
Structured Singular Value Control for Modular Resource Management
in Multilayer Computers

Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros G. Voulgaris,1 and Josep Torrellas
Department of Computer Science 1 Department of Aerospace Engineering

{pothuku2, seetham2, voulgari, torrella}@illinois.edu
University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801

Abstract— Computer systems are operating in environments
where applications are rapidly diversifying while resources
like energy and storage are becoming severely limited. These
environments demand that computers dynamically manage
their resources efficiently to deliver the best performance and
meet many goals. An important challenge in designing computer
resource management systems is that computers are structured
in multiple modular layers, such as hardware, operating system,
and network. Each layer is complex and designed independently
without full knowledge of the other layers. Therefore, computers
must have modular resource controllers for each layer that are
robust to modeling limitations and the uncertainty of influence
from other layers. Existing designs either rely heavily on ad hoc
heuristics or lack modularity. We present a design with multiple
Structured Singular Value (SSV) controllers from robust control
theory for systematic and efficient computer management. On a
challenging computer, we build a two-layer SSV control system
that significantly outperforms state-of-the-art heuristics.

I. INTRODUCTION

Modern computer systems must efficiently manage several
resources like energy or storage to carefully control measures
like temperature and deliver the best Quality of Service
(QoS) or throughput. Computers have controllers for dynamic
resource management to achieve these goals [1], [2], [3], [4].

An important challenge in designing computer resource
controllers is that computers have many functional layers. For
example, as shown in Figure 1, the hardware layer consists
of the processor and physical system circuitry. There is an
Operating System (OS) that runs on the hardware to provide
abstraction and schedule applications in the higher layer. The
Application layer has programs that the user wants to run.
There can be several software layers on top of these layers.

Hardware

e.g., processors from Intel, AMD

Operating systems

e.g., Microsoft Windows, Linux, Apple iOS

Applications
e.g., MATLAB, Mathematica

Fig. 1: Multilayer organization of computer systems.

Each layer is a complex subsystem designed independently
by expert teams. It has its own resources, tunable parameters
and partial information about the system status. Each layer

* This work was supported by NSF under grant CCF 16-49432.

uses the information it has to manage resources from its
perspective, and the overall system efficiency is a function
of all the layers.

Since each layer is is independently designed, it is nec-
essary that there is a modular resource controller in each
layer running simultaneously and the different controllers
coordinate for overall efficiency. Centralized control can
coordinate across layers but is difficult to develop because
designers must understand the inner details of all the layers.
This may be infeasible when the layers come from different
companies as in Figure 1. Such a design also scales poorly
as the number of layers and their complexity increases. The
controller must be re-designed even if a single layer in the
system changes [5], [6], [7]. At the same time, fully decoupled
control misses the interaction between the layers and can be
greatly suboptimal [6].

Since computers are complex, it is also important that
they are managed with systematic methods like control
theory. Unfortunately, due to the lack of effective systematic
methods, most computer controllers are based on ad hoc
heuristics (e.g. [1], [2], [6], [7]). Many studies demonstrate
the design difficulties and unanticipated runtime failures with
such heuristics when encountering situations slightly different
from the training set [8], [9].

Recently, we presented an approach to design modular
and coordinated multilayer controllers for computers using
robust control theory, and demonstrated its effectiveness on a
prototype system [10]. In this paper, we present the problem
formulation, and the controller design and synthesis for the
prototype computer from a control systems perspective.

Our prototype is a state-of-the-art computer with a pro-
cessor developed by Samsung that runs a Linux based
OS. We build a novel two-layer control system and show
that it is very effective. To design our controllers, we
consider Robust Control Theory, which focuses on uncertain
environments, and pick the popular Structured Singular
Value (SSV) controllers [11], [12]. The key idea is that
modeling limitations and inter-layer interaction is considered
uncertainty when designing modular controllers for a layer
in a computer. Using SSV controllers helps us to guarantee
robust performance of these modular controllers. Further, each
controller reads signals from other layers to coordinate better



under uncertainty. This design reduces the Energy × Delay1

of a diverse set of applications by an average of 50% beyond
what advanced heuristic-based coordinated controllers attain.

This is the first work to describe the use of Multiple Input
Multiple Output (MIMO) SSV control for computer systems,
and is an important new application of robust control theory.
This work also opens opportunities for advanced solutions
to the general computer resource management problem by
presenting several design challenges that we overcome.

In this paper, Section 2 presents the related work; Section
3 describes our system; Section 4 describes the challenges
in applying control theory for computers; Section 5 presents
the controller and design decisions; and Section 6 describes
our evaluation.

