
Concurrency Control with Data Coloring ∗

Luis Ceze, Christoph von Praun‡, Călin Caşcaval‡

Pablo Montesinos† and Josep Torrellas†

Department of Computer Science and Engineering ‡ IBM T.J. Watson Research Center † Department of Computer Science
University of Washington praun@acm.org University of Illinois at Urbana-Champaign

luisceze@cs.washington.edu cascaval@us.ibm.com {pmontesi, torrellas}@cs.uiuc.edu

Abstract
Concurrency control is one of the main sources of error and complex-
ity in shared memory parallel programming. While there are several
techniques to handle concurrency control such as locks and transac-
tional memory, simplifying concurrency control has proved elusive.

In this paper we introduce the Data Coloring programming model,
based on the principles of our previous work on architecture support
for data-centric synchronization. The main idea is to group data struc-
tures into consistency domains and mark places in the control flow
where data should be consistent. Based on these annotations, the sys-
tem dynamically infers transaction boundaries. An important aspect
of data coloring is that the occurrence of a synchronization defect is
typically determinate and leads to a violation of liveness rather than
to a safety violation. Finally, this paper includes empirical data that
shows that most of the critical sections in large applications are used
in a data-centric manner.

Categories and Subject Descriptors D.1.3 [Programming Techniques]:
Concurrent Programming—parallel programming

General Terms Languages, Performance

Keywords Programming Model, Concurrency Control, Data Coloring

1. Introduction
While critical sections are probably the most popular form of con-
currency control in shared memory programs, their use is a complex
and error-prone task, especially for programmers with little experi-
ence in parallel programming. It can be argued that a major reason
why critical sections are error-prone is that they require non-local rea-
soning [13]: shared data structures that need to be accessed atomically
must be protected in all code locations where they may be referenced.
Failure to do so may result in data races that are often hard to detect
and debug. This problem is independent of the underlying critical sec-
tion implementation, whether based on locks or transactions. Based
on empirical evidence from large applications, we recognize the fact
that the main reason for concurrency control is to protect shared data.
Therefore, we believe that programmers should annotate the data that
must be kept consistent.

In this paper we introduce the Data Coloring programming model,
which is based on the principles of our previous work on architecture
support for data-centric synchronization [2]. In this model, program-
mers associate consistency constraints (called Colors) with shared
data structures. This is a data-centric approach to synchronization,

∗ This work was supported by the National Science Foundation under grants
CCR-0325603 and CNS-0720593.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MSPC’08 2 March 2008, Seattle, WA, USA
Copyright c© 2008 ACM 978-1-60558-049-4. . . $5.00

as opposed to the conventional operation-centric approach. We argue
that data-centric synchronization simplifies concurrency control be-
cause it mostly needs local reasoning – the programmer annotates the
data structures with consistency constraints without worrying about
where in the code the structures are being accessed.

In our programming model, in addition to assigning colors to
data, the programmer also marks places in the control flow where
data should be made consistent (Color Steps). Based on all these
annotations, the system dynamically infers transaction boundaries.
Finally, to support situations where largely-unrelated data structures
need to be consistently operated on by a set of actions, we also support
operation-centric synchronization with explicit transactions.

2. Consistency and Concurrency Control
Concurrency control prevents threads from performing concurrent,
conflicting accesses to shared data, thus maintaining data consistency.
Consistency defines how a thread observes the state of a set of memory
locations with respect to updates by other threads.

It is common practice —and a widely accepted model of shared
memory parallel programming— that concurrency control is specified
explicitly. For example, programmers delimit critical sections, imple-
mented by locks or transactions. Consequently, data consistency is a
result of the synchronization structure, rather than something explic-
itly defined. As a result, data consistency can be easily compromised,
either by the absence or the wrong use of synchronization annotations.

