
Programming and Debugging Shared Memory
Programs with Data Coloring

Luis Ceze†, Christoph von Praun‡, Călin Caşcaval‡

Pablo Montesinos# and Josep Torrellas#

† Department of Computer Science and Engineering, ‡ IBM T.J. Watson Research Center
University of Washington {cascaval}@us.ibm.com

luisceze@cs.uiuc.edu

Department of Computer Science,
University of Illinois at Urbana-Champaign

{pmontesi, torrella}@cs.uiuc.edu

Abstract. Concurrency control is one of the main sources of error and
complexity in shared memory parallel programming. While there are sev-
eral techniques to handle concurrency control such as locks and transac-
tional memory, simplifying concurrency control has proved elusive.
In this paper we introduce the Data Coloring programming model, based
on the principles of our previous work on architecture support for data-
centric synchronization. The main idea is to group data structures into
consistency domains and mark places in the control flow where data
should be consistent. Based on these annotations, the system dynami-
cally infers transaction boundaries. An important aspect of data coloring
is that the occurrence of a synchronization defect is typically determi-
nate and leads to a violation of liveness rather than to a safety violation.
Finally, this paper includes empirical data that shows that most of the
critical sections in large applications are used in a data-centric manner.

1 Introduction

While critical sections are probably the most popular form of concurrency con-
trol in shared memory programs, their use is a complex and error-prone task,
especially for programmers with little experience in parallel programming. It can
be argued that a major reason why critical sections are error-prone is that they
require non-local reasoning [1]: shared data structures that need to be accessed
atomically must be protected in all code locations where they may be referenced.
Failure to do so may result in data races that are often hard to detect and debug.
This problem is independent of the underlying critical section implementation,
whether based on locks or transactions. Based on empirical evidence from large
0 This work was supported by the National Science Foundation under grants CCR-

0325603 and CNS-0720593.
Christoph von Praun is now affiliated with Georg-Simon-Ohm University, Nurem-
berg, Germany.

applications, we recognize the fact that the main reason for concurrency con-
trol is to protect shared data. Therefore, we believe that programmers should
annotate the data that must be kept consistent.

In this paper we introduce the Data Coloring programming model, which is
based on the principles of our previous work on architecture support for data-
centric synchronization [2]. In this model, programmers associate consistency
constraints (called Colors) with shared data structures. This is a data-centric
approach to synchronization, as opposed to the conventional operation-centric
approach. We argue that data-centric synchronization simplifies concurrency
control because it mostly needs local reasoning – the programmer annotates
the data structures with consistency constraints without worrying about where
in the code the structures are being accessed.

In our programming model, in addition to assigning colors to data, the pro-
grammer also marks places in the control flow where data should be made consis-
tent (Color Steps). Based on all these annotations, the system dynamically infers
transaction boundaries. Finally, to support situations where largely-unrelated
data structures need to be consistently operated on by a set of actions, we also
support operation-centric synchronization with explicit transactions.

2 Consistency and Concurrency Control

Concurrency control prevents threads from performing concurrent, conflicting
accesses to shared data, thus maintaining data consistency. Consistency defines
how a thread observes the state of a set of memory locations with respect to
updates by other threads.

It is common practice —and a widely accepted model of shared memory
parallel programming— that concurrency control is specified explicitly. For ex-
ample, programmers delimit critical sections, implemented by locks or transac-
tions. Consequently, data consistency is a result of the synchronization structure,
rather than something explicitly defined. As a result, data consistency can be
easily compromised, either by the absence or the wrong use of synchronization
annotations.

Data-centric synchronization [2, 1] turns this conventional model upside
down: consistency constraints are tied to the shared data and specified explicitly;
the system dynamically synthesizes actions for concurrency control according to
the consistency specifications. Hence, data consistency is guaranteed as speci-
fied by the programmer. In the following, we define consistency in the context
of data-centric synchronization, and elaborate on how actions for concurrency
control are synthesized from the memory access stream in each thread.

