the producer processors send updates directly
to the consumers and, in parallel, send notification messages
to the directory. In this case, imagine that a processor issues a
write-and-forward to a line and a second processor issues an
ordinary write to the same line. Suppose that the directory-
memory observes the resulting forward notification message
first and the invalidation operation corresponding to the
write later. It is possible that, because of network traffic de-
lays, a third processor receives the messages in the opposite
order: the invalidation first and the forward later. This situa-
tion would cause the cache in the third processor to wrongly
store the forwarded data. If the messages had been serialized
in the directory, they would have arrived at the third proces-
sor in the same order. Of course, we are assuming that we
use deterministic routing of messages.

Still, there are ways to support this one-hop protocol
without races. One such way is to prevent the forwarded
data from immediately modifying the cache of the consumer
processor. Instead, when the data arrives at the consumer
node, it is deposited in a Receive buffer. The receive buffer.
can hold several cache lines. When a processor misses in the
cache, it always checks the receive buffer to see if the data
has been forwarded but not yet copied into the cache. If so,
the line is read but not copied into the cache. A forwarded
line in the receive buffer will be copied into the cache or dis-
carded only when the consumer processor receives, from the
directory-memory, a Commit message corresponding to that
forward. The directory-memory sends a commit message to
all the consumers when it receives the forward notification
message coming from the producer processor. Overall, given
the complexity of this aggressive scheme and the fact that
consumers are unlikely to notice much of ‘a difference
whether the data is forwarded to them in one or two hops,
we use the cheaper two--hop forwarding algorithm.

1252

As indicated before, in the two-hop forwarding algorithm,
the directory-memory serializes the state changes for a mem-
ory line. If a forward reaches a directory and the line that it
wants is changing states at that time, the directory bounces
the forward. In this case, the originating processor is forced
to retry the transaction. A similar approach is used in the
transactions of the DASH cache coherence protocol [12].

- Even if, in the end, the forwarded data is safely deposited in
the cache of the consumer processors, three problems may
occur. First, a consumer‘processor may request the data before
it arrives from the forwarding processor. In this case, the con-
sumer will have to stall until the data arrives and, therefore,
only part of the communication latency will be-hidden. A sec-
ond problem -occurs when the data arrives and is later dis-
placed from the consumer cache by other data before it is used.
Although this case will not have any effect on the miss rate, the
instruction overhead of the forward will decrease perform-
ance. Finally, the forwarded data may displace useful data
from the consumer cache. This can create an additional miss
. that brings the original data back into the cache and displaces
the forwarded data. To avoid the last two problems, the com-
piler could identify the conflict and disable the forward. Alter-
natively, the compiler can reduce the likelihood of this prob-
lem by forwarding data only if the consumer processor is un-
likely to-access much data between the reception and the use
of the forwarded line. We will evaluate this idea in Section 5.

Overall, we see that forwarding can interact with: the
miss rate of an application in several ways. In the more
intuitive case of single-word cache lines, forwarding can
eliminate ‘true sharing and cold misses or induce conflict
misses. These cases are illustrated in Fig. 1. In the figure,
words x and y belong to two cache lines that conflict in the
cache. The figure shows how forwarding can remove a true
sharing miss (Chart a), remove a cold miss (Chart b), and
induce a conflict miss (Chart ¢). - -

Proc0 Procl Proc 0 Procl Proc 0 Procl
rdz g WI & . - ordy
W : rd.z* WL T
rd z* rd y*
rd z

* Hit
With forwarding: Conflict miss
(a))) o ()
Fig. 1. Interaction of forwarding with the misses in caches with single-
word lines.

Cold miss
With forwarding: Hit

* . True sharing miss
With forwarding: Hit .

In addition, depending on how we count the misses, for-
warding may also appear to have other effects like eliminat-
ing conflict misses. Indeed; consider a word «x that is refer-
enced and brought into the cache, then replaced by ancther
word y, and finally referenced again. This-second reference
to'x’ causes a conflict miss. Suppose that, before this ‘second
reference to x, another processor forwards x to the cache pre-
venting the conflict miss.- While the forward: is supplying
data that is truly shared, the accounting may indicate that it
is eliminating a conflict miss. Obviously, the conflict miss is
hiding a sharing access that is amenable to forwarding. We
look at this issue of fewer conflicts in Section'5.3.

2.1 Optlmlzatlons

The simple forwarding scheme descnbed so far can be im-
proved in several ways. In this section, we describe some

[EEE TRANSACTIONS:ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1896

optimizations, although we will not support them in the
evaluation section:

Combining. Obviously, if a processor writes the same
word several times in a row before the word is needed by
any other processor, only the last write needs to be for-
warded. An extension of this is to combine several forward
messages into one if they are induced by the same proces-

. sor updating different words of the same cache line. This

will reduce network traffic. Such combining can be initiated
either by the compiler or by the hardware. In the former
case, the compiler detects a group of write-and-forwards to
different words of the same line that would be issued close
in time. Then, the compiler replaces all of them except the
last one by regular writes. Of course; the compiler should
do this only if all the updates are still likely to arrive at the
consumer caches on time. Alternatively, the hardware can .
perform combining if the producer cache keeps the forward
in a buffer for a few cycles before sending it. If, in’ the
meantime, the processor generates another forward to the
same line, the two forwards are combined. This approach is
used by Glasco et al. {8] in update protocols.

Forwarding to the secondary cache only. If ’che primary cache
is not big enough to hold the working set plus the forwarded
data, forwards may be sent to the secondary cache only. The
system can be designed such that, if the primary cache of the
consumer. processor had an old copy of the data, it gets auto-
matically updated when the forward is received. With this
approach, we reduce conflict misses in small primary caches
while bringing the data close to the consumer processor.

Forwarding to memory. In some cases, the compiler cannot
determine which processors will -consume ithe data. This
may occur, for instance, when the data is consumed in a
dynamically-scheduled parallel loop. In this case, the pro-
ducer forwards the data to memory. As a result, the con-
sumers can later get the data from memory instead of hav-
ing to go all the way to the producer processor.

Separate forwarding instruction. The write-and-forward
instruction as defined restricts data forwarding to happen
when the writée takes place. To deal with the cases where
the forward should be delayed but the write-should not, a
special forward-only instruction can be used. An example
of such instruction is the DASH deliver instruction [12].

Software-Based Prefetching. Forwarding is less appropriate
when the consumer is unknown or ‘when the consumer will
not use the data until much later. In these cases, we can use
prefetching. One hybrid forwarding-prefetching scheme has
been studied by Poulsen and Yew [19]. To see the relation-
ship between forwarding and -prefetching, we finish this sec-
tion with a comparison between the two scherntes.

2.2 Comparison to Software-Based Prefetching

Data forwarding and data prefetching can be compared in
terms of -effectiveness, complexity of -the -compiler and
hardware support required,and. overhead involved. Start-
ing with effectiveness, we note that prefetching can elimi-
nate any kind of read misses, namely. cold, conflict or co-
herence misses. Forwarding, on. the other hand, can only
eliminate. coherence misses and the related case. of cold
misses on data produced by another processor (Fig. 1).

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

1253

TABLE 1
COMPARING FORWARDING TO SOFTWARE-BASED PREFETCHING
Issue Comparison
Prefetching targets all misses: cold, conflict, and coherence.
Effectiveness Forwarding can only target coherence and some classes of cold misses.

However, for theses misses, forwarding can outperform prefetching. -

Compiler Support

Forwarding requires more sophisticated compiler support.

Hardware Support

Both strategies require a comparable amount of hardware support.

Qverhead

Both strategies have a comparable instruction overhead and may cause cache conflicts.

For the misses that forwarding can handle, however, for-
warding can be more effective than prefetching. There are
three reasons for this. Firstly, forwarding delivers the data to
the consumer as soon as it is produced. Secondly, the data is
transferred with small latency, namely with two hops: from
producer processor to memory and a from memory to con-
sumer processor. Finally, a producer can forward the same
data to several consumers with a single instruction. With
prefetching, none of this is true. First, the prefetch rarely
reaches the producer right at the time when the data is pro-
duced. If the prefetch is issued too early, it will be wasteful,
because it will bring useless data, while if the prefetch is is-
sued too late it will fail to hide the memory latency com-
pletely. Secondly, prefetch transactions generally have a
higher latency than forwarding transactions. This is because
they involve three steps: from consumer processor to direc-
tory to find out the location of the data, from directory to
producer processor, and from producer processor to con-
sumer processor. Finally, if several consumers want the
data, all of them have to execute prefetch instructions. We
note in passing that forwarding also has the counterpart to
prefetching in exclusive mode [13]. In this case, the producer
forwards the data in exclusive mode and invalidates itself.