II. RELATED WORK

Many works use heuristics to control computers (e.g., [1],
[2], [7]). Among control-theoretic designs, most use Single
Input Single Output (SISO) PID controllers [3], [13], [14],
[15] while some use collections of SISO controllers [16], [17].
SISO designs are too limited to control even a single layer that
has many goals. Decoupled SISO controllers cannot manage
the interaction between the goals in tightly coupled systems
like computers [9], [18]. Some designs employ heuristics
to manage controller interaction [16], but this defeats the
purpose of using control-theoretic methods. Some works use
Multiple Input and Single Output (MISO) Model Predictive
Control (MPC) [19], [20].

Researchers also proposed the use of MIMO designs with
Linear Quadratic (LQG/LQR) or MPC controllers [9], [15],
[18], [21]. Each computer layer has a MIMO system, and
MIMO controllers are the most appropriate for computers.
However, existing designs are intended for centralized use,
and do not prioritize robustness to the uncertainty in multi-
controller environments.

Our work focuses on the design of modular and coordinated
formal controllers for computers. We describe how we can
use modular Structured Singular Value (SSV) controllers in
each layer of a challenging computer system, and achieve
higher efficiency over the state of the art.

III. PROTOTYPE COMPUTER SYSTEM

Our prototype system is an ODROID XU3 computer
board [22], where the processor is built by Samsung and
the Operating System is based on Linux. The processor is a
Samsung Exynos 5422 eight-core processor built using ARM
big.LITTLE technology [23]. Figure 2 shows a picture of our
experimental platform.

Figure 3 shows the hardware and operating system layers,
with the inputs our controllers actuate on, and the outputs
that our controllers sense. The hardware layer includes the
processor, which is made of 8 processing units or cores. Four
of these cores are high performance, high power units (called

1Delay here refers to the time taken by an application to complete its
work. Energy×Delay is the product of the application’s energy consumption
and running time. It is a common metric to judge a computer’s efficiency.
Lower is better.

Fig. 2: The Odroid XU3 used for our prototype.

big cores) and are organized as one cluster, while the others
are low performance, low power units (called little cores) that
form another cluster. The processor runs the Ubuntu 15.04
Operating System based on Linux. The sampling interval in
both layers is 0.5 s. On this system, applications can create
multiple software tasks (called threads) that execute in parallel
to speedup the total application duration. Hence, there can be
many applications and many threads running simultaneously.
We refer to each schedulable entity (an application or an
application thread) as a task.

Ubuntu 15.04

Ubuntu 15.04

A7

Hardware

SSV controller

Software

SSV controller

Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

A15 A15

A15A15A7

A7

A7

frequencylittle

frequencybig

#coreslittle

#coresbig Little Big

#threadsbig

Avg #threads per nonidle corelittle 

Avg #threads per nonidle corebig 

Ubuntu 15.04

A7
Hardware Optimizer +

SSV controller

OS Optimizer + 

SSV controller

Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Load

A15 A15

A15A15A7

A7

A7

frequencylittle

frequencybig

#coreslittle

#coresbig

Little Big

#threadsbig

Avg #threads per nonidle corelittle 

Avg #threads per nonidle corebig 

Ubuntu 15.04

L Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

B B

BBL

L

L

frequencylittle

frequencybig

#coreslittle

#coresbig

Little Big

#tasksbig

Avg #tasks per nonidle corelittle 

Avg #tasks per nonidle corebig 

Application tasks

Design goals

InputsOSOS Robust 

controller

OS 

Optimizer
+

_+

_

HW Robust 

controller

HW 

Optimizer

OutputsOS

InputsHW OutputsHW

Design goals

L B B

BBL

L

L

Little Big

Ubuntu 15.04

L Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

B B

BBL

L

L

frequencylittle

frequencybig

#coreslittle

#coresbig

Little Big

#tasksbig

Avg #tasks per nonidle corelittle 

Avg #tasks per nonidle corebig 

Application tasks

Ubuntu 15.04
InputsOSOS SSV 

controller

OS 

Optimizer
+

_+

_

HW SSV 

controller

HW 

Optimizer

OutputsOS

InputsHW OutputsHW

Design goals

L B B

BBL

L

L

Little Big

Application tasks

Ubuntu 15.04

L B B

BBL

L

L

Little Big

Application tasks

Ubuntu 15.04

L Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

B B

BBL

L

L

Frequencylittle

Frequencybig

#Coreslittle

#Coresbig

Little Big

#Tasksbig

Avg #tasks per nonidle corelittle 

Avg #tasks per nonidle corebig 

Application tasks

Fig. 3: Odroid XU3’s hardware and operating system layers
with the input and output signals we consider.

A. Inputs and Outputs in Each Layer

The inputs and outputs in each layer are shown in Figure 3.
In the hardware layer, there are four inputs: operating
frequency of the little and big clusters, and the number of
active little and big cores. The number of active cores in
each cluster can vary from 1 to 4. The big cluster frequency
can vary from 0.2 to 2.0 GHz, and the little cluster frequency
from 0.2 to 1.4 GHz, both in steps of 0.1 GHz. Changing the
number of cores has nearly twice the overhead than changing
the frequency.

