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AbstractÐWhile hardware-coherent scalable shared-memory multiprocessors are relatively easy to program, they still require

substantial programming effort to deliver high performance. Specifically, to minimize remote accesses, data must be carefully laid out

in memory for locality and application working sets carefully tuned for caches. It has been claimed that this programming effort is less

necessary in hardware COMA machines like Flat-COMA thanks to automatic line-based data migration. Unfortunately, Flat-COMA is

complex to design. Consequently, we would like a machine as programmable as Flat-COMA, as simple as plain CC-NUMA, and that

outperforms both. This paper presents our proposal: Excel-NUMA (EX-NUMA). The idea is to exploit the fact that, after a memory line

is written and cached, the storage that kept the line in memory is unutilized. We use that storage to temporarily hold remote data

displaced from the local caches. This enables automatic data migration, like in Flat-COMA, enhancing programmability. The hardware

required to manage the system is a simple, local module added to a CC-NUMA; the global cache coherence protocol is not changed.

Simulations of Splash2 applications show that EX-NUMA outperforms CC-NUMA and Flat-COMA in every single application and

eliminates most of the conflict misses.

Index TermsÐShared-memory multiprocessors, NUMA organizations, cache-coherence protocols, caches, performance evaluation.
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1 INTRODUCTION

HARDWARE-COHERENT scalable shared-memory multipro-
cessors are hoped to deliver abundant computing

power without surrendering much programmability. While
machines of this type from Convex [1], Sequent [5], or
Silicon Graphics [6] are becoming popular, some users
complain that, to achieve truly high performance, they still
need to apply substantial programming effort. This is a
result of the physical distribution of the memory system
and the increasing cycle-count cost of remote memory
accesses. Specifically, it is important to carefully lay out
data in memory so that it is local to the processors that will
use them most and tune the working sets to fit in caches.
The goal is to minimize remote memory accesses.

To reduce remote accesses, several of the new machines
include a per-node remote cache. This is a very large DRAM
L3 cache that caches data allocated in remote memory
modules. We call these machines NUMA-RC, for CC-
NUMA with remote caches. Unfortunately, workload sizes,
particularly in the database domain, are growing so fast that
their working sets often overflow even these caches. As a
result, codes still need tuning.

It has been claimed that hardware COMA machines like
Flat-COMA [7] minimize this programmability problem. In
Flat-COMA, memory lines automatically migrate to the
memory of the processor that is using them. Consequently,
it is argued that the initial placement of the data in memory
is not very important and that tuning the working sets for
caches is not as important as in NUMA-RC. This reduces

the programming effort. In addition, Flat-COMA is attrac-
tive because, by supporting migration at a memory-line
grain size, it does not have the page-related overheads that
a software incarnation of COMA, like Simple-COMA, may
suffer. For example, Simple-COMA may suffer from page
unmapping, copying, and remapping overheads induced
by internal page fragmentation.

Unfortunately, Flat-COMA is complicated to design. Its
cache coherence protocol must ensure that last copies of
lines are not lost [7]. This issue introduces corner cases in
the protocol. In addition, some types of data access patterns
do not use the COMA memory as well as they use a plain
remote cache [11]. As a result, the performance may suffer.

With this in mind, we would like an architecture that
combines the advantages of both Flat-COMA and NUMA-
RC. Ideally, the architecture should support line-based
automatic data migration (and, therefore, be as program-
mable) as Flat-COMA, be nearly as simple as NUMA-RC,
and outperform both of them by supporting all data access
patterns well. We propose Excel-NUMA (EX-NUMA).

The idea is to use the fact that, after a memory line is
written and cached, the copy in main memory becomes
stale and its storage is unutilized. We can use that storage to
temporarily hold remote data that is being displaced from
the local caches. This enables automatic data migration, like
in Flat-COMA, enhancing programmability. This remote
data in local memory can be managed with a simple, local
module that we add to a NUMA-RC; the global cache
coherence protocol does not need to be changed. Simula-
tions of Splash2 applications show that EX-NUMA outper-
forms NUMA-RC and Flat-COMA in every single
application and eliminates most of the conflict misses.