The compiler support required for data forwarding is more
sophisticated than for prefetching. Indeed, if a processor issues
prefetches to eliminate conflict misses only, then the compiler
analysis can focus exclusively on that processor’s code. Fur-
thermore, while in both prefetching for coherence misses and
forwarding the compiler needs to analyze the code executed
by different processors, prefetching requires a simpler analysis.
Indeed, for prefetching, the consumer processor does not need
to know the identity of the producer processor, while for for-
warding the producer processor needs to know the identities
of the consumer processors.

Both techniques require roughly comparable hardware
support. A popular implementation of software-based pre-
fetching requires ‘a prefetch instruction that loads data
without blocking and takes no- exceptions, lock-up free
caches to handle multiple outstanding prefetches, and a
buffer that keeps an entry for each pending prefetch until
the prefetch transaction is completed. Forwarding, on the
other hand, requires a write-and-forward instruction that
writes the cache through, lock-up free caches, a deeper
write buffer that keeps an entry for each pending forward
until the forward transaction is completed, and the ability
for a cache to accept data that it has not requested.

1. It is possible, however, to modify the prefetch instruction to take the
processor number as an argument and, therefore, send the request directly
to the producer. In this case, prefetching the data would involve only two
hops. This, however, would create races as indicated in our discussion on

. forwarding uniess expensive hardware changes are made.

Finally, both techniques have comparable amounts of
overhead in the form of extra instructions executed. These
instructions are necessary to compute the destination proc-
essor in forwarding and the address of the data in pre-
fetching. Note, however, that in forwarding we can send
data to several consumers with one single instruction,
while in prefetching the same behavior would require in-
structions in all consumers. Similarly, both schemes can
cause cache conflicts by bringing too much data to the con-
sumer cache before it is actually used. This problem is less
acute in prefetching because the compiler can control the
time when the prefetch is issued. In the basic form of for-
warding, however, the forward is always issued ‘when the
data is written.

The previous discussion is summarized “in: Table 1.
Overall, while the compiler support required for forward-
ing is more complicated, forwarding can be more effective
in coping with coherence misses. Recently, Poulsen and
Yew [20] made a quantitative comparison between data
prefetching and data forwarding. They found that each
technique was effective for application codes with different
characteristics. Prefetching was better for codes with higher
conflict miss rates, while forwarding achieved better per-
formance for codes with more communication-related
misses. Forwarding also performed well in codes where it
was difficult to overlap communication and computation.
In this paper, however, we focus on data forwarding only.

3 A FRAMEWORK FOR FORWARDING

After the previous description of data forwarding, we now
describe a framework for a compiler algorithm to insert
data forwarding instructions in the code. We focus on code
that exploits loop-level parallelism with doall constructs.
Therefore, we will forward from doall or serial sections to
other doall or serial sections. In our analysis, we focus only
on array accesses that are indexed by affine functions of the
loop indices and constants. Even though this limitation is
not a requirement of data forwarding, these functions are
usually the only ones that can be handled well by current
compiler technology.” We consider three static scheduling
policies for parallel loop iterations: round-robin, chunk,
and block scheduling (Section 3.1). We do not consider dy-
namic scheduling because it is impossible to determine the
mapping between processors and iterations at compile
time. We divide the analysis in two parts. In the first part,
described in Section 3.1, we identify the producer write and
consumer read pairs and compute the forwarding expres-
sion. In the second part, described in Section 3.2, we prune
some of these forwards to avoid cache pollution. We con-
sider each part in turn.

1254

3.1 Computing the Forwarding Expression

The first part of the framework for data forwarding is to
identify the producer write and consumer read pairs and
compute the forwarding expression. Clearly, in the presence
of procedure calls and aliasing, the compiler analysis can be
complex. Such analysis needsto be handled by data depend-
ence algorithms between loops. Discussion-of data depend-
ence algorithms [3] is beyond the scope of this paper. In-
stead, we will assume that we have already identified the
producer and consumer loops. We now have to compute the
forwarding expression in the producer loop. In the following,
we will proceed with an example of how to compute the
forwarding expression. For simplicity, the example will use
accesses to unidimensional arrays; the expressions for multi-
dimensional arrays can be derived similarly.

- Consider the producer and consumer doall loops of
Fig. 2. We proceed in three steps. First, we determine, for
each iteration in the producer loop, what iteration in the

consumer loop consumes its data. Then, we determine, for

each iteration in. the consumer loop,. what processor exe-
cutes it. With these two expressions, we know the con-
sumer processor for each iteration in the producer loop and
therefore can generate the forwarding expression. Finally,
we need to incorporate the consumer loop bounds.

DOALL I = 3, 16

AC2I+1) =
ENDDOALL
DOALL I-=0, 9
= A(T+2)
ENDDOALL

Fig. 2. Simple producer and consumer doall loops.

If we denote the producer and consumer loop.indices by
I and I, respectively, the producer and consumer itera-
tions that access the same array entry are related by:

20F41=1°+2 or I“=21"-1 (1
where, from the loop bounds:
3<1"<16 and 0<I°<9 @)

Equation (1) means that the array element produced by
iteration I' in the producer loop will be consumed by itera-
tion 2I' - 1 in the consumer loop. ‘

To.determine which processor executes each iteration in
the consumer loop, we need to know the scheduling policy
used. Let K be the number of iterations in the consumer
loop, P the number of processors, and P(i) the processor
executing -iteration 7. We assume that the loop index is
normalized to start at 0 and has step 1 (if the loop index is
not normalized, we. subtract its lower bound from i and
divide by its stride before applying the formulas below).
We also assume that processor numbers start at 0. The ex-
pressions: of the processors executing the consumer loop
iterations for different scheduling policies are:

1. Round-Robin Scheduling(Fig. 3a):
‘ P(i) =i mod P

- 2. Chunk "Scheduling (Fig. 3b). Each processor gets: a
contiguous chunk of iterations while distributing: the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.-7; NO. 12, DECEMBER 1996

iterations as evenly as possible. If g and r are the quo-
tient and the remainder respectlvely of K divided by
P, we have:

| if r= 0 ori <,r(qf,+ 1)

m oﬂlerwise

3 Block Scheduling (Fig. 3¢). This is like Chunk sched-
uling except that, when the number.of 1terat10ns is not .
a multiple of the number of processors, we try fo fill
up the first P — 1 processors. This produces a simpler
expression:

PO PL P2 P3 PO PL P2 P3. PO.. PL P2 P3

0 ti2{3 oi3ieis 0 36 9
45467 14479 147
als 2.5 2058
(a) Round-robin (b) Chunk (@), Block

Fig. 3. Scheduling algorithms for 10 iterations executed by four proc;eésors.

In our experiments, we use block schedtiling: If, for this
example where K = 10 we use four processors, we have:

Therefore, from (1), an array element prddﬁced in iteration

I’ of the producer loop will be consumed- by -processor

[21 + ;1J in the consumer loop. Therefore, in Fig. 2, we will

_replace AQIL+ 1) by FW(AQRI+1), 21 ~1)/3), where FW:is a

write-and-forward macro that takes two arguments: the
address to be written to and the ID(s) of the processor(s)
that will receive the forward. :

If we simply placed the write-and-forward. as it is, how-
ever, we would be sending several unnecessary. forwards.
This is because some of the elements produced are not-con-
sumed by any iteration in the consumer loop. If we wantto
eliminate useless forwards, we can examine the bounds of
the consumer loop and make sure that all -the forwarded
data is consumed. From (1) and (2), we have:

0<21"-1<9 or' 1/2<1"<5

, Looking at the second -expression, it is clear that the left-

most inequality is always satisfied. The rightmost one is
not. Therefore, the later needs to be enforced with an 'if

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

DOALL I = 3, 16
IF (I > 5) THEN A(2I+1) =
ELSE FW(A(2I+1),(2I-1)/3) =
ENDDOALL

DOALL I = 0, 9
= A(I+2)
ENDDOALL

Fig. 4. Resulting code. The arguments of the write-and-forward macro
are the location to be written to and the ID(s) of the processor(s) that
will receive the forward.