We consider four controlled outputs for the hardware layer:
the power of little and big clusters, temperature, and the
application performance measured in billions of instructions
committed per second (BIPS). Among these outputs, the
power of both clusters and temperature are critical for system
integrity.

The software or OS layer assigns the application tasks
cores. Ignoring differences between tasks, one decision is to
partition the tasks between the big and little clusters. The other
is to assign the tasks in a cluster to only some cores, possibly
leaving some other cores idle2 so that the hardware controller
can power down the idle cores. Therefore, we consider three
inputs in this layer: the number of tasks assigned to the big
cluster (leaving the rest for the little cluster), the average

2A core is non-idle if it is running at least one task.



number of tasks running on each non-idle big core, and the
average number of tasks running on each non-idle little core.

There are three controlled outputs in the OS layer: perfor-
mance of the little-cluster tasks (in BIPS), performance of
the big-cluster tasks (in BIPS) and the difference in Spare
Compute Capacity (SC) between the big and little clusters.
At a high level, the higher the difference in SC is, the more
tasks the controller will move from the little to the big cluster.
We define a cluster’s SC [10] as:

SC = #idle cores on − (#tasks − #cores on) (1)

B. Control Objectives

There are two types of goals in computer resource man-
agement: tracking a set of output references, and optimizing
a combination of the measured outputs. The latter is more
common, where designers want to minimize metrics like
Energy×Delay of the whole application. A dynamic mea-
sure of this metric is obtained by considering Energy =
Power×Delay, and Delay = Application instructions

Application performance in BIPS . Since
the number of application instructions is fixed, Energy×Delay
is inversely proportional to (Application performance in BIPS)2

Power , in
which both quantities can be measured dynamically.

The controller in each layer (i.e., the hardware one
(HW) and OS one), dynamically maximizes the same met-
ric, (Application performance in BIPS)2

Power , where both performance and
power are functions of time T . The hardware controller has
additional constraints to ensure the physical integrity of the
system, namely, keeping the power of the little cluster, the
power of the big cluster, and the temperature below certain
limits. If we call UHW and UOS the set of values taken by the
inputs in the HW layer (uHW (T )) and OS layer (uOS(T ))
repsectively, the goals of the controllers are:

maximize
uOS(T )∈UOS

Performance2(T )

Power(T )

maximize
uHW (T )∈UHW

Performance2(T )

Power(T )

Powerlittle(T ) < Powerlimit
little

Powerbig(T ) < Powerlimit
big

Temperature(T ) < Temperaturelimit

(2)

The controllers must meet these goals using imperfect models.
In our board, the limit powers of the little cluster and big
cluster, and the limit temperature are 0.33 W, 3.3 W, and 79 ◦C,
respectively. Moreover, production systems make decisions at
the order of 10 ms (0.01 s) [3] although the smallest sampling
interval feasible in our system is 0.5 s. So, we require our
controllers to compute decisions in a few ms to meet the
production system requirements.

IV. CHALLENGES IN APPLYING CONTROL THEORY

There are several challenges in developing control-theoretic
solutions for the computer resource management problem
described above:

1) Fundamentally, it is infeasible to obtain accurate mod-
els of each layer or inter-layer interaction except in

some limited contexts (e.g., see [21]). The layers are
too complex to model from first principles, and the
applications are numerous, exhibiting diverse behavior.

2) The metrics to optimize (such as Energy×Delay) have
non-convex and non-linear relationship with the inputs.
These metrics do not conform to usual signal norms
that are commonly used in control theory.

3) Computer inputs such as processor frequency are finite
and discrete-valued, instead of having the continuous
values usually assumed in control theory.

4) The controllers are invoked at a millisecond granularity
and must complete their decisions even faster. The
storage and computation resources for the controllers,
particularly in the hardware, should be small (e.g., a few
kilobytes for storage, and a few hundreds of arithmetic
operations per invocation).

5) Control design should be supported mostly by standard
tools with intuitive tuning processes, to allow main-
stream adoption by computer designers.

Since modeling is a fundamental problem, we follow black
box system identification [24] for modeling. Then, we design
controllers from robust control theory [12] to deal with model
limitations and unknown inter-layer interaction. We use SSV
controllers in every layer. The properties of these controllers
are suitable for computer management for three reasons.

First, SSV design natively targets uncertain environments
(unlike LQG, for example). We formulate model limitations,
inter-layer interactions, and input discretization as uncertainty.
As this uncertainty can include Non-Linear Time-Varying
(NLTV) phenomena, we consider all NLTV system dynamics
as uncertainty. We can use well-established linear design
procedures to obtain controllers that attain robust performance
under such uncertainty.

