InvisiSpec: Making Speculative Execution Invisible
in the Cache Hierarchy (Corrigendum)

Mengjia Yan Jiho Choi Dimitrios Skarlatos
Univ. of Illinois Urbana-Champaign Univ. of Illinois Urbana-Champaign Univ. of Illinois Urbana-Champaign
myan8@illinois.edu jchoi42@illinois.edu skarlat2@illinois.edu

Adam Morrison
Tel Aviv University
mad@cs.tau.ac.il

ACM Reference Format:

Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
W. Fletcher, and Josep Torrellas. 2019. InvisiSpec: Making Speculative Exe-
cution Invisible in the Cache Hierarchy (Corrigendum). In The 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-52), Oc-
tober 12—-16, 2019, Columbus, OH, USA. ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3352460.3361129

InvisiSpec Performance

We found a bug in our simulator that causes the simulation to
incorrectly represent the InvisiSpec design described in the MICRO
2018 paper [1]. In InvisiSpec, an unsafe speculative load (USL) issues
an invisible load request (Spec-GetS) to obtain data. As soon as the
data is returned, the data is used by the requesting instruction and
propagated to all of the dependent instructions. This is one of the
keys to InvisiSpec’s performance. However, in our simulator, due to
a bug, the operation of data propagation to dependent instructions
was performed only after the USL reached its visibility point—not
as soon as the data requested was received by the core. This late
propagation of speculatively accessed data hurt InvisiSpec’s perfor-
mance. We have fixed the bug and updated the code repository at
https://github.com/mjyan0720/InvisiSpec-1.0.

After fixing the bug, InvisiSpec’s overhead drops by a large
amount. As an example, for the SPEC applications under TSO, in
the Spectre attack model, the average overhead decreases from
22% (before the bug fix) to 7.6% (after the bug fix); in the Futuristic

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MICRO-52, October 12-16, 2019, Columbus, OH, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6938-1/19/10.

https://doi.org/10.1145/3352460.3361129

Christopher W. Fletcher

Univ. of Illinois Urbana-Champaign
cwiletch@illinois.edu

Josep Torrellas
Univ. of Illinois Urbana-Champaign
torrella@illinois.edu

attack model, the average overhead decreases from 80% (before) to
18.2% (after). The new execution bars are shown in Figure 1. In the
figure, Base is an unsafe, conventional processor, IS-Sp is InvisiSpec
in Spectre, and IS-Fu is InvisiSpec in Futuristic.

Similar InvisiSpec’s improvements are obtained for the PARSEC
applications. For PARSEC applications, to obtain repeatable results,
we have also pinned threads to cores. Specifically, we have anno-
tated the PARSEC applications to configure the affinity attribute of
thread creation so that each thread is pinned to a core.

Transforming a Validation into an Exposure

When issuing a USL, we refined the condition that allows the
hardware to mark it as needing an Exposure rather than a Validation.
Specifically, we added the second condition below:

“At the time of issuing a USL; load, all of the loads in the ROB
earlier than USL; need to satisfy two conditions: 1) they have al-
ready obtained the data they requested—in particular, if they are
USLs, the data they requested has already arrived at the SB and been
passed to a register, and 2) if they needed to perform validations,
they have completed them?”

This change has no noticeable effect on InvisiSpec’s performance.

Revised Version of the MICRO 2018 Paper

We have created a revised version of the MICRO 2018 paper
in [2]. The paper revises the evaluation (Section IX), the condition
of how to transform a validation into an exposure (Section V-C1),
and the proof that InvisiSpec supports TSO (Appendix). It also
clarifies how to use the load queue State bits (Section VI-A1).

REFERENCES

[1] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas. 2018.
InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In
MICRO’18.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas. 2019.
Correction: InvisiSpec: Making Speculative Execution Invisible in the Cache

[2

(mmm Base —issp EEE IS-Fu]

ValidationStall |

Hierarchy. Technical Report, University of Illinois at Urbana-Champaign,
http://iacoma.cs.uiuc.edu/iacoma-papers/corrected_micro18.pdf.

GJ

£

=

~ 15

2

E

o

E PR I o B | T D—

o

(4

N

g - | ‘ | ‘ | | | ‘ ‘ |

o

=z

0.0 -

L & N e(
o QO‘O((\ 5\9’0 0‘° 6”‘(
o

W

Figure 1: SPEC execution time with TSO and RC-average.

S N N R I N M (° et o O
‘(\6 T W o e g‘°((\ \)s\" o\ <\’° ® 06«\?

* &
Q“\v \\e@g \le@g
<

https://doi.org/10.1145/3352460.3361129
https://github.com/mjyan0720/InvisiSpec-1.0
https://doi.org/10.1145/3352460.3361129
http://iacoma.cs.uiuc.edu/iacoma-papers/corrected_micro18.pdf

	References