C producer
DOALL J=1,NUM
VT(J,1:NUM) =
ENDDOALL

C modified producer
DOALL J=1,NUM
FW(VT(J, 1:NUM),
ENDDOALL

{0, 1, ..., 31} =

C consumer
DOALL I = 1, KRS
DO J = 1, NUM

DOK=1,17
= VT(X,1:NUM)
ENDDO
ENDDO
ENDDOALL

(2) (®)

Fig. 5. Example of a forward broadcast. Code (a) is the original code,
while code (b) is the instrumented producer code.

statement enclosing the forward. The resulting code is
shown in Fig. 4. To eliminate the if statement, we could
split the producer loop into one that goes from 3 to 5 and
another one that goes from 6 to 16.

3.1.1 Examples of Forwarding Expressions

Before finishing this section, we show three examples of the
resulting forwarding expressions for loops in parallelized
versions of the Perfect Club codes [5], [6]. The examples
show a forward broadcast, a forward from a serial to a par-
allel section, and a forward between two parallel sections.
They refer to a machine with 32 processors.

Forward Broadcast. A simplified version of a pair of pro-
ducer-consumer loops in TRFD [6] where broadcast is re-
quired- is shown in Fig.5a. In the figure, the notation
X(I:NUM) = Y(1:NUM) is short for a loop that assigns each of
the NUM elements of Y to its corresponding elements of X. In
the example, note that array section VI(J, 1:NUM) is produced
by processor | and consumed by NRS processors. After range
propagation, we determine that NRS 2 32. As a result, the in-
ner loop of the consumer loop is executed by all 32 processors
and VT needs to be broadcast to all processors. The resulting
producer loop code is shown in Fig. 5b. When the FW macro
gets translated into assembly, the only instruction overhead is
one assembly instruction that loads the mask register. The
register is loaded with Oxff££ff£f, meaning that all proces-
sors will receive the data. Note that this assembly instruction
can even be moved out of the loop, thereby making the over-
head practically negligible. Of course, the producer processor
is forwarding to itself too. This redundant forward, however,
can be easily eliminated in hardware.

Forward from Serial to Parallel Section. One important
parallel loop in QCD [6] consumes data produced in a serial
section. The serial section and the loop are shown in Fig. 6a.
Constant propagation is used to determine all the constants
that appear in the loop bounds. Using our approach from
Section 3.1 and extending the formulas to support two index

1255

producer loop: it is filling an
array with 0’s, except that for
every group of 18 elements,
location 1, 9, and 17 are set to 1
DO I =0, 1023
DoJ=1, 17, 8
U1(18*I+]) = 1.0
ENDDO
DO J = 18+I+2, 18+I+8
U1(J) = 0.0
ENDDO
DO J = 18*I+10, 18+I+16

¢ modified producer

aaaa

DO I =0, 1023
D0J=1, 17,8
FU(UL(18+1+]), [ﬁ*fi—ij) = 1.0
ENDDO
DO J = 18+1+2, jeie
FW(UL(3), L J) 0.0
ENDDO i
DO J = 18+I+10, 18vI+16

L) = 0.0 FUIQD), |F55]) = 0.0
ENDDO
ENDDO 181418
U1(18+1+18) = 0.0 Fi(U1(18+1+18) ~7§§——J) =0.0

ENDDO ENDDO
C consumer loop: each consumer is
C consuming chunks of 72 elements

DOALL I = 0, 255

"D0K=0, 71
= UL(72+I+K+1)
ENDDO
ENDDOALL

() oo (b) : : .
Fig. 6. Example of forwarding from a serial to a parallel section. Code (a)is
the original code, while code (b) is the instrumented code for the producer.

¢ producer: each processor produces 8
€ chunks of 72 consecutive elements
DOALL I = 0, 255

¢ modified producer

DOALL I = 0, 255 '

DO J = 72%I + 1, T2%T+T2 DO J = 72%I + 1, 72*I+72
uiQy) = IF (J mod 72> %ﬁ) THEN
ENDDO FOULD)) [yl = 50
ENDDOALL ELSE U1(3) = F”uel K
ENDIF
¢ consumer: only half of the processors ENDDO
C have work. Each processor reads 16 ENDDOALL
C groups of elements from a subarray
C of 1152 elements
DOALL I = 0, 15
De J =0, 15
DOK = 54, 71
= UL(72%16%I+72%J+K)

ENDDO
ENDDO
ENDDCALL

(a) (b)

Fig. 7. Example of forwarding from a parallel to a parallel sectlon Code
(a) is the original code, while code (b) is the instrumented code for the
producer. H

variables I, J and I, K, we produce the code in Fig. 6b.
Note that, in Fig. 6b, the expressions in the array subscrlpts
and the numerator of the expressions to be loaded in the
mask register are very similar. Therefore, to set up the mask
register, we only need the following three assembly instruc-
tions: a subtraction by one, a division, and a shift that at the
same time, loads the mask register.

Forward from Parallel to Parallel Section. Thls common
case is illustrated by two parallel loops from QCD shown in
Fig. 7a. This time, when we apply our analysis, we have to
insert a branch (Fig. 7b). In this case, four to five assembly
instructions are required: two to three for the mod, test, and
branch plus two for the division and shift and load to the
mask register. ~

Overall, each forwarding express1on requires a few (one
to five) assembly instructions. The real overhead, however,
is smaller because the mask register can often be loaded
outside the loop and reused in several forwards. In general,
the complexity of the forwarding expressions in these ex-
amples is representative of most loops in the Perfect Club
codes. Note, however, that the forwarding analySis needs
to be integrated with other compiler passes that perform
induction variable elimination, constant propagation, and
range and symbolic analysis.

1256

3.2 Pruning Forwards ,
If we forwarded all the data that can be forwarded, we
might cause conflicts in the caches of the consumer proces-
sors and- degrade overall performance. For this reason, in
the second part of our framework, we selectively prune
some of the forwards identified in the first part if we sus-
pect that they can cause conflicts.

To decide whether or not to prune a forward, we need to
estimate the number of different cache lines that the con-
sumer processor will need in its cache between the arrival

and the use of the forwarded datum. This value can be esti-

mated by using locality analysis as in [11], [23] where spatial,
temporal, and group locality carried by loops are identified.
If such value is larger than a threshold value, the forward is
pruned; otherwise the forward is left in the code. In a fully-
associative cache, such threshold can be set to the size of the
cache. For direct-mapped or set-associative caches, however,
we need to reduce the threshold to account for cache con-
flicts. Mowry et al. [14] suggest a threshold approximately
equal to 1/16th of the size of the cache.

To understand our approach, consider the example in
Fig. 8. In the figure, processor P1 writes to variable 2 at point
51 and processor P2 reads the data at 52. The amount of dif-
ferent data that processor P2 will need in its cache sometime
between 51 and 52 is the sum of four components:

1. Data accessed by P2 from the time the forward arrives
~ until the end of the parallel section (area A). To esti-

mate the time when the forward arrives, we assume
that loop iterations are executed in lockstep. For ex-
ample, if P1 wrote while executing its third iteration,
we assumme that P2 was also in its third iteration when
it received the data. '

2. Data accessed. by P2 during any: code executed be-
tween the two parallel sections involved (area B).

3. Data accessed by P2 in the consumer loop before the
use of a (area C).

4. Data forwarded to P2 for statements after 52 that ar-
rives before 52.

To compute-the forwards to prune, we proceed in two
steps. First, for-each producer write and consumer read pair,
we add up components 1 to 3 above. The resulting value we
call the distance between producer and consumer. If the dis-
tance is larger than the threshold, we discard the forward. In
the second step, for each of the remaining forwards, we ex-
amine its consumer point 52. We compute the amount of data
being forwarded to statements after S2 such that the state-
merts are at a distance of 52 less than the threshold. Clearly,
this amount of forwarded data is an upper bound of the value
of component 4 above. If this value plus components 1 to 3
above exceeds the threshold, the forward is discarded too. This
second step proceeds from the bottom of the code to the top of
the code. In this way, when we discard a forward we do not
" have to recompute previous computations.