Data-centric synchronization [2, 13] turns this conventional model
upside down: consistency constraints are tied to the shared data
and specified explicitly; the system dynamically synthesizes actions
for concurrency control according to the consistency specifications.
Hence, data consistency is guaranteed as specified by the programmer.
In the following, we define consistency in the context of data-centric
synchronization, and elaborate on how actions for concurrency con-
trol are synthesized from the memory access stream in each thread.

2.1 Domain Consistency
Consistency properties are associated with a particular data domain.
As an example, consider the bits of a byte as the domain. Byte con-
sistency means that a thread observes all bits in a byte as updated
previously by another thread. Conceptually, every access to a byte
constitutes a transaction with isolation and atomicity properties. The
granularity of the consistency domain is one byte, and the synchro-
nization epoch at the boundaries of which consistency is established
is a single memory access. In current machines, byte consistency is
automatically enforced by hardware.

Domain consistency extends this model to regions of memory
and sequences of operations. The extent of a consistency domain
is explicitly specified through coloring: data with the same color
belong to the same domain. Coloring happens at the time when data
is allocated and initialized. Each address maps to at most one color.

Synchronization epochs are specified through a color step. Color
steps mark positions in the code where the programmer considers that
the accesses to a consistency domain by a thread are complete, or
where a thread should have the opportunity to observe other threads’
updates to the domain. A synchronization epoch starts implicitly at
the first data access to a domain (following a color step). Once inside

green

time

red

color space color step thread 0

color step thread 1

variable with update

variable unchanged

0

0 1

1

2 version

version

Figure 1. Domain consistency.

a synchronization epoch, a thread observes the state of memory in
isolation. Updates are made visible atomically when a color step is
encountered. When a thread executes inside a synchronization epoch,
we say that the thread ’holds the color’ corresponding to the epoch.

Figure 1 illustrates domain consistency. A thread observes the
variables of a domain at any point in time in a consistent state. A
color step specifies that a thread is willing to proceed to a more recent
version of a domain; if there are no concurrent updates to the domain,
the version is unchanged. Domains can grow and shrink in size as
data is allocated and deleted. Consecutive versions of a domain differ
in the value of at least one variable. When concurrent threads update
a domain in a conflicting manner and race for the corresponding color
step, the underlying transaction mechanism lets one thread success-
fully commit its version and rolls back other threads racing for the
step on the same color.

A color step differs from a memory fence. First, a step pertains
only to a specific domain and does not order accesses to memory in
other domains. Secondly, a memory fence merely orders the memory
access operations, while a color step may trigger a transaction to
complete.

Not all shared variables need to participate in domain consistency,
i.e., there can be ’uncolored’ shared memory. We assume that a color
step orders preceding accesses of uncolored memory with respect
to the atomic update of the domain (if any). Moreover, color steps
are observed in a total global order, irrespective of the domain they
operate on. Finally, a color step on a variable whose color is not held
or is not colored at all is a no-op.

2.2 Programming Model
2.2.1 Data-centric Synchronization
The synchronization model that uses coloring and color steps is data-
centric: The color is an immutable property of shared variables and
domain consistency is guaranteed at any time during the execution of
a program. For example, the consistency of a linked list data type may
be enforced by declaring all nodes in the list to have the same color
and let list operations (insert, remove, ...) be followed by a color step
annotation.

Notice that consistency domains that encompass only a single vari-
able are also useful: the memory isolation and atomicity properties
provided by data coloring facilitate that a sequence of accesses to a
colored variable occurs without interference from other threads. For
example, the following code achieves the conditional initialization of
a shared variable. We use a pseudo Java notation for illustration.

static Object singleton color() = null;

Object getUniqueInstance() {
Object ret;

if (singleton == null)

ret = singleton = new Object();

else

ret = singleton;

color step(&singleton);
return ret;

}

void transfer(Account a, Account b, int n) {
atomic(ALL COLORS) { // 〈defer color steps(l,ALL COLORS)〉

a.withdraw(n);
b.add(n);

} } // 〈l:color step(ALL COLORS)〉

Figure 2. Operation-centric synchronization with color steps.