Second, SSV controllers can read disturbance signals from
other modules for improved control. In computer systems, we
call them External Signals, and use them to pass information
from one layer to the controller of another layer. For example,
the OS controller passes the number of tasks currently running
as an external signal to the HW controller.

Finally, the design and tuning of SSV controllers is
extensively supported by standard tools [25], [26]. These
controllers do not require online solvers to compute decisions
(unlike MPC, for example), which is essential for fast decision-
making. In the next section, we describe how we design our
control system to optimize Performance2(T )

Power(T ) .

V. MULTILAYER SSV COMPUTER CONTROL SYSTEM

We separate the goals of Equation 2 into two sub-goals
to design our control system. The first is to make the outputs
track a given reference robustly and optimally according to
a conventional cost function. The second is to search for
the best references that maximize Performance2(T )

Power(T ) under
constraints. For the HW layer, these sub-goals are:

min
u∈UHW

‖Γzw‖∞

w :

(
yHW◦
d

)
Γzw−−→ z :

(
Wp(yHW◦ − yHW )

WuuHW

) (3a)



max
yHW◦(T )∈YHW

Performance2(T )

Power(T )
with constraints (3b)

where uHW represents the hardware inputs, and yHW◦(T )
is the reference for the hardware outputs yHW . ‖Γzw‖∞ is
the induced H∞ norm that captures robustness to bounded
disturbance d, the performance requirements Wp and input
weights Wu.

We use this formulation so that the first sub-goal is cast
as a mixed sensitivity robust control problem that ensures
optimal tracking according to the designer requirements under
uncertainty. We could use a standard Structured Singular
Value (SSV) controller to achieve this sub-goal.

The second sub-goal requires searching for the best
references for the outputs to meet the actual goal. This
search is in the space of output references and is simpler
than searching through the input space. For e.g., to opti-
mize Performance2(T )

Power(T ) , the search module can progressively
increase performance targets by larger amounts than the
increase in power targets, or decrease performance targets
by smaller amounts than the decrease in power targets. As a
result, implementing the search in hardware consumes lesser
resources, which is important for us. We design an Optimizer
module for this search.

The SSV controller ensures that the overall control is
effective under the uncertainty of unmodeled intra-layer
and inter-layer conditions. The Optimizer does not have to
explicitly deal with uncertainty and instead, relies on the
SSV controller to generate inputs suitably. Since the SSV
controller converges fast, the overall optimization is also fast.

Figure 4 shows our proposed multilayer control architecture
with an SSV controller and the Optimizer in each layer.
The SSV controllers also read the inputs in other layers
as measured disturbances (“external signals”) for improved
decisions. This is a modular architecture in which each
controller can be designed independently. The design teams
need to exchange only the interface information for external
signals or bounds for commonly monitored outputs. Next, we
describe model identification, the design of SSV controllers,
and the design of Optimizers.

Ubuntu 15.04

Ubuntu 15.04

A7

Hardware

SSV controller

Software

SSV controller

Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

A15 A15

A15A15A7

A7

A7

frequencylittle

frequencybig

#coreslittle

#coresbig Little Big

#threadsbig

Avg #threads per nonidle corelittle 

Avg #threads per nonidle corebig 

Ubuntu 15.04

A7
Hardware Optimizer +

SSV controller

OS Optimizer + 

SSV controller

Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Load

A15 A15

A15A15A7

A7

A7

frequencylittle

frequencybig

#coreslittle

#coresbig

Little Big

#threadsbig

Avg #threads per nonidle corelittle 

Avg #threads per nonidle corebig 

Ubuntu 15.04

L Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

B B

BBL

L

L

frequencylittle

frequencybig

#coreslittle

#coresbig

Little Big

#tasksbig

Avg #tasks per nonidle corelittle 

Avg #tasks per nonidle corebig 

Application tasks

Design goals

InputsOSOS SSV 

controller

OS 

Optimizer
+

_+

_

HW SSV 

controller

HW 

Optimizer

OutputsOS

InputsHW OutputsHW

Design goals

L B B

BBL

L

L

Little Big

Fig. 4: Multilayer SSV controller system.
A. Black Box System Identification

Due to the complexity of computers, we find that empirical
black-box model identification [24] combined with robust
controller design is the best approach. Our identification
experiments use two applications (swaptions and vips) from
the PARSEC 2.1 application suite [27] and four applications
(astar, perlbench, milc and namd) from the SPEC06 suite [28]3.

3These suites are standard to evaluate the performance of computers.
From these suites, we pick applications for identification at random.