This paper is organized as follows: Section 2 presents a
model for NUMA-RC and Flat-COMA, Section 3 presents
EX-NUMA, Section 4 discusses how we evaluate it,
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Section 5 evaluates the baseline EX-NUMA, Section 6
evaluates enhancements to EX-NUMA, and Section 7
considers related work.

2 A MODEL FOR NUMA-RC AND FLAT-COMA

To motivate EX-NUMA, we compare a NUMA-RC and a
Flat-COMA such that they have the same L1 and L2 caches,
the same memory overhead (MemOvhd), and where it takes
the same time to access the remote cache in NUMA-RC as
the attraction memory in Flat-COMA. MemOvhd is the
remote cache in NUMA-RC and the extra memory for data
replication in Flat-COMA. We neglect the small difference
in tag space. In the rest of the paper, we refer to Flat-COMA
as COMA.

Memory accesses can be loc, remote-cold, remote-coh, or
remote-conf [11]. Loc are those satisfied by the local caches
and local memory. The other accesses are remote-cold,
remote-coh, or remote-conf, depending on whether the miss
is due to accessing a line for the processor's first time, data
sharing, or overflow in the local memory hierarchy,
respectively. For a given application, COMA and NUMA-
RC have the same total number of accesses, the same remote-
cold accesses, and the same remote-coh accesses. The number
of remote-conf accesses, however, varies between the two
architectures at the expense of loc accesses.

Usually, remote-conf accesses are significant only if the
remote data in the working set of a thread is larger than
MemOvhd. Under such conditions, we want to understand
whether COMA or NUMA-RC suffers more remote-conf
accesses. To this end, we identify two major data access
patterns, namely data replication (Repl) and migration (Mig)
[11]. Repl occurs when a line is accessed in a read-mostly
manner by several processors. Mig occurs when a line
allocated remotely is accessed largely by one processor at a
time and can be read-mostly (MigR) or read-write (MigRW).

Mig is key to distinguishing COMA from NUMA-RC.
Ideally, a COMA's MemOvhd only needs to fit the Repl data:
The Mig data can simply use up in one attraction memory
the same space that it frees up in another one. A NUMA-
RC's MemOvhd, however, needs to house both the Repl and
the Mig data. Consequently, ideally, we would start seeing
remote-conf accesses only when:

COMA : Repl > MemOvhd

NUMAÿ RC : Repl�Mig > MemOvhd

Therefore, if Mig dominates, COMA has fewer remote-conf
accesses than NUMA-RC. This COMA ability to handle Mig
data for free is the reason why COMA is considered more
programmable. There is less need to lay out the data
carefully in memory and, more arguably, to tune working
sets for caches, because the data automatically migrates.

Real caches, however, suffer conflicts, even with small
working sets. Interestingly, NUMA-RC can utilize Mem-
Ovhd better and, therefore, suffer fewer conflicts than
COMA. This results from the limited associativity of
attraction memories. Indeed, consider 4-way set-associative
attraction memories and remote caches and a MemOvhd of
25 percent of all memory. In COMA, each set in the

attraction memory has one free entry. Consequently, the
MemOvhd appears like a direct-mapped cache. However, the
MemOvhd in NUMA-RC is 4-way set-associative. As a
result, NUMA-RC suffers fewer remote-conf accesses. This
effect particularly affects the data with the highest memory
appetite, namely Repl. Overall, therefore, while COMA will
likely have fewer remote-conf accesses if Mig dominates,
NUMA-RC will likely have fewer remote-conf accesses if
Repl dominates [11].

Note, however, that the performance difference between
COMA and NUMA-RC is not only determined by the
relative number of remote-conf accesses. It is also affected by
how much processor stall time is induced by the average
loc, remote-cold, remote-conf, and remote-coh accesses as well.
The average remote access latency tends to be higher in
COMA than in NUMA-RC [11]. The reason is that the
fraction of remote accesses that involve three-node hops,
instead of two, is higher in COMA than in NUMA-RC.
These additional three-hop COMA transactions may be
caused by accesses to data that used to be in its home
memory and was displaced due to attraction memory
conflicts. Additionally, they may be caused by accesses to
data that COMA did not push to its home when NUMA-RC
did. Specifically, in a read miss on data that is exclusive in a
second node, our protocol updates the home node's
memory in NUMA-RC, but not in COMA. We do not
update home in COMA to minimize conflicts in the home
memory.