The declaration of the variable singleton specifies that it should
be colored; in the example, the color is chosen by the system when the
variable is allocated. Domain consistency prevents multiple threads
from finding that the variable singleton is null and creating mul-
tiple object instances. The example illustrates that the programmer is
solely concerned with specifying the point where data in a domain
is consistent. Note that the newly created object is not colored, but
the reference to it is. The color step guarantees that any thread that
finds variable singleton initialized will also observe a completely
initialized instance of the object. The color at the color step opera-
tion is specified through an object reference or variable address. Also,
a color step operation may take multiple arguments that refer to dif-
ferent domains; in all cases, the updates to all domains occur (collec-
tively) in an atomic step.

Domain consistency breaks up the flat model of memory con-
sistency commonly assumed in computer architecture into smaller
domains: data-centric synchronization provides strong, transactional
consistency guarantees among locations in the same domain but pro-
vides no consistency guarantees across domains. The latter can be
achieved with operation-centric synchronization. In the data coloring
model, domain consistency is the default consistency model.

2.2.2 Operation-centric Synchronization
An application may temporarily request consistency that is stronger
than domain consistency, e.g., during the execution of a composite
operation. We call synchronization that serves to achieve guarantees
beyond domain consistency operation-centric. For example, an ac-
counting system has individual accounts that each are protected in
their own consistency domain. For the purpose of a money transfer
operation, a temporary consistency domain is established to encom-
pass multiple account records that are involved in the transfer.

Operation-centric synchronization is commonly specified through
the start (tx start) and end (tx end) of a transaction. In the model of
domain consistency, the boundaries of a transactional operation spec-
ify that all color steps encountered after the start of the transaction
are coalesced and occur atomically at the end of the transaction. If
several domains are involved in the transaction, then the updates of
all domains must occur in an atomic step. In Figure 2, the program-
mer specifies that the updates to both bank accounts must be done
atomically. This is accomplished with the atomic annotation, which
takes as argument the colors of all the domains that need to be tem-
porarily coalesced. The compiler then generates the primitives de-
fer color step and color step, ensuring that all color steps executed
between the two are aggregated. The compiler-generated code is spec-
ified in angle brackets 〈 〉.

2.3 Functional Composition
A synchronization mechanism has to be compatible with functional
composition, i.e., the combination of synchronization in the caller and
callee must maintain the semantics expected by the programmer. For
programs with critical sections, this is achieved through nesting —
various nesting semantics have been proposed for memory transac-
tions [1, 10, 12].

When code with color step synchronization is combined in the call
hierarchy, special care has to be taken to prevent a color step in a
callee from inadvertently disrupting the consistency window that a
programmer expects in the caller. Figure 3 illustrates this on a con-
current container implementation. Initially, the compiler would flag
method getAndRemove as potentially ’non-atomic’, since it invokes
other methods (find, get and remove) that may execute color steps.

int find(Key key) {
int index;

// search, access key, initialize index

color step(key, this);

return index;

}
Value get(int index) {

Value value;

// initialize value from index

color step(this);
return value;

}
void remove(int index) {

// remove value at index

color step(this);
}
Value getAndRemove(Key key) {

atomic(this) { // 〈defer color step(l, this)〉
Value value = null;

int index = find(key);

if (index != -1) {
value = get(index);

remove(index);

} // 〈l: color step(this)〉
return value;

}

Figure 3. Composition of color steps.

The programmer then inserts the atomic directive, which ensures
that getAndRemove proceeds on a single version of this. This so-
lution to the composition problem is similar to operation-centric syn-
chronization: The execution of color steps for the color of the this
object in downstream methods is disabled as illustrated in Figure 3.
It is the compiler that automatically synthesizes defer color step and
color step, specifying that color steps on the color of the this object
should be disregarded until execution reaches label l. Note that the
color of the key object is released at the end of find.

This approach, which forces computation between the two direc-
tives onto a single version of a domain, is consistent with the princi-
ples of the data coloring programming model: the programmer must
be aware of any disruption of isolation (non-atomicity) and have sim-
ple means to enforce domain consistency within the local scope of a
method or code block.