2.1 Domain Consistency

Consistency properties are associated with a particular data domain. As an
example, consider the bits of a byte as the domain. Byte consistency means that
a thread observes all bits in a byte as updated previously by another thread.

green

time

red

color space color step thread 0

color step thread 1

variable with update

variable unchanged

0

0 1

1

2 version

version

Fig. 1. Domain consistency.

Conceptually, every access to a byte constitutes a transaction with isolation and
atomicity properties. The granularity of the consistency domain is one byte, and
the synchronization epoch at the boundaries of which consistency is established
is a single memory access. In current machines, byte consistency is automatically
enforced by hardware.

Domain consistency extends this model to regions of memory and sequences
of operations. The extent of a consistency domain is explicitly specified through
coloring: data with the same color belong to the same domain. Coloring happens
at the time when data is allocated and initialized. Each address maps to at most
one color.

Synchronization epochs are specified through a color step. Color steps mark
positions in the code where the programmer considers that the accesses to a
consistency domain by a thread are complete, or where a thread should have
the opportunity to observe other threads’ updates to the domain. A synchro-
nization epoch starts implicitly at the first data access to a domain (following
a color step). Once inside a synchronization epoch, a thread observes the state
of memory in isolation. Updates are made visible atomically when a color step
is encountered. When a thread executes inside a synchronization epoch, we say
that the thread ’holds the color’ corresponding to the epoch.

Figure 1 illustrates domain consistency. A thread observes the variables of a
domain at any point in time in a consistent state. A color step specifies that a
thread is willing to proceed to a more recent version of a domain; if there are
no concurrent updates to the domain, the version is unchanged. Domains can
grow and shrink in size as data is allocated and deleted. Consecutive versions of
a domain differ in the value of at least one variable. When concurrent threads
update a domain in a conflicting manner and race for the corresponding color
step, the underlying transaction mechanism lets one thread successfully commit
its version and rolls back other threads racing for the step on the same color.

A color step differs from a memory fence. First, a step pertains only to
a specific domain and does not order accesses to memory in other domains.
Secondly, a memory fence merely orders the memory access operations, while a
color step may trigger a transaction to complete.

Not all shared variables need to participate in domain consistency, i.e., there
can be ’uncolored’ shared memory. We assume that a color step orders preceding
accesses of uncolored memory with respect to the atomic update of the domain
(if any). Moreover, color steps are observed in a total global order, irrespective
of the domain they operate on. Finally, a color step on a variable whose color is
not held or is not colored at all is a no-op.

2.2 Programming Model

Data-centric Synchronization The synchronization model that uses coloring
and color steps is data-centric: The color is an immutable property of shared
variables and domain consistency is guaranteed at any time during the execution
of a program. For example, the consistency of a linked list data type may be
enforced by declaring all nodes in the list to have the same color and let list
operations (insert, remove, ...) be followed by a color step annotation.

Notice that consistency domains that encompass only a single variable are
also useful: the memory isolation and atomicity properties provided by data
coloring facilitate that a sequence of accesses to a colored variable occurs without
interference from other threads. For example, the following code achieves the
conditional initialization of a shared variable. We use a pseudo Java notation for
illustration.

static Object singleton color() = null;

Object getUniqueInstance() {
Object ret;

if (singleton == null)

ret = singleton = new Object();

else

ret = singleton;

color step(&singleton);

return ret;

}
The declaration of the variable singleton specifies that it should be col-

ored; in the example, the color is chosen by the system when the variable is
allocated. Domain consistency prevents multiple threads from finding that the
variable singleton is null and creating multiple object instances. The example
illustrates that the programmer is solely concerned with specifying the point
where data in a domain is consistent. Note that the newly created object is not
colored, but the reference to it is. The color step guarantees that any thread that
finds variable singleton initialized will also observe a completely initialized in-
stance of the object. The color at the color step operation is specified through
an object reference or variable address. Also, a color step operation may take
multiple arguments that refer to different domains; in all cases, the updates to
all domains occur (collectively) in an atomic step.

Domain consistency breaks up the flat model of memory consistency com-
monly assumed in computer architecture into smaller domains: data-centric syn-

chronization provides strong, transactional consistency guarantees among loca-
tions in the same domain but provides no consistency guarantees across domains.
The latter can be achieved with operation-centric synchronization. In the data
coloring model, domain consistency is the default consistency model.