4 EXPERIMENTAL METHODOLOGY |

Any implementation of an algorithm for data forwarding
requires a significant effort to implement. Indeed, the for-
warding analysis needs to be integrated with other compiler

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. >12, DECEMBER 1996

S1: write a

Parallel
Pl Section1 |F ;

Parallel
S2:read a l

Section 2

Fig. 8. Computing the amount of data that the consumer processor
needs to keep-in its cache.

passes that perform interprocedural analysis, induction vari-
able elimination, constant propagation, and range and sym-
bolic analysis. This is necessary because, to determine the
producer-consumer pairs, we need precise information about
aliasing, loop bounds, and expressions in the array indices.
Since we have not yet finished our implementation, we will
only perform an approximate estimation of the performance
impact of data forwarding. This estimation will be based on
using trace-based profiling information that detects some of
the producer-consumer pairs.

Our evaluation proceeds in two passes. In a first execu-
tion of the applications, we collect data about the sharing
patterns present in the applications. Based on a trace, we
measure what data will be read by what processor and
what processor will produce it. This step corresponds to a
compiler-analysis of the code where the compiler has the
ability to detect somie of the true sharing accesses. We will
explore different levels of compiler sophistication. Next, we
feed this data to a second execution of the code. In this exe-
cution, whenever we ‘have a write that was detected as
forwardable in the previous pass, we replace it by a write-
and-forward. Before presenting the results, we now discuss
the simulation system and the applications used.

4.1 Simulation Sysiem L

For our simulations, we use the EPG-sim execution-driven
simulator [18]. We start by compiling our applications with
the Parafrase2 compiler [16]. For each array access in the
program, the compiler introduces a call to the simulator:
Each call takes as arguments the address of the data ac-
cessed, the processor 1D, the type of access, and the time-
stamp. It is assumed that each basic operation like an
arithmetic operation, a test, or a loop index increment takes
one cycle to execute. The applications are then linked with
the EPG-sim architecture simulator. Finally, the applica-
tions. are executed. At that time, the applications call the
simulator, which simulates the memory accesses.

The architecture. modeled. is a 32-processor cache-
coherent UMA shared-memory multiprocessor. The ma-
chine uses a base invalidate protocol. Processors have pri-
vate caches and are connected to memory via an Omega

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

1257

TABLE 2
APPLICATIONS STUDIED
Application || What It Does Lines (Thous.) Refs. (Mill.)
TRFD Solves 2-electron integrals 0.3 ‘ 63.7
QCD Solves lattice gauge problems 2.6 25.0
DYFESM Analysis of symmetric anisotropic structures 8.2 33.1
FLO52 Analysis of 2D transonic airflow 4.0 29.3
ARC2D Solves a 2D fluid dynamics problem 5.5 32.1

network. Each network link is 64-bit wide and cycles at the
same speed as the processors. Without contention, a cache
read miss takes 100 cycles for data clean in memory and
200 cycles for data dirty in another processor. Since the ap-
plications that we run on the simulator are necessarily
small (Section 4.2), we simulate small caches, ranging from
16 to 256 Kbytes in size. To simplify the simulations, we use
only one level of caches. To reduce the conflicts in these
small, simple cache hierarchy, we make the caches 4-way
set associative and use 8-byte lines. Since we use the release
consistency model, write misses do not stall the processors.
We accurately model all the contention in the system. For
the network, we use the analytical delay model for indirect
multistage networks presented in [10]. In our evaluation,
we assume that each forward requires four assembly in-
structions in the producer code.

4.2 Applications

We trace the parallel versions of the five Perfect Club codes
[5] presented in Table 2. These versions run with 32 proces-
sors and were parallelized using a parallelizing compiler and
later by hand [6]. Since the codes take a long time to run, we
reduced their time requirements while preserving their par-
allelism and reference behavior. We did this by reducing the
number of iterations rather than the data set sizes where pos-
sible. Table 2 shows the number of lines of code and the
number of array references simulated in each application.

5 EVALUATION OF DATA FORWARDING

In this section, we evaluate the performance impact of
data forwarding. We start by analyzing the application
characteristics that determine the effectiveness of for-
warding (Section 5.1). Then, we present different levels of
support for data forwarding (Section 5.2). Finally, we
measure the impact of forwarding in the execution time of
the simulated architecture in two scenarios: when the
caches are larger than the working set size of the applica-
tions (Section 5.3) and when they are smaller (Section 5.4).
To determine the working set size of the applications, we
plot the miss rate as a function of the cache size. The
cache size at the knee of the resulting curve is approxi-
mately equal to the working set size [17]. In our experi-
ments, we choose a size of 256 Kbytes for a cache larger
than the working set size of the applications. For a cache
smaller than the working set size of the applications, we
choose 16 Kbytes for TRFD, QCD, and DYFESM, and 64
Kbytes for FLO52-and ARC2D.

5.1 Impact of the Application Characteristics

- The potential of forwarding is determined by several appli-
cation characteristics, namely fraction of reads that con-

sume data produced by a write from another processor
(consumer reads), distance between the consumer reads
and their producer writes, and distribution of the number
of consumer reads per producer write. We consider each
characteristic in turn.

5.1.1 Fraction of Consumer Reads

Data forwarding can potentially eliminate the misses on
reads that consume data produced by a write from another
processor. These reads we call consumer reads. A conisumer
read is, therefore, the first read issued by a processor to a
datum that was written by a different processor. Fig.9
shows the percentage of reads that are consumer reads in
each application. From the figure, we see that, in TRFD and
QCD, only about 2% of the reads are consumer reads.
However, for DYFESM, FLO52, and ARC2D, this fraction is
significantly larger, namely between 8% and 23%. Note
that, without forwarding and with single-word cache lines,
these reads are guaranteed to cause misses. With multiple-
word cache lines, some of these accesses do not cause
misses. For small caches, these misses may be a minority,
since conflict misses may dominate. However, as the cache
grows in size, these misses will tend to dominate. In par-
ticular, for an infinite cache with single-word lines, con-
sumer reads would be the only cause of misses other than
cold-start misses. From this data, we expect to see more
benefits from forwarding in FLO52, ARC2D, and DYFESM
than in TRFD and QCD.

5.1.2 Distance Between Producer Writes and Consumer
Reads
With a limited cache size, it is important to prevent data for-
warding from causing cache conflicts. Intuitively, forwarding
data that will be used soon is less likely to create cache con-
flicts than forwarding data that will not be used until much
later. In Section 3.2, we defined the distance between a pro-
ducer write and a consumer read as the amount of different
data that the consumer processor accesses between the two
points. Fig. 10 plots the distribution of the distance between

- 25

S

3

qxchO—

)

[}

E 15|

Z

Q<

° 1w}l
5_
0 - 2

TRFD QCD DYFESM FLO52 ARC2D

Fig. 9. Fraction of reads that are consumer reads.

1258

100 ~
p QCD
DYFESM
FLO52
ARC2D -

FEriE

% of Producer/Consumer Pairs

FETH R |i§

>
Distance in Misses (Thousands)

Fig. 10 Distribution of distances between producer: writes and con-
sumer reads. Distances are measured in misses in the simulated ar-
chitecture with 256-Kbyte caches and 8-byte cache lines.

producer and consumer accesses for the applications. For
simplicity, we approximate the distance with the number of
misses that the consumer cache suffers between the. producer
and consumer points. The misses measured -include both
read and write misses. Using misses does not give the whole
picture because the number of misses does not tell us how
much ‘data already in the cache is being used. Intuitively,
however, the higher the number of misses between producer
and consumer points, the less attractive that forwarding
looks. The figure corresponds to the simulated architecture
with 256-Kbyte caches.

The figure indicates that most consumer reads are close to
their producer writes. This is specially true for DYFESM,
where nearly 100% of the consumer reads are less than 1,000
misses away from their producer writes. Two applications,
however exhibit a somewhat bad behavior, namely TRFD
and ARC2D. In these applications, 37% and 72% of the con-
sumer reads respectrvely have a distance larger than 5,000
misses,. Overall, therefore, we expect that in DYFESM,
FLO52, and QCD, forwarded data will cause few conflicts,
whilein TRFD and ARC2D, forwarding will have a higher
chance of causmg conflicts, specially for small caches.