2.4 Synchronization Defects
In the data coloring model, the nature of synchronization defects, their
detection, and consequences differ from critical section synchroniza-
tion. Synchronization defects fall into one of:

• Incorrect coloring: Three cases are possible: (i) Shared mutable
locations are not colored. Such a situation can be detected by track-
ing accesses to uncolored locations. (ii) Variables with mutual con-
sistency constraints are colored differently. In such case, inconsis-
tencies among the variables can arise due to unordered concurrent
access. In a debugger, color information can help identify race con-
ditions as a possible reason for data inconsistency. The data incon-
sistency due to such race conditions can be corrected by giving the
same color to the variables that are found with inconsistent values.
(iii) Variables with different consistency constraints have the same
color. In this case, when the programmer releases a color in a color
step, she may be committing updates to variables that should be
in different consistency domains, leading to unexpected program
behavior. Static analysis allows the programmer to obtain a report,
check and correct colors for variable declarations.

• Omission of a color step: This cannot lead to consistency (safety)
violation. However, a thread that holds a color and does not step
ahead in the version space may harm overall progress (liveness

defect). This situation can be detected easily, identifying the thread
and the color that caused the problem.

• Violation of atomicity: A potential violation of atomicity [3] can
occur during the execution of a block or method when encountering
more than one step of the same color which are not coalesced
by a surrounding code-centric transaction specification. Since the
programming model assumes that the occurrence of color steps
(and hence atomicity properties) are specified along with methods,
violations of atomicity can be reliably detected through program
analysis either within the block or traversing the call graph.

In summary, the detection of synchronization defects in the data
coloring model can be achieved in a mostly determinate manner, i.e.,
independent of the thread scheduling. Omitting color steps affects
liveness properties but not safety.

3. Transaction Inference
Domain-level consistency can be implemented using transactional
memory (TM). Based on the specification of colors, the color steps
and the dynamic memory access stream, a system can automatically
infer the points in the execution when transactions should be started
and committed. Figure 4 illustrates this inference process.

color_step(A)

access(B)

color_step(B)

tx_end

access(A)

access(A)

tx_start

color_step(A)

tx_end

access(A)

tx_starttx_start

tx_end

(f)(e)(d)

color_step(A)

access(A)

color_step(B)

color_step(A)

access(B)

access(A)

color_step(A)

color_step(B)

access(B)

first mem access
after previous step

inferred
transaction

color(A, red)

color(B, green)

(c)(b)(a)

access(A)

Figure 4. Transaction inference from the memory access stream and
the color steps. tx start an tx end denote start and commit of explicit
transactions. Nested transactions in this implementation follow closed
nesting semantics.

When a colored memory location is accessed for the first time af-
ter the previous step of the same color, the executing thread acquires
the color and starts a transaction. When executing a color step for the
color, the thread releases the color and commits the transaction. In-
ferred transactions nest following closed nesting semantics, as shown
in Figures 4(b) and (c). Figure 4(b) illustrates the properly nested case,
where the color step after the access to B is for B’s color. Figure 4(c)
shows the case where the first access to B is followed by a color step
for A’s color — making the colored section not properly nested.

Figures 4(d), (e) and (f) illustrate scenarios when colored sections
nest with explicit, i.e., operation-centric, transactions (operation-
centric synchronization). Figure 4(d) shows the simplest case, where
an explicit transaction fully encapsulates the work of colored sec-
tions. Figure 4(e) shows a non-properly nested case that is legal in
our implementation because of the support for software composabil-
ity. Figure 4(f) shows a case that we consider legal but that may hint
to an omitted color step: An explicit transaction is ended (tx end)
before the color step of a section that started after the explicit trans-
action start is encountered. Since an explicit transaction should be
employed to carry out a set of operations atomically – if these oper-

class BoundedBuffer {
Object[] buffer = new Object[SIZE];
int putIndex, takeIndex,nofUsedSlots;
...
void put (Object o) {

while (true) {
atomic {

if (nofUsedSlots < buffer.length) {
insert(o);
nofUsedSlots++;
return;