We use 2 tests with pseudorandom input sequences for each
of the training benchmarks. The value of each input is chosen
randomly and it is held unchanged for a duration randomly
selected between 1 and 16 sampling intervals. The hardware
model has 4 inputs, 3 disturbance inputs and 4 outputs; the
OS model has 3 inputs, 4 disturbance inputs and 3 outputs.

We know that the output values can be related with prior
values, and use a Box-Jenkins polynomial (y(T ) = B

F u(T ) +
C
D e(T )) as the model structure. We get the coefficients of
the model from the experimental data using MATLAB. We
reduce the state dimension of the models to 15 and 26 using
Hankel singular values before designing the controllers.

The models are nominally stable similar to the underlying
system. A unique feature of the models is that the frequency
response of the outputs is nearly flat. This is expected from
the behavior of computers. For example, Figure 5 shows the
magnitude of the frequency response (in dB) for the little
cluster power (y1) from the external signals (u1 - u3) and the
first two hardware inputs (u4 - u5). The frequency range of
interest based on the sampling interval (0.5 s) is from 0.5 Hz
to 10 Hz. Figure 5 also shows the confidence regions. 

Frequency (rad/s) 

To
: y

1
 

Fig. 5: Bode magnitude of the hardware output (Powerlittle).

B. Design and Synthesis of the SSV Controllers

We use the structure in Figure 6 to design the SSV con-
trollers. P◦ is the identified nominal model. We consider two
forms of uncertainty. One (∆op) is the output multiplicative
uncertainty to account for intra-layer and inter-layer modeling
limitations. This is bounded by Wop. Another (∆nl) is the
additive uncertainty used to model input nonlinearity. The
additive uncertainty setup lies inside a complex disk of radius
0.5 centered on the real axis at 0.5. We use Wp for the
tracking error bounds of the outputs and Wu for the input
weights.

Dnl Dop

P0

+
_

K External 
signals 

Model

Wop0.5

0.5 Wp

Wu

References
Nonlinearity

Output uncertainty

Fig. 6: Closed loop structure for each layer.

Wip Wnl Dnl Wu Du

P0
+-

K

Wop

External 
signals 

Outputs

Inputs

P

K

D

Output 
targets

Tracking 
errors

Exogeneous 
inputs, w 

Exogeneous 
outputs, z 

Control 
inputs, u Measurements, y

Wn2

Perturbation 
inputs, d 

Perturbation 
outputs, f 

M

D

Exogeneous 
inputs, w 

Exogeneous 
outputs, z 

Perturbation 
inputs, d 

Perturbation 
outputs, f 

1

,

n

u

op ip

 
 
 
 
 
 

D

D  D
D

Dnl Du

P+_ K
External 
signals 

Output 
targets Outputs, z

Nonlinearities Uncertainty

Exogeneous 
inputs, w 

Controller Model

N

D

Exogeneous 
inputs, w 

Exogeneous 
outputs, z 

Fictitious 
inputs, d 

Fictitious 
outputs, f 

Din Du

M+_ K
External 
signals 

Output 
targets

Outputs, y

Controller Model
Inputs, u

Din Du

P+_ K
External 
signals 

Output 
targets

SSV 
Controller Model

Uncertainty 
guardbands

Input 
discretization

Closed-loop system, M

N

D

Exogeneous 
inputs

Exogeneous 
outputs 

Perturbation 
inputs

Perturbation 
outputs 

Closed loop 
system

Consolidated 
imperfections

Output deviation 
boundsB

Input weightsW

1n

op

pe

 
 
 
 
 
 

D

 D

D

D

D

P0

K

D

M

Fig. 7: LFT representation.



The structure in Figure 6 can be reorganized as a Linear
Fractional Transformation (LFT) shown on the left side of
Figure 7 by pulling out the uncertain elements. ∆ consists
of block diagonal uncertain elements, including the fictitious
∆pe used for enforcing robust performance (i.e. Wp and
Wu). The right side of Figure 7 shows the nominal closed
loop M = Fl(P◦,K), i.e., the lower LFT of P◦ and K.
The Structured Singular Value (SSV, µ, or ‖Fl(P◦,K)‖µ) is
defined as:

µ∆(M) =
1

min{‖∆‖ : det(I −M∆) = 0,∆ ∈∆}
(4)

By the structured small gain theorem [11], the system
is internally stable and meets performance if and only if
supw∈R µ∆(M(jω)) ≤ 1. The controller K is obtained by
solving minK−stab ‖Fl(P◦,K)‖µ using the DK iteration of
MATLAB’s Robust Control Toolbox [26].