5.1.3 Number of Consumer Reads per Producer Write
Finally, the number of consumer reads per producer write tells
us what kind of forwarding instruction is required, namely
point to point forwarding, multicasting, or broadcasting.
Fig. 11 presents the distribution of such number for the appli-
cations. Clearly, the number of constmers per write can range
from one to 31. As the figure shows, howevér, in all cases ex-
cept QCD, the number of consumers is usually one. This im-
plies that a simpler point to point forwarding hardware will be
enough in most cases. For the cases with more than one con-
sumer, multiple forwarding instructions could have been in-
serted. We do not do this in our simulations.:

To summarize, we have seen that, while the fraction of
consumer reads varies significantly across applications,
producer writes tend to be followed soon by their, often
single, consumer reads. Among the applications, FLO52,
DYFESM, and ARC2D have a higher potential because they
have a large fraction of consumer reads. In ARC2D, how-
ever, forwarding may be less effective because of the long
distances involved. '

5.2 Forwarding Strategies and Their Potential
To gain insight into the effectiveness of forwarding, we

IEEE TRANSACTIONS ONPARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12,:DECEMBER. 1996

@ 100 =« TRFD
g o0l == QCD

2 b == DYFESM
@

g 70l s FLOS2
g ws o ARCOD
£

b

<o

®

l;',lnl,-l

1 2 3 4 5 6 7 g 8 >8
Number of Consumzers

Fig. 11. Number of consumer reads per producer write.

will compare five different 1evels of compiler support for
forwarding:

-» Base: Forwarding is not supported.

° Analyz: Forwarding is supported only for the arrays
that are indexed by affine functions of loop indices
and constants. These expressions we call compiler-
analyzable expressions. Note that this is a fairly con-
servative definition of compiler-analyzable: We nei-
ther include loop-invariant variables nor perform
constant propagation, range analysis or symbolic
analysis. A real compiler can surely analyze more ex-
pressions.

» All: Forwarding is supported for all the ‘producer-

' - consumer pairs of array references. This is an-opti-
mistic scenario. .

o Local: Like All except that forwarding is not supported
when there is a procedure call or return between the
producer and consumer accesses. This implementation
would nhot require interprocedural analysis.

. Dis8/Dis32/Dis128: Like All'except that forwarding is
not supported when the distance betweéen the pro-
ducer and consumer accesses is larger than a certain
threshold. The threshold is reached when the con-
sumer cache has accessed as much data as one ‘half
the size of the cache via misses. Since we perform ex-
periments for 16-Kbyte, 64-Kbyte, ‘and 256-Kbyte
caches, this corresponds to 8 Kbytes of data (Dis8), 32
Kbytes of data (Dis32), and 128 Kbytes of data
(Dis128), respectively. This implementation corre-
sponds.to a more complex compiler support that in-
volves pruning the forwards.

To understand the potential of these different schemes, we
examine their coverage of producer-consumer pairs. A scheme
covers a producer-consumer pair if it generates a forward be-
tween the two. Note that covering a producer-consumer parr
does not mean that, at run time, the corresponding consumer
read will not miss. The read may still miss because of cache
conflicts, false sharing, or because the forwarded data does not
reach the consumer on time. The amount of producer-
consumer coverage, however, is a good indicator of how well a
given forward scheme can potentially do.

Fig. 12 shows the number of producer-consumer pairs
covered by Analyz, Local, Dis8/Dis32 (small caches), and
Dis128 (large caches), relative to the number covered by the

Al scheme. For each scheme, the figure shows the five ap-

plications considered. Recall that for a cache smaller than

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

the working set of the application we chose 16 Kbytes for
TRFD, QCD, and DYFESM and 64 Kbytes for FLO52 and
ARC2D, Hence, in the Dis8/Dis32 bars, Dis8 applies to the
TRFD, QCD, and DYFESM, while Dis32 applies to FLO52
and ARC2D.

Focusing first on Analyz, we see that this scheme only
covers a large fraction of the producer-consumer pairs in
QCD and DYFESM. In the other three applications, the cov-
erage is very small. Therefore, this scheme will speed up two
applications at most. It is interesting, however, to see why
the scheme fails and what a real compiler would need to do
to improve on it. In DYFESM and TRFD, not much more can
be done, since most of the remaining producer-consumer
pairs involve array accesses that have subscripted subscripts.
In FLO52, ARC2D, and QCD, however, the large majority of
the producer-consumer pairs not covered involve very sim-
ple array expressions. They are not affine functions of loop
indices and constants for two reasons. The first one is that, in
an effort to reduce the overhead of scheduling loop: itera-
tions, the compiler or programmer has hard-coded the
scheduling algorithm in each parallel loop. Consequently, at
the start of each parallel loop, each processor computes the
expression of the set of iterations that it has to work on. The
resulting function of loop indices is assigned to temporary
variables. Then, the rest of the loop uses affine functions of
these temporary variables to index the arrays. The resulting
subscript expressions, therefore, do not qualify for Analyz.
Nevertheless, a good compiler would detect this situation
and replace each use of the temporary variables in subscripts
- by the corresponding functions of the indices. This will cre-
ate many more opportunities to find affine functions of index
variables and constants.

The second reason is that, often, the subscript expression
includes a variable. Therefore, the Analyz scheme would
not handle it. In nearly all cases, however, the variable is
loop-invariant and a compiler could find it out. In that case,
the variable can be treated like a constant. Furthermore, a
constant propagation pass often uncovers that the variable
is indeed a constant. To summarize, if we use an aggressive
compiler, both issues can be successfully solved and 80-
90% of the producer-consumer pairs in QCD, ARC2D, and
FLO52 can be covered. We can say, therefore, that the cov-
erage that a-good compiler can provide is probably closer
to All than to Analyz for these three applications.

Examining now the Local bars, we note that the coverage
of the Local scheme is low. Indeed, while FLO52 and
ARC2D have a 25-50% coverage, the rest of the applications

100 —

i
b= 90 |-
§ 80
8 70 - == TRFD
2 60 = QCD
g sol " wm_ DYFESM
E a0} wa FLOS2
S
3 o} s ARC2D
A& 20}

ol l

| P 1

Analyz Local Dis8/is32 Dis128
Fig. 12. Fraction of producer-consumer pairs covered by different

schemes relative to the All scheme.

1259

have a null coverage. It is clear, therefore, that any for-
warding algorithm must include interprocedural analysis.
Finally, the last two bars show the effect of a pruning al-
gorithm. The Dis128 bars correspond to a distance of 128
Kbytes, or 16,000 misses, while the Dis8 and Dis32 bars cor-
respond to 1,000 and 4,000 misses, respectively. The chart
shows that, under Dis128, all producer-consumer pairs are
covered in all applications except for ARC2D. This is con-
sistent with the data in Fig. 10. That figure showed that,
while most of the applications had relative short producer- -
consumer distances, ARC2D had over 70% of the producer-
consumer pairs separated more than 5,000 misses. Overall,
therefore, we expect that the performance of All will be
similar to that of Dis128 for most applications. In
Dis8/Dis32, however, the coverage varies among applica-
tions. In agreement with Fig. 10, TRFD, QCD, and ARC2D
have a low coverage while the rest of the applications have
a high one. The impact of the pruning will depend on the
relative weight of coherence misses versus conflict misses.

5.3 Forwarding in Caches Larger than
the Working Set

We now measure the impact of forwarding on the execu-
tion time for caches larger than the working set of the ap-
plications. We use 256-Kbyte caches. This case is a favor-
able one for forwarding: Forwarding is less likely to induce
conflict misses. In the following, we first examine how suc-
cessfully the forwards are being used and then the actual
execution time change.

5.3.1 Effectiveness of the Forwards

While the data in Fig. 12 give a first insight into the relative
impact of the different schemes, it does not give the com-
plete picture. The reason is that the data may reach the con-
sumer cache and get replaced due to cache conflicts or get
invalidated due to false sharing before the consumer proc-

* essor uses it. In our applications, it is not possible that the

forwards arrive at the consumer cache after the consumer
read. This is because there is always a synchronization step
between the producer and the consumer accesses and proc-
essors stall at synchronization points until all pending re-
quests, including forwards, have been completed. The im-
pact of cache conflicts and false sharing is shown in Fig. 13.
The figure shows the fraction of the forwarded cache lines
that are used by the consumer processor before they are
displaced or invalidated from the consumer cache. Note

100
90 |-
80 -
70 wm Analyz
60 | wm Tocal
50 - v Dis128
Py . All

30

0 ;;| I

Effectiveness of Forwards (%)
SREABEEE e

20 -
10 |-

R

e

TRFD QCD DYFESM FLO52 ARC2D

Fig. 13. Effectiveness of the forwards measured by the fraction of the
forwarded cache lines that are used by the consumer processor before
they are displaced or invalidated from the cache of the consumerproc-
essor. The data corresponds to 256-Kbyte caches.