}
}
/* backoff and wait */

}
}
Object take() {

while (true) {
atomic {

if (nofUsedSlots > 0) {
Object o = extract();
nofUsedSlots--;
return o;

}
}
/* backoff and wait */

}
}
void insert (Object o) {

buffer[putIndex] = o;
putIndex = (putIndex + 1) % SIZE;

}
Object extract() {

Object ret = buffer[takeIndex];
takeIndex = (takeIndex + 1) % SIZE;
return ret;

} }

Figure 5. Bounded buffer based on critical sections.

ations involve access to colored data – they are considered complete
when the explicit transaction ends.

One important aspect of the transaction-based implementation of
our model is directly related to the nesting semantics: The step termi-
nating a nested colored section that only read data performs an early
release [5] of all data of the respective color. Note that color step de-
clares the intention to observe a new version of the domain and hence
this naturally maps to an early release implementation.

4. Example: Concurrent Bounded Buffer
We use the following example to show how critical sections, e.g., im-
plemented by (nested) transactions, can limit concurrency and hence
hamper scalability and performance. The data coloring model does
not suffer from this problem.

Figure 5 illustrates a bounded buffer permitting concurrent ac-
cess at both ends by producers (method put) and consumers (method
take). The implementation is based on a sliding window (putIndex,
takeIndex) over a fixed size array (buffer) with wrap-around. Im-
plementation details like backoff and queuing are omitted for clarity.

An important goal of the design of a concurrent bounded buffer
is to decouple the operation of putters and takers as much as pos-
sible. With critical sections, this goal can be achieved by minimiz-
ing the time period during which variables that are commonly up-
dated/accessed by putters and getters must be kept consistent.

In the case of the BoundedBuffer class, the highly contended
variable is nofUsedSlots. The design with flat transactions shown
in Figure 5 does not achieve the aforementioned goal: variable
nofUsedSlots is accessed in one transaction together with the
insert and extract methods.

Nested transactions [1, 10, 12] have been proposed to mitigate
the negative impact of contention on the performance of memory
transactions. Figure 6 illustrates such a design for the put method:
Access to nofUsedSlots is encapsulated in nested atomic blocks.
The code is correct. However, the goal of removing the (poten-
tially lengthy) execution of insert from the critical path during

class BoundedBuffer {
...
void put (Object o) {

while (true) {
atomic { // (1)

bool do_insert;
atomic { // (2)

do_insert = nofUsedSlots < buffer.length;
}
if (do_insert) {

insert(o);
atomic { // (3)

nofUsedSlots++;
}
return;

}
}
/* backoff and wait */

} } }

Figure 6. Optimized put method with nested transactions.
class BoundedBuffer {

Object[] buffer color(this) = new Object[SIZE];
int putIndex,takeIndex;
int nofUsedSlots color();
...
void put (Object o) {

while (true) {
if (nofUsedSlots < buffer.length) {

color_step(&nofUsedSlots); // (a)
insert(o);
nofUsedSlots++;
color_step(&nofUsedSlots, buffer); // (b)
break;

}
/* backoff and wait */

} } }

Figure 7. Implementation of put method with color steps.

which isolation of variable nofUsedSlots has to be preserved is not
achieved: If transactions (2) and (3) follow the semantics of closed
nesting [10], then transaction (3) must observe the same value of vari-
able nofUsedSlots as transaction (2). This is not necessary for this
code to be correct. Alternatively, if transaction (2) followed the se-
mantics of open nesting then the code would not be correct because
the value of buffer.length and the state of the buffer encountered
during insert might not be consistent.