The weights we use in our structure are given in Table I
and are of the form k(s+a)

s+b . The weights to bound uncertainty
(Wop) are set from model validation and confidence estimates
on the identified model given by MATLAB. The OS layer has
higher uncertainty as it is closer to applications, which are
unpredictable. For the tracking error bounds of the outputs
(Wp), power and temperature have tighter bounds as they
are vital for system integrity. Our weights emphasize high
frequency performance over constant reference tracking, as
the common case is to track changing references to optimize
a metric. The input weights (Wu) are set based on the relative
overheads of changing the inputs (Section III). Wu for OS
are more conservative as the OS is closer to application
unpredictability.

TABLE I: Weight specification.

Weight Hardware OS

Wop
0.8(s+10)

s+20
for all outputs (s+10)

s+20
for all outputs

Wp

5(s+20)
s+10

for Powerlittle,
Powerbig, and Temperature

2(s+20)
s+10

for all outputs

2(s+20)
s+10

for performance

Wu 0.5 for frequencylittle and
frequencybig
1 for #coreslittle and #coresbig

2 for all inputs

Figure 8 shows the SSV bounds for the closed loop system
in each layer. The controllers provide robust stability and
performance as maxSSV (jω) is < 1.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Singular Value Plot

Frequency (rad/s)

10
0

10
1

10
2

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41
Robust Stability

Frequency (rad/s)

m
u

10
0

10
1

10
2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Nominal performance

Frequency (rad/s)

10
0

10
1

10
2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Robust Performance

Frequency (rad/s)

S
S

V
(µ

) 
b
o
u
n
d
s

(a) Hardware subsystem

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Singular Value Plot

Frequency (rad/s)

10
0

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7
Robust Stability

Frequency (rad/s)

m
u

10
0

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7
Nominal performance

Frequency (rad/s)

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1
Robust Performance

Frequency (rad/s)

S
S

V
(µ

) 
b
o
u
n
d
s

(b) OS subsystem

Fig. 8: Structured Singular Value (µ) bounds.

C. Designing the Optimizers

Algorithm 1 describes the hardware optimizer. It is based
on the algorithm in [9], modified to support search constraints
and additional outputs. In Algorithm 1, a small increase in
a quantity is denoted by a single + and an increase twice
that amount is denoted by ++. The same holds for a small
reduction (−) and a larger reduction (−−).

Algorithm 1: Operation of the Hardware Optimizer.
Input : Output and input measurements, output limits,

convergence bounds ε, and restart probability δ
Output : output references

1 dir ← Up, prevMetric ← 0, stopSearch ← False
2 initReferences()

// Outputagg is output(6=Performance) most above limit
// Outputlaz is output most below its reference
// Outputlag is output(6=Performance) most below limit
// Outputlead is output (6=Performance) closest to limit

3 Loop
4 if any output exceeds limits then
5 Outputagg◦ ← Outputlimit

agg −, Outputlaz◦−
6 else
7 metric← Performance2

Power

8 ∆metric← abs(metric−prevMetric
prevMetric )

9 if ∆metric ≤ ε AND rand() > δ then
10 stopSearch ← True
11 else
12 if dir = Up then
13 if metric>prevMetric then
14 Performance◦ ++, Outputlag◦+
15 else
16 dir ← Down
17 Performance◦−, Outputlag◦ −−
18 end
19 else
20 if metric>prevMetric then
21 Performance◦−, Outputlead◦ −−
22 else
23 dir ← Up
24 Performance◦+, Outputlead◦ ++
25 end
26 end
27 end
28 end
29 EndLoop

The optimizer provides increasingly better references for
the outputs to maximize the metric Performance2

Power . It first
checks if any constraints are violated. If so, it reduces the
reference of the output whose violation is most serious, and
of the output that is most below its reference. The references
are too high for these outputs.

When all constraints are met, it searches in one of the
two possible directions: Up, by increasing performance and
power or Down, by reducing both. Initially, the direction is
Up, and it remains so until the metric stops improving. When



the metric no longer improves in one direction or if there is
no room to continue, the direction is reversed.

In Up, it increases the reference for performance and
Outputlag that has the largest room below the limit. Perfor-
mance reference is increased by a larger amount. In Down, it
decreases the reference for performance and Outputlead that
has the largest room to decrease its reference. Performance
reference is decreased by a smaller amount. The search does
not cycle through the same points.

The search stops when the relative change in metric is
small (below ε). Even after convergence, the algorithm can
restart with a small probability (≤ δ) because applications
can suddenly change their characteristics.

The algorithm for the OS optimizer differs only slightly
and is not shown. The OS Optimizer also has two search
directions: Big-side (where the big cores contribute more to
performance ) and Little-side (where the little cores contribute
more to performance). The search process finds the best
operating point from the available search space.