Aside from these performance issues, COMA has a
higher design complexity than NUMA-RC because its cache
coherence protocol has to ensure that last copies of lines are
not lost [7]. This issue introduces corner cases in the
protocol.

Overall, we would like an architecture that combines
all the advantages of both COMA and NUMA-RC:
programmable as COMA, simple as NUMA-RC, and that
handles the data in the best way, namely Mig as COMA
and Repl as NUMA-RC. Our proposal is called Excel-
NUMA (EX-NUMA).

3 THE EX-NUMA ARCHITECTURE

3.1 The Concept of EX-NUMA

The memory of a CC-NUMA is underutilized. Indeed,
when a processor writes a datum, its cache gets a copy of
the memory line, while the memory is left with a stale copy
that will never be used. Any stale line left in memory after
being written by either the local or a remote processor we call
a cell. The up-to-date copy of the line, resident in a cache, we
call the owner of the cell. The idea behind EX-NUMA is that
each node records the cells that exist in its memory and
temporarily uses them to house remote data that gets
displaced from its cache. When the owner finally returns,
either from this node's cache or from another node, the cell
is destroyed. If the line stored in the cell is in exclusive state,
it is sent to its own home.

The idea described allows effective support of Mig
data. Consider a two-processor machine with six Mig
arrays (Fig. 1a). Cell creation is shown in Fig. 1b, where
processor P1 writes to 2 and P2 to 1. Automatic migration
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occurs in Fig. 1c, when P1 writes to and brings to its cache
array 4 while, at the same time, displacing 2 and saving it in
its cells. P2 does a similar operation for 3 and 1. Finally, full
migration completes in Fig. 1d, when P1 writes to 6 and P2
to 5. At that point, all the data originally allocated in P1's
node has migrated to P2's node and vice-versa.

Based on its ability to migrate all the data in a memory
module to another one, EX-NUMA behaves like a COMA
for the Mig data in the figure. On the other hand, EX-
NUMA performs no differently than a regular CC-NUMA
machine for Repl data: It can only replicate as much data as
it fits in its caches. This is shown in Fig. 1e, a continuation of
Fig. 1b after processor P1 reads 4 and P2 reads 3. However,
if we add remote caches to EX-NUMA, we do not decrease
its ability to handle Mig data, while we enable it to handle
Repl data as effectively as NUMA-RC. For example, Fig. 1f
shows Fig. 1e after P1 reads 6 and P2 reads 5.

The favorable scenario presented, where cells are created
and filled uniformly across nodes, shows that EX-NUMA
can handle MigRW for free, without using any MemOvhd.
Ideally, remote-conf accesses appear only when:

Repl�MigR > MemOvhd

MigR is, in fact, relatively uncommon [9]. Furthermore,
Section 3.4 shows that EX-NUMA can be easily enhanced to
handle MigR as well. Therefore, EX-NUMA can behave
very much like COMA for Mig data.

3.2 The Implementation of EX-NUMA

The functionality described is supported with a module
called Remote Data Table (RDT). The RDT is closely coupled
with the memory controller and the remote cache. It can be
thought of as an extension of the tag array of the remote
cache. The RDT contains the tag array of the remote cache
and pointers to cells in the local memory. In a simple
baseline implementation, the RDT keeps the cell pointers in
a DRAM table. Fig. 2a shows the resulting organization of
an EX-NUMA node. Section 3.4 presents a more advanced
RDT implementation.

The RDT records the location and state of all the cells
present in the local memory. The cells can be thought of as a
dynamic extension of the remote cache. When a remote line
is brought into the L2 cache in state nonexclusive, the RDT
saves a copy in one of the cells or in the remote cache. This
is done because that line may be later displaced silently
from the L2 cache. When a remote line in state exclusive is

displaced from the local L2 cache, the RDT tries to save it in
one of the cells or in the remote cache. Later, if the L2 cache
requests it again, the RDT is checked, and if the line is still
stored locally, it is supplied. If the request loads the line in
state exclusive, the cell or remote cache entry is freed up as
it is being read. Otherwise, the cell or remote cache entry
keeps a copy of the line in case it is later displaced silently
from the L2 cache.