Figure 7 shows how data coloring can achieve this complex syn-
chronization without over-specifying consistency. There are two con-
sistency domains: one for variable nofUsedSlots, and another do-
main for the remaining variables of a BoundedBuffer instance. This
coloring is achieved through the color declarations. Fields without
explicit color declaration obtain the color specified when the object is
allocated. Notice that there is no explicit critical section in the code
because synchronization in the bounded buffer is purely data centric.
The color step instruction (a) explicitly expresses that – for the correct
operation of the buffer – it is not necessary that the variable is held in
isolation beyond that point. The insert operation and the follow-
ing increment of nofUsedSlots occur atomically. Finally, (b) allows
both color domains to simultaneously transit to the next version. It
would be incorrect to specify the color steps in sequence, such that the
update of nofUsedSlots counter would be visible before the update
to the buffer. Also, the fine grain specification of color steps would
be incorrect if variables nofUsedSlots and buffer would share the
same color (see discussion on incorrect coloring in Section 2.4), since
the consistency window on the buffer object would be unduly dis-
rupted (due to color aliasing) by color step (a). The declaration of
variable nofUseSlots explicitly requests a color different from the
other fields of the BoundedBuffer instance (color()).

Notice that it is easy to infer from the code or an execution, that
the body of the while loop may not execute atomically because there
are two steps of the same color in that block. It is exactly this selective
relaxation of atomicity that is not achieved by transaction nesting.

We feel that the addition of color steps is a natural way to gradually
weaken consistency to achieve higher concurrency. True transaction

MySQL 5.0.22 WebSphere SUN JRE 1.50
LOC 1.5m # Classes 11343 # Classes 13081
Files 2336 # Sync Methods 2029 # Sync Methods 5337
CS 1275 # Static Sync Methods 546 # Static Sync Methods 915
Data-centric CS 84% # Sync Blocks 2119 # Sync Blocks 5337

Sampled DC Sync Blocks 72%
Data-centric CS 75%

Table 1. Estimation of the proportion of data-centric critical sections
in MySQL, WebSphere and SUN JRE.

nesting targets the same goal but seems in this case unintuitive and is
not capable to achieve the desired semantics.

5. Quantitative Justification
We support our claim that data-centric concurrency control is the
common case by analyzing synchronization patterns in three large
software packages: MySQL, WebSphere and Sun’s Java Runtime
Environment (JRE). Table 1 summarizes the collected data.

MySQL is a large parallel application with thousands of files
and over a million lines of code, written in C. Its critical sec-
tions operate under the protection of thousands of different lock
instances. We inspected all critical sections in the code and clas-
sified them as data-centric or operation-centric. Most critical sec-
tions (84%) in MySQL are data-centric. Among the many locks
used, three global locks (kernel mutex, LOCK thread count,
and LOCK global system variables) protect a large number of
distinct critical sections (70, 62 and 31 respectively) and are spread
over many files (14, 14, and 7 respectively). In this code-centric, non-
local reasoning using critical sections for large applications, it is easy
to overlook the need for a critical section and introduce data races.
Using a data-centric model, the programmer simply colors the data-
structures, and marks the places in the code where data is consistent
with color steps. All accesses to shared data would be guaranteed to
be inside a system synthesized transaction.

In the case of WebSphere – a few million lines of Java code – we
classify locks according to the following criteria: synchronized meth-
ods are data-centric, while static synchronized methods and synchro-
nized blocks are operation-centric (since their lock is not associated
with any specific object instance). We randomly sampled and manu-
ally inspected the code to determine that this classification holds over
a large number of cases. For the SUN JRE, we use the same criteria
as WebSphere but did not inspect the source code to determine the
nature of the synchronized blocks.

When inspecting the code, we classified critical sections as data-
centric when their purpose was obviously to keep shared data struc-
tures consistent. Critical sections were classified as operation-centric
when they performed a collection of unrelated tasks, typically calls to
apparently unrelated functions or methods. When in doubt, we classi-
fied critical-sections as operation-centric. Using this conservative ap-
proach, we find about 75% of the critical sections to be data-centric.