Operation-centric Synchronization An application may temporarily request
consistency that is stronger than domain consistency, e.g., during the execution
of a composite operation. We call synchronization that serves to achieve guaran-
tees beyond domain consistency operation-centric. For example, an accounting
system has individual accounts that each are protected in their own consistency
domain. For the purpose of a money transfer operation, a temporary consistency
domain is established to encompass multiple account records that are involved
in the transfer.

void transfer(Account a, Account b, int n) {
atomic(ALL COLORS) { // 〈defer color steps(l,ALL COLORS)〉
a.withdraw(n);

b.add(n);

}
} // 〈l:color step(ALL COLORS)〉

Fig. 2. Operation-centric synchronization with color steps.

Operation-centric synchronization is commonly specified through the start
(tx start) and end (tx end) of a transaction. In the model of domain con-
sistency, the boundaries of a transactional operation specify that all color steps
encountered after the start of the transaction are coalesced and occur atomically
at the end of the transaction. If several domains are involved in the transaction,
then the updates of all domains must occur in an atomic step. In Figure 2,
the programmer specifies that the updates to both bank accounts must be done
atomically. This is accomplished with the atomic annotation, which takes as ar-
gument the colors of all the domains that need to be temporarily coalesced. The
compiler then generates the primitives defer color step and color step, ensur-
ing that all color steps executed between the two are aggregated. The compiler-
generated code is specified in angle brackets 〈 〉.

2.3 Functional Composition

A synchronization mechanism has to be compatible with functional composition,
i.e., the combination of synchronization in the caller and callee must maintain
the semantics expected by the programmer. For programs with critical sections,
this is achieved through nesting — various nesting semantics have been proposed
for memory transactions [3–5].

When code with color step synchronization is combined in the call hierarchy,
special care has to be taken to prevent a color step in a callee from inadvertently
disrupting the consistency window that a programmer expects in the caller.
Figure 3 illustrates this on a concurrent container implementation. Initially, the
compiler would flag method getAndRemove as potentially ’non-atomic’, since it
invokes other methods (find, get and remove) that may execute color steps.

int find(Key key) {
int index;

// search, access key, initialize index

color step(key, this);

return index;

}
Value get(int index) {

Value value;

// initialize value from index

color step(this);
return value;

}
void remove(int index) {

// remove value at index

color step(this);
}
Value getAndRemove(Key key) {

atomic(this) { // 〈defer color step(l, this)〉
Value value = null;

int index = find(key);

if (index != -1) {
value = get(index);

remove(index);

} // 〈l: color step(this)〉
return value;

}

Fig. 3. Composition of color steps.

The programmer then inserts the atomic directive, which ensures that
getAndRemove proceeds on a single version of this. This solution to the compo-
sition problem is similar to operation-centric synchronization: The execution of
color steps for the color of the this object in downstream methods is disabled
as illustrated in Figure 3. It is the compiler that automatically synthesizes de-
fer color step and color step, specifying that color steps on the color of the
this object should be disregarded until execution reaches label l. Note that the
color of the key object is released at the end of find.

This approach, which forces computation between the two directives onto a
single version of a domain, is consistent with the principles of the data color-
ing programming model: the programmer must be aware of any disruption of

isolation (non-atomicity) and have simple means to enforce domain consistency
within the local scope of a method or code block.

2.4 Synchronization Defects

In the data coloring model, the nature of synchronization defects, their detection,
and consequences differ from critical section synchronization. Synchronization
defects fall into one of:

– Incorrect coloring: Three cases are possible: (i) Shared mutable locations
are not colored. Such a situation can be detected by tracking accesses to
uncolored locations. (ii) Variables with mutual consistency constraints are
colored differently. In such case, inconsistencies among the variables can arise
due to unordered concurrent access. In a debugger, color information can help
identify race conditions as a possible reason for data inconsistency. The data
inconsistency due to such race conditions can be corrected by giving the same
color to the variables that are found with inconsistent values. (iii) Variables
with different consistency constraints have the same color. In this case, when
the programmer releases a color in a color step, she may be committing
updates to variables that should be in different consistency domains, leading
to unexpected program behavior. Static analysis allows the programmer to
obtain a report, check and correct colors for variable declarations.