VI. EVALUATION

The implementation overheads for the SSV controller in
each layer are given in Table II. We can keep the controller
dimension small by reducing it using Hankel singular values.
The number of operations include the number of 32-bit fixed-
point additions and multiplications. We measured the power
consumed for the computation on an ARM Little core. These
values are small because the SSV controllers only need to
perform matrix-vector calculations to generate decisions and
do not need complex solvers. The overheads are low enough
to be used in computers.

TABLE II: Implementation overheads of SSV controllers.

Parameter HW SSV OS SSV

Dimension 20 16
Required storage 2.6 KB 2.1 KB
Number of operations ≈700 ≈600
Computation time ≈28µs ≈25µs
Power consumption ≈20-25mW ≈20-25mW

A. Overall Comparison with State-of-the-art

We compare our multilayer SSV design (called Multi-
layer SSV) with a heuristics-based control system (called
Heuristics), representative of the state-of-the-art used in
industry for our computer. We evaluate them in minimizing
Energy×Delay. Figure 9 shows the Energy× Delay of the
applications with Multilayer SSV and Heuristics. The bars
from left to right correspond to SPEC applications, average of
the SPEC applications (SAv), PARSEC applications, average
of the PARSEC applications (PAv), and the average across
all applications (Avg). For each application, the bars are
normalized to Heuristics.

Multilayer SSV reduces Energy×Delay by 50%. This
is due to systematic and efficient resource control. The
execution times and energy consumption (not shown) are
reduced by 38% and 20%, respectively. In Multilayer SSV,
the costs and overheads are explicitly considered to design the
controllers that perform robustly under uncertainty. Heuristics

h26 mcf omn gam gro dea SAv bla bod fac flu ray x26 can str PAv Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

Heuristics Multilayer SSV

Fig. 9: Comparing Energy×Delay (lower is better).

incorporates them implicitly, and has no stability or robustness
properties. Hence, SSV controllers result in a substantial
advancement over existing systems.

B. Analysis of a Specific Case
We present how the two control systems differ by focusing

on the blackscholes application (labeled bla in Figure 9). This
application begins with a single task and later launches 8
parallel tasks. The work in the parallel phase does not have
large variations. Finally, the parallel tasks complete their work
and the application terminates. Figure 10 shows how the two
control systems behave over time.

0 50 100 150 200 250

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Po

w
er

li
tt
le

(W
)

Multilayer SSV
Heuristics

(a) Power of little cluster

0 50 100 150 200 250

Time (s)

0

1

2

3

4

5

6

Po
w

er
bi
g

(W
)

Multilayer SSV
Heuristics

(b) Power of big cluster

0 50 100 150 200 250

Time (s)

0

20

40

60

80

100

Te
m

pe
ra

tu
re

(◦
C

)

Multilayer SSV
Heuristics

(c) Temperature

0 50 100 150 200 250

Time (s)

0

2

4

6

8

10

Pe
rf

or
m

an
ce

(B
IP

S)
Multilayer SSV
Heuristics

(d) Application performance

Fig. 10: Regulating blackscholes with the two control systems.

For Heuristics, there are many oscillations in the power
of both clusters and performance. Each layer’s controller
measures the inputs from the other layer for improved
coordination but this coordination is ad hoc. From the
instant the application begins its parallel tasks at around
50s, Heuristics struggles to keep power and performance
steady. The application takes 270 seconds to complete.

Multilayer SSV has a significantly smoother behavior. The
outputs are kept within limits and the application has higher
performance. Even when the application suddenly changes
the number of parallel tasks (from 1 to 8 at 50s), the
controllers quickly bring the outputs below the limits. In the
parallel phase too, the search for the best references proceeds
smoothly. The application completes in 180 seconds, much
faster than with Heuristics.



C. Evaluating Heterogeneous Application Combinations

We evaluate four heterogeneous workloads. Each work-
load has a 4-task PARSEC application plus four copies
of a single-task SPEC application. The workloads are:
blmc (blackscholes+mcf), stga (streamcluster+gamess), blst
(blackscholes+streamcluster), and mcga (mcf+gamess). The
models were not trained under such conditions. Figure 11
shows the Energy×Delay with Heuristics and Multilayer SSV,
normalized to Heuristics. The results are similar to those
obtained earlier, with on average 47% lower Energy×Delay
using Multilayer SSV. This demonstrates the robustness of
Multilayer SSV.

blmc stga blst mcga Avrg
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

Heuristics Multilayer SSV

Fig. 11: Comparing Energy×Delay for heterogeneous loads.

VII. FUTURE WORK

It is not sufficient to use a single SSV controller in each
layer because there are many heterogeneous components that
constitute a layer. We plan to design a framework of several
communicating SSV controllers to manage a heterogeneous
layer, that communicates with the control framework of
another layer for overall efficiency. Another limitation of
our current design is that control decisions do not distinguish
between each task in a heterogeneous workload. We know
that system control can be more efficient by considering the
distinct requirements of different tasks. We are working on
augmenting our control system with this feature.