1260

that the displacement may be caused by the arrival of an-
other forward. The figure is organized :differently than
Fig. 12: ‘The bars are grouped- by application, not by for-
warding scheme. For TRFD, QCD, and DYFESM, we'do not
show ‘the bar for Local. The reason is that the' numbeér of
forwards is very small.

The' figure shows that, for a given application, all the
forwarding schemes tend to have a similar effectiveness.
For TRFD, FLO52, and ARC2D, the effectiveness is close to
100%. This indicates that, for these large caches, most of the
forwards reaching the consumer caches in TRFD, FLO52,
and ARC2D are used before being displaced or invalidated.
The ‘only exception is All for ARC2D, where the bar drops
below 70%. This is due to the large size of the working set
of the application and the large distance between some
producer-consumer pairs.

In QCD and DYFESM, however, the effectiveness is only
50%. The reason for this low value is that, in a very short
interval, a processor writes to two consecttive words that
share the same cache line. This generates two forward mes-
sages closely -spaced in time that, in addition, go to the
same consumer processor. Consequently, the line updated
by the first forward is immediately updated by the second
forward. However, the consumer processor hides all la-
tency because it accesses the two words after the second
forward. In sum, therefore, the real effectiveness of the
forwards is twice that shown, namely, about 100%.

Overall, we see that, for the five applications considered,
if caches are larger than the working set, then the effective-
ness of forwarding is very close to 100% for all schemes.
Furthermore, the particular behavior of QCD and DYFESM
suggests that some applications will benefit from the com-
bining optimization suggested in Section 2.1. For these ap-
plications, the network traffic due to forwarding would be
cut by half. '

5.3.2 Impact on the Execution Time

After the previous analysis of the effectiveness of forward-
ing, we now consider the impact on the execution time.
Fig. 14 presents the miss rates and execution times of the five
applications. In each plot, the horizontal axis shows the five
levels of support for forwarding, while the vertical axis pres-
ents -the miss. rate (leftmost plots) or the execution time
(rightmost plots). Miss rates are broken down into cold (or
start-up), conflict, and true and false sharing. Miss rates in-
clude both read and write misses, although processors do not
stall on write misses. Execution times are normalized to Base
for each application and are broken down into busy time,
idle time, synchronization time, read miss stall time, and
forwarding instruction overhead (Irst.” Over.). Busy time is
the time spent by the processors executing the instructions
of the applications without missing on the cache. Idle time
appears because we take the average of the 32 processors
and, in a serial section, only one processor is busy, while
the others are idle. Synchronization time is largely due to
load imbalance in parallel loops.

Starting first with Analyz,- we see from the rightmost
charts that this level of support speeds up only some of the
applications. Indeed, while two applications run 17-26%
faster, the remaining three barely change. In these three

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL."7, NQ: 12, DECEMBER 1996

applications (TRFD, FLO52, and ARC2D), the read miss
stall time changes little. This is because, as it was shown in
Fig. 12, little forwarding takes place. As a result, the left-
most charts show that the miss rates barely change. For the
other two applications (QCD and DYFESM), forwarding
decreases the read miss stall, synchronization, and idle
times. The former is accomphshed by reducing the cold and
sharing miss rates (leftmost charts). Synchronization time is
reduced indirectly by speeding-up execution: The absolute
amount of load imbalance time is smaller. Finally, idle time
decreases because the processor executing the serial section
runs faster. Overall, Analyz, a conservative estimate of what
a compiler can do, is not enough to provide better perform-
ance for all codes.

However, if we examine the All bars, we. see that all ap-
plications are sped up. They run 23-81%. faster. Except for
ARC2D, the rightmost charts show that the read miss stall
time practically disappears. This effect is the result of the
elimination of the large majority of cold, sharing, and con-
flict read. misses. The miss rates remaining. in the leftmost
charts are mostly caused by write misses. These misses are
not targeted by our-scheme. We also see that forwarding
removes many conflict misses. This is because; as indicated
in Section 2, while we count the misses as conflict misses,
they hide sharing accesses that are amenable to forwarding.
The reason why not all read miss stall time is removed in
ARC2D is because some of the conflict misses do not hide
sharing accesses. Overall, however, the results are encour-
aging: With All, all programs run much faster. While this -
level of compiler support is optimistic, we feel that ad-
vanced compilers can get closer to All than to Analyz. This -
is because they can analyze subscripts with loop-invariant
terms and some kinds of nonaffine functions. The excep-
tions are TRFD and DYFESM, where many array accesses
have subscripted subscripts.

From the Local bars in the rightmost charts we:see that
local-only forwarding is not effective for the majority of the
applications. Three applications show no gains; while the
other two are sped up by 11 and 48%. The reason for the
overall low impact is the small nuimber of forwards that can
be issued locally. This was show in Fig. 12. Therefore, it is
clear that forwarding requires intérprocedural analysis.

- Fromi'the Dis128 bars in the rightmost charts, we see that
forwarding using a limited distance is not better than the
All"scheme. This is because, as shown in the ‘miss rate
charts, forwarding in All does not increase the conflict miss
rate over Base. Therefore, cache conflicts in ‘All are not
caused by forwarding. Consequently, we cannot expect
Dis128 to reduce the miss rate over All much. Instead, the
miss rates in Dis128 are similar or slightly higher than in
All. For ARC2D they are higher because Dis128 had a low
coverage (Fig. 12). As a result, for these large caches, for-
warding using a limited distance is unnecessary and even
undesirable, since -you may miss some forwards. We also
note in passing that the instruction overhead of forwarding
is negligible.

To summarize, forwarding using the All scheme in
caches larger than the working set achieves substantial

KOUFATY ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS

1261

o 3 ~ 100 100 " g7.14 100
g 8
Q @
] ; g 8 B Inst Over.
é 9 176 g L76 B True Sharing 2 28 6480 oo B Read
TRED 4 W Falseshaing ReD £ : B sy
1 086 0.84 @l Confiic § gg B Lae
a2 | ol g E@ Busy
0 Z
Base Local All Base
Analyz Dis128 Analyz Dis128
15— 100 10 99.96
S 125 125 ® 90}
2 ' 5) g s 77.12 7712 . Thst. Over
% wohk . ‘ True Sharing - il 28 — - Read
QCD § e [False Sharing QCD é o B snc
= o» & il Conflict g dof- B o
05 - : 033 033 30 L lde
' ' B cod ;E 20 - B Buy
E Wl
Z]
Base Local All Base Local All
Analyz Dis128 Analyz Dis128
§ 8 - o lgg 100 99.45
4 669 669 s -
2 6 - g 80 B mst Over.
[+ True Sharing g Tk ‘ Read
4 . 60 |-
pyFEsM § 4| FalseSharing DYFESM & 50| B s
512 Conflict g wl 4110 4110 =
- 258 2.58 & al o Wdle
2 - Cotd . 0 B Buy
E 10 |- . ’
Base Local All Base Local All
Analyz Dis128 Analyz Dis128
~ 350 < 100 - 32 9550
S IS
g 300 2 B st Over
&2 250 ' True Sharing = ‘ Read
»

FLos2 & 200 B Fasespaing pLosz 8 B sme
150 B Conflict 3 e
100 Cold T -

. Bi
5.0 E . usy
0.0 Z s
Base Local Base Local All
Analyz Dis128 Analyz Dis128
~ 400 o 100~ @9 %%
Q 8
% 35.0 % 80.03 B oo
st. Over.

s z(;g 2692 2661 - Bl True Sharing E B Rea
3 B »

ARCZD § 20.0 -l B FaseSharing ARCOID _§ B sync
5ol i ik Conflict g B e
100 . Cold LE . Busy
50 E
0.0 4 2

Base Local All Base Local . Al
Analyz Dis128 Analyz Dis128

Fig. 14. Miss rates (left) and normalized execution times (right) with 256-Kbyte caches. The miss rates include both reads and writes.

reductions in execution time. While All is a slightly opti-
mistic scenario, it may be more realistic than Analyz for all
applications except DYFESM and TRFD. Analyz is not
enough to speed up most applications. Similarly, neither
local-only forwarding nor limiting the distance of for-
warding in caches larger than the application’s working
set is attractive. ‘

5.4 Forwarding in Caches Smaller than the

Working Set :
We now measure the impact of forwarding on the execu-
tion time for caches smaller than the working set of the ap-
plications. We chose 16-Kbyte caches for TRFD, QCD, and
DYFESM, and 64-Kbyte caches for FLO52 and ARC2D. The
working set size was computed by increasing the cache size

until no large reductions in cache miss rates are obtained
[17]. As in the previous section, we first examine how well
the forwards are being used and then the actual execution
time change.