– Omission of a color step: This cannot lead to consistency (safety) violation.
However, a thread that holds a color and does not step ahead in the version
space may harm overall progress (liveness defect). This situation can be
detected easily, identifying the thread and the color that caused the problem.

– Violation of atomicity: A potential violation of atomicity [6] can occur dur-
ing the execution of a block or method when encountering more than one
step of the same color which are not coalesced by a surrounding code-centric
transaction specification. Since the programming model assumes that the oc-
currence of color steps (and hence atomicity properties) are specified along
with methods, violations of atomicity can be reliably detected through pro-
gram analysis either within the block or traversing the call graph.

In summary, the detection of synchronization defects in the data coloring
model can be achieved in a mostly determinate manner, i.e., independent of the
thread scheduling. Omitting color steps affects liveness properties but not safety.

3 Transaction Inference

Domain-level consistency can be implemented using transactional memory (TM).
Based on the specification of colors, the color steps and the dynamic memory
access stream, a system can automatically infer the points in the execution when
transactions should be started and committed. Figure 4 illustrates this inference
process.

color_step(A)

access(B)

color_step(B)

tx_end

access(A)

access(A)

tx_start

color_step(A)

tx_end

access(A)

tx_starttx_start

tx_end

(f)(e)(d)

color_step(A)

access(A)

color_step(B)

color_step(A)

access(B)

access(A)

color_step(A)

color_step(B)

access(B)

first mem access
after previous step

inferred
transaction

color(A, red)

color(B, green)

(c)(b)(a)

access(A)

Fig. 4. Transaction inference from the memory access stream and the color steps.
tx start an tx end denote start and commit of explicit transactions. Nested transac-
tions in this implementation follow closed nesting semantics.

When a colored memory location is accessed for the first time after the pre-
vious step of the same color, the executing thread acquires the color and starts
a transaction. When executing a color step for the color, the thread releases the
color and commits the transaction. Inferred transactions nest following closed
nesting semantics, as shown in Figures 4(b) and (c). Figure 4(b) illustrates the
properly nested case, where the color step after the access to B is for B’s color.
Figure 4(c) shows the case where the first access to B is followed by a color step
for A’s color — making the colored section not properly nested.

Figures 4(d), (e) and (f) illustrate scenarios when colored sections nest with
explicit, i.e., operation-centric, transactions (operation-centric synchronization).
Figure 4(d) shows the simplest case, where an explicit transaction fully encapsu-
lates the work of colored sections. Figure 4(e) shows a non-properly nested case
that is legal in our implementation because of the support for software compos-
ability. Figure 4(f) shows a case that we consider legal but that may hint to an
omitted color step: An explicit transaction is ended (tx end) before the color
step of a section that started after the explicit transaction start is encountered.
Since an explicit transaction should be employed to carry out a set of opera-
tions atomically – if these operations involve access to colored data – they are
considered complete when the explicit transaction ends.

One important aspect of the transaction-based implementation of our model
is directly related to the nesting semantics: The step terminating a nested colored
section that only read data performs an early release [7] of all data of the respec-

tive color. Note that color step declares the intention to observe a new version of
the domain and hence this naturally maps to an early release implementation.

3.1 Architectural Support

Our DCS programming model requires a system to inspect all memory accesses
in order to determine the color of the memory location accessed. A software
implementation is impractical because of the need to instrument every mem-
ory access to determine its color, potentially resulting in a prohibitive runtime
overhead.

Processors already validate every memory access for protection. We propose
to extend the protection mechanism to determine the color of a memory location
at access time and the color context of the accessing thread. Also, hardware
support could determine what colors are live and check for cases of nesting
violation with minimal overhead.

A fully detailed architecture proposal and its implementation is described
in [2]. In this section, we summarize the set of hardware and software prim-
itives that suffice to fully support our DCS programming model described in
Section 2.2, as follows:

Memory Coloring . Support for coloring arbitrary regions of memory. The
finer the granularity the better, a cache-line granularity suffices in practice.
This can be implemented extending memory protection information with the
color id [2]. The mechanism to attribute colors to regions of memory requires
joint hardware and operating system support, since it involves manipulating
information associated with memory protection.