The remote lines stored in the cells and remote cache are
kept coherent as invalidation, read, and read with invalida-
tion messages arrive from other nodes. In addition, at any
time, the owner of a cell may return to its home. The owner
may come from a remote node or from the L2 cache of the
local node. The owner displaces the line that was stored in
its cell. The cell is destroyed and if the displaced line is
dirty, it is sent to its home. Overall, it is important to note
that all the tasks related to the RDT are local and thus do not
require global changes to the cache coherence protocol.

We treat cells and remote cache entries similarly because
we do the bookkeeping for both of them in the same way
(Fig. 2b). A fraction of the RDT entries are the tag array of
the remote cache. There is one entry per line in the remote
cache. The rest of the RDT entries are dedicated to the
memory. They are used to identify cells. In the simplest
design, there is one entry per memory line. Each RDT entry
contains an address tag and state fields. The tag holds the
address tag of the remote line stored in the cell or remote
cache entry. The state can be invalid, valid, exclusive, or null.
The latter is only possible in RDT entries dedicated to
memory and means that the corresponding memory line
does not have a cell. Invalid means that the location has an
empty cell, while valid and exclusive mean that the location
has a cell filled with a remote line in one of these states.

To locate an entry in the RDT, we use the address bits of
the remote line. To use cells better, the RDT is set-
associative. In that case, a given RDT entry can point to
one of several memory locations and, therefore, a given
remote line can be inserted in one of several such locations.
Fig. 2c shows the mapping of a 4-way set-associative RDT.

The state diagram for RDT entry states is shown in
Fig. 2d. Initially, all RDT entries dedicated to memory are
null while the others are invalid. After a write to a local line,
the state of the corresponding RDT entry changes from null
to invalid (create transition). When a remote line is brought
into the L2 cache in state nonexclusive or a remote line in
state exclusive is displaced from the L2 cache, the RDT tries
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to save it. The RDT identifies the appropriate memory-

dedicated set and remote cache-dedicated set that can

potentially take the line. It selects one entry from one of

these two groups of entries using the following receiving

algorithm: Select, with decreasing priority, an invalid, valid,

or exclusive entry. In the latter two cases, the line currently

using the entry is displaced (displace transitions). By giving

low priority to exclusive, we try to avoid sending an owner

home, which could in turn destroy a cell. However, we

could be unfairly thrashing within Repl and MigR data.

Other, fairer receiving algorithms are studied in [9]. In any

case, the entry selected is filled and set to valid or exclusive,

depending on the state of the incoming line (receive

transitions).
When the L2 cache requests a remote line, if the RDT has

a copy in a cell or in the remote cache, it supplies it. If the

request loads the line in state exclusive, irrespective of the

current state of the line, the cell or remote cache entry is set

to invalid as it is read (supply_ex transitions). Otherwise, it is

left in state valid (supply transition). Later, when an owner is

written back, the state of the cell is set to null (destroy

transitions). Finally, coherence messages coming from other

nodes may invalidate, read, or read and invalidate data in

cells or in the remote cache (inval_net and read_net

transitions).

3.3 Cost-Performance Comparison to NUMA-RC/
COMA

To assess the performance of EX-NUMA, we use the model
of Section 2. As discussed before, if all the data is Repl, EX-
NUMA has as few remote-conf accesses as NUMA-RC
because it reverts to it. If all the data is MigRW, EX-NUMA
can have as few remote-conf accesses as COMA because it
supports large-scale line-level data migration. Line migra-
tion in EX-NUMA appears trickier than in COMA because
it needs other transactions to first create cells in the
destination locations. However, we show in Section 5 that
migration in EX-NUMA proceeds largely unimpeded.
Finally, if all the data is MigR, EX-NUMA reverts to
NUMA-RC and, therefore, has more remote-conf accesses
than COMA. However, MigR data has little weight [9] and,
in addition, Section 3.4 shows that it can also be handled by
enhancing EX-NUMA. Finally, in all cases, the average stall
time of a remote access in EX-NUMA is similar to NUMA-
RC's and smaller than in COMA. The reason is that EX-
NUMA does not suffer the line displacements from home
memories that cause three-hop transactions in COMA.
More detail can be found in [10].