5.4.1 Effectiveness of the Forwards

To determine the effectiveness of the forwards in small
caches, we plot in Fig. 15 the fraction of the forwarded
cache lines that are used by the consumer processor before
they are displaced or invalidated from the cache of the con-
sumer processor. The figure is organized like Fig. 13.

As expected, forwards are less effective for these caches
than for the larger caches measured in Fig. 13. This is seen
by the generally shorter bars in Fig. 15. The lower effective-
ness is due to the higher number of cache conflicts re-

1262
s 100
= 90
T 80
% 70 Analyz
260 Local
2 50 - Dis8/Dis32
Q
5 40 :é All
=
o ‘
S 20 ff‘

10 ‘

0

TRFD QCD. . DYFESM - - FLO52 ARC2D

Fig. 15. Effectiveness of the forwards measured by the fraction of the
forwarded cache lines that are used by-the consumer processor before
they are displaced or invalidated from the ‘cache of the consumer proc-
essor. The data corresponds to small caches: 16 Kbytes for TRFD,
QCD, and DYFESM, and 64 Kbytes for FLO52 and ARCZ2D.

corded. Different bars, however, shrink b‘y different de-
grees. For example, in DYFESM and, to a lesser extent,
FLO52, the bars maintain their size. This means that the
forwards suffer roughly the same number of conflicts as
before. In the other three applications, however, the bars
shrink, revealing an increase in the conflicts suffered by the
forwards as a result of the reduced cache size.

For the three applications where the effect of conflicts is
large (TRFD, QCD, and ARC2D),
Dis8/Dis32 bars maintain their size while the remaining

bars shrink relative to them. In fact, for all applications, the .

forwards in Dis8/Dis32 have a real effectiveness close to
100%. This higher effectiveness of the forwards in the
Dis8/Dis32 scheme results from the selectivity used in the
scheme. This, however, does not mean that the Dis8/Dis32
scheme will perform better than the All scheme, which has
shorter bars. The reason is that, while the All scheme has
low effectiveness in Fig. 15, it has a higher coverage than
the Dis8/Dis32 scheme as shown in Fig.:12. As a'result, the
absolute number of successful forwards tends to be higher
in All. We note, however, that if the network bandwidth is
scarce or if the application requires a lot of communication,
then the higher effectiveness of the DlS8 /Dis32 scheme may
give it an advantage.

5.4.2 Impact on the Execution Time

After the analysis of the effectiveness of forwarding, we
now consider the impact of forwarding on the execution
time, Fig. 16 presents the miss rates and normalized execu-
tion times of the five apphcat10ns The figure is organized
like Fig. 14.

As shown in the miss rate charts, coriflict misses dom1—
nate in most applications. This is because caches are smaller
than the working sets. As expected, forwarding is generally
unsuccessful at removing conflict misses. This is true irre-
spective of the forwarding scheme used. The data, how-
ever, leads to two main conclusions.

The first conclusion is that, in small-caches that already
suffer many conflicts without forwardmg, it is remarkably
hard for forwarding to increase the number of conflict
misses. Indeed, consider the case of All, the scheme that
involves the largest amount of forwarding messages.

we-note that the

IEEE TRANSACTIONS ON PARALLEL AND'DISTRIBUTED SYSTEMS; VOL: 7, NO. 12, DECEMBER-1 996

Fig. 15 shows the low effectiveness of forwarding: Most of
the forwarded cache lines are replaced in the consumer
cache before being used. However, even under these con-
ditions, none of the five applications records any increase
in the number of conflict misses. In fact, in FL.0O52, conflict
misses even decrease for the réason described in Section 2:
Conflicts hide sharing misses available for forwarding. The
reason why conflict misses ‘do not increase is because the
data displaced by the unsuccessful forwards would have
been displaced by other data anyway. This is intuitive from
the high miss rates in FLO52 and ARC2D. Overall, since
conflict misses do not increase and cold and sharing misses
decrease, the total number of misses decreases.

- The second conclusion is that, while this reduction of
misses at the expense of high' traffic may successfully de-
crease the execution time in' high-bandwidth networks
like the one simulated, in lower-bandwidth networks it
may be necessary to use a limited distance scheme like
Dis8/Dis32. Indeed, in the current system, All does very
well: Three applications speed up significantly and none
suffers a slowdown. On average, All speeds up the five
applications by 31%. It is interesting, however, to examine
the Dis8/Dis32 .scheme. While the execution times of All
are only slightly smaller than those of Dis8/Dis32 for most
of the applications, the numbers of forwards in All are up
to 10 times larger than in Dis8/Dis32 (2 times on average).
This can be seen in Fig. 12. Therefore, much of the for-
ward traffic in All is useless. The network that we use has
enough bandwidth to tolerate this useless traffic. How-
ever, in lower-bandwidth networks, Dis8/Dis32 is likely to
perform better than All

We also note that, as before, the Analyz and Local
schemes are not attractive.

6 CONCLUSIONS

Long-latency memory accesses are a major source of slow-
down in scalable shared-memory multiprocessors. One way
to cope with these latencies is to overlap memory accesses
with computation or other memory. accesses via data for-
warding. In this paper, we have presented a framework for
a compiler algorithm for forwarding and, based on address
traces, estimated the performance impact of forwarding.

This paper shows that support for forwarding in shared-
memory multiprocessors promises to deliver good applica-
tion speedups. An optimistic support for data forwarding
(AlD achieves large reductions in execution time. We show
that five applications are sped up by an average of about
50% for large caches and 30% for small caches. For large
caches, most sharing read misses and cold read misses are
eliminated. For small caches, forwarding does not increase
the number of conflict misses significantly. For forwarding
to be effective, however, the compiler must perform inter-
procedural-analysis, -as well -as symbolic: analys1s, range
analysis, and constant propagation.

Future work will proceed in two directions. First, we
will automate .an algorithm for data forwarding and inte-
grate it.in a compiler. Second, we:will focus on under-
standing the .interaction between forwarding and pre-
fetching and use both techniques at the same time. .

KOUFATY-ET AL.: DATA FORWARDING IN SCALABLE SHARED-MEMORY MULTIPROCESSORS i 1263

8
~ . ‘TrueSharing
%
TRED g B False Sharing
i Conflict
B coa
-~
B
g .
& ' True Sharing
'
QCD é B False Shating
&4 Conflict
B coa
Base *- Local All
Analyz Dis8
_ 8 —
®
g
Y B True Sharing
»
DYFESM é [l False Sharing
i Conflict
B cod
Base Local All
Analyz Dis8
8 350 m 330 5 0s
5 300
‘& 250 True Sharing
@
FLOS2 § 200 False Sharing
150 = @ i Conflict
10.0 | Cold
50
0.0
Analyz Dis32
38.00
& ‘3“518 37V5° 3044 B3
5 zg'g "True Sharing
ARCD § 50 False Sharing
Conflict
15.0
10.0 Cold

50
0.0

Base Local All
Analyz Dis32

100 — 0 9780 190 9827 gg3g

SEER S

g 80 B st Over.

= 70 =

=

s eof B Read
TRED & 5ol B s

g ‘3‘8 B 7 e

g 2F B By

§E 10

Z 0

Base Local All
Analyz Dis8

& lgg 100 g7y 10000 o1

g 80 |- . Inst, Over

& M-

=

s ol 8 Red
Qb g2 S0 B sy

g 401 B e

A

g B Buy

£ 10

Z 0

Base Local All
;i Analyz Dis8

~ 100~ 32

8 ol

g 80 MW Inst Over

& Mf

I

o 601 ” Read
DYFESM -% .50 B sy

g ‘3‘8 - e

g 2 B buy

5 w0

Z 0

S

g . Inst. Over.

e

z B Rea
FLO52 § B Sync

§ B e

E» . Busy

z

g

.‘E’ B Iost Over.

& .

o B Read
ARCD 8 B sync

§ B Idle

E- . - Busy

7z

Base Local All
Analyz Dis32

Fig. 16. Miss rates (left) and normalized execution times (right) with 16-Kbyte caches for TRFD, QCD, and DYFESM, and 64-Kbyte caches for

FLO52 and ARC2D. The miss rates include both reads and writes.