Color Context Tracking . Instructions to acquire and release colors. The
hardware keeps track of the set of colors held by each thread. A color step is
mapped to a color release instruction that releases the corresponding color
and commits the corresponding transaction. Note that in the examples in
Section 4 we show color step taking a variable or address as parameter;
this means that the color information for that address is obtained implicitly.

Event Triggering . An event triggering mechanism to notify the software when
synchronization actions are necessary. An event is raised when a thread ac-
cesses a colored location outside the corresponding color context. This event
calls a software handler that acquires the corresponding color using the ac-
quire instruction and starts a transaction.

Underlying TM Support . We assume transactional memory as the underly-
ing synchronization support. This includes the typical instructions for TM,
like tx start, tx end, etc. Note we also require support for closed nested
transactions.

4 Example: Concurrent Bounded Buffer

We use the following example to show how critical sections, e.g., implemented by
(nested) transactions, can limit concurrency and hence hamper scalability and
performance. The data coloring model does not suffer from this problem.

class BoundedBuffer {
Object[] buffer = new Object[SIZE];
int putIndex, takeIndex,nofUsedSlots;
...
void put (Object o) {

while (true) {
atomic {

if (nofUsedSlots < buffer.length) {
insert(o);
nofUsedSlots++;
return;

}
}
/* backoff and wait */

}
}
Object take() {

while (true) {
atomic {

if (nofUsedSlots > 0) {
Object o = extract();
nofUsedSlots--;
return o;

}
}
/* backoff and wait */

}
}
void insert (Object o) {

buffer[putIndex] = o;
putIndex = (putIndex + 1) % SIZE;

}
Object extract() {

Object ret = buffer[takeIndex];
takeIndex = (takeIndex + 1) % SIZE;
return ret;

} }

Fig. 5. Bounded buffer based on critical sections.

Figure 5 illustrates a bounded buffer permitting concurrent access at both
ends by producers (method put) and consumers (method take). The implemen-
tation is based on a sliding window (putIndex, takeIndex) over a fixed size array
(buffer) with wrap-around. Implementation details like backoff and queuing are
omitted for clarity.

An important goal of the design of a concurrent bounded buffer is to de-
couple the operation of putters and takers as much as possible. With critical
sections, this goal can be achieved by minimizing the time period during which
variables that are commonly updated/accessed by putters and getters must be
kept consistent.

In the case of the BoundedBuffer class, the highly contended variable is
nofUsedSlots. The design with flat transactions shown in Figure 5 does not
achieve the aforementioned goal: variable nofUsedSlots is accessed in one trans-
action together with the insert and extract methods.

Nested transactions [3–5] have been proposed to mitigate the negative impact
of contention on the performance of memory transactions. Figure 6 illustrates
such a design for the put method: Access to nofUsedSlots is encapsulated in
nested atomic blocks. The code is correct. However, the goal of removing the

class BoundedBuffer {
...
void put (Object o) {

while (true) {
atomic { // (1)

bool do_insert;
atomic { // (2)

do_insert = nofUsedSlots < buffer.length;
}
if (do_insert) {

insert(o);
atomic { // (3)

nofUsedSlots++;
}
return;

}
}
/* backoff and wait */

} } }

Fig. 6. Optimized put method with nested transactions.

class BoundedBuffer {
Object[] buffer color(this) = new Object[SIZE];
int putIndex,takeIndex;
int nofUsedSlots color();
...
void put (Object o) {

while (true) {
if (nofUsedSlots < buffer.length) {

color_step(&nofUsedSlots); // (a)
insert(o);
nofUsedSlots++;
color_step(&nofUsedSlots, buffer); // (b)
break;

}
/* backoff and wait */

} } }

Fig. 7. Implementation of put method with color steps.

(potentially lengthy) execution of insert from the critical path during which
isolation of variable nofUsedSlots has to be preserved is not achieved: If trans-
actions (2) and (3) follow the semantics of closed nesting [4], then transaction
(3) must observe the same value of variable nofUsedSlots as transaction (2).
This is not necessary for this code to be correct. Alternatively, if transaction
(2) followed the semantics of open nesting then the code would not be correct
because the value of buffer.length and the state of the buffer encountered
during insert might not be consistent.