The DRAM-based RDT does not need to slow down EX-
NUMA relative to NUMA-RC. In NUMA-RC, after an L2
cache miss, the DRAM tags of the remote cache are accessed
in parallel with the remote cache data. In EX-NUMA, we
double the associativity of the search. The RDT entries for
the remote cache and the remote cache are accessed in
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parallel with the RDT entries for the memory and the
memory. This system can be organized such that multiple
requests can be pipelined, therefore reducing the resource
occupancy.

The memory required for the baseline RDT is modest.
Consider a machine with P processors and A-way set-
associativity for the RDT entries dedicated to memory. In
this case, the tag size for RDT entries dedicated to memory
is log2�P �A� bits. With 64 processors and a set-associativ-
ity of 4, the tag size is 8 bits. Adding 2 bits for the state field,
we get 10 bits per RDT entry. If the size of a memory line is
32, 64, or 128 bytes, the ratio between the size of the RDT
dedicated to memory and the memory size is 3.9 percent,
1.9 percent, and 1 percent, respectively. Adding this much
DRAM is not very expensive. Furthermore, there are two
schemes to reduce the DRAM needs. First, the RDT can
have fewer entries dedicated to memory than memory lines.
In this case, each RDT entry can identify one cell in a group
of several memory lines. Consequently, we risk wasting
cells [10]. The second scheme is the advanced RDT design
discussed in Section 3.4, which practically eliminates all
DRAM needs.

Finally, the design complexity of EX-NUMA is modest
because all the modifications required to produce an EX-
NUMA out of a NUMA-RC are local. In contrast to
COMA, there are no changes to the global cache coherence
protocol [9].

3.4 Advanced Implementation Issues

The baseline EX-NUMA can be enhanced in several ways
[9]. We briefly summarize them here. First, given that the
RDT entries dedicated to memory and to the remote cache
work in the same way, we can make the boundary that
separates the two types of entries flexible. For example, if
the application does not need much physical memory, we
can increase the size of the remote cache at the expense of
the memory. One way to do this ªlogicallyº is to mark up all
the RDT entries that are pointing to lines in unused memory
pages as if these lines all had cells. We can then store remote
data in all these unused memory pages.

To support MigR data, we can create a cell every time
that a home node receives a read request for a line that is
currently not in any cache. The directory takes this request
as a hint that the data is of Mig type and supplies it in state
exclusive, therefore creating a cell. This optimization helps
support MigR data and is beneficial to MigRW data because
cells are created as soon as the first read occurs. However, it
hurts Repl data because a subsequent read by a second
processor needs to fetch the data from the first reader
processor [9].

Another way to increase the effectiveness of cells is to
minimize the chances that, when an owner line is written
back, it displaces the line in its cell. Such an event could
cause another cell destruction downstream. To cut short
any such chain of cell destruction, we can treat the
returning owner as if it were a remote line displaced from
the secondary cache. As such, it can be written into any
location pointed to by the corresponding RDT sets (memory
cells or remote cache) as determined by the receiving
algorithm. If the place where the owner is saved is not its

default location, we mark the new location as its new back-
up location. This is called location relaxation.

There are several ways of implementing location relaxa-
tion. A simple and inefficient approach is to add one bit
called moved to each directory entry. This bit indicates
whether the line associated with the entry has undertaken
location relaxation. In addition, the state field of each RDT
entry can take an extra state, namely relaxed_location. With
this support, assume that an owner is written back and,
since its RDT entry i is full, we store it in the empty cell of
entry j in the same RDT set. The tag and state of RDT entry j
are set to the incoming line's tag and to state relaxed_loca-
tion, respectively. In addition, the moved bit in the incoming
line's directory is set. The next request that accesses the line
finds the moved bit set in the directory and, while accessing
the RDT, finds the correct tag, and reads the line from entry
j. If the line is written to, an empty cell is created in its new
location, the moved bit is reset, and, therefore, the line is not
under location relaxation any more. When the line is written
back again, we try to save it in its original location. A more
refined location relaxation scheme that involves swapping
the contents of directory entries is described in [9].

A final performance optimization is high RDT associa-
tivity. With high associativity, cells retain more data, which
reduces the pressure on the remote cache and results in
fewer conflict misses. To tolerate the higher RDT busy time,
we pipeline the RDT and memory access [9], [10].