VIII. CONCLUSION

This paper presented a novel control system to attain
high resource efficiency in computers. It is based on robust
control theory, and provides modular coordinated control for
modern multilayer computers. Our scheme considers inter-
layer interactions as uncertainty, and relies on modular SSV
controllers to be robust to this uncertainty. The controllers
can be designed independently and are guaranteed to work
in coordination. On a representative computer, our two-
layer control system reduced the Energy×Delay of a set
of programs by 50% on average beyond the state of the art.

This paper also described the difficulties of applying control
theory to computers that our design overcomes. It is hoped
that these insights will enable other work on building formal
and practical controllers for computers.

REFERENCES

[1] M. Broyles, C. J. Cain, T. Rosedahl, and G. J. Silva, “IBM EnergyScale
for POWER8 Processor-Based Systems,” IBM, Tech. Rep., Nov. 2015.

[2] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power Management
of the Third Generation Intel Core Micro Architecture formerly
Codenamed Ivy Bridge,” in Hot Chips, Aug. 2012.

[3] E. Rotem, “Intel Architecture, Code Name Skylake Deep Dive: A New
Architecture to Manage Power Performance and Energy Efficiency,”
Intel Developer Forum, Aug. 2015.

[4] Microsoft, “Processor power management in Windows 7 and Windows
Server 2008 R2,” https://msdn.microsoft.com/en-us/library/windows/
hardware/dn613983(v=vs.85).aspx, 2012, Microsoft Developer Net-
work.

[5] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
”Power” Struggles: Coordinated Multi-level Power Management for
the Data Center,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, Mar. 2008.

[6] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker, “Agile Application-aware Adaptation for Mobility,”
in ACM Symposium on Operating Systems Principles, Oct. 1997.

[7] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, Apr. 2016.

[8] “CPU throttling broken for Atom BayTrail CPUs under Windows
10,” https://communities.intel.com/thread/78086, 2015, Intel Support
Community.

[9] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using
Multiple Input, Multiple Output Formal Control to Maximize Resource
Efficiency in Architectures,” in International Symposium on Computer
Architecture, Jun. 2016.

[10] R. P. Pothukuchi, S. Y. Pothukuchi, P. Voulgaris, and J. Torrellas,
“Yukta: Multilayer Resource Controllers to Maximize Efficiency,” in
International Symposium on Computer Architecture, Jun. 2018.

[11] J. C. Doyle, J. E. Wall, and G. Stein, “Performance and Robustness
Analysis for Structured Uncertainty,” in IEEE Conference on Decision
and Control, Dec. 1982.

[12] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons, 2005.

[13] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal online
methods for voltage/frequency control in multiple clock domain
microprocessors,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 2004.

[14] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable Power Control for
Many-core Architectures Running Multi-threaded Applications,” in
International Symposium on Computer Architecture, Jun. 2011.

[15] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[16] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical Power Management for Asymmetric Multi-core
in Dark Silicon Era,” in Design Automation Conference, Jun. 2013.

[17] A. Filieri, H. Hoffmann, and M. Maggio, “Automated Multi-objective
Control for Self-adaptive Software Design,” in Joint Meeting on
Foundations of Software Engineering, Sep. 2015.

[18] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann, “Auto-
mated Control of Multiple Software Goals Using Multiple Actuators,”
in Joint Meeting on Foundations of Software Engineering, Sep. 2017.

[19] F. Zanini, C. Jones, D. Atienza, and G. De Micheli, “Multicore Thermal
Management using Approximate Explicit Model Predictive Control,”
in International Symposium on Circuits and Systems, May 2010.

[20] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A Distributed and
Self-calibrating Model-Predictive Controller for Energy and Thermal
Management of High-Performance Multicores,” in Design, Automation
and Test in Europe, Mar. 2011.

[21] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu,
Introduction to Control Theory And Its Application to Computing
Systems. Boston, MA: Springer US, 2008, pp. 185–215.

[22] HardKernel, “ODROID-XU3,” http://www.hardkernel.com/main/
products/prdt info.php?g code=g140448267127.

[23] ARM R©, “big.LITTLE Technology: The Future of Mobile,” https://www.
arm.com/files/pdf/big LITTLE Technology the Futue of Mobile.pdf,
2013, White Paper.

[24] L. Ljung, System Identification : Theory for the User, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[25] MATLAB and System Identification Toolbox Release 2015a. Natick,
Massachusetts: The MathWorks Inc., 2015.

[26] MATLAB and Robust Control Toolbox Release 2015a. Natick,
Massachusetts: The MathWorks Inc., 2015.

[27] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in International
Conference on Parallel Architectures and Compilation Techniques, Oct.
2008.

[28] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.