Figure 7 shows how data coloring can achieve this complex synchronization
without over-specifying consistency. There are two consistency domains: one for
variable nofUsedSlots, and another domain for the remaining variables of a
BoundedBuffer instance. This coloring is achieved through the color declara-
tions. Fields without explicit color declaration obtain the color specified when
the object is allocated. Notice that there is no explicit critical section in the
code because synchronization in the bounded buffer is purely data centric. The
color step instruction (a) explicitly expresses that – for the correct operation of
the buffer – it is not necessary that the variable is held in isolation beyond that
point. The insert operation and the following increment of nofUsedSlots occur

atomically. Finally, (b) allows both color domains to simultaneously transit to
the next version. It would be incorrect to specify the color steps in sequence, such
that the update of nofUsedSlots counter would be visible before the update to
the buffer. Also, the fine grain specification of color steps would be incorrect if
variables nofUsedSlots and buffer would share the same color (see discussion
on incorrect coloring in Section 2.4), since the consistency window on the buffer
object would be unduly disrupted (due to color aliasing) by color step (a). The
declaration of variable nofUseSlots explicitly requests a color different from the
other fields of the BoundedBuffer instance (color()).

Notice that it is easy to infer from the code or an execution, that the body
of the while loop may not execute atomically because there are two steps of the
same color in that block. It is exactly this selective relaxation of atomicity that
is not achieved by transaction nesting.

We feel that the addition of color steps is a natural way to gradually weaken
consistency to achieve higher concurrency. True transaction nesting targets the
same goal but seems in this case unintuitive and is not capable to achieve the
desired semantics.

5 Quantitative Justification

We support our claim that data-centric concurrency control is the common case
by analyzing synchronization patterns in three large software packages: MySQL,
WebSphere and Sun’s Java Runtime Environment (JRE). Table 1 summarizes
the collected data.

MySQL 5.0.22 WebSphere SUN JRE 1.50

LOC 1.5m # Classes 11343 # Classes 13081

Files 2336 # Sync Methods 2029 # Sync Methods 5337

CS 1275 # Static Sync Methods 546 # Static Sync Methods 915

Data-centric CS 84% # Sync Blocks 2119 # Sync Blocks 5337

Sampled DC Sync Blocks 72%

Data-centric CS 75%
Table 1. Estimation of the proportion of data-centric critical sections in MySQL,
WebSphere and SUN JRE.

MySQL is a large parallel application with thousands of files and over
a million lines of code, written in C. Its critical sections operate under the
protection of thousands of different lock instances. We inspected all criti-
cal sections in the code and classified them as data-centric or operation-
centric. Most critical sections (84%) in MySQL are data-centric. Among the
many locks used, three global locks (kernel mutex, LOCK thread count, and
LOCK global system variables) protect a large number of distinct critical sec-
tions (70, 62 and 31 respectively) and are spread over many files (14, 14, and
7 respectively). In this code-centric, non-local reasoning using critical sections

for large applications, it is easy to overlook the need for a critical section and
introduce data races. Using a data-centric model, the programmer simply colors
the data-structures, and marks the places in the code where data is consistent
with color steps. All accesses to shared data would be guaranteed to be inside a
system synthesized transaction.

In the case of WebSphere – a few million lines of Java code – we classify
locks according to the following criteria: synchronized methods are data-centric,
while static synchronized methods and synchronized blocks are operation-centric
(since their lock is not associated with any specific object instance). We randomly
sampled and manually inspected the code to determine that this classification
holds over a large number of cases. For the SUN JRE, we use the same criteria
as WebSphere but did not inspect the source code to determine the nature of
the synchronized blocks.

When inspecting the code, we classified critical sections as data-centric when
their purpose was obviously to keep shared data structures consistent. Critical
sections were classified as operation-centric when they performed a collection
of unrelated tasks, typically calls to apparently unrelated functions or methods.
When in doubt, we classified critical-sections as operation-centric. Using this
conservative approach, we find about 75% of the critical sections to be data-
centric.