We can also reduce RDT overheads. We chose the
baseline RDT design to minimize the modifications to a
NUMA-RC. However, if we are willing to redesign the
directory to integrate it with the RDT, we can eliminate
practically all of the RDT memory requirements. Specifi-
cally, the tags and state of the RDT entries dedicated to
memory can be stored in the directory entries. This is
possible if the machine uses a pointer-based directory
scheme with invalidations [4]. In such schemes, after a
memory line is written, the corresponding directory entry
contains only one pointer. Consequently, we can use the
unused directory bits to store the RDT tag and state of the
incoming line. A design is presented in [9].

4 EXPERIMENTAL SETUP

We perform execution-driven simulations of 32-node CC-
NUMA, NUMA-RC, COMA, and EX-NUMA architectures
using Tangolite [3]. We refer to the CC-NUMA as NUMA.
Each node includes a 200 MHz processor, two levels of
cache, a memory controller, and a portion of the global
memory and directory (Fig. 2a). The on-chip L1 cache is
direct-mapped and has 16-byte lines. The L2 cache, remote
cache, and attraction memory are 4-way set-associative and
have 32-byte lines. The RDT is 4-way set-associative for the
cells and for the remote cache, and has as many entries for
memory as there are memory lines. The remote cache in
NUMA-RC and EX-NUMA and the extra memory in
COMA have the same size. The small difference in tag
space is neglected. Caches are kept coherent with the DASH
protocol [4]. The memory bus is 64-bit wide and supports
split transactions. The memories, RDTs, and remote caches
are pipelined and deliver the first word in 12 clocks. There
is a global network with a fixed two-node latency of 100
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cycles. The unloaded round-trip latency to access the L1
cache, L2 cache, local memory, and remote memory in two
and three hops is 1, 4, 39, 249, and 351 cycles, respectively.
The remote cache has the same latency as the local memory.
The machines use release consistency. All contention is

modeled except in the network, where it is neglected. The

NUMA and NUMA-RC allocate pages in first-touch after

the parallel section starts. For COMA and EX-NUMA, since

the allocation should not matter much, we use round-robin.
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Applying round-robin to NUMA and NUMA-RC does not
change the results qualitatively.

To expose the performance differences between archi-
tectures, we dimension the memory hierarchy for each
application so that the size of the per-processor working set
is comparable to or larger than MemOvhd. For each
application, we divide the size of its footprint by the
number of processors. The resulting number, divided by 4,
16, and 64, is the size of the per-processor MemOvhd, L2
cache, and L1 cache, respectively. The cache sizes are
rounded to a power of two. The resulting MemOvhd is,
therefore, 20 percent of the total memory.

The Splash2 parallel applications executed are listed in
Table 1, together with their data footprint size, the L2 cache
used, and their major data type. Repl dominates in Barnes,
Volrend, and Water-NQ. While in Barnes and Volrend, the
Repl data is a tree structure that gets scattered around and
uses COMA's MemOvhd ineffectively, in Water-NQ, it is a
1D array of molecules that uses COMA's MemOvhd well.
Mig dominates in Ocean, Radix, and FFT. The Mig data is
MigRW in Ocean, often MigRW in FFT, and often MigR in
Radix. The Mig behavior in Radix and FFT is harder to
exploit because processors change working sets frequently,
creating transient periods.

5 EVALUATING THE BASELINE EX-NUMA

This section summarizes the evaluation in [10]. We compare
a NUMA and three machines with 20 percent MemOvhd:
NUMA-RC (N-RC20), COMA (COMA20), and EX-NUMA
(EX-20). For reference purposes, we also consider an ideal
EX-NUMA where the L2 cache unrealistically informs the
RDT of displacements of lines in state nonexclusive. In this
case, the remote cache and cells do not need to keep copies
of such linesÐtheir data is exclusive with that in L2. As a
result, the local memory hierarchy can hold more remote
data. We examine this case for 0 percent, 11 percent, and 20
percent MemOvhd (eEX-0, eEX-11, and eEX-20, respectively,
where eEX means exclusive EX-NUMA). For these seven
architectures, we compare the fraction of read accesses not
satisfied in the local node (Fig. 3a) and the execution time
(Fig. 3b). The remote read misses are broken down into
start-up (Cold), conflict (Conf), and coherence (Coh), while
the execution time is divided into execution of instructions
(Busy), stall due to memory accesses (Mem), and other stalls
(Other).