When inspecting synchronized blocks in WebSphere, we fre-
quently observed cases where synchronized blocks were used to avoid
having long critical sections by making the whole method synchro-
nized. In those situations, the blocks were synchronized on this. Other
common patterns were composite objects whose methods had syn-
chronized blocks on the encapsulated object instances.

6. Related Work
McKenney [9] discusses several synchronization patterns encountered
in parallel programs. Particularly related to this paper are the Code
Locking, Data Locking and Data Ownership patterns. In our classifi-
cation, both Code Locking and Data Locking are code centric; they
differ in the granularity at which locks are placed in the program.

Vaziri et al. [13] present extensions to Java to allow the associa-
tion of synchronization constraints to objects. In their proposal, the
programmer, when declaring the fields of a class, can group them into
“atomic sets”. Based on the atomic set annotations and using static

analysis, locks are inferred to guarantee method-level atomicity. Mc-
Closkey et al. [8] developed Autolocker, which allows the program-
mer to associate data structures with locks together with atomic sec-
tion annotations. The system then automatically infers the synchro-
nization operations necessary to provide the specified atomicity.

Monitor-based concurrency control [7] is data-centric, as data is
explicitly declared as shared and is associated with a predefined set
of procedures. If the data accesses are performed through the monitor
procedures, mutual exclusion is automatically guaranteed.

Transactional memory (TM), e.g., [4, 6, 12] is a mechanism for
optimistic concurrency control. The common programming model
for TM is code-centric: Transaction boundaries are specified in the
control flow of the program. There is no explicit specification of
shared data. Recent work by Ni et al. [11] explores how transaction
nesting can be specified in a data-centric manner.

Finally, this work extends the data-centric synchronization model
in Colorama [2]. Most notably, Colorama does not have the concept
of a color step. It relies on an exit policy – e.g., automatically end a
critical section at the end of the method that started it.

7. Conclusions
In this paper, we introduce concurrency control with Data Coloring, a
programming model based on the principles of our previous work on
architecture support for data-centric synchronization [2]. We justify
the choice of data-centric synchronization with an empirical study
of critical sections in several large applications. The study revealed
that more than 75% of the critical sections are used in a data-centric
manner, even though the concurrency control is specified in a code-
centric manner using critical sections with locks.

The data coloring programming model emphasizes data-centric
synchronization and matches intent with implementation. Consis-
tency domains are specified using colors, while color steps allow the
programmer to express when the transitions between consistent states
are safe. The additional information helps the system infer the right
granularity of transactions, without unnecessarily burdening the pro-
grammer. Data coloring enables programmers to reason locally about
consistency properties. Additional benefits of data coloring are its en-
hanced safety properties: synchronization defects can be detected ef-
ficiently and in a determinate manner.

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,

and T. Shpeisman, “Compiler and runtime support for effficient software
transactional memory,” in PLDI’06.

[2] L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas, “Colorama:
Architectural support for data-centric synchronization,” in HPCA’07.

[3] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,” in
PLDI’03.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional Memory Coherence and Consistency,” in ISCA ’04.

[5] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer, “Software
transactional memory for dynamic-sized data structures,” in PODC’03.

[6] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in ISCA’93.

[7] C. Hoare, “Monitors: An operating system structuring concept,” CACM,
vol. 17(10), 1974.

[8] B. McCloskey, F. Zhou, D. Gay, and E. Brewer, “Autolocker: Synchro-
nization inference for atomic sections,” in POPL ’06.

[9] P. McKenney, “Selecting locking designs for parallel programs,” in Pattern
Languages of Program Design, 1996.

[10] J. E. B. Moss and T. Hosking, “Nested transactional memory: Model and
preliminary architecture sketches,” in SCOOL’05.

[11] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, and A. L. Hosking, “Open nesting
in software transactional memory,” in PPoPP’07.

[12] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “McRT-STM: A high performance software transactional
memory system for a multi-core runtime,” in PPoPP’06.

[13] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization constraints
with data in an object-oriented language,” in POPL’06.