ACKNOWLEDGMENTS

We thank the referees for their feedback. We also thank the
rest of the graduate students in the FACOMA multiproces-
sor group for their feedback.

This work was supported in part by the National Sc1ence
Foundation under grants NSF Young Investigator Award
MIP 94-57436 and RIA MIP 93-08098, ARPA Contract No.
DABT63-95-C-0097, NASA Contract No. NAG-1-613, Intel
Corporation, and by a scholarship from the Universidad
Simén Bolivar and CONICIT, both of Venezuela.

REFERENCES

[1] S. Adve and M. Hill, “Weak Ordering—A New Definition,”
Proc. 17th Ann. Int'l Symp. Computer. Architecture, pp. 1-13,
May 1990.

[2] A. Agarwal, “Performance Tradeoffs in Multithreaded Proc-
essors,” IEEE Trans. Parallel and Distributed Systems, vol. 3, pp.
525-539, Sept. 1992.

[3]1 U. Banerjee, Dependence Analysis for Supercomputing. Norwell,
Mass.: Kluwer Academic, 1988.

[4] W. Berke, “A Cache Technique for Synchronization Variables
in Highly Parallel, Shared Memory Systems,” Ultracomputer
Note 141, Dec. 1988.

I5] M. Berry et al., “The Perfect Club Benchmarks: Effective Per-

formance Evaluation of Supercomputers,” Int’l |. Supercom-
puter Applications, vol. 3, no. 3, pp. 5-40, Fall 1989.

1264

[6] R. Eigenmann, J. Hoeflinger, G. Jaxon, and D. Padua, “The
Cedar Fortran Project,” Technical Report 1262, Center for Su-
percomputing Research and Development, Oct. 1992.

[7]1 “K. Gharachorloo, D. Lenoski, J. Laudon, P: Gibbons, A. Gupta,
and J. Hennessy, “Memory ‘Consistency:and Event Ordering
in Scalable Shared-Memory Multiprocessors,” Proc. 17th Ann.
Int’l Symp. Computer Architecture, pp. 15-26, May 1990.

[8] D. Glasco, B. Delagi, and M. Flynn, “Update-Based Cache
Coherence Protocols for Scalable Shared-Memory Multiproc-
essors,” Proc. 27th Ann. Hawaii Int’] inf, Sy tem S ienc

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

David A. Koufaty received the BS and MS in
computer science from the Universidad Simén
Bolivar in Caracas, Venezuela, in 1988 and
1991, respectively. Employed by the Universi-
dad Simén Bolivar since 1988 as an instructor,
he was awarded a scholarship in 1992 to pursue
his PhD at the University of lliinois at Urbana-
Champaign. Since 1993, he has been with the
Center for Supercomputing Research and De-
L @ velopment, where he is now a research assis-

PP
543-545, Jan. 1994.

[91 J.R. Goodman, M.K. Vernon, and P.J. Woest, “Efficient Syn-

chronization Primitives for Large-Scale Cache-Coherent Mul-

tiprocessors,” Proc. Third Int’l Conf. Architectural Support for

Programming Languages and Opemtmg Systems, pp. 64-73, Apr.

1989.

C. Kruskal and M. Snir,. “The Performance of Multistage In-

terconnection Networks for Multiprocessors,” IEEE Trans.

Computers, vol. 32, no. 12, pp:1,091-1,098, Dec. 1983.

[11] M. Lam, E. Rothberg, and M. Wolf, “The Cache Performance
and Optimizations of Blocked Algorithms,” Proc. Fourth Int'l

. Conf. Architectural Support for Programming Laviguages and Op-
erating Systems, pp. 63-74, Apr. 1991.

[12] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M.S. Lam, “The Stanford Dash
Multiprocessor,” Computer, pp. 63-79, Mar. 1992.

[13] T. Mowry and A. Gupta, “Tolerating Latency through Soft-
ware-Controlled Prefetching in Shared-Memory Multiproces-
sors,” J. Parallel and Distributed Computing, vol. 12, no. 2, pp
87-106, June 1991.

[14] T. Mowry, M. Lam, and A. Gupta, “Design and Evaluation of
a Compiler Algorithm for Prefetching,” Proc. Fifth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 62-73, Oct. 1992.

[15] M. Ohara, “Producer-Oriented -versus: Consumer-Oriented
Prefetching: A Comparison and Analysis of Parallel Applica-
tion Programs,” Technical Report CSL-TR-96-695, Computer
Systems Laboratory, Stanford Univ., June 1996.

[16] C.D. Polychronopoulos et al., “Parafrase-2: An Environment
for Parallelizing, Partitioning, Synchronizing, and Scheduling
Programs on Multiprocessors,” Proc. 1989 Int’l Conf. Parallel
Processing, vol. I, pp. 39-48, Aug. 1989.

[17] D.K. Poulsen, “Memory Latency Reduction via Data Pre-
fetching and Data Forwarding in Shared Memory Multiproc-
essors,” PhD thesis, Univ. of Illinois at Urbana-Champaign.
Also Center for Supercomputing Research and Development
Report 1377, July 1994.

[18] D.K. Poulsen and P.-C. Yew, “Execution Driven Tools for
Parallel Simulation of Parallel Architectures and Applica-
tions,” Proc. Supercomputing ‘93, pp. 860-869, Nov. 1993.

[19] D.K. Poulsen and P.-C. Yew, “Data Prefetching and Data
Forwarding in Shared Memory Multiprocessors,” Proc. 1994
Int’l Conf. Parallel Processing, vol. 1L, pp. 276-280, Aug. 1994.

[20] D.K. Poulsen'and P.-C. Yew, “Integrating Fine-Grained Mes-~
sage Passing in Cache Coherent Shared Memory Multiproces-
sors,” J. Parallel and Distributed Computing, to appear, 1996.

[21] E. Rosti, E. Smirni, T.D. Wagner, AW. Apon, and LW.
Dowdy, “The KSR1: Experimentation and Modeling of Post-
store,” Proc. ACM Sigmetrics Conf. Measurement and Modeling
of Computer Systems, pp. 74-85, May 1993.

[22] P. Stenstrom, “A Survey of Cache Coherence Schemes for

‘Multiprocessors,” Computer, pp. 12-23, June 1990.

[23] MLE. Wolf and M.S. Lam, “A Data Locality Optimizing Algo-
rithm,” Proc. ACM SIGPLAN 91 Conf. Programming Language
Design and Implementation, pp. 30-44, June 1991.

—
[y
[ew]

—

tant. His primary research interests include the
design of scalable parallel architectures, cache-coherence, and paral-
lelizing compilers. In 1994, he received the C.W. Gear Outstanding
Graduate Student Award from Depariment of Computer Science at the
University of lllinois.

Xiangfeng Chen received the BS in mathemat-
ics- from: Nanjing :University, Nanjing, China, in
1987, and the MS in computer science from the
University of lllinois in 1995. He is now em-
ployed by Silicon Graphics Inc. working on mi-
croprocessor design. His primary research in-
terests include integrated chip design, low power
design, and physical design.

David K. Poulsen received the BS in electrical
engineering from the University of Wisconsin-
Madison in 1984, the MS in computer engineer-
ing from Syracuse University in 1988, and the
PhD in electrical engineering from the University
of lllinoisat Urbana-Champaign in 1994. Em-
ployed by the IBM" Corporation from 1984 to
1993 as an ES/9000 processor designer, he was
awarded the IBM: Resident Study Fellowship in
order-to pursue his graduate studies at the Uni-
versity. of lllinois. He was a research assistant at
the Center for Supercomputing Research and Development at the
University of lllinois from 1988 to 1994. He is currently employed by
Kuck and Associates, Inc., of Champaign, lllincis, as a senior devel-
oper. His research interests include scalable parallel architectures,
cache coherence, memory consistency, parallelizing compilers, and
performance evaluation.

Josep Torrellas received a PhD in electrical
engineering from Stanford University in 1992.
He is an assistant professor in the Computer
Science Department and Center for Supercom-
puting Research and Development of the Uni-
versity of illinois at Urbana-Champaign. Profes-
sor Torrellag’ primary interests are in the design
of hardware and software for scalable shared-
memory multiprocessors. He is currently leading -
the design of the lllinois Aggressive Cache Only
Memory Architecture- (IFACOMA), a novel scal-
able shared-memory multiprocessor. Professor Torrellas received the
National Science Foundation Research Initiation Award in 1993 and the
National Science Foundation Young Investigator Award.in 1994.