Fig. 3b shows that, compared to NUMA, architectures
with extra caching space like N-RC20 and COMA20 are
significantly faster. As expected, N-RC20 tends to perform
better for Repl applications, while COMA20 tends to be

better for Mig ones. The exceptions are Water-NQ, where
COMA20 does well because the Repl data is regular and
uses MemOvhd effectively, and Radix, where COMA20 is
slower because the Mig behavior of the data is weakened by
processors frequently changing working sets. In all cases,
EX-20 runs faster than N-RC20 and COMA20. EX-20 adapts
to both Repl and Mig data. On average, it runs 10 percent
and 12 percent faster than N-RC20 and COMA20, respec-
tively. While this figure may seem modest, it is close to the
upper bound possible. Indeed, Fig. 3a shows that EX-20 has
a very low remaining Conf miss rate. The speed-up has been
accomplished across all types of applications and with a
simple architecture. Finally, the similar performance of eEX-
20 and EX-20 indicates that we do not need an unrealistic
fully exclusive system. The low speed of eEX-0 suggests that
the lack of a remote cache strongly inhibits cell exploitation.

We now examine EX-NUMA cell behavior. Consider the
reads to remote data that are not intercepted by the L2
caches. Fig. 3c breaks them into those that are intercepted
by the remote cache (RC), those intercepted by cells (Cell),
and those that cause a remote miss. The latter can be caused
by conflicts (Miss.Conf) or not (Miss.Rest). Remote caches
and cells can only eliminate conflict misses. The figure
shows that the cells in eEX-0, which do not have the help of
a remote cache, do not eliminate many conflict misses. With
a remote cache, eEX-11 and eEX-20 eliminate many more
conflict misses. A remote cache has a multiplicative effect: It
intercepts requests and is a catalyst to create more cells that
intercept requests as well. The exception is Volrend, where
the Mig data is largely read-only and, therefore, unable to
create cells. Comparing eEX-20 to EX-20, we confirm that
ideal exclusivity makes little difference.

Fig. 3d shows why cells do not eliminate all the conflict
misses. The figure classifies what happens to lines with
remote data that are displaced from the L2 caches. They can
either be absorbed by cells, by the remote cache or, in EX-20,
displaced silently. The height of the bars in the figure shows
the fraction that are absorbed by cells. In turn, these lines
can be: eventually reused by the processor (Hit), invalidated
by the protocol (Inv), displaced by the returning owner
(Repl), displaced by another line (Recv), or simply sit there
until the end of the program without being accessed
(Waste). The figure shows that, in eEX-0, only a small
fraction of the displaced lines are intercepted by cells. In
eEX-20, an average of 50 percent of the lines are. Of these,
the fraction that are reused (Hit) depends on the size of the
remote cache. For eEX-20 and EX-20, the fraction that are
reused (Hit) is 70 percent on average. This is good news.
When the reuse is low (Radix and FFT), it is because the Mig
data moves from one processor to another frequently,
inhibiting data reuse.

Finally, Fig. 3e shows the state of the RDT entries
dedicated to memory at the end of the program. A memory
location can have a cell with data (Data), an empty cell
(Invl), or no cell (Null). In EX-20, an average of 50 percent of
the memory locations have cells. Of those, about 80 percent
contain data. These two numbers show that EX-NUMA-
style migration works. We also point out that we have not
seen line write backs that trigger long chains of cell
destruction across the machine. Indeed, the presence of a

262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

TABLE 1
Characteristics of the Applications Used



remote cache, the associativity of the RDT, and an RDT
receiving algorithm that favors replacements of nonexclu-
sive lines, all make EX-NUMA very stable [10].

6 EVALUATING ENHANCEMENTS TO EX-NUMA

To fully assess the EX-NUMA organization, we now
evaluate the performance impact of some of the enhance-
ments discussed in Section 3.4. To save space, our
discussion is brief. For more details, see [9]. In the
following, all the numbers quoted are relative to the
baseline EX-NUMA.