When inspecting synchronized blocks in WebSphere, we frequently observed
cases where synchronized blocks were used to avoid having long critical sections
by making the whole method synchronized. In those situations, the blocks were
synchronized on this. Other common patterns were composite objects whose
methods had synchronized blocks on the encapsulated object instances.

6 Related Work

McKenney [8] discusses several synchronization patterns encountered in parallel
programs. Particularly related to this paper are the Code Locking, Data Locking
and Data Ownership patterns. In our classification, both Code Locking and Data
Locking are code centric; they differ in the granularity at which locks are placed
in the program.

Vaziri et al. [1] present extensions to Java to allow the association of syn-
chronization constraints to objects. In their proposal, the programmer, when
declaring the fields of a class, can group them into “atomic sets”. Based on the
atomic set annotations and using static analysis, locks are inferred to guarantee
method-level atomicity. McCloskey et al. [9] developed Autolocker, which allows
the programmer to associate data structures with locks together with atomic
section annotations. The system then automatically infers the synchronization
operations necessary to provide the specified atomicity.

Monitor-based concurrency control [10] is data-centric, as data is explicitly
declared as shared and is associated with a predefined set of procedures. If the
data accesses are performed through the monitor procedures, mutual exclusion
is automatically guaranteed.

Transactional memory (TM), e.g., [11, 12, 5] is a mechanism for optimistic
concurrency control. The common programming model for TM is code-centric:
Transaction boundaries are specified in the control flow of the program. There
is no explicit specification of shared data. Recent work by Ni et al. [13] explores
how transaction nesting can be specified in a data-centric manner.

Finally, this work extends the data-centric synchronization model in Col-
orama [2]. Most notably, Colorama does not have the concept of a color step. It
relies on an exit policy – e.g., automatically end a critical section at the end of
the method that started it.

7 Conclusions

In this paper, we introduce concurrency control with Data Coloring, a program-
ming model based on the principles of our previous work on architecture sup-
port for data-centric synchronization [2]. We justify the choice of data-centric
synchronization with an empirical study of critical sections in several large ap-
plications. The study revealed that more than 75% of the critical sections are
used in a data-centric manner, even though the concurrency control is specified
in a code-centric manner using critical sections with locks.

The data coloring programming model emphasizes data-centric synchroniza-
tion and matches intent with implementation. Consistency domains are specified
using colors, while color steps allow the programmer to express when the tran-
sitions between consistent states are safe. The additional information helps the
system infer the right granularity of transactions, without unnecessarily bur-
dening the programmer. Data coloring enables programmers to reason locally
about consistency properties. Additional benefits of data coloring are its en-
hanced safety properties: synchronization defects can be detected efficiently and
in a determinate manner.

References

1. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data
in an object-oriented language. In: POPL’06, New York, NY, USA 334–345

2. Ceze, L., Montesinos, P., von Praun, C., Torrellas, J.: Colorama: Architectural
support for data-centric synchronization. In: HPCA’07

3. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and runtime support for effficient software transactional memory. In:
PLDI’06

4. Moss, J.E.B., Hosking, T.: Nested transactional memory: Model and preliminary
architecture sketches. In: SCOOL’05

5. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: A high performance software transactional memory system for a multi-core
runtime. In: PPoPP’06

6. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI’03
7. Herlihy, M., Luchangco, V., Moir, M., William N. Scherer, I.: Software transac-

tional memory for dynamic-sized data structures. In: PODC’03

8. McKenney, P.: Selecting locking designs for parallel programs. In: Pattern Lan-
guages of Program Design. (1996)

9. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: Synchronization infer-
ence for atomic sections. In: POPL’06, New York, NY, USA 346–358

10. Hoare, C.: Monitors: An operating system structuring concept. CACM 17(10)
(1974) 549–557

11. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory
Coherence and Consistency. In: ISCA’04

12. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA’93, New York, NY, USA 289–300

13. Ni, Y., Menon, V., Adl-Tabatabai, A.R., Hosking, A.L.: Open nesting in software
transactional memory. In: PPoPP’07