We first consider supporting MigR data by creating a cell
on every read to an uncached line. As indicated in
Section 3.4, this optimization has negative side effects on
Repl data. Moreover, MigR data is relatively insignificant.
As a result, while this optimization improves the perfor-
mance of some applications, the average impact is small.

The location relaxation of Section 3.4 allows the EX-
NUMA to retain more cells. While some applications run
up to 6 percent faster, the average application runs 3
percent faster.

We examine RDT associativities of 2, 4, and 32. Recall
that the baseline EX-NUMA has an RDT associativity of 4.
This means that, for each RDT access, we check four RDT
entries dedicated to memory and four dedicated to the
remote cache. Our results show that the largest performance
gains occur while going from 2- to 4-way set-associative
RDTs. On average, the applications run 6 percent faster.
Increasing the associativity from 4 to 32 has a large impact
in some applications. For example, Ocean runs 11 percent
faster. On average, the applications run 5 percent faster.
However, the design of such a fast, high-associative
circuitry is challenging.

Finally, we examine the effect of having fewer RDT
entries dedicated to memory than lines in memory. Each
RDT entry can now record a cell from one of several
memory locations by including a few more bits that specify
which location it actually points to. This organization may
help a line find a cell because each RDT entry maps to a
group of memory locations. However, the RDT loses the
ability to record all cells, since only one cell per group can
be recorded at any one time. In our experiment, we simulate
EX-20 with only 50 percent of the baseline RDT entries
dedicated to memory. Each RDT entry handles two
consecutive memory locations. The results show that Barnes,
Water-NQ, and Ocean are slowed down by 2-4 percent. On
average, however, the six applications run only about
1 percent slower.

7 RELATED WORK

Perhaps the closest work is R-NUMA, proposed by Falsafi
and Wood [2] concurrently with EX-NUMA. While R-
NUMA is also a hybrid machine, its approach is very
different. R-NUMA is a hybrid between CC-NUMA and
Simple-COMA, the software incarnation of COMA. Data
migrates at the page granularity, which is less effective.
Switching between CC-NUMA and Simple-COMA is
performed at the coarse grain of a page at a time, and
requires operating system involvement via an interrupt.

Finally, the interrupt is triggered by run-time feedback from
traffic-monitoring counters. EX-NUMA, instead, is a hard-
ware-only approach that tries to incorporate into CC-
NUMA the good points of Flat-COMA, the hardware
incarnation of COMA. Consequently, data migration is
supported at the cache line level. This fine-grain migration
eliminates any concern about page fragmentation and can
handle many objects of different behavior in the same page.
Furthermore, there is a single (CC-NUMA) protocol under
which all memory lines live and there is no operating
system overhead. No run-time feedback or interrupts are
necessary.

Other related work is operating system-induced migra-
tion and replication of pages based on run-time feedback,
e.g., [8]. This technique has some of the effects of EX-
NUMA, although migration is only supported at page
granularity and there is operating system overhead.

8 DISCUSSION AND CONCLUDING REMARKS

EX-NUMA attempts to build on the good points of both
Flat-COMA and NUMA-RC: It supports fine-grain auto-
matic data migration nearly as well (and, therefore, is nearly
as programmable) as Flat-COMA, is not much more
complex than NUMA-RC, and outperforms both of them
by supporting the Mig and Repl data access patterns well. It
eliminates most of the conflict misses. Overall, EX-NUMA
represents a good cost-performance design point, as we
consider complexity, performance, and programmability.

EX-NUMA supports line-based automatic data migra-
tion without the costly Flat-COMA hardware. In theory,
migration in EX-NUMA may be harder than in Flat-COMA.
The reason is that the space that a node has available to hold
remote Mig data locally is determined, in part, by how
much Mig data allocated locally is being accessed by other
nodes. For the system to perform best, these two sets of Mig
data should be balanced. One case where this happens is
when the application is such that each processor works on
roughly the same amount of Mig data, and the data layout
is such that Mig data is laid out roughly uniformly across
the different nodes. These conditions are largely met for the
applications and page allocation policies analyzed. Further-
more, when they are not, the large remote cache can absorb
the fluctuations. Therefore, EX-NUMA-style migration
works well. In the future, we will examine applications
that are less tuned for caches than Splash2, for example
databases.
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